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Abstract

Aim: Most protist plankton are mixotrophic, with potential to engage in photoauto-
trophy and phagotrophy; however, the ecology of these organisms has been misdiag-
nosed for over a century. A large proportion of these organisms are constitutive
mixotrophs (CMs), with an innate ability to photosynthesize. Here, for the first time,
an analysis is presented of the biogeography of CMs across the oceans.

Location: Global marine ecosystems.

Time period: 1970-2018.

Major taxa studied: Marine planktonic protists.

Methods: Records for CM species, primarily from the Ocean Biogeographic
Information System (OBIS), were grouped by taxonomy and size to evaluate sampling
efforts across Longhurst's oceanic provinces. Biases were evaluated through non-
parametric tests and multivariate analysis. Biogeographies of CMs from OBIS data
were compared with data from studies that specifically targeted these organisms.
Results: Constitutive mixotrophs of different taxonomic groups, across all size
ranges, are ubiquitous. However, strong database biases were detected with respect
to organism size, taxonomic groups and region. A strong bias was seen towards dino-
phytes. Species < 20 um, especially non-dinophytes, were least represented, with
their recorded distribution limited to coastal regions and to temperate and polar seas.
Studies specifically targeting these organisms revealed their distribution to be much
wider. Such biases are likely to have occurred owing to a failure to capture and cor-
rectly identify these organisms in routine sampling protocols.

Main conclusions: Constitutive mixotrophs are dominant members of organisms tra-
ditionally termed “phytoplankton”. However, lack of routine protocols for measuring
phagotrophy in “phytoplankton” protists has led to widespread misrepresentation of
the fundamental nature of marine planktonic primary producers; most express both
“animal-like” and “plant-like” nutrition. Our results have implications for studies of the
global biogeography of plankton, of food web dynamics (including models) and of

biogeochemical cycling in the oceans.
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1 | INTRODUCTION

The term biogeography was coined in the late 19th century, stem-
ming from studies of terrestrial plants and animals (Ebach, 2015).
Studies of biogeography have typically focused on terrestrial eco-
systems. Since the early 20th century, however, there has been
growing recognition of the importance of the biogeography of ma-
rine microbes across the Earth's oceans, the single largest continu-
ous ecosystem (Cermefo, de Vargas, Abrantes, & Falkowski, 2010;
Dolan, 2006; Smayda, 1958). Over the last decade, various studies
have highlighted technical advancements, such as the development
of molecular and statistical techniques and the availability of online
databases, as factors contributing to the increase in marine biogeog-
raphy studies (Biard et al., 2016; Dolan, 2005; Fuhrman et al., 2008;
Leles et al., 2017; de Vargas et al., 2015).

Studies of the biogeography of marine microbes (prokaryotes
and eukaryotes) have concentrated on functional groups, such as
cyanobacteria versus phytoplankton versus microzooplankton,
or taxonomic groups, such as diatoms and tintinnids (Cermeno &
Falkowski, 2009; Malviya et al., 2016; Pierce & Turner, 1993). Most
functional or taxonomic groupings have followed the traditional
designations of either phototrophs or heterotrophs, akin to the
plant-animal dichotomy in terrestrial systems. Flynn et al. (2013)
criticized this dichotomy, identifying that the vast bulk of the protist
plankton formally labelled as “phytoplankton” or “microzooplankton”
are potentially mixotrophic, merging phototrophy and phagotrophy.
Subsequently, Mitra et al. (2016) proposed a new functional classi-
fication for marine protists to aid the exploration of the proposed
new mixotroph-centric paradigm in marine ecology (Mitra et al.,
2014; Unrein, Gasol, Not, Forn, & Massana, 2014; Zubkov & Tarran,
2008). According to this functional classification, marine protists are
broadly divided between six functional groups; two of these align
with the traditional non-phagotrophic phytoplankton (notably dia-
toms) and non-phototrophic microzooplankton, and the other four
represent contrasting mixotroph functional groups. The mixotroph
groups are divided between those with an innate (constitutive) abil-
ity to photosynthesize, the constitutive mixotrophs (CM), and three
non-constitutive mixotroph (NCM) groups. The NCMs do not have
the innate ability to photosynthesize; they derive their photosyn-
thetic capabilities by incorporating plastids from a range of different
prey (generalist NCMs, e.g., Laboea) or from very specific phototro-
phic prey (specialist NCMs, e.g., Mesodinium) or by enslaving pho-
totrophic prey as symbionts (endosymbiotic NCMs, e.g., Rhizarians).

