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1. Introduction

The observability and controllability of network dynamics has
garnered considerable attention in the controls community in re-
cent years (Liu, Slotine, & Barabasi, 2013; Rahmani, Ji, Mesbahi,
& Egerstedt, 2009). A primary focus of this effort has been to
develop graph-theoretic sufficient or necessary conditions. More
recently, metrics for the required control effort and the state es-
timation fidelity have also been characterized (Dhal & Roy, 2016;
Pasqualetti, Zampieri, & Bullo, 2014), as a step toward sensor or
actuator placement (Summers & Lygeros, 2014).

Many dynamical network applications only require guidance or
estimation of a subset of the network’s nodes. Recently, partial con-
trol of a network’s dynamics has been studied under the heading of
target controllability or reachability (Van Waarde, Kanat Camlibel, &
Trentelman, 2017; Vosughi, Johnson, Roy, Warnick, & Xue, 2017).
The purpose of this technical note is to examine metrics for the
effort (energy) required for target control for a simple dynamical-
network model, focusing on the base case that a single target node
is being guided. A commensurate metric for source estimation,
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specifically for the error in estimating of a source node’s state from
noisy measurements, is also considered.

The main contributions of this note are to (1) develop spectral
and graph-theoretic analyses of the target-control and source-
estimation metrics, and (2) compare the metrics. The comparison
demonstrates that source estimation is the harder problem, in
the sense that metric value is larger. Further, the target-control
metric exhibits a spatial pattern related to separating cutsets of the
network’s graph, while the source estimation metric does not.

Preliminary results in this direction were presented in Vosughi
etal. (2017).

2. Problem formulation

A network with n nodes labeled i = 1,...,n is considered.
Each node i has a scalar state x;[k] that evolves in discrete time.
The network’s full state x[k] = [x;[k] xn[k]]T is governed
by a stable discrete-time linear dynamical model with state matrix
A. Further, the dynamics are amenable to actuation at one node s,
which we call the source node; and measurement at a second node
t, which we call the target node. Formally, the dynamics are

X[k + 1] = Ax[k] + esu[k], (1)
yIkl = e{x[k] + N[k]

where we use the notation e, for a 0-1 indicator vector with
entry q equal to 1, and the scalar signal u[k] is the input, y[k] is
the measurement, and N[k] is a zero-mean unit-variance white
Gaussian noise signal.

The first problem of interest is to characterize the effort re-
quired to move the state at the target node to a desired value by
designing the input at the source node. The network is assumed
to be initially relaxed (x[0] = 0). The input u[k] is to be designed
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to move the state at the target node to a unit value (without loss
of generality) at time k, so that x,[k] = 1. Our main interest is to
characterize the minimum input energy, measured in a two-norm
sense, required to achieve this goal. Formally, the target-control
effort or energy over a horizon k is defined as follows:

-1
E(k) = MmNy k-1 Z u[k] 2)
k=0

Subject to the goal state being achieved (x; [75] = 1). The analysis
will primarily focus on the minimum energy when ample time is
available for control, i.e. E = limy_, ., E(k), which lower bounds
the energy required over a finite horizon. It is important to stress
that the formulation places no requirements on any network states
except at the target node.

The second problem of interest is to characterize the fidelity
with which the initial state at the source node can be estimated
from the noisy measurements at the target node. The initial state
X[0] is assumed to be an unknown, nonrandom vector, and a zero
input u[k] is assumed (the analysis is identical if the input is
nonzero but known). Our interest is in determining the highest
fidelity with which the initial state of the source node x;[0] can
be estimated from the sequence of observations y[0], ..., y[k —
1]. Specifically, the estimation error metric F(k) is defined as the
minimum achievable mean-square error in the estimate among
unbiased estimators of the source node’s state. In analogy with
the target control problem, the analysis will primarily focus on the
metric value when ample data is available, i.e. F = limyj_, , F(k).

