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1 Motivation and Objective

The United States’ air transportation system is subject to myriad disruptions. Traditionally, the the man-
agement of the air transportation system has primarily been focused on mitigating the impact of disruptions
caused by severe weather, including convection, winter weather, and high winds [1, 2, 17, 18]. Recently,
however, there has been growing concern about assorted other disruptions to the air transportation system,
including cyber- failures and attacks, space vehicle operations, and vulnerabilities introduced by the system’s
human operators and clients (ranging from operator error due to fatigue to kinetic threats caused by bad
actors) [3–6,19,20]. Indeed, several high-profile disruptions to the air transportation system have originated
from non-weather causes in recent years. These disruptions, while localized at their source, have incurred
costly propagative impacts across the air traffic system.

Motivated by the recent disruption events, several several studies have sought to develop models and
tools for threat assessment and mitigation of heterogeneous disruptions to the air transportation system.
The approach taken by these studies has been to introduce multi-layered models that capture traffic flows,
weather, and human/cyber components in the air traffic management system [3–6]. In turn, these models
are used to evaluate disruption impacts, and to design traffic flow management (TFM) strategies to mitigate
impact. Additionally, the models have been used for counterfactual analyses [6,21], which identify vulnerable
locations in the traffic system (i.e. locations where disruptions have the widest or most severe propagative
impact).

While the recently-developed techniques for assessment of disruptions to the air traffic system are promis-
ing, a key barrier to their practical implementation is that disruption sources are often hidden to system
planners and operators. This is the case because disruptions arise from extremely complex spatiotemporal
processes and operations, which are usually incompletely known to system managers, and poorly monitored
in real-time operations. For instance, the cyber networks used in air traffic management facilities (e.g. Air
Route Traffic Control Centers) are specialized, complex, and legacy systems; to the best of our knowledge,
no global blueprint of thes cyber networks are available, and certainly almost no real-time monitoring of
the cyber systems are undertaken. Similarly, weather forecasting and monitoring products are often at a
course resolution, which limits observability of weather impacts on air traffic dynamics. For instance, en-
semble forecasts typically forecast convective-weather and wind-speed probabilities in grid squares ranging
in dimension from 10mi × 10mi to 40mi × 40mi. However, terminal-area operations (e.g., runway closure
events, capacity reductions) often depend on much finer resolution weather characteristics, which are not
forecasted or even persistently monitored. Many behavioral characteristics of human operators (e.g., fatigue
of air traffic controllers, or even staffing profiles at facilities) are similarly hidden.

The hidden nature of the processes and operations where air traffic system disruptions originate greatly
complicates the modeling and monitoring of disruptions. In particular, the hidden structure makes it difficult
to build and learn models at the level of detail and accuracy needed for statistical prediction of disruptions.
Additionally, the hidden structure complicates real-time monitoring of disruptions, in particular making it
difficult to rapidly give alarms when disruptions are initiated. Indeed, whenever non-weather disruptions
have occurred, there has been considerable initial uncertainty about their cause and source. Even for weather
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disruptions, there is often a lack of clarity in modeling and monitoring the disruptions’ impacts on traffic-
system resources, which complicates mitigation of their impacts.

The specific objective of this study is to introduce a framework for modeling and monitoring heterogeneous
hidden disruptions to the air transportation system. The eventual aim in developing the framework is to
facilitate rapid alarming of emerging disruptions, so as to enable mitigation of disruption impacts. The focus
in this initial work is to motivate and present the tractable framework, and conduct some initial studies
regarding its usability.

The remainder of the article is organized as follows. In Section 2, we overview the technical approach. In
Section 3, we formally introduce the modeling framework and define associated identification and monitoring
problems. Prior works which are relevant to the monitoring and identification problems are briefly described
in Section 4. Finally, in Section 5, some preliminary analyses using the framework are given, with a focus
on exploring whether the approach can indeed allow identification/monitoring of hidden process.

