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Desktop-manufacturing techniques like 3D printing are increasingly popular because they reduce the cost
and complexity of producing customized objects on demand. Unfortunately, the vibrant communities of early
adopters, often referred to as “makers,” are not well-served by currently available software pipelines. Users
today must compose idiosyncratic sequences of tools which are typically superposed variants of proprietary
software originally designed for expert specialists.

This paper proposes fundamental programming-languages techniques to bring improved rigor, reduced
complexity, and new functionality to the computer-aided design (CAD) software pipeline for applications like
3D-printing. Compositionality, denotational semantics, compiler correctness, and program synthesis all play
key roles in our approach, starting from the perspective that solid geometry is a programming language.

Specifically, we define a purely functional language for CAD called ACAD and a polygon surface-mesh
intermediate representation. We then define denotational semantics of both languages to 3D solids and a
compiler from CAD to mesh accompanied by a proof of semantics preservation. We illustrate the utility of
this foundation by developing a novel synthesis algorithm based on evaluation contexts to “reverse compile”
difficult-to-edit meshes downloaded from online maker communities back to more-editable CAD programs.
All our prototypes have been implemented in OCaml to enable further exploration of functional programming
for desktop manufacturing.
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1 INTRODUCTION

Democratized computer-aided manufacturing has made available—at modest cost—design and
fabrication capabilities that were previously reserved for large-scale commercial applications.
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A computer-aided design program denotes a geometric object.

Desktop-class 3D printers, laser cutters, and computer numerical control mills affordably enable
educators, hobbyists, and researchers to rapidly prototype designs, manufacture tool parts, and
even create custom prostheses [The Future 2018]. 3D-printers in particular are now standard tools
in maker communities and may some day replace the need for small-scale manufacturing much as
conventional printers fundamentally changed the role of commercial printing shops.

However, despite the wide availability of hardware components at much lower costs than ever
before, the corresponding software pipeline does not sufficiently support even tech-savvy early
adopters. For democratized manufacturing techniques to reach their full potential, makers must be
able to design and manufacture a wide variety of objects on demand.

The current state of tools in this space expects users to compose idiosyncratic CAD packages that
are incompatible and whose interfaces are not clearly specified. Together with the fact that most
of these tools are also proprietary, it makes the design experience for novice users and hobbyists
unnecessarily awkward. The lack of specification also hampers efforts to build other tools that can
make CAD programming more accessible to amateur enthusiasts. For example, it would benefit
users to have tools for debugging their designs before printing to avoid waste of time and material,
optimizing them to find an equivalent but simpler program, doing program analysis to detect
violations of various geometric and physical properties, or synthesizing CAD programs for them
so that they do not have to program from scratch.

This paper takes preliminary steps toward addressing these challenges from a programming-
languages perspective. Our first contribution is based on the insight that the desktop manufacturing
pipeline is inherently compositional and functional in nature. We view this pipeline as a compilation
task by modeling 3D solid geometry as a purely functional programming language equipped with a
natural and tangible denotation to 3D solids. To relate this high-level CAD language to intermediate
mesh representations, we formalize the popular STL mesh format [Grimm 2004] as a low-level
language and define a meaning-preserving compiler from CAD programs to meshes. We have
designed and implemented a prototype of our declarative CAD language called ACAD that supports
3D primitives such as cubes, spheres, and cylinders; affine transformations such as translation,
scaling, and rotation; and binary or constructive solid geometry (CSG) operations such as difference,
intersection, and union. ACAD also supports standard functional features such as let bindings,
functions, recursion, and conditionals.

Having developed this foundation, we define compiler correctness in terms of solid geometry, and
provide a proof that our compiler is correct under this definition. Our approach toward formalizing
CAD and STL then leads to the other main contribution in this paper—the first synthesis algorithm

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 99. Publication date: September 2018.



Functional Programming for Compiling and Decompiling Computer-Aided Design 99:3

to our knowledge that converts meshes back into CAD programs, which we view as a reverse
compilation task. Given a surface mesh, our algorithm finds a CAD program, which, when compiled,
gives that mesh.

