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Abstract: Structural controllability of a linear dynamical network made up of interconnected
homogeneous subsystems is examined. Subsystem- and network- level structural controllability
are shown to be necessary but not sufficient for structural controllability of the full model.
It is shown that the presence of certain high-multiplicity structural modes, which we call
structural network-invariant modes, are barriers to structural controllability. An equivalence
between structural network-invariant modes and the classical notion of a structural decentralized
fixed mode is obtained, which allows testing and characterization of structural controllability.
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1. INTRODUCTION

Dynamical network models with interconnected homoge-
neous subsystems have been widely studied (Wu (1995a,b);
Watts (1998); Li (2010); Yu (2011); Wang (2011); Xue
(2014, 2017)). Such models were originally developed to
represent synchronization phenomena in coupled-oscillator
circuits and emergent processes in nature (Wu (1995a,b);
Watts (1998)). They have since been used for myriad large
scale systems ranging from the power grid to vehicle teams
(Li (2010); Yu (2011); Wang (2011); Xue (2014, 2017)).

A primary focus of the research on linear network mod-
els with homogeneous subsystems has been to establish
conditions for stability and stabilization, in terms of the
network’s graph topology. The foundation for these stabil-
ity analyses is a decomposition of the model’s spectrum,
in terms of global (network-level) and subsystem-level con-
structs (Wu (1995a,b); Watts (1998); Li (2010); Yu (2011);
Wang (2011)). Recently, researchers have begun to study
input-output properties of the models, including control-
lability, observability, centralized and decentralized fixed
modes, and transfer-function zeros (Xue (2014, 2017);
Abad (2015); Hao (2018); Wang (2016, 2017); Xue (2018);
Zhang (2014); Xue (2018)). These input-output analyses
have also sought to decompose model properties in terms
of global and subsystem- level constructs.

There has been a particular interest in the controllability
of linear coupled-subsystem network models (Wang (2016,
2017); Xue (2018); Zhang (2014); Xue (2018); Trumpf
(2018)). Several studies posited that the condition for
controllability could be decomposed into network-level and
subsystem- level conditions (e.g. Zhang (2014)). However,
a sequence of recent studies have demonstrated that such
a decomposition is not possible, in the case where the sub-
systems are multi-input multi-output devices (Xue (2017);
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Wang (2016, 2017); Xue (2018); Zhang (2014); Xue (2018);
Trumpf (2018)). In particular, the network model may
be uncontrollable even when the network-level dynamics
is controllable, and the subsystems are observable and
controllable. The complexity in the controllability analysis
arises due to subtleties in the eigenvector analysis of the
coupled-subsystem model in the repeated-eigenvalue case.
Very recently, we have developed some characterizations
of repeated eigenspaces in the coupled-subsystem model,
which give insight into the intertwining of network-level
and subsystem-level conditions for controllability (Xue
(2018)). Specifically, these characterizations demonstrate
that the model may have repeated eigenvalues with very
high multiplicity, which we term network-invariant modes,
that are essential barriers to controllability.

In many large-scale systems, notions of structural control-
lability — which are concerned with controllability across
state-space models with a specified zero pattern, rather
than for a particular set of model parameters — are of
significant interest. Structural notions are often impor-
tant because they indicate robustness to parametric un-
certainties, which are ubiquitous in large-scale system
applications. For this reason, structural controllability of
canonical network models has been widely studied (Pe-
quito (2016); Zamani (2009); Rahimian (2013); Chapman
(2013); Carvalho (2017); Guan (2017)), following on an
older literature on structural controllability of linear sys-
tems (e.g. Lin (1974)). These efforts have also distin-
guished between strong structural controllability notions
(where every network of the given structure must be con-
trollable) and weak notions (where only one network of the
given structure need be controllable). Particularly relevant
to this work, structural controllability has been studied for
linear network models that comprise interconnections of
heterogeneous linear subsystems, however the focus was
on a numerical technique for evaluating (weak) struc-
tural controllability (Carvalho (2017)). Also of significant
relevance, structural controllability of a homogeneous-
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subsystem model has also been considered in Guan (2017),
however this study considers design of the subsystem-level
dynamics to achieve controllability rather than analyzing
already-built networks.

