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Abstract— Distributed decision-making in the presence of
multiple manipulative actors is studied, in the context of a
linear distributed-consensus algorithm which has been en-
hanced to feedback controls enacted by these actors. The
main contribution of the work is to evaluate the interplay
among the manipulative actors in deciding the asymptotic
decisions reached by the network of decision-making agents.
In particular, the dependence of the asymptotic opinions on
the network’s topology and the manipulative actors’ control
schemes is characterized. Also, an example is used to illustrate
that interactions among the actors may impact the dynamics
of the decision-making algorithm in sophisticated ways.

I. INTRODUCTION

Distributed decision-making algorithms are used in appli-
cations ranging from computer networking to infrastructure
health monitoring and multi-processor clock synchronization
[1], [2]. Further, these algorithms are often descriptive of
interactive processes that occur in human groups, such as
voting processes within an organization or price consensus
for commodity markets [3]. As the world around us be-
comes increasingly cyber enabled and networked, distributed
processes for decision-making are becoming increasingly
common.

The growing prominence of distributed decision-making
algorithms has fostered a research effort on consensus and
opinion dynamics in networks in the controls community
[4]-[9]. One theme in this research effort has been to under-
stand the influence of selfish stakeholders or actors, which
aim to manipulate the decision process via their local actions
[10]-[12]. Manipulation of decision-making processes has
been modeled by including stubborn agents, whose opinions
are unresponsive to their neighbors’ opinions. Manipulation
of decision-making algorithms has also been represented
in a more general way as feedback controls (including
specifically pinning controls) [13], or alternatively as open-
loop actuations which can be analyzed using controllability
concepts [9], [14]-[16].

Decision-making in many settings involves multiple selfish
actors, which seek to manipulate network opinions toward
divergent goals. For instance, voting in human groups almost
always involves participants who influence others toward
different decisions or candidates, and consensus is rarely
reached. Likewise, in market processes, multiple actors may
naturally seek to manipulate prices toward different values.
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Thus, there is naturally an interest in understanding dis-
tributed decision-making processes with multiple manipula-
tive actors. Based on this motivation, a few recent studies
have considered distributed decision-making algorithms with
multiple stubborn agents that have different opinions [14].
In a related direction, some studies have also considered
algorithms that lead to group consensus, with different sets
of agents being guided to different decisions or consensus
values [10], [17].

This study is also concerned with distributed decision-
making algorithms involving multiple selfish actors with
divergent goals. The main contribution of the work is to
understand the interactions among the selfish actors, i.e. to
understand how the activities of one such actor influence
the ability of another actor to manipulate the decision.
Specifically, a linear distributed-consensus algorithm defined
on a network is considered. The selfish actors are modeled
as enacting feedback controls at one or a small set of agents.
Our aim is to understand how the control capabilities of the
different manipulative actors interact in deciding the outcome
of the decision-making algorithm, and hence how the actions
of some manipulative actors modulate the capabilities of
others. Our primary focus here is on characterizing the
decisions reached asymptotically by the agents, in terms
of the controls used by the manipulative actors and the
graph topology of the distributed decision-making algorithm.
Via an example, we also illustrate that manipulative actors
can alter the settling properties of the network and produce
sophisticated impacts on transfer functions seen by other
actors.

The paper is organized as follows. The distributed-
decision-making model with manipulative actors is intro-
duced and motivated in Section II. The main focus of
the study, developed in Section III, is to understand how
interactions among the manipulative actors decide the asymp-
totic decision achieved by each agent. In Section IV, an
example is developed which illustrates the manipulation of
the asymptotic decisions, and also explores the possibility
for complex dynamic interactions among the actors. Due fo
space constraints, proofs and some details are excluded, see

[18].