To permit topological analyses of the target-control effort and
source-estimation error, a weighted digraph I" is associated with
the state matrix of the dynamical model. I" is defined to have n ver-
tices labeled 1, ..., n, which correspond to the n network nodes.
An edge is drawn from vertex i to vertex j in the graph (where i
and j are not necessarily distinct) if A; is non-zero. The presence
of the edge indicates that the next state of vertex j depends on the
current state of vertex i. We note that in general the edge weights
may be of either sign, however some of our analyses depend on
the state matrix and hence edge weights being nonnegative; this
is clarified in the presentation of results.

3. Target control effort

Algebraic conditions under which target control is possible, and
expressions for the minimum energy required for target control,
are established in the literature on output controllability (Kreindler
& Sarachik, 1964). An input sequence can be designed to achieve
target control over the horizon k, if and only if the impulse response
hik] = etTA"eS is non-zero for some k = 0,...,k — 1. We
assume from here on that target control is possible. In this case,
the minimum energy required for target control over the horizon
k is as follows:

~ 1
E(k)= —=——— (3)
iolef Ak,
The target-control energy is the inverse of sth diagonal entry of the
controllability Gramian that can be calculated as follows:

k=1

Ge(0. %) =) Afesel (AT)" (4)
k=0

The minimum energy required for target control can readily be
expressed in terms of the spectrum of the matrix A, provided that
the system is asymptotically stable. For convenience, we present
the result for the case that the eigenvalues of A are not defective.
In this case, the infinite-horizon target control energy is given by

1
E= vy (5)
Zi:1( 1—2i )

where A;,i = 1, ..., nare the n eigenvalues of A, and v; and w; are
the right and left eigenvectors of A associated with A; (normalized
to unit length), and we use the notation v, for the gth entry of
v; (respectively for w;). The expression follows immediately from
substituting the eigenvalue decomposition of A (Rugh, 1996) into
the expression for the target-control energy, hence details are
omitted. The spectral expression indicates that target control is
easy (requires little energy) if the state matrix has an eigenvalue
close to 1 whose left eigenvector has a large entry corresponding to
the source location, and whose right eigenvector has a large entry
corresponding to the target location. In fact, the required control
energy is limited if there is any eigenvalue A; such that v w;s is
adequately large, since the magnitude of 1 — A; is upper bounded
by 2 for any stable system. This analysis shows that efficient target
control only requires the ability to manipulate the target state via
one controllable mode.

The algebraic and spectral expressions are a starting point for
graph-theoretic analyses of the target-control energy, for classes of
networks. The main graph-theoretic result developed here identi-
fies a spatial pattern in the target control energy for different target
locations, which is related to cutsets of the graph I'. Prior to the
presentation of this main result, several simple graphical results
on the target-control task and energy are noted:

(1) Finite-energy target control is always possible for any hori-
zon k > 1 if the source and target locations are the same, since
h[0] # 0 in this case. .

(2) Finite-energy target control over the horizon k is possible
only if the network graph I" has a directed path from the source
vertex to the target vertex of length less than or equal to k, since
otherwise the impulse response is identically zero. In the case
that the state matrix A is nonnegative or Metzler, the condition is
necessary and sufficient. This is true because etTA"es is necessarily
positive in this case, where k is the distance between the source
and target vertex in the network graph (Berman & Plemmons,
1994). Likewise, if the network’s graph has a unique directed path
of minimum length from the source vertex to the target vertex,
then finite-energy target control is guaranteed even if the matrix A
is not Metzler. We point the reader to Van Waarde et al. (2017) for
graph-theoretic results on target controllability for nonnegative A,
in the case where there are multiple targets.

(3) For a network with nonnegative state matrix A, if the weight
of any edge in the graph I" is increased or a new edge is added
to graph, the minimum energy for target control E(k) does not
increase for any horizon k. This can be verified by noticing that
powers of the state matrix are greater in an entry-wise sense
when an edge weight is increased (Berman & Plemmons, 1994),
and hence the energy decreases per Eq. (3). The energy strictly de-
creases for a sufficiently-long horizon, provided that there is a path
from the source to the target which includes the modified/added
edge.