It turns out that reverse compilation may have the potential to solve a key problem for the
current state of the 3D-printer enthusiast community: Many hobbyists and makers lack the requisite
expertise to translate their ideas into CAD programs from scratch. To overcome this barrier, they
often download and print existing designs from online communities [GrabCAD 2018; Thingiverse
2018b] where experts share their work freely. These repositories distribute designs as polygon
meshes instead of CAD programs because CAD does not have standardized representations, so
meshes, in the standard STL format, are the cross-platform distribution language. However, users
are rarely able to customize designs shared as meshes [Alcock et al. 2016; Hudson et al. 2016]. Mesh
modification tools [Meshmixer 2018] are useful for only some types of low-level modifications, and
even then are difficult to use because they can easily break the model, thus making it invalid and
unprintable. In large part, this is because mesh models have had all high-level design information
“compiled away,” analogous to how program binaries have had high-level operations compiled
down to primitive machine operations.

Reverse compilation extracts high-level structural information from the design that enables
rich edits to the design, which would otherwise require tedious low-level edits directly on the
surface mesh. Our algorithm combines basic computational geometry with program synthesis to
elegantly search the space of possible CAD programs. It repurposes the traditional PL machinery of
evaluation contexts to guide the search of the synthesis algorithm toward the lowest-cost (ideally,
the most “human-editable”) CAD program.

We have implemented the synthesis algorithm in a prototype tool called Relncarnate. We detail
three case studies that demonstrate our approach on samples selected from Thingiverse. They cover
three popular applications of desktop 3D printing: machine tools, household objects, and aesthetic
items designed by hobbyists. We give examples of modifications that are intractable to make in
mesh models but become simple at the CAD level.

Our implementation of the compiler and synthesis prototypes consists of about 20000 LOC of
OCaml'. As Section 4.3 describes, we leverage several features of OCaml to achieve simplicity and
modularity, while also laying the groundwork for further evaluation such as differential testing.
Ultimately, our vision is to use tools and techniques from functional programming to build a
new generation of tools that can enable non-expert end users to effectively work with desktop
manufacturing devices. This paper presents a first step in that direction by laying the programming
languages foundation necessary to approach the problem in a rigorous and principled way.

The rest of the paper is organized as follows: Section 2 presents a brief overview of 3D printing,
which is one of the most popular desktop class manufacturing techniques and the primary
motivation behind our synthesis tool. Section 3 describes a model of CAD programming as a
purely functional programming language equipped with a denotation to 3D solids. It also presents
a formalism of triangular polygon meshes along with a denotation to 3D solids. Section 4 presents
a meaning-preserving compilation algorithm from CAD to STL and a proof sketch for compiler
correctness. Section 5 presents our synthesis algorithm for reverse compiling STL to CAD, along
with a definition and proof of correctness which introduces the technique of “geometric oracles” to
reason about the algorithm. Section 6 presents a set of case studies demonstrating the feasibility of
these ideas by synthesizing editable CAD from unstructured STL objects selected from Thingiverse.
Section 8 describes key areas for future work. Section 9 concludes.

10ur tool is available here: http://incarnate.uwplse.org/
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Fig. 1. 3D printing workflow depicting the 6 steps described in Section 2.1.

2 3D PRINTING BACKGROUND AND MOTIVATION

Among various desktop-class manufacturing devices, 3D printers are the most widely adopted
due partly to the fact that they are relatively safer to use compared to desktop versions of other
devices such as laser cutters and CNC mills. Figure 1 shows a 3D printing workflow, which typically
comprises six steps: (1) design, (2) compile to mesh, (3) slice, (4) compile to G-code, (5) print, and
(6) iterate.

2.1 3D printing as Compilation

Just as programmers rarely write assembly directly, users of 3D printers do not write direct
instructions for the motors. They instead produce them via compilation from a high-level design
based on a specification or idea, created in a computer-aided design (CAD) software such as
OpenSCAD [OpenSCAD 2018], Rhino [Rhinoceros 2018], or SketchUp [SketchUp 2018]. This
compilation process is complex and, similar to classical compilers, typically proceeds through a
sequence of intermediate languages that we now describe.