In this work, we examine the structural controllability of a
network model comprising couplings of arbitrary homoge-
neous linear subsystems. We demonstrate via an example
that the coupled-subsystem model may be structurally
uncontrollable even though the global and subsystem- level
models are both strongly structurally controllable. We
then argue that structural controllability is lost due to
certain structural modes of high multiplicity, which we
callstructural network-invariant modes. A characterization
of these modes in terms of the subsystem’s structural fixed
modes is developed, and their implications on controllabil-
ity are also examined.

2. MODELING AND PROBLEM FORMULATION

A network model made up of interconnected homogeneous
linear subsystems, which can also be actuated by external
inputs, is considered. Formally, a model with n nodes
labeled 1,...,n and m inputs labeled 1, ..., m, is defined.
The state x; € RN of each node i is governed by:

x; = Ax; + B(Z 9i;Cx; + Z SigUg), (1)

j=1 g=1
where A € RN>*N B e RN>*M ¢ e RMXN | g, and s,
are scalar weights, and u, € RM is the qth external input.

We refer to the model given by Equation 1 as the coupled-
subsystem network model (or simply the full model).
We note that the triple (C, A, B) describes the identical
(square) subsystem at each node, hence we refer to the
triple as the subsystem model. The local input to each
subsystem is a weighted linear combination of outputs
from other subsystems as specified by the n x n network
matrix G = [g;;]. and external inputs as specified by the
n X m matrix S = [s;,]. Thus, the pair (G, S) specifies the
topology of interactions among the subsystems, and of the
external inputs’ impacts on the subsystems; for this rea-
son, we refer to the pair as the global model or network-
level model. We also refer to the matrix G as the network
matrix of the model. The global model (G, S) and the
subsystem model (C, A, B) together entirely specify the
coupled-subsystem network model.

The coupled-subsystem network model can be expressed
in vector form using the Kronecker product notation:

x=I,® A+ G® BC)x+ (S ® B)u, (2)
X1
where I, is an n X n identity matrix, x = | ! |, and
Xn
u
u = | : |. This state-equation form makes explicit the
u'ﬁL

dependence of the coupled-subsystem network model on
the subsystem and global models.

The focus of this study is on the structural controllability
of the coupled-subsystem network model, and its relation-
ship to the global and network-level models. The structure

of the model is encoded in the zero-nonzero pattern of
its defining matrices (C, A, B, G, and S). A number of
notations can be used to indicate the zero-nonzero patterns
of matrices. We follow the notation used in e.g. Tsitsiklis
(1984), by indicating the zero entries in the matrices as
‘0’, and the non-zero entries as ‘*’. The non-zero entries
are assumed to be real.

Following the recent literature, we consider both strong
and weak notions of structural controllability for the
coupled-subsystem network model (Chapman (2013)).
These notions are defined as follows:

1) The coupled-subsystem network model is said to
be strongly structurally controllable if, for all matrices
(C,A,B,G,S) with the specified structure, the model
(Equation 1) is controllable.

2) The coupled-subsystem network model is said to be
weakly structurally controllable if there exists matrices
(C,A, B,G,S) with the specified structure for which the
model (Equation 1) is controllable.

3) The coupled-subsystem network model is said to be
structurally uncontrollable if it is not weakly structurally
controllable, i.e. no choice of parameter matrices permits
controllability.