(4) Consider a network with nonnegative state matrix A, and
suppose that there is at least one directed path from the source
vertex to the target vertex in the network graph. The notation
(s,q1, 92, ...,qr, t) is used for the path whose product of edge
weights Ag,sAq,q,---Atq, 1S largest among all paths between s and
t. From properties of nonnegative matrices (Berman & Plemmons,
1994), it is immediate that the energy required for target control
over the infinite horizon is upper bounded as follows:

1
= 2
(AthSAlhlh "'Aer )

The above results show that the target-control energy is small
for any source and target pair, for dense network graphs.

The next main graphical result compares the target control en-
ergy for different possible target locations, for a class of diffusion-
like network processes. The class of state matrices considered in
this analysis is based on the following definition:

(6)
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Fig. 1. Illustration of partitions by a node cutset.

Definition 1. The state matrix A is said to be an «a-diffusive matrix,
if it is a nonnegative matrix with row sums less than or equal to «,
where0 <« < 1.

We notice that the class of «-diffusive matrices encompasses
common models for network consensus, synchronization, and dif-
fusion processes (e.g. Xiao and Boyd (2004)).

The result requires some further notation. To introduce this
notation, let us first consider the target control energy E(k) for
a specific source and target pair. Now consider a vertex cutset
separating the source vertex from this target vertex on the graph I"
(and not including the target vertex). Without loss of generality, let

i = 1,...,mbe the corresponding labels of these cutset vertices.
For each of these verticesi = 1, ..., m, the notation E;(k) is used

for the target control energy when the node i (which we call a
cutset node) is instead the target node (see Fig. 1). Additionally,
the notation X.[k] is used for a vector containing the states of
the cutset nodes (i.e. X.[k] = [x;[k] xm[k]]T). Also, X,[k]
is used for a vector containing the states of all the nodes whose
corresponding vertices are separated from the source vertex by
the cutset in I". Note that X,[k] also contains the target state x,[k].
Finally, we define the state matrix A to be a-diffusive (for some
a € [0, 1]),if it is nonnegative and has row sums less than or equal
toa.

The main result is a comparison of the target-control energy for
cutset nodes vs the original target node:

Theorem 1. Consider the target control task, in the case that the state
matrix A is a-diffusive. Also consider a vertex cutset that separates the
target from the source in the network graph I". Consider the original
target control energy E(k), as well as the target control energies E;(k)
for target nodes i = 1, ..., m on the cutset. Then Ei(k) < o?E(k) for
somei=1,...,m.

This comparison result depends on a key lemma:

Lemma 1. Consider the target control task, in the case that the state
matrix A is a-diffusive. Also consider a vertex cutset that separates the
target from the source in the network graph I". For any input sequence
at the source node that drives the target state to x.[k] = 1, the state

of at least one cutset node (i = 1,...,m) will exceed é at some
time before k. That is, x;[k] > %for somei = 1,...,m, and some
k=0,...,k—1.

The lemma is proved first, followed by the theorem:

Proof (Lemma). The nodes are separated into three different
groups: the cutset, the source partition containing the source node
s, and the target partition containing the target node t. Since the
target partition nodes only connect to the cutset nodes, the next-
state vector for the target partition x,[k+ 1] can be computed from
the cutset state vector X [k] and the current target state vector.
Specifically:

X.[k + 11 = A;X,[k] + Bx.[k] (7)

Where A; is a principal submatrix of A, and [A, B] is also a
submatrix (specifically a subset of the rows) of A. A, has dimension
Z x z, where Z is the number of nodes in the target partition.
Provided that the initial condition is zero, we then can write X, [k]
as

-1
x [kl = " AlBx.[k— 1k (8)
k=0

Defining P = [B A,B AE—lB], the above expression for

X;[k] can be rewritten as

X[k — 1]

x,[k] = P : (9)

x:[0]

Next, we show that the rows of matrix P sum to at most «. To
do so, let us consider the matrix M as follows:

~|A;, B
M—[O Im] (10)

The first Z rows of M have sums of at most « since [AZ B] isa

submatrix of A. It thus also follows that the first 7 rows of M¥ have
sums of at most «. However,