It has been shown that incorporating mixotrophic organisms
within in silico food web studies alters the dominance of different
plankton functional groups in freshwater and marine systems (Mitra
& Flynn, 2010; Mitra et al., 2014; Wilken, Huisman, Naus-Wiezer,
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& Van Donk, 2013). An understanding of the true trophic status
of plankton, including different mixotrophic types, across biogeo-
graphical areas is thus important. Leles et al. (2017) undertook a
biogeographical analysis of the NCM functional groups. These
NCM organisms are undeniably mixotrophic, because they must
feed to acquire phototrophic potential. However, the real trophic
status of constitutive mixotrophs is problematic because these or-
ganisms may not need to eat frequently if de facto at all (Flynn et
al., 2013; Mitra et al., 2016). The default expectation has been to
retain the traditional “phytoplankton” label for these organisms.
Yet, if they are indeed functional mixotrophs, this traditional label
would misrepresent biogeographical distributions and allied trophic
dynamics.

In this study, we have undertaken the first global biogeographical
analysis of marine protists with a constitutive ability to photosynthe-
size and that are documented as being significantly mixotrophic (i.e.,
organisms that are undeniably CMs). The CM group includes various
ecologically important taxonomic groups within a wide range of sizes,
such as species of picoplankton and nanoplankton in oligotrophic
oceans and polar regions (Stoecker & Lavrentyev, 2018), and various
harmful algal bloom species in coastal waters (e.g., Karlodinium spp.,
Alexandrium spp.) that result in fish deaths and closure of aquacul-
ture facilities (Mitra et al., 2016; Shumway, Burkholder, & Morton,
2018; Stoecker, Hansen, Caron, & Mitra, 2017). Biogeographical
analysis of this important group of planktonic protists will aid our
understanding of the impacts of environmental drivers on commu-
nity composition and ecosystem functioning, especially in the face
of climate change events. In our analyses, we specifically identify
how biases in the scientific community's perception of these organ-
isms, in addition to sampling methods, impact on our understanding
of their biogeography.

2 | METHODS

We conducted a global analysis of field data for different groups of
CMs. Constitutive mixotrophs are defined according to Mitra et al.
(2016); these are planktonic protists with an inherent capability to
photosynthesize and a demonstrable potential to engage in phago-
trophy for their nutritional needs. Traditionally, mixotrophy within
many planktonic phototrophs has included phototrophy plus osmo-
trophy (i.e., uptake of dissolved organic substances; e.g., Burkholder,
Glibert, & Skelton, 2008; Glibert & Legrand, 2006). Here, however,
we focus on photoautotrophic protists that engage in phagotrophy,
because osmotrophy appears to be ubiquitous in protists; thus, it is
assumed here that all species are capable of osmotrophy (see Flynn
et al., 2013; Mitra et al., 2016).
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2.1 | Data compilation

Data were compiled according to species name. AlgaeBase (http://www.
algaebase.org/) was used to resolve synonyms and basionyms of various
species. Using expert knowledge within our team (authors), we first as-
sembled a database of all protist species known to be CMs (Supporting
Information Appendix S1, Table S1.1); the definitions of Mitra et al.
(2016) were used to differentiate between CMs and strict autotrophs
(i.e., phytoplankton). We did not consider coccolithophorids; to date,
there has been only one published study reporting phagotrophic activ-
ity by the cosmopolitan species Emiliania huxleyi (Rokitta et al., 2011).