Our analysis also requires parallel definitions for structural
controllability and observability for the subsystem and
global models, as presented next:

e The global model is said to be strongly structurally
controllable if the pair (G,S) is controllable for all
matrices G and S of the specified structure.

e The global model is said to the weakly structurally
controllable if there exist matrices G and S of the
specified structure, such that (G, S) is controllable.

e The global model is said to be structurally uncontrol-
lable if it is not weakly structurally controllable.

e The subsystem model is said to be strongly struc-
turally controllable if the pair (A, B) is controllable
for all matrices A and B of the specified structure.

e The subsystem model is said to the weakly struc-
turally controllable if there exist matrices A and B
of the specified structure, such that (A, B) is control-
lable.

e The subsystem model is said to be structurally uncon-
trollable if it is not weakly structurally controllable.

e The subsystem model is said to be strongly struc-
turally observable if the pair (C, A) is observable for
all matrices C' and A of the specified structure.

e The subsystem model is said to the weakly struc-
turally observable if there exist matrices C' and A of
the specified structure, such that (C, A) is observable.

e The subsystem model is said to be structurally unob-
servable if it is not weakly structurally observable.

In many domains, the network matrix may be further re-
stricted. For instance, network matrices for diffusion, syn-
chronization processes, and some linearized infrastructure-
dynamics models are typically Metzler (i.e. having nonneg-
ative off-diagonal entries). It is also common that the net-
work matrix G is restricted to be symmetric or diagonally
symmetrizable. We also consider structural controllability
subject to these restrictions on the network matrix.
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Our goal in this study is to examine whether strong and
weak structural controllability of the coupled-subsystem
model can be decomposed into network-level and subsystem-
level conditions, and in turn to give characterizations for
structural controllability through a modal approach. De-
compositions of this sort are appealing because they can
allow application of graph-theoretic results on structural
controllability for scalar network synchronization/consensus
processes, and also enable simplified numerical analysis of
structural controllability.

3. CONDITIONS FOR STRUCTURAL
CONTROLLABILITY: NEGATIVE RESULT

We show that, while structural controllability of the sub-
system and global models are necessary for structural
controllability of the full network model, they are not
sufficient. First, the following two lemmas affirm that
subsystem- and global- conditions are necessary for struc-
tural controllability of the full model. We omit the proofs
of these results, because they closely follow standard (non-
structural) controllability analyses of the full model (Xue
(2018); Zhang (2014)).

Lemma 1. The coupled-subsystem network model is strongly

structurally controllable only if the global and subsystem
models are both strongly structurally controllable.

Lemma 2. The coupled-subsystem network model is weakly
structurally controllable only if the global and subsystem
models are both weakly structurally controllable.

Remark: Similar necessary conditions can be obtained
when the network matrix is restricted to be Metzler,
symmetric, or diagonally symmetrizable.

Remark: Lack of structural observability of the subsystem
model also restricts the structural controllability of the full
model, because it prevents indirect regulation of subsys-
tems via remote inputs. In general, subsystem observabil-
ity is required for controllability of the full model, unless
the external inputs are sufficient in number and richness
to directly move the state of all network components at
will. We will revisit this dependence later.

Previous work on exact controllability has shown that
the full model may be uncontrollable even though the
subsystem and global models are controllable, because of
the presence of high multiplicity modes (Xue (2018)). One
might hope that considering structural matrices may elim-
inate such repeated modes and hence allow decomposition
of the controllability condition. However, the following
example shows that the full coupled-subsystem network
model may be only weakly structurally controllable or even
structurally uncontrollable, even though the subsystem
model is strongly structurally controllable and observable,
and the global model is strongly structurally controllable.

The example is defined by the following structured matri-

000 * 0 «00 * % 0
ces: A= |00 =x*|,B= 0*,02[0*0],(;: * ok k|,
* 0 * 00 0 * %

*

and S = [01 Let us first evaluate the structural con-
0

trollability of the subsystem model for the example. To

do so, consider the controllability matrix for the subsys-
tem model, given by Cs = [B AB AQB]. The first three
*00

columns of Cg take the form [0 * 0] , hence these columns
00 %

are necessarily linearly independent. The subsystem model
is therefore seen to be strongly structurally controllable.
By an analogous argument, the subsystem model can also
be verified to be strongly structurally observable.