2 Overview of the Approach

Broadly, we pursue development of an abstract stochastic modeling framework for temporal evolution of
disruptions in the air traffic system, which is generic enough to capture multi-faceted disruptions (e.g.
weather and cyber disruptions), but structured enough to allow efficient model learning and disruption
monitoring. While different types of disruptions have widely varying dynamics, they have in common that
they are highly-stochastic discrete-valued processes with complex spatiotemporal evolutions. For instance,
weather impacts on air traffic resources are correlated discrete-valued signals (e.g., resources are constrained
or not), which are highly unpredictable. Likewise, cyber- and human-operator- originated disruptions are
complex discrete-valued processes (e.g., each cyber- device may transition to failure states), which are highly
uncertain. Thus, abstractly, we are motivated to use a discrete stochastic network model to generically
capture disruption dynamics. Unfortunately, such stochastic network dynamics are generally very difficult
to learn from data and to analyze/monitor, because their complexity generally grows exponentially with the
model dimension.

In this article, we introduce a framework for modeling hidden disruptions in the air traffic system,
which is based on a special discrete stochastic network model known as the influence model. The influence
model, which describes a class of networked discrete-state Markov chains with quasi-linear interactions
[8, 9], has proved useful for representing social processes in human groups [7], environmental phenomena
(e.g. convective weather propagation) [10, 11], and decision-making algorithms [12], among other stochastic
network dynamics. The model is appealing for myriad applications because of: 1) the tractability enabled
by its quasi-linear structure, and 2) the model’s ability to represent high-dimensional stochastic network
processes with a terse parameterization. In particular, the terseness of the model description suggests that
model learning may be possible using limited data. The influence model has already been used to capture
convective-weather dynamics in the air traffic system [10,11], as well as propagation of cyber- failures among
air traffic system resources [3, 4]. Given the tractabilities of the influence model, and its effective use in
modeling air traffic disruptions, we believe it to be an appealing tool for generically representing disruption
processes in the air traffic system. To enable study of hidden disruption dynamics, we consider an enhanced
influence modeling framework which represents partial observation of the state dynamics (e.g., observation
of a subset of network locations, or of projections of the nodes’ statuses); we note that this enhanced model
with an explicit observation model follows on the partially-observed influence modeling concept introduced
in [13,29].

Toward developing a framework for modeling and monitoring hidden disruptions, this study defines three
questions related to the partially-observed influence model. First, the identification of the model from the
partial-observation sequence is considered. That is, we seek to understand whether, and how, the influence
model can be inferred from the partial observation sequence, to enable construction of models for hidden
disruption processes using data from a limited set of manifest variables. Second, real-time monitoring of
disruption events from the measurement sequence is pursued. Third, statistical analysis of the disruption
processes, either a priori or based on measurements, is considered.
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3 Mathematical Formulation

An abstract representation of disruption processes in the air transportation system is developed, wherein
discrete disruption statuses of system components are modeled as evolving stochastically in a correlated way.
A pool or set of n system components, labeled 1, . . . , n, is considered. Each component i is modeled as having
a disruption status si[k] which evolves along a discrete or sampled time axis (k ∈ Z+). The status at each
time k is taken from a finite set {1, . . . ,mi}, i.e. each component has an evolving discrete disruption status.
Components and their disruption statuses may include, for instance: 1) discrete capacity levels of airspace
regions (e.g., nominal vs. degraded), 2) airport runway configurations, 3) convective-weather status near an
airport (e.g., presence vs. absence of convection), 4) attack or failure statuses of Center cyber systems, and
5) human-operator fatigue or compromise statuses.

The components’ statuses are modeled as evolving in a Markov fashion, but with interactions among the
components allowing for correlation. The representation can capture, for instance, that airport or airspace-
region capacities are correlated with each other or with convective-weather or cyber-failure statuses. Sim-
ilarly, the representation can capture dependencies among cyber- components, or between human-operator
disruptions and physical-world responses.