After designing a model, the next step is to compile it to a surface mesh representation. A surface
mesh is a triangulation of the surface of the 3D object represented by the design. The third step
slices the mesh into 2D layers that are stacked on top of each other during the printing phase.
The next step generates G-code, which is similar to assembly-level instructions for manufacturing
devices [Smid 2003]. The G-code is then interpreted by printer firmware to control the print (much
as Postscript can be sent directly to many 2D printers).

In most desktop-class 3D printers, a spool feeds filament (typically a plastic) into an extruder,
which heats and melts the filament before extruding it through a nozzle onto a print bed. It is this
extruder that is controlled by the G-code, via low-level commands that actuate stepper motors to
move the print head in any of three dimensions.

After completing the printing step, the user compares the output with the original specification
and decides to either iterate over the above steps or terminate the process. Designing a CAD model
is analogous to writing a program in a high level programming language. Converting it to a 3D
mesh is similar to an intermediate representation. Slicing it and generating G-code is analogous to
generating assembly. Viewing this workflow as a compiler has multiple advantages. It brings the
formalisms of programming languages theory to bear, which in turn helps in reasoning about the
correctness of the pipeline. It also supports the implementation of additional tools that can make
these systems more accessible to end users (see Section 2.2).

2.2 Synthesis Example

Consider the model of a hexagonal candle holder from Thingiverse [Thingiverse 2018a] shown in
Figure 2a. Like most models shared in online repositories, it is shared as a mesh. (Figure 2b shows
the rendering of the mesh.) Figure 2c shows a very small snippet from the mesh showing just one
face and its normal direction vector. The full mesh is made of 548 triangular faces and is about 4000
lines long in the STL format. This vast sea of triangle vertices does not explicitly convey structural
information about the object’s shape.
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facet normal 0.866025 0.5 @
outer loop
vertex 1.0 0.0 1
vertex 0.5 0.866025 0
vertex 0.5 0.866025 1
endloop
b ! endfacet

(a) Candle holder. (b) Rendered mesh. (c) Snippet from the STL mesh.

Fig. 2. Candle holder from Thingiverse [Thingiverse 2018a] after printing, a 3D rendering of its STL mesh,
and a snippet from the STL mesh showing one triangular face. Each face is represented by three vertices and
a normal vector that points outward from the 3D object.
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(a) ACAD program for candle holder. (b) Edited ACAD program in blue.

Fig. 3. ACAD program for the hexagonal candle holder in Figure 2, and example of a modification that changes
the dimension of the hole (in blue). The hexagonal outer part is represented by Cylinder(6) (a cylindrical
prism with 6 sides), and the hole is represented by Cylinder(50) (approximation of a cylinder using
50 sides). As shown, in ACAD this edit is done by changing the scaling factor for the cylindrical hole.

A user may want to make different modifications to the model. For example, they may wish
to (1) change the depth/width of the candle hole, (2) tilt the hole (to make a holder for other
items), (3) change the shape of the hole from a cylinder to a star-like prism or a cuboid, or (4)
make a larger holder for two candles by combining two copies of the object. Making these edits
to the mesh is non-trivial because the user must maintain certain geometric well-formedness
constraints in order to ensure that the model is printable. On the other hand, having access to a
higher-level representation of the model that contains more structural information such as any
CAD representation would make these tasks quite easy. Figure 3a shows the code for this model in
our language, ACAD. It shows that to make this model, one can create a 6-sided prism primitive
(Cylinder(6)) and subtract a (high-degree approximation of a) cylindrical hole (Cylinder(59))
from its center. With access to this program, editing it is straightforward. Figure 3b shows a
modification to the model that changes the dimensions of the hole; an example of a modification
requested by a user on the Thingiverse website [Thingiverse 2018a].