II. PROBLEM FORMULATION

A distributed decision-making algorithm specifies rules
by which a network of agents update their opinions via
local interactions, typically with the goal of reaching a
common opinion or enabling an action (e.g. voting for a
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leader) after some time. A number of distributed decision-
making algorithms have been proposed, which may operate
in continuous or discrete time, track continuous or quantal
states, and use stochastic or deterministic update rules [19],
[20]. Here, we enhance a standard deterministic continuous-
time algorithm for continuous-valued opinions (termed a
distributed consensus algorithm), to capture manipulation by
multiple actors.

Formally, a network with n agents, specified by the set
N ={1,...,n}, is considered. Each agent 7 has an opinion
x;(t) which evolves in continuous time (! € RT). The
interactions among the agents are defined by a weighted
digraph T' = (V, E : W), where the weights W are assumed
to be positive; we assume throughout the article that T’
is strongly connected. Nominally, each agent is modeled
as updating its opinion based on a weighted average of
differences between its opinion and those of its graphical
neighbors. Mathematically, the nominal dynamics takes the
form x = —L(T')x, where x = [z xn]T, and L(T)
is the (asymmetric) Laplacian matrix associated with the
directed graph T'. Specifically, L(T") is defined as follows:
the off-diagonal entry L;; is set equal to the negative of
the weight from vertex j to vertex ¢ in the graph I' if
there is an edge (and to zero otherwise); the diagonal
entries are selected so that each row sums to zero. This
nominal model for distributed decision-making has been very
widely studied in the literature [4], [9], [21]. Under broad
connectivity conditions, the opinions of all agents can be
shown to converge to a common value Z, which is a linear
combination of their initial opinions. The dependence of the
asymptotic value on the initial opinions can be prescribed
through appropriate design of the network weights [4], [9].

Many decision-making processes have stakeholders that
seek to manipulate the agents’ opinion dynamics, to achieve
decisions that differ from the one prescribed by a nominal
algorithm. Here, we consider the circumstance that there are
m independently-acting manipulative actors, specified by the
set M = {1,...,m}. Broadly, we view each actor as being
able to access (actuate and measure) subsets or projections of
the agents’ opinions. Each actor is then modeled as enacting
feedback control on a multi-input multi-output channel, with
the aim of altering the steady-state or transient behaviors of
the network in a way that provides a benefit relative to the
other actors. In this study, we focus on one specific model
for manipulative actors [9], [21], which are meant to capture
typical type of manipulative behavior in distributed decision-
making algorithms. The following is the model:

Local Actors: Each actor is able to influence a subset
of the agents, using local feedback at each (i.e., the agent’s
feedback input depends only on its own opinion and the
reference signal). Formally, in a distributed decision-making
algorithm with local actors, each actor j (5 € M) seeks to
manipulate the agents in the set A; where j € M, to a
common fixed point (constant reference) r; = ;. The actor
J applies a static (proportional) controller with gain k;; at
agent ¢. The agents’ opinion dynamics with described local

actors is given by:

x=-LM)x+ Z e;u;
ieEN
U; = Z kij(Fj — e;X), (1)
JEM

where k;; is the specified gain if ¢ € A and k;; is defined
as 0 otherwise, and e; is 0-1 indicator vector with ith
entry equal to 1. The distributed decision-making algorithm
with local actors captures the circumstance that manipulators
influence individual agents toward their preferred opinion,
based on an understanding of their local opinion. We no-
tice that the local-actor model is closely aligned with the
stubborn-agent models in the literature [4], in the sense that
the opinions of agents influenced by each actor are held close
to the reference value specified by the actor. We also notice
that the local-actors model can naturally be generalized to
represent dynamics in the actors’ influences on agents (e.g.,
sluggishness in the feedback actuation), by replacing the
feedback gain with a transfer function K;;(s). The model
with dynamic feedback also falls in the broad family of
models with manipulating actors described above. We briefly
discuss the model with dynamic local actors in Section III.
Our main goal in this work is to analyze how multiple
manipulative agents in the network interact. The control en-
acted by each actor modifies the evolution of the distributed
decision-making algorithm, and hence modulates the ability
of the second actor to manipulate the dynamics. Our aim is
to analyze these dependencies, focusing particularly on their
impact on the asymptotic opinions achieved by the agents
(Section 3). Via an example, we also introduce the idea that
actions of one actor alter the dynamical responses caused by

the actions of other actors (Section 4).