~ % k—1
MK = AL ko AsB (11)
0 Iy
Hence the ’,;5 AKB has row sums of at most «. Noticing that the

row sums of Zﬁ;g A¥B are identical to the row sums of P, we obtain

that the rows in P have sums of at most «.
Finally, the target state satisfies

X[k — 1]
x.[k] = P; : (12)
x.[0]
Where P; is a row of P, whose sum is at most ¢. Since x; [/k\] =1,
X[k —1]
at least one element in : must be at least % Thus, at
x.[0]

least one cutset node’s state is at least i forsomek = 0,1, ...,
k—1. m

Proof (Theorem). Consider an optimal (minimal energy) input se-
quence u[0], ..., u[k — 1], which drives x;[k] to 1. Since A is
a-diffusive, it follows from Lemma 1 that at least one node on the
node cutset reaches a value of at least % before k. That is, there is a

cutset node i € {1,..., m} such that x;[k.] = h for some h > %
and for some k. = O0,...,k — 1. Obviously, from causality, the
subsequence u[0], ..., [k, — 1] drives x;[k;] to h > i Because

the system (13) is linear and time-invariant, the following input
sequence drives node i to 1 at time k:

uf0] = -- - =ufk— k. — 1] =0, (13)
u@—kJ:H%L””u@—lkzﬂﬁfll
Thus, the minimum energy required to drive xi[ﬁ] to 1, i.e. E,~(7<\),
is no larger than Y, “gu?[k] = % Zﬁ:& u[k]. Meanwhile, the
minimum energy required to drive x,[k] to 1 is
k=1
E(k) =) " ailk] (14)
k=0
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Theorem 1 demonstrates that, for «-diffusive systems, target con-
trol becomes increasingly difficult for graph cuts that are further
away from the source vertex.

Remark 1. The graph-theoretic results developed in this section,
including the preliminary conditions/bounds and the main cutset-
based result (Theorem 1), depend on the state matrix having a
diffusive structure, but do not require the state matrix to be non-
defective. It is worth noting that the results can easily be extended
to the case where the entries are positive and negative, but each
absolute row sum is less than 1. Additionally, Theorem 1 can
straightforwardly be extended to the multi-source case, in terms
of cutsets separating all source vertices from the target. On the
other hand, the spectral result (Eq. (5)) does not require diffusivity,
but is developed for a non-defective state matrix; we note that
the expression can be generalized to the case of a defective state
matrix, however the presentation becomes more sophisticated.

Remark 2. Two directions of future work are worth noting. First,
distributed computation of the target controllability metric may be
valuable for on-line monitoring and decision-making. One possible
approach for distributed computation may be to start from the
spectral expression for the metric (Eq. (5)), and apply distributed
algorithms for computing eigenvalues and eigenvector compo-
nents (Kempe & McSherry, 2004). Second, noting the significant
interest in time-varying diffusive processes (Blondel, Hendrickx, &
Tsitsiklis, 2005), generalization of Theorem 1 to the time-varying
case would be useful. We hypothesize that a similar result holds
provided that a group of vertices can be found that persistently
separate the source and target.

4. Source estimation error metric

In analogy with the target-control analysis, algebraic analyses
of the source estimation error derive immediately from the stan-
dard treatment of observability using the Gramian (Kreindler &
Sarachik, 1964). Finite-variance source estimation is possible if
and only if the unobservable subspace of the pair (etT A) has no
projection on e;. Further, provided that the pair is observable, the
source estimation error over the horizon k is as follows:

F(k) = el (Go(0, %)) e (15)

Where the observability Gramian Go(O,f) calculates as follows:

=)
—_

Go(0, k) =) (AT fe el A¥ (16)

=0

=~

Similar expressions can also be developed in the atypical case
that the pair (el, A) is not observable but source estimation is still
possible, however details are omitted to save space.