Specifically, the disruption statuses are modeled as evolving according to an influence model [8,9], which
has a special stochastic update rule that permits quasi-linear analyses of status probabilities and provides
a terse description of the process. The influence model update rule at each time step can be described as
follows:

1) Each component i ∈ 1, . . . , n is probabilistically influenced or determined by a single component
j ∈ 1, . . . , n (possibly including itself) with probability dij [k], where dij [k] ≥ 0 and

∑
j dij [k] = 1.

2) The current status of the determining component j probabilistically specifies the next status of the
component i. Specifically, if the determining component has status sj [k] = q, then the next status
si[k+ 1] of component i is generated according to the probability distribution of the qth column of the
mi ×mj matrix Aji[k]. We note that the matrices Aji[k] are nonnegative, with column sums equal to
1.

We note here that, in general, time-variation in the parameters is allowed, although the variation is expected
to be slow compared to the disruption dynamics in many cases. We will distinguish cases without time
variation (or with sufficiently slow time variation) as the time-invariant model. We also stress that the
model is heterogeneous, in the sense that each component may have different numbers of statuses and
varying probabilistic update rules.

The heterogeneous influence model, as defined above, has been proposed as as a representation of diverse
network processes such as cascading outages in infrastructures and inter-personal interactions in human
groups. The model is appealing for threat modeling for the air transportation system because is abstractly
captures essential correlations among discrete disruption statuses, while stripping away details associated
with different components. Although a gross over-simplification of reality, we believe that the model can
permit rough forecasting of disruption events in ways that can support traffic management. The model
is particularly appealing for two reasons. First, the model permits low-computation statistical analyses of
disruptions, because it enjoys a moment-closure property. Second, the model gives a terse description of the
disruption evolution. Specifically, the system has

∏
i mi disruption configurations, and a Markov description

would entail an
∏

i mi ×
∏

i mi dimensional transition matrix. Instead, the influence model captures the
disruption process using (

∑
i mi)×(

∑
i mi)+n×n parameters. This sparse description is especially appealing

for model identification purposes.
A main premise of our modeling framework is that the disruption process, as represented by the influence

model, is partially hidden to operators. Thus, model identification and state monitoring using partial data
is a prerequisite for disruption modeling. Partial visibility of disruption processes in the air transportation
system may arise for many reasons. For instance:

1) Many system components, such as many cyber- subsystems, near-airport above-surface weather condi-
tions, or weather hazards such as clear-air turbulence, may not be monitored persistently. Some of these
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components may be occasionally or partially modeled: for instance, a few servers may be monitored
for cyber- attack activity, or pilot reports may give some real-time observations of turbulence.

2) Weather forecasts and measurements may not capture the airspace system at a sufficient spatial or
temporal resolution for disruption management.

3) Only limited data on airport or en-route airspace conditions may be recorded and stored. For instance,
while runway configurations are typically archived, weather events causing configuration changes or
departure/arrival bank information may not be maintained in the record.

Given the limited visibility of disruption processes, we are motivated to extend the influence-modeling
framework to explicitly represent partial measurements. Three types of partial measurements can be envi-
sioned:

1) Measurement at a subset of components. In this case, the measurement y[k] at each time k consists of
the states of all components in a subset Z of the full component set {1, . . . , n}.

2) Time-snapshot measurements. The measurement y[k] contains all components’ statuses, but only at
some time points. At other times, the measurement is nil.

3) State-projection measurements. The measurements y[k] are projections of network-wide statuses, for
instance a count of the number of components in a warning status.

Combinations of these measurement paradigms, for instance time-snapshot measurements at a subset of
components, may also be considered.

We refer to the model as a whole as the partially-observed influence model for air traffic system disrup-
tions. We are interested in three key questions regarding the model:

1) Learning or identification of the model from archived data. Mathematically, the problem of interest
is to recover the influence model parameters dij [k] and Aji[k] from measurements y[k] over a period
of time. Often, identification will be done with the assumption that the model is time-invariant, and
possibly also homogeneous (all Aji are identical matrices).