Next, let us consider the structural controllability of the
global model. The controllability matrix for the global
model is given by C, = [S GS st]_ The controllability
* ok 7

0 * ?], where ‘7’
00 =

indicates an entry that may be either zero or nonzero.
The three columns of C, are necessarily linearly indepen-
dent, and hence the global model is strongly structural
controllable.

matrix has the structural form C, =

Finally, let us consider structural controllability of the
full coupled-subsystem network model for the example.
Our main conclusion is that the full model cannot be
controllable, except perhaps for some very special choices
of the network matrix G. To understand why, we recall
that the eigenvalues of the state matrix I ® A + G ® BC
can be found as the union of the eigenvalues of A+ \; BC,
where \; are the eigenvalues of the nextwork matrix G.
However, notice that the matrix @ = A + ABC' has the
* 00
structure @ = [0 * *], where only the upper-left and
* 0 *

middle diagonal entries depend on A (and may be complex
numbers). From this structure, it is immediately clear that
the lower right entry, say z, is an eigenvalue of Q = A +
ABC for any A. It thus follows that z (which depends
on the subsystem model parameters but not the global
model) is an eigenvalue of each of the blocks A + A\;BC.
In consequence, the eigenvalue z has algebraic multiplicity
of at least 3, no matter what the the coupled-subsystem
model’s parameters are. Provided that the matrix G is
diagonalizable, it also follows that the geometric multi-
plicity of the eigenvalue is also at least 3. However, notice
that the full model has only two input channels (the input
matrix is defined by S ® B, which has dimension 9 x 2).
Thus, it follows that the full coupled-subsystem network
model is uncontrollable, except perhaps in the special case
that the network matrix G is not diagonalizable. The
above discussion demonstrates that the coupled-subsystem
network model for the example is not strongly structurally
controllable, and indeed generic choices for the model
parameters will lead to uncontrollability.

Next, it is instructive to study whether the presented
example is weakly structurally controllable, or in fact
structurally uncontrollable. Toward such a characteriza-
tion, we note that the model can be controllable only if
the network matrix G is not diagonalizable. However, for
this particular example, G is necessarily diagonalizable if
it is restricted to be Metzler. This is because G is an
irreducible Metzler matrix whose digraph is a tree (i.e., the
graph has no cycles of length greater than 2). Thus, the
matrix G in this example can always be symmetrized using



28 Mengran Xue et al. / IFAC PapersOnLine 52-3 (2019) 25-30

a diagonal similarity transformation regardless of the pa-
rameter values and hence is diagonalizable. Thus, the full
model is structurally uncontrollable if the network matrix
is restricted to be Metzler. When there is no restriction on
@G, the network matrix G may not be diagonalizable, which
leaves open the possibility for controllability. Indeed, it
is possible to construct network matrices of the specified
structure which are not diagonalizable. However, even for
these examples, we have found that the coupled-subsystem
network model is not controllable. We thus conjecture that
the model is in fact structurally uncontrollable.

Conceptually, the example was chosen so that the network
model’s modes are constrained to be modes of a pertur-
bation of the subsystem state matrix A, where only two
of the diagonal entries can be perturbed. In consequence,
the full model has a mode equal to the bottom-right entry
of A with high multiplicity, and thus controllability is
lost unless a large number of control inputs can be used.
The result is structural since the high multiplicity of the
mode is independent of the particular entries of A and
the diagonal perturbation. We note that the constraint
on the open-loop modes is an essential consequence of
the network’s interconnection structure: the subsystem in
isolation would not be constrained in this way.

Remark: Our negative result contrasts with the structural
analyses of heterogeneous networks in (Guan (2017)).

4. STRUCTURAL NETWORK-INVARIANT MODES
AND THEIR IMPLICATIONS

In the example in Section III, strong structural controlla-
bility is lost because the coupled-subsystem network model
has a structural eigenvalue with high multiplicity, which
serves as a barrier to controllability. In this section, we
identify structures for which the coupled-subsystem net-
work model necessarily has modes (eigenvalues) of high
multiplicity, and study the implications of such modes on
the controllability of the network model.

