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Comment on ‘Detecting Topology Variations in
Networks of Linear Dynamical Systems’

Sandip Roy, Mengran Xue, Giorgio Battistelli, and Pietro Tesi

Abstract—The detectability of topology variations in
dynamical networks is studied in [1]. This note points out that
Proposition 2 and Theorem 4 of [1], which provide network-
theoretic conditions for discerning topology variations, require
a stronger assumption than controllability of the subsystem
dynamics.

The article [1] presents conditions under which topology
variations in a network of homogeneous linear subsystems
can be detected, using measurements of the network’s
natural response. The conditions are developed by first
characterizing discernibility of the natural responses of
a nominal and modified linear system for different ini-
tial states (Lemma 1, Corollary 1, and Proposition 1),
and then applying this result to the dynamical-network
model of interest (Proposition 2 and following results).
Specifically, Proposition 2 distills discernability for the
network model into a condition phrased entirely in terms
of the network’s topology, specifically the spectrum of the
Laplacian matrix associated with the network’s graph,
along with controllability of the subsystem model. This
result is then used to specify conditions for detectability
of topology variations (Theorems 1 and 2). Theorem 4
extends the discernibility analysis to a setting with output
rather than full-state measurements.

This note points out that the condition for discernibility
in Proposition 2 is not sufficient, and also that the set of in-
discernable states identified in the ensuing discussion may
include additional vector directions. The proof of Propo-
sition 2 rests on the property that the eigenvectors (and
generalized eigenvectors) of the network transition matrix
Φ are always Kronecker products of the eigenvectors of L
and A−αB, where α ∈ spec(L) (see equation (24) in [1]).
However, this is only necessarily true when the eigenvalues
of A − αiB corresponding to different αi ∈ spec(L)
are mutually distinct. Otherwise, if different matrices
A − αiB share eigenvalues, the eigenvectors of Φ may
be linear combinations of such Kronecker-product vectors.
In this case, as shown in the next example, discernibility
and consequently detection of topology variations cannot
always be distilled to a topological condition even when
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the subsystem is controllable. Hence, the condition in
Proposition 2 is insufficient.

Per the notation in [1], we consider an example with
the following parameters:

A =

7 0 0
0 0 1
1 0 1

 , B =

1 1 −1
0 −1 1
0 0 0

 ,

L =


2 −1 −1 0
−1 2 −1 0
−1 −1 3 −1
0 0 −1 1

 , L =


1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1

 .

We notice that the pair (A,B) is controllable, and that
the Laplacian matrices L and L correspond to networks
which differ by a single link. The eigenvalues of L are
α = (0, 1, 3, 4), while the eigenvalues of L are α =
(0, .59, 2, 3.4). The two Laplacian matrices thus have only
one eigenvalue in common, at α = 0; the right eigenvectors
of the two matrices associated with this eigenvalue are
also identical, specifically the vector with all unity en-
tries. From Proposition 2 and the following development,
the non-null indiscernible states of the network model
should be a three-dimensional space, corresponding to the
synchronized states of the model. Indeed, the transition
matrices Φ = I4 ⊗ A − L ⊗ B and Φ = I4 ⊗ A − L ⊗ B
are seen to have common eigenvalues at (0, 1, 7) whose
corresponding eigenvectors are identical, and specify the
synchronous manifold. However, the matrices Φ and Φ
also share an eigenvalue at 1 whose algebraic multiplicity
is 4. Further, any vector x of the form

x =


a
b
c
d

⊗

01
1

 (1)

is seen to be an eigenvector of both Φ and Φ associated
with the eigenvalue 1. Thus, the non-null indiscernible
states form a six-dimensional space, consisting of the
synchronous states as well as states of the form (1). This
disagrees with Proposition 2 and the ensuing discussion
in [1].

In the example above, the matrix

A− αB =

7− α −α α
0 α 1− α
1 0 1


can be seen to have an eigenvalue at 1 with corresponding
right eigenvector

[
0 1 1

]⊤, for any complex α. Thus,
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we immediately recover that Φ has an eigenvalue at 1 with
multiplicity equal to the number of nodes, and further any
vector of the form (1) is a right eigenvector associated with
the eigenvalue at 1. By the same argument, Φ also has
the same eigenvalue-eigenvector pairs, and the additional
indiscernible states are clarified.

The example suggests that, under only the assumption
that (A,B) is controllable, in general the indiscernible
states cannot be determined solely based on the topology
of the network. Thus, any type of topology variation – in-
cluding link and node disconnection – can be indiscernible
for some initial states outside the synchronous manifold.

As discussed above, the omission may be corrected by
replacing, in the statement of Proposition 2, controllability
of (A,B) with the stronger assumption that the eigenval-
ues of A − αiB corresponding to different eigenvalues αi

are distinct, specifically

spec(A− αiB) ∩ spec(A− αjB) = ∅
∀αi, αj ∈ spec(L) with αi ̸= αj

spec(A− αiB) ∩ spec(A− αjB) = ∅
∀αi, αj ∈ spec(L) with αi ̸= αj

(2)

For the same reason, the above condition should be
added as an assumption also in the ensuing results in the
statement of Theorem 4 in [1], which is concerned with
discernibility from output rather than state measurements.

A more complete characterization of the set of dis-
cernable states can be obtained by either pursuing a full
eigenvector analysis of the dynamical-network model (see
[2], [3]), or perhaps by exploiting the concept of a network-
invariant mode [4]. We also note that the subtlety in
the eigenvector analysis of the dynamical-network model
discussed here has led to errors in the controllability
analysis of the model (e.g. [5]).

The gap between controllability of (A,B) and condition
(2) can be studied analytically. As an example, an intuitive
control-theoretic interpretation can be given when B has
rank one (as it happens when the network arises from the
interconnection of single-input single-output systems).

In this case, B can be decomposed as the outer vector
product B = b c⊤ for suitable vectors b and c. Then,
controllability of (A,B) is equivalent to controllability
of (A, b). Conversely, condition (2) is satisfied if and
only if (A, b) is controllable and, in addition, (A, c⊤) is
observable. In fact, in this case we have

det(λI −A+ αB) = p(λ) + α q(λ)

for any α, where p(λ) = det(λI − A) and q(λ) =
c⊤ Adj(λI − A) b with Adj matrix adjoint. Notice that
the polynomials p(λ) and q(λ) are coprime if and only if
controllability of (A, b) and observability of (A, c⊤) hold.
Further, when the two polynomials p(λ) and q(λ) are
coprime, for different αi and αj the eigenvalues of A−αiB
and A−αjB are always distinct because αi = −p(λ)/q(λ)
and αj = −p(λ)/q(λ) cannot be simultaneously true.

Hence, it follows from the above arguments that, in this
case, controllability of (A,B) and condition (2) are jointly
satisfied for generic choices of A and B.
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