III. ANALYSIS OF ASYMPTOTIC OPINIONS

Our aim in this section is to study how the interactions
among the manipulative actors decide the asymptotic behav-
ior achieved by each agent. Nominally, if no manipulators
were present, the agents would asymptotically achieve a
common opinion or decision. The controls enacted by each
actor modify the evolution of the distributed decision-making
algorithm, and hence can modulate the asymptotic behaviors
of the agents — perhaps preventing the formation of a steady
state, or more typically leading to a steady-state with a
gradation of opinions. Here, we seek to understand how the
controls enacted by the different actors impact the asymptotic
behavior of the agents, and thus to understand how one
actors’ efforts constrain the influence of the other actors. We
present a sequence of analyses for the distributed decision-
making algorithm with local actors.

In analyzing distributed decision-making algorithm with
local actors (1), we assume that all local actors’ control
gains k;; are nonnegative, and at least one of them is
positive. This is the typical case that the local actors impose
negative feedback controls, i.e. try to influence agents toward
their reference signals. In this case, the state matrix of the
controlled system dynamics is in the form of negative of
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a grounded Laplacian matrix (associated with a strongly
connected digraph). From properties of the grounded Lapla-
cian matrix, it is immediate that the closed-loop system is
asymptotically stable in the sense of Lyapunov. Since the
reference inputs are constant signals, it follows immediately
that the opinion of each agent reaches a steady-state. Further,
from linearity, the steady-state opinion of each agent is seen
to be a linear combination of the reference signals of all
local manipulative actors. Hence, the asymptotic opinion Z;
of each agent (i.e., lim;_, o, x;(t)) can be presented as:

x; = Z /\ij?j- 2)
JEM
Where z; is the asymptotic value for the opinion of the agent
) (l‘l(t)), ie. lim o l‘l(t) =I;.

The following results characterize the weightings A;;
in the asymptotic opinions of the agents in terms of the
manipulating (local) actors’ control gains and the network’s
graph topology. Hence, they give insight into the intertwined
impacts of the manipulative actors on the agents’ asymptotic
opinions. To present these results, it is helpful to define some
further terms: 1) —L;; is referred to as the link-weight of
agent j on agent 7, and 2) \;; is called the contribution of
actor j to the asymptotic opinion of agent . We notice that
the link weight from j to ¢ is equal to the network graph’s
edge weight if there is an edge from j to ¢, and is zero
otherwise.

An initial result, developed in the following Theorem 1,
is that the asymptotic opinions are weighted averages of the
manipulative actors’ reference signals:

Theorem 1: Consider the distributed-decision-making al-
gorithm with local actors (1). For this model, consider the
agents’ asymptotic opinions, as defined in (2). The contribu-
tion of the local actor j to the asymptotic opinion of agent 1,
i.e. \j, satisfies the following conditions: 1) 0 < A;; < 1 and
2) > jemAij =1 for Vi e N. In the case where each actor
uses at least one strictly positive gain k;;, the contributions
Aij are strictly positive.

Remark: Theorem 1 has a close connection to the anal-
ysis in [14], which considers distributed decision-making
algorithms with multiple stubborn agents. In particular,
the stubborn-agent dynamics can be equivalenced with a
static feedback control, albeit in a discrete-time rather than
continuous-time setting. Hence a similar result on the de-
pendence of the asymptotic opinions on the stubborn agents’
initial opinions is recovered.