The coupled-subsystem network model necessarily has an
eigenvalue of high multiplicity, if A + ABC alway has an
eigenvalue p that is invariant with respect to the complex
scalar \. In this case, each of the matrices A + \;BC has
1 as an eigenvalue, and hence the algebraic multiplicity
of u for the full model is at least equal to the number of
nodes n. Thus, it is of interest to identify conditions under
which the A + ABC has an eigenvalue that is invariant
with respect to A. This motivates the following definition
for a structural network-invariant mode:

Definition 1. Consider the coupled-subsystem network
model with structured parameter matrices (C, A, B, G, S).
The model is said to have a structural network-invariant
mode if, for every A, B, and C of the specified structure,
the matrix A + ABC has a common eigenvalue p for all
values of the complex scalar A\. We note that the eigenvalue
1 may depend on the triple (C, A, B), but there must be
an invariant eigenvalue with respect to A for each triple.

The example coupled-subsystem network model intro-
duced in Section III has a structural network-invariant
mode, with the invariant eigenvalue p equal to the lower-
right entry of the matrix A (called ¢ in Section IIT).

Two types of analyses are pursued with regard to the
structural network-invariant modes. First, we develop tests
for whether a coupled-subsystem network model has a
structural network-invariant mode. Second, we explore the
implications of structural network-invariant modes on the
structural controllability of the full model.

Tests for and characterizations of structural network-
invariant modes can be developed by recognizing an equiv-
alence with structural decentralized fixed modes for the
subsystem model. To develop the equivalence, let us first
review the concept of a structural decentralized fixed mode
(see Tsitsiklis (1984); Sezer (1981)) , in the context of the
subsystem model:

Definition 2. Consider the subsystem model in the case
where the parameter matrices A, B, and C' are structured
matrices. The subsystem model is said to have a structural
decentralized fixed mode if, for every choice of A, B, and
C of the specified structure, the subsystem model has a
decentralized fixed mode in the sense that A + BKC has
a common eigenvalue for all real diagonal matrices K.

The following theorem formalizes the equivalence between
structural network-invariant modes and structural decen-
tralized fixed modes:

Theorem 1. The coupled-subsystem network model has a
structural network-invariant mode if and only if the sub-
system model has a structural decentralized fixed mode.

Proof: First assume that the subsystem model has a
structural decentralized fixed mode. Consider a particular
subsystem model (C, A, B). Then, by the definition of
a structural decentralized fixed mode, the matrix A +
BKC has a common eigenvalue p for all real diagonal
matrices K. Choosing K = AI, where X is a real scalar,
we immediately find that p is an eigenvalue of A + ABC
for all real A. To check whether p is also an eigenvalue
A+ ABC for complex ), let us consider solving for A such
that A+ABC has eigenvalue u. For these A, det(A+ABC —
wul) = 0. Notice that the determinant is a polynomial in
A of degree at most n (it may be either identically 0 or
a nondegenerate polynomial). Hence, the equation either
has a finite set of solutions A, or holds for all complex A.
Since the equation has already been shown to hold for all
real A, it thus holds for all A in the complex plane. Since
this argument holds for any triple (C, A, B), it follows that
the full model has a structural network-invariant mode.

Conversely, assume that the coupled-subsystem network
model has a structural network invariant mode. Now
consider a particular triple (C, A, B). It follows that A +
ABC has a set of modes, say M, which are common for
all real A (there is at least one, and may be more such
invariant modes). Notice that the modes in M are a subset
of the eigenvalues of A. Notice further that, for all but
perhaps a finite set of A, the remaining eigenvalues of
A + ABC are distinct from those of A. Now consider the
eigenvalues of R = A 4+ AB(I + e¢K)C, where K is an
arbitrary diagonal matrix. For all sufficiently small €, each
eigenvalue of R is arbitrarily close to one of the eigenvalues
of A+ ABC. Next, notice that R could alternately be

written as R = A + ABC, where C = (I + ¢K)C has the
same structure as the matrix C. However, we recall that
the coupled-subsystem network model is assumed to have
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a structural network invariant mode, which means that
R = A+ ABC must have an eigenvalue in common with
A. Thus, one of the eigenvalues of R must be in the set M.