Data for the global distribution of the CMs within our list
were acquired through interrogation of the Ocean Biogeographic
Information System database (OBIS; http://www.iobis.org/) on 20
January 2018 (Supporting Information Appendix S2, Table S2.1).
Geographical coordinates corresponding to the locations where the
CMs were recorded were obtained. Records with possible spatial
errors, such as data points located inland, were excluded from the
analysis. Georeferenced occurrence data were retrieved from OBIS
using the “devtools” and “robis” packages in R (R Core Team, 2017).
Other packages in R used for data compilation and visualization were
“rgdal”, “plyr”, “ggplot2”, “ggalt” and “gridExtra”.

In order to ensure that we captured distribution data of CMs
across different size classes, we conducted a survey of published lit-
erature in the electronic databases ISI Web of Science and Elsevier
on 20 January 2018. For all data sources please see Appendix 1.
Smaller planktonic protists are rarely, if ever, identified down to
species level in field surveys. The aim of these surveys was there-
fore to obtain records from studies that specifically targeted known
CMs in the nanoplankton spectrum (2-20 pm in length). These stud-
ies, although not species specific, reported in situ measurements
of the abundance of actively feeding mixotrophic nanoflagellates
(i.e., CMs < 20 um in length) or the relative contribution of pico-
and nano-CMs to total bacterivory by flagellates. Geographical
coordinates were retrieved from each of these studies (Supporting
Information Appendix S2, Table $2.2) in order to compare these
data with species-specific data obtained from the OBIS database.

2.2 | Spatial analysis

Records compiled from online databases were aligned with the
biogeographical classification of the ocean according to Longhurst
(2007). As in the study by Leles et al. (2017), the 54 biogeographi-
cal provinces proposed by Longhurst (2007) were grouped into
seven principal biomes according to primary production and physi-
cal forcing: mediterranean sea, coastal seas, polar seas, temperate
seas, oligotrophic gyres, coastal upwelling, and equator (Supporting
Information Appendix S1, Table S1.2). However, owing to a lack of
data we did not include the coastal upwelling biome in our analysis.
Grids corresponding to Longhurst provinces used in the maps were
obtained from http://www.marineregions.org/. Geographical coor-
dinates corresponding to the exact location where the CM species

were found were then aligned with biogeographical provinces. The

records obtained for each species within each biogeographical prov-

ince were exploited to produce global distribution maps.