2) Disruption monitoring from streaming data, once the model has been learned. The problem of interest
is to recover the all components’ statuses (si[k], i = 1, . . . , n) at a current, past, or future time k, using
a sequence of measurements y[k].

3) Statistical analysis of disruption events using learned model, either a priori of any disruption events
or given measurements that indicate an ongoing disruption.

4 Relevant Prior Work

Dynamical stochastic network models have been extensively studied, and have found applications in appli-
cations ranging from particle physics to communication networks and the social sciences [22]. Within this
broad literature, one focus has been on models which allow for statistical analysis using linear moment-
closure properties. The study of such quasi-linear models originated in the work on the voter model, which
was later generalized in defining the influence model [8, 9, 23, 24]. Similar quasi-linear models also include
infinite-server queueing networks, as well as some contact-process models [22]. The influence model was in-
troduced in the work of Asavathiratham and co-workers [8,9], and since then has been generalized in several
ways and also specialized for various applications [1, 7, 10,11,25,26,29].

Within the body of research on the influence model, two directions are particularly germane to the
modeling framework introduced here. First, our work continues and extends an effort to represent severe
weather impact on air traffic resources using the influence model [10, 11, 26, 27]. Influence models were
developed for convective weather impact on airspace capacities as a supplement to public-domain weather
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forecasts (e.g. ensemble forecasts), with the goal of representing the small-scale variabilities in weather
propagation that significantly impact air traffic but are not captured by public-domain forecasts. Techniques
for parameterizing these influence models from snapshot data originating from public-domain forecasts were
also introduced, and validation efforts showed that the parameterized influence models could aptly capture
correlations and uncertainties in convective weather impact at multi-hour lookahead horizons. Relative to the
earlier studies, here we propose using the influence model to represent heterogeneous disruption modalities for
the air transportation, including weather, cyber, and human-operator disruptions. The broader formulation
then requires parameterization and learning of the model for multiple partial-observation paradigms (not
only from snapshot data), as described above.

Second, our formulation has a close connection to several studies on learning and inference for influence
models. Learning of influence models has been considered in the context of modeling social dynamics in
human groups [7]. These studies were concerned with learning influence models from time-course data,
both for the case where all nodes in the influence network are observed and the case where only a subset
are observed. The authors applied standard heuristics for learning, and demonstrated effectiveness of the
learning techniques via simulation. Next, the thesis [29] pursued development of estimation and learning
algorithms for fully and partially-observed influence models from first principles, with the goal of obtaining
formal guarantees and performance characterizations in addition to estimation and learning heuristics. The
thesis introduced several promising algorithms and insights into estimation and also approached the learning
or parameter estimation problem, although recognizing the difficulty of the problem for the partially-observed
case. The important recent work [13] studied the fundamental question of identifiability of the partially-
observed influence model. The authors obtained a general negative result on identifiability for the partially-
observed model; this result has an important bearing on the hidden modeling framework developed here,
since it indicates that the framework cannot be used to learn and monitor hidden disruption processes. To
the best of our understanding, however, the result in [13] is incorrect, see our comment [28]. Hence, hidden
disruption processes potentially can be learned or inferred from data, hence allowing monitoring of these
processes. Broadly, the prior work on learning and monitoring of the influence model provides a starting
point for solving the three problems defined for the air traffic disruptions model.

5 Algorithm Development: Preliminaries

The main focus of this study has been to introduce a framework for modeling partially-hidden disruptions in
the air transportation system. We largely leave the concrete development of learning, monitoring, and sta-
tistical analysis algorithms to future work. We anticipate that analysis techniques for influence models and
partially-observed influence models can be leverages to help develop these algorithms, however further ad-
vances are also needed in assessing identifiability of influence models and building computationally-attractive
algorithms for learning/identification. With this goal in mind, we pursue two preliminary explorations related
to the development of learning algorithms for the partially-observed influence model. First, via am example,
we explore whether identification of partially-observed influence models is ever possible. Second, we briefly
posit a computationally-attractive expectation-maximization algorithm for estimating the influence-model
parameters.