Since this argument holds for any K , we have thus shown
that the matrices A+ BKC have a fixed eigenvalue in the

set M, for all diagonal K of the form K = A(I+€K), which
forms a cone in the space defined by the diagonal entries of
K. Tterating the argument using small perturbations at the
boundary of the cone, it eventually follows that matrices
A + BKC have a fixed eigenvalue in the set M for all
diagonal real matrices K. If the argument is initiated using
the diagonal K which has the lowest-cardinality set of fixed
eigenvalues, it then follows that matrices A+ BKC have a
common set of eigenvalues for all real diagonal K. It thus
follows that the triple (C, A, B) has a decentralized fixed
mode. Since the argument holds for all triples (C, A, B),
the model has a structural decentralized fixed mode. B

Remark: The converse argument in the proof crucially
depends on the fact that the network-invariant mode
is structural. An immediate further consequence is that
network-invariant modes do not depend on the entries of
B and C, only possibly on A.

The equivalence given in Theorem 1 enables algorithmic
testing for structural network-invariant modes, using a
standard algorithm for finding structural decentralized
fixed modes (Tsitsiklis (1984)). The equivalence also allows
characterizations of structural network-invariant modes
based on known characterizations of decentralized-fixed
modes. For instance, if the subsystem is single-input single-
output (SISO), it is immediate that the subsystem model
has structural decentralized fixed modes if and only if
the subsystem model is either structurally uncontrollable
or structurally unobservable. Thus, for the SISO subsys-
tem case, the full model has structural network-invariant
modes if and only if the subsystem model is either struc-
turally uncontrollable or structurally unobservable. In con-
trast, for MIMO subsystems, structural network-invariant
modes may be present even if the subsystem is strongly
structurally controllable and observable, as the example
shows. In summary, the equivalence allows analysis of
structural network-invariant modes using machinery for
testing and characterization of structural decentralized
fixed modes. The equivalence also clarifies that the struc-
tural network-invariant modes include subsystem uncon-
trollable and unobservable modes.

Remark: The above theorem exposes an interesting differ-
ence between structural network-invariant modes as com-
pared to the network-invariant modes concept introduced
in Xue (2018). In general, network-invariant modes are a
superset of the decentralized fixed modes of the subsystem
model (Xue (2018)), however structural network-invariant
modes are precisely identical to the structural decentral-
ized fixed modes of the subsystem model.

Finally, we discuss implications of structural network-
invariant modes on the structural controllability of the
coupled-subsystem network model. One main insight is
that, if the model has a structural network-invariant mode,
the full model necessarily has an eigenvalue with algebraic
multiplicity of at n. In these circumstances, the full model
can only be structurally controllable if the the network has

a sufficient number of inputs, except perhaps if G cannot
be diagonalizable. This notion is formalized next:

Theorem 2. Consider a coupled-subsystem network model
which has a structural network-invariant mode. Assume
that the number of external input channels m satisfies
m < g7, where M is the number of input variables per
channel (the number of columns of B). Also assume that
the network matrix G does not have a structural defective
mode at the origin. Then the coupled-subsystem network

model cannot be strongly structurally controllable.

Proof: The eigenvalues of the full coupled-subsystem
network model are the union of the eigenvalues of A +
A BC, where )\; are the n eigenvalues of G. If the model
has a structural network-invariant mode, it is then im-
mediate that, for the coupled-subsystem network model,
this mode has algebraic multiplicity of at least n. Under
the assumption on G, it immediately follows that G is
diagonalizable for at least one choice of the global model
(G, S) of the given structure. If G is diagonalizable, the
structural network invariant mode also necessarily has
geometric multiplicity of at least n, since the eigenvalues
of the full coupled-subsystem network model are those of
a block diagonal matrix with diagonal blocks equal to
A + \;BC in this case. For this choice of G, since one
mode has geometric multiplicity of at least n, it follows
from basic linear systems concepts that at least n input
variables are needed for controllability. Thus, if the total
number of input variables mM is less than n, the model
is not controllable for this choice. Thus, strong structural
controllability is lost. l

Several remarks about this result are needed:

1) The mild condition on G that it does not have a
structural defective mode is sufficient to guarantee diag-
onalizabilty for at least one choice of G. This eliminates

structures such as G = {8 (ﬂ are always defective.