Theorem 1 has established that the asymptotic opinion of
each agent in the network is a nonnegative unitary linear
combination of the reference signals of the local actors.
To understand the impacts of the manipulative actors on
the asymptotic opinions, we next study the effect of the
control gain of the local actors on the contributions A;;. The
following theorem describes the dependence:

Theorem 2: Consider the distributed-decision-making
algorithm with local actors (1). For this model, consider the
agents’ asymptotic opinions, as defined in (2). Suppose that
there is more than one local actor where each actor uses

at least one strictly positive gain k;;. The contribution of
the local actor j to the asymptotic opinion of agent i, i.e.
Aij, is a concave strictly-increasing function of the local
actor’s control ga2ins ky; for all positive k,;, p € Nj (i.e.

gl/c\;; > 0 and %k/\ZJ < 0 for Vi € N, p € Nj, and all

positive kp;). Meanwhile, each contribution Aij 18 a convex
strictly-decreasing function of the other local actors’ control
s .. 92 ..
gains k,, for ¢ # j, p € N, (i.e. g;‘” < 0 and dak);” >0
ra Pq
for ¢ # j, Vi € N, p € N, and all positive k).

The above theorem shows that, if a local actor ¢ increases
any of its control gains k,,, its contribution to all agents’
asymptotic opinions (i.e. \;, for Vi € A) will increase or
remain the same. Meanwhile, all other actors’ contributions
(i.e. A;j for Vj # ¢ and i € N) will decrease or remain the
same. Thus, by increasing a control gain, an actor increases
his own influence on the agents and uniformly decreases
the contributions of all other actors. It is interesting to ask
whether an actor can gain absolute influence (i.e., achieve a
contribution A;; of 1), by using a high gain. The following
simple theorem clarifies that local actors can gain absolute
influence on the agents which they directly actuate and
measure.

Theorem 3: Consider the distributed-decision-making al-
gorithm with local actors (1). For this model, con-
sider asymptotic opinions of the agents p that are actu-
ated/measured by an actor ¢ (p € N, and ¢ € M), as
defined in (2). For sufficiently large control gains k,q, the
contribution of local actor ¢ on agent p is arbitrarily close
to 1, ie. limg, o0 Apg = 1.

Although actors can gain absolute influence on agents
that they directly actuate/measure, their influence on other
agents in the network is generally not absolute no matter
how large a control gain they use. Thus, for agents that
are not directly being actuated by an actor, other actors can
ensure a minimum level of influence (minimum contribution
to the asymptotic opinion of the actor) by applying a control
anywhere in the network. Per Theorem 2, by increasing their
control gains, these actors can also reduce the maximum
influence achievable by the first actor.

The spatial pattern of impact of an actor, i.e. the depen-
dence of the actor’s contribution levels on the network’s
graph I', is also of interest. In the following theorem,
we show the contribution of a local actor on the agents’
asymptotic opinion is, in a certain sense, a monotonically
decreasing function of the graphical distance of the agent
from the actuation/measurement sphere of the actor. The
theorem requires some terminology and notation relating to
cutsets of the network’s graph. To develop this terminology,
let us consider a particular local actor j, and assume without
loss of generality that the actor actually applies feedback
to all agents that it actuates/measures (i.e. k;; # 0 for
Vi € N; C N). Let us also define N'(j) C N as the
complement set of N (7). We define a separating cutset for
actor j as a vertex cutset Q(j) such that all the vertices in
subset N'(j) are contained in only one partition formed by
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the cutset, or on the cutset itself, i.e., all actuated vertices are
on “one side” of the cutset or the cutset itself. (Notice that
the vertices in subset A'(5) may be present in all partitions
formed by the cutset or on the cutset itself). We also refer to
the corresponding group of the agents as separating agents.
Let us use the label S(j) as the set of the vertices in the
partition that includes vertices from set A (j), and refer to
this set as the actor-close vertices (agents). Similarly, we use
the label 7 (j) for the set of vertices in the partition(s) that
do not include vertices from set N (j), and refer to this set
as the actor-far vertices (agents). We note that any path from
a vertex in set S(j) to a vertex in set 7 (j) passes through
at least one of the vertices in set Q(j). Now the theorem is
presented:

Theorem 4: Consider the distributed-decision-making al-
gorithm with local actors (1). For this model, consider the
agents’ asymptotic opinions, as defined in (2). Consider a
particular local manipulative actor j and any corresponding
separating cutset Q(j), which forms an actor-close set S(7)
and an actor-far set 7 (j). The contribution of the local
actor j to the asymptotic opinion of any agent in the actor-
far set 7(j) is less than its contribution to at least one
separating agent specified in Q, i.e. Aij < Mmaz{4eo(j) g
for Vi € T (j).