The source estimation error over the infinite horizon can also
be expressed in terms of the spectrum of A. This analysis is more
intricate than for the target control energy, because the expression
for F(k) involves the inverse of a Gramian. Let us here develop
the expression, again in the case that A is not defective. For this
case, the infinite-horizon observability Gramian G, £ G,(0, c0) =
> reo(AT e el Ak can be written as

2
Vit Vit Var Vit Vne
1-22 L TS
2
VarVae Vo Vot Vne
_ 1=Axr A2 e 1—XoA _
Go :(V l)T 24 1 )‘2 240 vV 1 (17)
v2
Vne Ve Vit Var nt
1-dpry  1=kprgy  ° 77 1-22

The expression (17) has been developed by substituting the
eigenvalue decomposition of A and then undertaking an algebraic
simplification. The expression for the observability Gramian is
closely related to a Cauchy matrix, which allows inversion us-
ing the standard Cauchy matrix inversion formula (see Rai et al.
(2013)). In this way, an explicit expression for the source estima-
tion error metric can be developed, as summarized in the following
lemma:

Lemma 2. The infinite-horizon source estimation error metric is given
by

b1144 b1ty binin
Vlzt VarVie 777 VeV
byiry  baghy L
VieVar V2 U VeV
F=elV 2 Ve, (18)
bp12q by bnnAn
VieVe VotV "7 V2

or explicitly as
VisVi
P23 b (19
=1 i1 it Vjt

[Tzt (G =05, —40)

where b;; = — .
v (E =2 T 12kzn G = 2 DT 1<kzn i+ 1))
i k4 4Tk ki k

The spectral expression for the source estimation error has a
very different form compared to that for the target control energy.
The expression shows that source estimation is difficult - i.e., the
error metric is large — whenever any one mode has a significant
projection at the source node and a small projection at the target
node; this is in sharp contrast with target control, where the
controllability of any one mode makes the metric small. Also,
source estimation is difficult for some source and target pairs if
any two eigenvalues of the state matrix are close. Thus, source
estimation is necessarily difficult for large networks with symmet-
ric state matrices, since such state matrices have closely-placed
eigenvalues.

Remark. The inversion of the Gramian, and hence the spectral
computation of the source estimation error, becomes more sophis-
ticated when the state matrix is defective. The inversion of the
Gramian for a single Jordan block is addressed in Dhal, Lafferriere,
and Caughman (2016).

The asymmetry between source estimation and target control
is also clarified by an explicit comparison between the two metrics
for a specified source and target pair (as in our problem formu-
lation). The following lemma formalizes that source estimation is
always as hard as target control, in the sense that the estimation
error metric majorizes the target control metric:

Lemma 3. For any network model, source and target location, and
horizon'k, the target-control energy metric is majorized by the source-
estimation error metric, i.e. E(k) < F(k)

Proof. The target-control energy metric is given by

E(k) = (20)

k1
r_ol(ef Akes)?
Noticing that el A*e; is a scalar, the metric can be rewritten
~ 1

E(R) = —— 1)
Y o €l (AT e el Ake,
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Thus, E(k) is equal to the inverse of the sth diagonal entry of
the observability Gramian. Meanwhile the source-estimation error
metric F(k) is the sth diagonal entry of the inverse of the observ-
ability Gramian. Since the observability Gramian is a symmetric
positive definite matrix, it follows immediately that the inverse
of a diagonal entry is less than or equal to the corresponding
diagonal entry in the inverse matrix. Thus, it follows that E(k)

<F(k). =

A simple example can be used to demonstrate that the source
estimation error metric does not exhibit many of the simple topo-
logical patterns displayed by the target control metric. Specifi-
cally, consider a network with four nodes, with state matrix A =

05 025 025 O
25 0 0 0.15
25 0 0 0.15

0 01 015 O
finite horizon source estimation errors for each possible source
location are given by F; = 250, F, = 3.6E4, F; = 1.7E4, and
F, = 1.0. Thus, we see that the source estimation error does
not increase along partitions away from the target location: it is
easier to estimate the state at Node 1 than at either Node 2 or
Node 3. This is the case because the states of Nodes 2 and 3 are
nearly indistinguishable, due to the almost-symmetric structure
of the network. Also, it can easily be shown that finite-variance
estimation becomes impossible when Node 2 is the source, if
A4 is increased to 0.15. Thus, increasing edge weights does not
necessarily make source estimation easier.

The analyses of the source estimation error metric demonstrate
an essential asymmetry between target control and source estima-
tion. This asymmetry arises because low-energy target control only
requires that one modal direction with a projection at the target
location is easily controllable, while low-error source estimation
requires that all modal directions with a projection at the source
location are easily observable.

, where node 4 is the target. The in-
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