2) An immediate consequence is that, if the subsystem
model is not strongly structurally observable, then a signif-
icant number of input channels is needed for controllability
of the full model (m > {7). This is because unobserv-
ability of the subsystem model implies that the coupled-
subsystem network model has a structurally network in-

variant mode, and the result above applies.

3) If the full model has a structural invariant mode and
has insufficient input channels (m < {7 ), in many cases the
model will not only lose strong structural controllability,
but become structurally uncontrollable. This is always
the case when the network matrix is restricted to be
symmetric, diagonally symmetrizable, or Metzler with an
associated acyclic graph. In these cases, the matrix G can
be diagonalized, which means controllability of the full
model is lost no matter how the subsystem model is chosen.
Even if G is defective, fewer inputs generally do not suffice.

4) The theorem can be refined to show that any partition of
the network must have a sufficient number of input chan-
nels for strong structural controllability, see Xue (2018) for
a parallel result concerned with exact controllability.
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The reader will notice that the analyses of controllabil-
ity have been phrased in terms of the presence/absence
of structural-invariant modes, which are a property of
the subsystem model. The global model influences con-
trollability, as follows. If the subsystem model does not
have structural network invariant modes, then structural
controllability resolves to structural controllability of the
global model. We leave a full treatment to future work.

5. CONCLUSIONS

We have demonstrated that structural controllability for
networks comprising homogeneous subsystems may not
decompose into subsystem-level and network-level (global)
conditions, due to the presence of structural network
invariant modes. We have also obtained an equivalence
between structural network-invariant modes and the sub-
system structural decentralized fixed modes, and discussed
the limitations on controllability imposed by invariant
modes. An important next step is to study when the
subsystem structure makes control difficult (e.g. requiring
much energy), even if it does not prevent control entirely.

REFERENCES

Wu, C. W., Chua, L. O. (1995). “Application of Kronecker
products to the analysis of systems with uniform linear
coupling”. IEEFE Transactions on Circuits and Systems
I: Fundamental theory and applications, 42(10), 775-778.

Wu, C. W., Chua, L. O. (1995). “Synchronization in an
array of linearly coupled dynamical systems”. IEEE
Transactions on Clircuits and Systems I: Fundamental
Theory and Applications, 42(8), 430-447.

Watts, D. J., Strogatz, S. H. (1998). “Collective dynamics
of small-worldnetworks”. Nature, 393(6684), 440.

Li, Z., Duan, Z., Chen, G., Huang, L. (2010). “Consensus
of multiagent systems and synchronization of complex
networks: A unified viewpoint”. IEEE Transactions on
Circuits and Systems I: Regular Papers, 57(1), 213-224.

Yu, W., Chen, G., Ren, W., Kurths, J., Zheng, W. X.
(2011). “Distributed higher order consensus protocols
in multiagent dynamical systems”. IEEE Transactions
on Clircuits and Systems I: Regular Papers, 58(8), 1924-
1932.

Wang, X., Roy, S., Wan, Y. (2011, February). “Using
deliberate-delay decentralized controllers to stop spread
dynamics in canonical network models”. In Computa-
tional Advances in Bio and Medical Sciences (ICCABS),
2011 IEEE 1st International Conference on (pp. 178-
183). IEEE.

Xue, M., Wang, W., Roy, S. (2014). “Security concepts
for the dynamics of autonomous vehicle networks”.
Automatica, 50(3), 852-857.