First, we discuss our efforts on identification of the partially observed influence-model identification for a
small-scale example, as a means to gauge the feasibility of disruption modeling using the proposed approach.
The small-scale example captures a network with two nodes or sites with binary statuses, one of which is
hidden and the other observed. For instance, the hidden node may represent an airport capacity state (high
vs low) or local airport environmental state that is not directly forecasted/monitored, while the observed node
represents an environmental variable that is forecasted or measured (e.g., regional presence of convection per
an ensemble forecast, or wind-shear measurements from a nearby weather-monitoring facility). Specifically,

a homogeneous influence model with the network matrix D = [dij ] =

[
0.6 0.4
0.3 0.7

]
and local transition matrix

A = Aji =

[
0.9 0.1
0.2 0.8

]
is considered.
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As a preliminary study of the example, we have ascertained that the observed site’s status (labeled site
1) is not Markov, even though the whole influence model is Markov. In particular, given that the model is
initiated in steady-state, one can check that the conditional probability P (s1[2] = 1 | s1[1] = 1) = 0.8355,
while P (s1[2] = 1 | s1[1] = 1, s1[0] = 0) = 0.7687. The non-Markovianity of the observation sequence is
important, since it indicates that the observations encode the dynamics of the hidden site, and hence that
model identification and real-time monitoring may be possible.

Indeed, a partially-observed influence model can generically be formulated as a hidden Markov model
with a high dimensional hidden Markov chain (specifically, a master Markov chain representing all

∏
i mi

configurations of the network). In consequence, standard algorithms for learning of hidden Markov models
such as the Baum-Welch algorithm [15] can be applied to learn the equivalent hidden Markov model, and
in turn to estimate the influence model’s parameters. For the example considered here, we have been
able to use the Baum-Welch algorithm to identify the master Markov chain for the model (given by G =

.81 .09 .09 .01
.2542 .3658 .1558 .2242
.3312 .1488 .3588 .1612
.04 .16 .16 .64

). In turn, the influence model parameters can be inferred: it is worth noting

that influence models may exhibit redundancies wherein several parameterizations have the same master
Markov chain, however at least one of these parameterizations can be found. As a verification, it is easy to
check that the hidden Markov model equivalent for this example meets the criteria for identifiability (modulo
a labeling of the states) [14,16], and hence it is unsurprising that the model can be identified.

Upon identification, standard techniques for filtering in hidden Markov models can be used for real-time
monitoring of the hidden states. While the example is very simplistic, it demonstrates that identification and
monitoring of hidden disruption processes is possible using the influence-modeling framework. In addition,
the example illustrates general procedures for identification and monitoring of hidden disruption dynamics
using the influence-modeling framework. We note that the example also exposes an error in the identifiability
analysis of the partially-observed model given in [13], as it shows that the non-Markovianity of the observation
sequence can be exploited for identification and monitoring of the hidden dynamics. It is important to note
that effective identification of the partially-observed influence model may require considerable data, and
hence identification of models for rare disruption processes may remain challenging.

In the example above, we have exploited an equivalence to a hidden Markov model to learn the influence
model. While this approach is appealing theoretically for verifying identifiability, it is not a practical means
for identification for an influence model with even a moderate number of components. This is because the
master Markov chain in this case has a very high dimensional state space, and hence a direct identification of
the chain would require enormous amounts of data. A preferable alternative is to develop a method wherein
the influence model parameters are directly identified. We posit that this can be done using an expectation-
maximization algorithm which is a variant on the Baum-Welch algorithm. Specifically, the “expectation”
step of the algorithm would be completed in exactly the same way as in the Baum-Welch algorithm: given
a current guess for the influence model, the hidden states of the model would be estimated by applying the
state estimation technique for the hidden Markov model equivalent. For the “maximization” step, however,
the optimal influence model parameters (i.e., the set of parameters maximizing the likelihood of the estimated
state sequence) would be directly computed.
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