Theorem 4 shows that the influence of an actor is smaller
at a remote agent, as compared to at least one agent on
a cutset that separate the remote agent from its actua-
tion/measurement set. This main result immediately implies
that there is a spatial degradation in the contributions of
actors, along sequential cutsets away from the agent’s mea-
sured/actuated set. The following three corollaries formalize
this notion of a spatial degradation, beginning with a gen-
eral case and then two specializations. The corollaries are
presented without proof since they follow immediately from
Theorem 4. The first corollary compares the contributions to
the asymptotic opinion on two cutsets, in the general case:

Corollary 1: Consider the distributed-decision-making al-
gorithm with local actors (1). For this model, consider the
agents’ asymptotic opinions, as defined in (2). Consider an
arbitrary local actor j and two separating cutsets Q1(j) and
Q>(j), such that any path from vertices in set N (j), to
the vertices in set Q(j) passes through at least one of the
vertices in set Q1(7). The contribution of local actor j to
the asymptotic opinion of all separating agents in Qs(j) is
less than or equal to its contribution to at least one of the
separating agents in Q1 (j), i.e. A\ij < mawyeeo,(j)3Aqj for
Vi € Qo ( j )

The result can be presented more simply for the special
case that the network graph I' has a tree structure or
(more generally) a single path between an actor’s mea-
sured/actuated agent and other agents of interest:

Corollary 2: Consider the distributed-decision-making al-
gorithm with local actors (1). For this model, consider the
agents’ asymptotic opinions, as defined in (2). Consider a
particular local actor j and two agents p and ¢ such that any
path between a vertex in set N'(j) to the vertex ¢ passes
through the vertex p. The contribution of the local actor j to

the asymptotic opinion of agent ¢ is less than or equal to its
contribution to the agent p, i.e. Ag; < Apj.

Also, in case that each local actor is only actuating one
agent, the following simplification can be obtained:

Corollary 3: Consider the distributed-decision-making al-
gorithm with local actors (1). For this model, consider the
agents’ asymptotic opinions, as defined in (2). Assume that
local actor j only actuates the agent J. The contribution of
local actor j to the asymptotic opinion of its actuating agent
J, is greater than or equal to its contribution to the other
agents’ asymptotic opinion, i.e. A;; > Ay; for all ¢ and 7.

The above results on the spatial pattern of impact for an
actor (Theorem 4 and Corollaries 1-3) hold no matter the
control gains used by the different actors. Hence, the results
also hold for the maximum contribution that can be achieved
by an actor on the agents through design of the local control
gains.

In the previous analyses, we studied the effects of changes
in a local manipulative actor’s control gain k;; on the
asymptotic opinions of the agents. Now, we investigate how
changes in the link weight between two agents, i.e. entries of
matrix L(T"), affect the asymptotic opinions in the network.
These results give further intuition about how the network’s
graph topology modulates the level of influence that different
actors can achieve.

Theorem 5: Consider the distributed-decision-making al-
gorithm with local actors (1). For this model, consider the
agents’ asymptotic opinions, as defined in (2). The contribu-
tion of a local manipulative actor ¢ on all agents’ asymptotic
opinions is an increasing function of the link wei§ht from
agent 4 to agent j, i.e. —Lj;, if A\jg > Ajq (e, foz“_i >0
in this case). Conversely, it is a decreasing function of —Lj;
if )\iq < /\jq.