2.3 | Data analysis

The biogeography of CMs was investigated according to taxonomy
and size classes across different oceanic provinces. Species size was
obtained from the literature (Berge, Hansen, & Moestrup, 2008;
Hoppenrath & Leander, 2007; Jang, Jeong, Kwon, & Lee, 2017; Kang
et al., 2011; Lim et al., 2015; Nézan & Chomérat, 2009; Ok, Jeong,
Lim, & Lee, 2017; Tomas, 1997; Yoo et al., 2010) and online reposito-
ries (http://nordicmicroalgae.org; http://www.sccap.dk; http://www.
marinespecies.org). Global distribution maps were generated to visu-
alize the presence of each taxonomic group within each size class ac-
cording to the biogeographical provinces. The sampling locations from
all 178 cruises included in the analysis were also mapped in order to
compare the biogeographical patterns with the total sampling effort.
It is noteworthy that we did not assume a priori that all taxonomic
groups should contain individuals within all size classes; indeed, that
is not the case. We used expert knowledge and the literature to iden-
tify size class boundaries within each taxonomic group. For example,
there are no known species within prasinophytes, chrysophytes and
haptophytes that are > 15 um in size (measured across the major cell
axis). Likewise, all known raphidophyte species are > 10 um. Although
there are some suggestions of the presence of so-called picoplank-
tonic marine dinoflagellates (< 5 um), this information is derived from
initial sequence data only (Lin, Zhang, Hou, Miranda, & Bhattacharya,
2006; Moon-van der Staay, De Wachter, & Vaulot, 2001); thus, we
could not include such organisms in this analysis. Dinophytes were,
therefore, not assumed to occur within the < 5 um size class.
Potential biases related to size and location, when tracing the
global distribution of CMs, were analysed quantitatively. For this,
we used the mean number of records obtained for each size class
acrossdifferent oceanic biomes. Our dataset did not follow a normal
distribution; therefore, Kruskal-Wallis rank tests (results reported
as H = test statistic, p = significant value) were used to evaluate
the effect of size and of biome on CM distribution. Species were
grouped according to size within the different oceanic biomes to
test for differences among size classes and across the biomes. Post
hoc nonparametric tests (Dunn's test) were performed to identify
pairs of size classes or oceanic biomes that were significantly dif-
ferent from each other. The same procedure was performed to
evaluate the potential bias related to CM taxonomy and location,
grouping species according to taxonomy instead of size to test for
any differences between taxonomic groups and across the biomes.
These analyses were conducted using the “dunn.test” package in R.
Dissimilarities between occurrence patterns of CM species
across the different biogeographical provinces were explored using
the non-metric multidimensional scaling (NMDS) technique; this is
akin to the analysis undertaken by Leles et al. (2017) on NCMs. The
georeferenced data compiled from OBIS (Supporting Information
Appendix S2, Table S2.1) were used to build a matrix with the
number of occurrences for each species within each of the 54
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Longhurst's biogeographical provinces. The CM species were then
grouped according to size and taxonomy. This analysis thus enables
positioning of species and biomes within a two-dimensional space;
the former are placed with respect to their distribution across the
biogeographical provinces and the latter according to species occur-
rence. Merging the positions of both species and biomes allowed us
to explore the placement of species with respect to each other and
in relationship to the different biomes. The distance matrix used in
the NMDS analysis was calculated after square root transformation
using the Bray-Curtis distance. The NMDS was performed using
the “metaMDS” function (“vegan” package in R). Progressively lower
numbers of dimensions (k = from 5 to 2) were used in order to at-
tain the value of k that provided the lowest stress value (Legendre &
Legendre, 1998).

The volume of seawater analysed will inevitably influence the
identification of rare species (i.e., those present in low abundances).
However, we could not account for this factor because most publi-
cations do not report the volume sampled and analysed and, there-
fore, this information could not be retrieved from OBIS. Even if this
information were available, the volume of water that ideally should
be analysed can be highly variable depending on the trophic status of
the system (e.g., larger volumes of water should be inspected in oli-
gotrophic waters compared with eutrophic systems, and depending
on bloom seasonality); additional knowledge on the different marine
ecosystems investigated would be required to interpret such data.
Moreover, we would expect a minimal effect in our biogeographical
analysis because we grouped CMs into different taxonomic groups

and size classes.

phytes

| <5um

5-10 um

Allometric category
15-20pm | 10-15 um

>20 um

Haptophytes

and Biogeography

3 | RESULTS

The compiled list of CMs includes 80 species across the different
taxonomic groups of primarily cryptophytes, chrysophytes, hapto-
phytes, prasinophytes, raphidophytes, dinophytes, chlorarachnio-
phytes and synchromophytes (Supporting Information Appendix S1,
Table S1.1). Nearly 250,000 records were obtained from OBIS for 51
of the 80 species that composed the initial species list; these species
were placed into taxonomic groups and five size classes (Supporting
Information Appendix S2, Table S2.1). The global distributions of
CMs across the different biogeographical provinces were mapped
according to taxonomic groups and allometrics (Figure 1). At least
one record was necessary to assume the presence of a species within
a province; thus, only five taxonomic groups were mapped (Figure 1).