Xue, M., Roy, S. (2017, December). “Input-output prop-
erties of linearly-coupled dynamical systems: Interplay
between local dynamics and network interactions”. In
Decision and Control (CDC), 2017 IEEE 56th Annual
Conference on (pp. 487-492). IEEE.

Abad Torres, J., Roy, S. (2015, December). “A two-layer
transformation for characterizing the zeros of a net-
work input-output dynamics”. In Decision and Control
(CDC), 2015 IEEE 54th Annual Conference on (pp. 902-
907). IEEE.

Hao, Yuqing, Zhisheng Duan, and Guanrong Chen. “De-
centralised fixed modes of networked MIMO systems.”
International Journal of Control 91, no. 4 (2018): 859-
873.

Wang, Lin, Guanrong Chen, Xiaofan Wang, and Wallace
KS Tang. “Controllability of networked MIMO sys-
tems.” Automatica 69 (2016): 405-409.

Wang, L., Wang, X., Chen, G. (2017). “Controllabil-
ity of networked higher-dimensional systems with one-
dimensional communication”. Phil. Trans. R. Soc. A,
375(2088), 20160215.

Xue, M., Roy, S. (2018). “Modal Barriers to Controlla-
bility in Networks with Linearly-Coupled Homogeneous
Subsystems. In 2018 Network Controls and Systems
Symposium (NecSys 2018). Extended version submitted
to IEEE Transactions on Automatic Control.

Zhang, S., Cao, M., Camlibel, M. K. (2014). “Upper and
lower bounds for controllable subspaces of networks
of diffusively coupled agents”. IEEE Transactions on
Automatic Control, 59(3), 745-750.

Xue, M., Roy, S. (2018). “Comments on ‘Upper and
Lower Bounds for Controllable Subspaces of Networks
of Diffusively Coupled Agents’ ”. IEEE Transactions on
Automatic Control, 63(7), 2306-2306.

Trumpf, Jochen, and Harry L. Trentelman. ” Controllabil-
ity and stabilizability of networks of linear systems.”
IEEE Transactions on Automatic Control (2018).

Dhal, R., Roy, S. (2016). “Vulnerability of Network Syn-
chronization Processes: A Minimum Energy Perspec-
tive”. IEEE Trans. Automat. Contr., 61(9), 2525-2530.

Pequito, Sergio Daniel, Soummya Kar, and A. Pedro
Aguiar. “A Framework for Structural Input/Output
and Control Configuration Selection in Large-Scale Sys-
tems.” IEEE Trans. Automat. Contr. 61, no. 2 (2016):
303-318.

Zamani, M., Lin, H. (2009, June). “Structural control-
lability of multi-agent systems”. In American Control
Conference, 2009. ACC’09. (pp. 5743-5748). IEEE.

Rahimian, M. A., Aghdam, A. G. (2013). “Structural con-
trollability of multi-agent networks: Robustness against
simultaneous failures”. Automatica, 49(11), 3149-3157.

Chapman, A., Mesbahi, M. (2013, June). On strong
structural controllability of networked systems: A con-
strained matching approach. In American Control Con-
ference (pp. 6126-6131).

Carvalho, J. F., Pequito, S., Aguiar, A. P., Kar, S., Johans-
son, K. H. (2017). “Composability and controllability
of structural linear time-invariant systems: Distributed
verification”. Automatica, 78, 123-134.

Guan, Y. and Wang, L., 2017. “Structural controllability of
multi-agent systems with absolute protocol under fixed
and switching topologies”. Science China Information
Sciences, 60(9), p.092203.

Lin, C. T. (1974). “Structural controllability”. IFEE
Transactions on Automatic Control, 19(3), 201-208.
Papadimitriou, C. H., Tsitsiklis, J. (1984). “A simple
criterion for structurally fixed modes”. Systems and

Control Letters, 4(6), 333-337.

Sezer, M. E., iljak, D. D. (1981). “Structurally fixed

modes”. Systems and Control Letters, 1(1), 60-64.