Theorem 5 shows that the contribution of an actor to all
agents’ asymptotic opinions (i.e., the overall influence of the
actor) is increased if link weights from high-contribution
agents to low-contribution agents are augmented. In other
words, the actor’s influence can be spread widely if links
are built from highly-influenced agents to other agents. Con-
versely, if less-influenced agents have stronger links to more
influenced agents, then the influence of the actor globally
decreases.

The next result specializes Theorem 5 to the case where
each actor is only measuring/actuating one agent:

Corollary 4: Consider the distributed-decision-making al-
gorithm with local actors (1). For this model, consider the
agents’ asymptotic opinions, as defined in (2). Consider two
actors ¢ and ; which each apply feedback controls at single
agents, ¢ and j respectively. The contribution of the actor ¢ to
all agents’ asymptotic opinions is a monotonically increasing
function of —L;;, while the contribution of actor j to the
asymptotic opinions is a monotonically decreasing function
of 7Lj1'.

A further result is that, if the link weight from one agent
to another is sufficiently increased, the asymptotic opinions
of these two agents as well as the contributions of the
local manipulative actors on these agents become close. The
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following theorem states this result:

Theorem 6: Consider the distributed-decision-making al-
gorithm with local actors (1). For this model, consider the
agents’ asymptotic opinions, as defined in (2). Consider
any two agents ¢ and j. The contribution of any local
manipulative actor to the asymptotic opinion of the agents
i and j, i.e. A\;4 and A;, for any ¢ € M, become close
to each other for sufficiently large —L,; or —Lj;. That is,
Hm(_Lij)_,oo()\iq _)\jq) =0 and hm(_L“)_,oo()\Zq _)‘jq) =
0 for any ¢ € M.

Remark: Consider the distributed-decision-making algo-
rithm and general local manipulating actors with feedback
transfer functions K;;(s) as described in the problem for-
mulation. Provided that the stability of the system with these
actors is maintained, the asymptotic results presented in this
section also easily follow through to the dynamic control
case, with the DC control gain K;;(0) replacing the static
gain.

IV. EXAMPLE AND PRELIMINARY DISCUSSION ABOUT
DyNAMICS

Actor 1 Actor 2

Fig. 1. Graph I" associated with a network with 7 agents and two actors.

An example is used to illustrate some results on the
asymptotics of the distributed decision-making algorithm
developed in Section IIl. The example is also used as a
context for exploring, in a preliminary way, the dynamics of
the distributed decision-making algorithm when manipulative
actors are present. The example illustrates that manipulative
actors may impact the global settling properties of the
algorithm, as well as each others’ control capabilities, in
sophisticated ways.

For the example, a distributed-decision-making algorithm
(1) defined on a network with 7 agents with two local ma-
nipulative actors is considered. The network’s graph, which
has a ring structure, is shown in Fig. 1: the weights in each
direction are assumed to be identical, i.e. agents’ influences
are symmetric. Two local actors 1 and 2 are defined, which
measure/actuate agents 1 and 2 respectively.

The contributions of the two actors to the agents’
asymptotic opinions (i.e., A;;) have been determined,
when the gains k13 = 1 and kgs = 1 are used:
A1 = [0.90,0.09,0.13,0.15,0.21,0.26,0.32]7, A., =
[0.09,0.90,0.86,0.84,0.78,0.73,0.67]7. The contributions
show that the influence of each actor on the agents’ asymp-
totic opinions is decreasing with the distance from the
agent actuated by the actor, as expected per Theorem 4.
Additionally, the contribution of actor 2 to agent 5 is plotted
as a function of the feedback gain koo, for several different
values of ki1, see Fig. 2. The figure shows that the actor’s

influence on the agent is amplified as the feedback gain
is increased, however the actor does not achieve absolute
influence even with a large gain.

Contribution of local Actor 2 to asymptotic opinion of agent 5 (),
0.88

52)

0.86

084 -
Fost
08 f
078 -
076 . : . ‘ . . . . . ‘
0 2 4 6 8 10 12 14 16 18 20
Control Gain of Local Manipulator Actor 2 (kzz)
Fig. 2. The dependence of the contribution of local actor 2 on the

asymptotic opinion of agent 5 on difference values of the control gains
of local actor 1 and 2, i.e. k11 and kao.