These maps demonstrate a strong bias in the available data to-
wards larger species, and specifically, towards dinophytes. Nearly
50% of the constitutive mixotrophic species were > 20 um; except
for two raphidophytes, all species > 20 um were dinophytes. The
dearth of data for other CM groups across the different size classes
is indicated by the “non-coloured” (white) biogeographical maps in
Figure 1. In order to compare these biogeographical patterns with
the total sampling effort, we also mapped the sampling locations
from all 178 cruises included in the analysis (Supporting Information
Appendix S3, Figure S3.1). From this it can be seen which biogeo-
graphical provinces were visited at different points in time and space
but were not associated with the presence of a CM group (white
biogeographical provinces in Figures 1 and 2 versus Supporting
Information Appendix S3, Figure S3.1).

Raphidophytes Dinophytes

FIGURE 1 Global distribution of constitutive mixotrophs across Longhurst's biogeographical provinces. Distribution maps are shown
for different groups (prasinophytes, raphidophytes, haptophytes, chrysophytes and dinophytes) across different size classes (maximum cell
dimension: yellow, < 5 um; orange, 5-10 pum; red, 10-15 pum; green, 15-20 um; blue, > 20 pm). Colour-cast provinces indicate the presence
of constitutive mixotrophs; white provinces indicate no data. The absence of maps (i.e., white spaces) indicates that there are no known
species of that size class within that taxonomic group. See also the Supporting Information (Appendix S2, Table 52.1) [Colour figure can be

viewed at wileyonlinelibrary.com]
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The potential for biases relating to species size, taxonomic
grouping and location were tested using quantitative data
(Supporting Information Appendix S3, Figure S3.2). The number of
records differed significantly among size classes, with a clear bias
towards larger size classes (H = 11.8, p = .02; Supporting Information
Appendix S3, Figure $3.2a). Post hoc comparisons confirmed that
sampling effort was highest for species with maximum cell dimen-
sion > 20 um (Figure 2a; Supporting Information Appendix S4, Table
S4.1). Differences were also found when comparing taxonomic
groups (H=12.2, p=.02; Supporting Information Appendix S3,
Figure S3.2b). The number of records obtained for dinophytes was
significantly higher than those retrieved for any other taxonomic
group, and no significant difference was found among the other
groups (Figure 2b; Supporting Information Appendix S4, Table $4.2).

We also tested whether the number of records varied across biomes
for each dataset (i.e., grouped by size or by taxonomy; Supporting
Information Appendix S3, Figure $3.2), and there were significant
differences in both analyses (H = 13.6, p=.02 and H=11.2, p = .05,
respectively). Fewer records were available from oligotrophic gyres
and equatorial regions compared with other biomes (Supporting
Information Appendix S3, Figure $3.2; Appendix S4, Tables S4.3 and
S4.4); indeed, data within oligotrophic gyres and equatorial regions
were available primarily for dinophytes, except for one record of a
raphidophyte species (Figure 2b). The analysis revealed no clear dif-
ference among the other biomes (Supporting Information Appendix
S4, Tables S4.3 and 54.4).

The relationships between size classes and taxonomy in the
global distribution of CMs were explored through the NMDS analysis

N° of records
20000

150

Haptophytes

N° of records
20000

150

FIGURE 2 Number of records for constitutive mixotrophs across Longhurst’s biogeographic provinces. (Supporting Information
Appendix S1, Table S1.2 and Appendix S2, Table 52.1). The number of records is provided for: (a) different size classes (length, in
micrometres); and (b) different taxonomic groups. See also the Supporting Information (Appendix S3, Figure $3.2). Note that number of
records are log-scaled. [Colour figure can be viewed at wileyonlinelibrary.com]
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(Figure 3). Our analysis revealed dinophyte species within the larger
size class (> 20 um) closer to the different biomes, thus displaying
a broader geographical distribution compared with other species
(Figure 3). The different colours in this figure allow the reader to
discern that different taxonomic groups have different distribution
patterns. Through reference to the different symbols (Figure 3), it
can be seen clearly that size and taxonomy are not independent,
and most species of dinophytes are > 20 um, whereas most species
within other groups are < 20 um. However, even among dinophytes
there were various outliers, indicating a bias towards focusing on
sampling species > 20 um in field studies; Alexandrium andersonii
and Fragilidium subglobosum are examples of these “outlier” large
dinophytes that ordinated closer to species belonging to other taxo-
nomic groups, such as the haptophyte Prymnesium polylepis and the
prasinophyte Cymbomonas tetramitiformis.