With regard to the dynamics of the distributed decision-
making algorithm, the presence of manipulative actors may
alter both the global dynamical properties of the algorithm
(e.g. settling rate), and each others’ control channels. Let
us first use the example to explore the settling behavior. In
the nominal model (without manipulative actors present), the
settling rate is defined by the inverse of the subdominant
eigenvalue of the graph Laplacian matrix, i.e. the non-zero
eigenvalue which has smallest real part. For the example
in Fig. 1, this subdominant eigenvalue is 0.1613. When
manipulative actors are included in the model, the distributed
decision-making algorithm (1) becomes asymptotically sta-
ble, and hence the settling rate is defined by inverse of
the dominant eigenvalue of the grounded-Laplacian matrix
associated with the model (the eigenvalue with smallest real
part). For the example, the dominant eigenvalue with a single
actor (Actor 1, using a gain k11 = 1) is 0.0206, while the
dominant eigenvalue with both actors included (k11 = 1,
koo = 1) is 0.1079. Thus, we see that the presence of
a single manipulative actor slows down the settling of the
distributed decision-making algorithm, while the inclusion of
the second manipulative actor comparatively speeds up the
settling. While the rates are specific to the example, it can
be shown via the Cauchy eigenvalue-interlacing theorem that
the settling rate with a single local actor acting at a single
agent will be slower than the nominal model, if the network
graph is symmetric.

Beyond influencing the global dynamics of the distributed
decision-making algorithm, the actions of one actor can also
modulate the dynamics incurred by another actor’s control
in sophisticated ways. A natural way to study these dynamic
interactions among actors is to characterize the impact of
one actor’s controllers on another actor’s control channel,
i.e. on the transfer function as seen from the perspective
of the second actor. The poles of the transfer function are
global properties which are intrinsic to the full network,
while the transfer-function zeros are specific to the actor’s
control channel. Thus, understanding dynamic interactions
among control channels requires characterizing the zeros of
an actor’s control channel in terms of the controls applied by
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another actor. To illustrate the possible sophisticated impacts
of one actor on another actor’s control channel, we consider
a slight modification of the example above. In particular, we
also include a new actor (Actor 3) which measures/targets
agent 3 and actuates agent 7. We study how the zeros of
the transfer function for actor 3 vary with the control gain
koo used by actor 2 (while the control gain used by actor
1 is fixed at k17 = 1). In particular, the dependence of the
dominant zero location (the largest real part among the zeros)
on ko is shown in Fig. 3. The plot shows that the transfer
function seen by actor 3 is nonminimum phase for small
gains koo (i.e. has zeros in the right half plane), but becomes
minimum-phase for large gains. It is well-known that the
presence of nonminimum-phase zeros complicates control:
for instance, leading to instability if static high-gain con-
trollers are used, and placing limits on control performance
(e.g. on reference tracking, disturbance rejection, or cheap
control). Thus, in this example, actor 2 can support actor 3’s
efforts to manipulate the network by using a higher gain.
More generally, the example highlights that multiple actors
may have sophisticated dynamic interactions, which may: 1)
lead to unexpected responses to an actor’s feedback control,
2) limit or amplify actors’ opportunities for manipulation,
and 3) require changed control topologies of the actors. A
comprehensive analysis of such dynamic interactions is left
to future work: we refer the reader to our earlier work on
control-channel interactions for some results that are relevant
to the dynamic analysis [21]-[26].

04 Dominant Zero

03

02

01

L L L L L '

03 L L L L
1 12 14 16 18 2 22 24 26 28 3

Control Gain K22 for Local Manipulator Actor 2

Maximum Real Part Among Zeros for Channel 3-7

Fig. 3. The dependence of the dominant zero location (the largest real part
among the zeros) for transfer function channel 1-3 on the control gain k22
of actor 2.
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