Non-dinophyte species <20 um were the least represented
group of CMs. To illustrate further the under-representation of
these groups within global databases, and thus the incomplete sta-
tus of global distribution data, we plotted the data available for these
groups from generic studies (Figure 4) and from studies that specifi-
cally targeted these groups (Supporting Information Appendix S2). A
total of 48 records from 21 studies were located when interrogating
studies that specifically targeted known CMs in the nanoplankton
spectrum (2-20 um; Supporting Information Appendix S2, Table
$2.2). It should be noted that these studies do not provide species-

specific information; unless a sampling study specifically targets

¥ Dinophytes < 20 pm
@ Dinophytes > 20 um
A Others < 20 um
14 ¢ Others > 20 um L
® o A
® ® Ah A
® w polar 8
o~ e Wdlter@ngan ]
3 0 demperate @ .
= coastal A
= ° A u
° A @
gyres® S .
eqlfator " 5
14 L4
stress = 0.13
T T T
-1 0 1
NMDS 1

FIGURE 3 Spatial distribution of constitutive mixotrophs from
non-metric multidimensional scaling (NMDS) analysis. The NMDS
ordination was based on the number of records observed for

each species within each biogeographical province; biomes were
primarily derived from provinces (Supporting Information Appendix
S3, Figure S3.3). Each symbol represents a species that was
grouped by taxonomy (different colours) and by size and taxonomy
(different symbols). Ellipses are shown at 75% confidence interval
and were used to define dinophytes (green) and other groups (grey)
[Colour figure can be viewed at wileyonlinelibrary.com]
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smaller CM species and uses specialist identification methods and
skills, it is highly unlikely, and often impossible, for these taxa to be
identified to species level using standard light microscopy within
generic sampling protocols. Therefore, the maps derived using data
from the generic versus the specific studies present very different
outputs (Figure 4). The map obtained from the generic data depicts
a limited distribution pattern for CMs < 20 um, with occurrences re-
corded in coastal regions and in temperate and polar seas (Figure 4a).
In contrast, studies that have targeted these species show their dis-
tribution largely to encompass open oceans, including regions closer
to the equator and within oligotrophic gyres in the Atlantic and the
Pacific Oceans (Figure 4b).

4 | DISCUSSION

Our results indicate a clear bias in the data for the biogeographical
distribution of CMs across and within taxonomic groups, different
size spectra and Longhurst's oceanic regions. This appears primarily
to be a reflection of the difficulties associated with sampling and
identification of diagnostic features for small cells in natural water
samples. Nevertheless, the wide-scale distributions of CMs of vari-
ous sizes across the different provinces in the global oceans indicate
the importance of considering this mixotroph functional group in
studies of protist biogeography and in ecology.

Our current knowledge of CM species distribution remains in-
complete primarily owing to various biases in the data within global
repositories. Even though it is now recognized that most eukaryote
“phytoplankton” groups, with the important exception of diatoms,
have the potential to demonstrate mixotrophy (Flynn et al., 2013;
Stoecker et al., 2017), clear evidence of mixotrophy has been ob-
tained for < 150 species (Supporting Information Appendix S1, Table
S1.1; Leles et al., 2017). To place this in context, the total number of
“phytoplankton” species is (as a guesstimate), often rounded to the
nearest thousand within a major grouping (phylum).

Our work is the first attempt to document the biogeographies
of organisms that are undeniably CMs (Figures 1, 2; Supporting
Information Appendix S2, Table S2.1). During interrogation of the
online databases, we assumed that the species detected were orig-
inally identified and reported correctly. An allied challenge is to de-
termine which species indeed express phagotrophy. A recent study
suggests that standard methodologies for detecting phagotrophy
in field plankton samples are inappropriate for use on these organ-
isms and has most probably resulted in non-identification of CM
activity (Anderson, Jirgens, & Hansen, 2017). Although Anderson
et al. (2017) focused on nano-CMs, their findings suggest that sim-
ilar methodological problems occur widely, which could easily re-
sult in serious misinformation in the protist records of the different
databases.

Studies that specifically target CMs have various limitations.
Quantitative estimates of abundance are challenging because
the current methods can only account for mixotrophs that were
actively feeding at the time of the sampling/experiment (Gast,
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McKie-Krisberg, Fay, Rose, & Sanders, 2014; Safi & Hall, 1999; Sato,
Shiozaki, & Hashihama, 2017). Estimates of bacterivory rates are also
problematic because they are based on the assumptions that bac-
terivory remains constant over the short time scales of incubation
studies and that community ingestion rates can be approximated
to the average ingestion rate of all feeding individuals (Anderson et
al., 2017). In reality, feeding varies over the diel cycle (Tsai, Chin, &
Chiang, 2009), and only a small proportion of the total mixotroph
assemblage is actively feeding at any time during an experiment
(Anderson et al., 2017; Christaki, Wambeke, & Dolan, 1999).

The CM species database is biased towards certain species and/
or groups that have been extensively investigated owing to their
perceived environmental importance. For example, studies in the
coastal regions covering low-salinity, estuarine and marine waters
have focused on harmful algal bloom (HAB) or toxic species within
the dinophyte taxa (Shumway et al., 2018). Some, if not most, of
these HAB species are known mixotrophs (Shumway et al., 2018).
Some co-occurring protist species (including competitors, prey and
predators) are also known mixotrophs, although many are not often
recorded because they are not themselves HAB species. Indeed, of
the 80 CM species included within our analysis, 51 species were di-
nophytes, despite the importance of mixotrophy having been well
recognized in other taxonomic groups (Gast et al., 2014; Stoecker &
Lavrentyev, 2018; Unrein et al., 2014).

FIGURE 4 Global distribution of
constitutive mixotrophs (CMs) with
maximum cell dimension < 20 um. (a)
Records obtained from OBIS (Supporting
Information Appendix S2, Table $2.1). (b)
Records obtained from studies of protist
nanoplankton bacterivory (Supporting
Information Appendix S2, Table 52.2).
Symbols correspond to the exact location
where CMs were found. Colour-cast
provinces indicate the presence of CMs,
whereas white provinces correspond to
absence owing to lack of data; the grid
indicates Longhurst's biogeographical
provinces (Supporting Information
Appendix S1, Table 5$1.2) [Colour figure
can be viewed at wileyonlinelibrary.com]

Biases among records of CMs may also be particularly high owing
to differential efforts at sampling CMs of different sizes. It is not
common practice to identify to species level in plankton surveys,
especially among the smaller flagellate cells that are coincidentally
mixotrophic (Sanders & Gast, 2012; Stoecker & Lavrentyev, 2018).
Incubation experiments have demonstrated ingestion of prey by
these small CMs (< 20 um), whereas taxonomic identification using
traditional diagnostic approaches has been difficult owing to few
distinctive features for these species. The available evidence in-
dicates that field studies typically neglect most CMs < 20 um.
However, mixotrophic pico- and nanoflagellates, for example, have
been shown to be abundant and to play a major role as bacterivores
and primary producers in oligotrophic oceans (Hartmann, Zubkov,
Scanlan, & Lepére, 2013; Mitra et al., 2014; Zubkov & Tarran, 2008).
Nevertheless, global plankton databases have failed to indicate the
ubiquity of these organisms across the global oceans, particularly
in the open oceans (Figure 4). In contrast, although dinophytes ap-
pear to be important in oligotrophic oceans according to survey data
(Figure 1), in fact they are relatively minor contributors to the total
abundance and activity of mixotrophic flagellates within these areas
(Unrein et al., 2014).

The strong bias towards larger cells and dinophytes is in part also
attributed to traditional sampling and preservation methods that are
known to underestimate the abundance of more fragile groups or
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smaller size fractions within the plankton (Edwards, Johns, Leterme,
Svendsen, & Richardson, 2006; Gifford & Caron, 2000). The resultant
distorted picture of plankton composition across the oceans (Biard et
al., 2016) is typified by, for example, survey data from the historic
Continuous Plankton Recorder (CPR), a device best suited (designed)
for sampling mesozooplankton and larger (> 250 um in size) robust
phytoplankton (Richardson et al., 2006). The CPR cannot capture
data for the majority of the non-diatom protist species, an exception
being very large dinoflagellates, such as CMs within the genus Tripos
(formally Ceratium). Given the changes in our understanding of ma-
rine ecology, with recognition of the increasing importance of the
microbial loop and mixotrophic protists, the CPR requires augmen-
tation with a device specifically designed for sampling small protists.

Recent advances in metagenomics and computational analysis
allow identification of the taxonomic and genomic content of ma-
rine communities, and investigation of their functional potential
(Sunagawa et al., 2015). Nevertheless, we could not exploit such
datasets in our analysis. Although sequence datasets offer a pow-
erful approach to provide molecular taxonomy in the future, proti-
stologists probably have decades of work ahead of them to match
sequence data against morphology/physiology. For the sequence
datasets, one of the most problematic issues is converting the data
into species information (Bucklin, Lindeque, Rodriguez-Ezpeleta,
Albaina, & Lehtiniemi, 2016; Leray & Knowlton, 2016). Within the
arena of molecular analysis itself, there are different methodologies
for obtaining sequence information, so that forming operational tax-
onomic units (OTUs) from those data is far from standardized (e.g.,
Callahan, McMurdie, & Holmes, 2017).

In addition, most mixotrophic protists fall into often closely
related groups that are composed of a mixture of species with dif-
ferent nutritional modes (i.e., autotrophic, heterotrophic and mix-
otrophic). Although metagenomics might offer a means to identify
active mixotrophs (Rokitta et al., 2011; Yelton et al., 2016), how
to use the potential of metagenomics to differentiate mixotrophs
from their autotrophic or heterotrophic counterparts remains to
be resolved fully (Santoferrara & McManus, 2017). Furthermore,
OTUs far outnumber the number of morphologically described or
nutritionally described species that have been sequenced; at pres-
ent, there is no way of differentiating the mixotrophs among the
many OTUs typically recorded in molecular datasets. Meanwhile,
experimental studies continue to provide increasing evidence that
more and more species previously thought to be “strictly” pho-
toautotrophic phytoplankton are, in fact, CMs (e.g., Berge et al.,
2008; Hoppenrath & Leander, 2007; Jang et al., 2017; Kamennaya,
Kennaway, Fuchs, & Zubkov, 2018; Kang et al., 2011; Lim et al.,,
2015; Nézan & Chomérat, 2009; Ok et al., 2017; Yoo et al., 2010).

In conclusion, our analyses show clearly that CMs of different
taxonomic groups and size ranges are present and active through-
out the oceans. The oceanic plankton community contributes an
estimated 50% of total planetary primary production. The CMs are
a major contributing component of this community. Therefore, it is
important that we are aware of the biogeography of these organ-
isms with reference to their physiology, ecology and seasonality.
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Our findings are highly relevant to plankton biogeography, with
implications scaling up to the functioning of food webs and bio-
geochemical cycles in the global oceans. The challenge now facing
marine scientists is to develop widely accepted routine protocols
for determining mixotrophic potential and improved survey meth-
ods for sampling and identifying the smaller plankton members. It
is important that developments in plankton protist ecophysiology,
traditional and molecular taxonomy, field experimentation and
sampling all remain well aligned during the coming decade to en-
sure that we resolve the global importance of oceanic mixotrophy
adequately and speedily. Without this alignment, our abilities to
develop and deploy models to explore the consequences of climate

change for oceanic (hence planetary) processes will be impaired.
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