To summarize, (1) designing 3D models in CAD from scratch is difficult but editing an existing
CAD program is relatively easy, and, (2) sharing models in a standardized mesh format makes them
more accessible to users but editing them is difficult and even impossible in some cases. Based on
these two observations, we came up with an alternate strategy that has the best of both worlds: We
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Fig. 4. CAD syntax and semantics. CAD programs denote to regular open sets in R3. Affine transformations
are given by an invertible 3 X 3 matrix and translation vector. Binary operators denote to set operations. Mesh
denotation is detailed below.

describe the first synthesis algorithm (Section 5) that automatically finds a CAD program from a
surface mesh. This approach gives the users a high level CAD program to get started with, prevents
them from having to make tedious mesh modifications while still allowing them to download mesh
models from the internet.

3 FORMALIZING CAD AND MESH

CAD and mesh can be viewed as two fundamentally different ways of representing an object
in 3D space. While CAD representations are based on solid geometry, mesh representations are
based on surface geometry. Any translation between these two conceptually different approaches
requires finding a way to map the concepts from one to the other. To that end, this section presents
the syntax and denotational semantics for two languages for 3D modeling, ACAD, a high-level
functional programming language, and Mesh, an intermediate surface representation based on
industry-standard formats.

3.1 ACAD Language

We designed and implemented ACAD, a functional programming language with primitives for
representing and manipulating geometric objects. Since the other features are standard, this section
focuses on the syntax and semantics of the geometric fragment of the language.

Figure 4 shows the syntax of the geometric core of ACAD. It supports (1) 3D primitives such
as Cube and Cylinder, (2) affine transformations such as translation (Translate), rotation about
X, Y, and Z axes (RotateX, RotateY, RotateZ), uniform and non-uniform scaling (Scale), and, (3)
set-theoretic operations: Union, Difference, and Intersection. The primitives represent 3D shapes
with unit measures. For example, Cube has all sides of unit length and the bottom left corner at the
origin, (0,0, 0). Cylinder(n) is an n-sided prism with unit radius and height whose base is centered
at the origin. Note that, as presented, all primitive objects are piecewise linear, thus requiring
curves to be approximated. Truly curved primitives are interesting and possible, but complicate
the semantics, compilation, and synthesis approaches discussed in this paper. The possibility of
developing a compositional notion of equality between piecewise-linear approximations to curves
in a way that supports correctness proofs for compilation and synthesis is a significant challenge
left for future work. In this paper, we represent curves using approximations—for example, to
represent a cylinder we set n = 50 in Cylinder(n). All the affine transformations are represented
using an invertible 3 X 3 matrix and a 3D vector in the core CAD syntax in Figure 4. ACAD also
supports user-provided raw meshes using the Mesh construct.

Figure 4 describes a denotational semantics for CAD that maps each object to the set of 3D points
inside it. The primitive Empty maps to the empty set, while Cube maps to the set of all points whose
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x,yz€ R r e R

pt € point d € Direction

== (x, ) 2) d == (r,r,1)

h € HalfLine

f € Face h o= (pt.d)

#= (pt, pt, pt) Midpoint  :  Face — point
m € Mesh Norm :  Mesh X Face — {L,R}

u= f* On : Mesh X Face — bool

(a) Syntax of Mesh. (b) Mesh functions used in the compiler (Figure 9).

Fig. 5. Syntax and auxiliary definitions for mesh. In Figure 5b, Midpoint is the centroid of a face. A point is
On aface if it is coplanar with the face, and is in the interior of the face or on one of its edges.

X, y, and z values lie in (0, 1). Other primitives are similarly straightforward. Affine transformations
are denoted by applying the transformation to every point in the denotation of e. The denotation
of Union (ey, e3) is the union of the denotations of e; and e,. Intersection and difference are similar.

3.2 Surface Mesh

A surface polygon mesh is a geometric representation of the surface of an object in 3D space using
vertices, edges, and faces. The faces of a mesh are typically convex polygons. In this paper, we
formalize triangular meshes as shown in Figure 5a. A mesh is a list of faces, each of which is a
triangle represented by its three vertices. This simple and flat representation is as expressive as
other representations [Grimm 2004] yet serves as a high-level executable specification, which could
be used, for example, to differentially test against more sophisticated implementations such as STL
and OFF [Grimm 2004; OFF 2018]. Section 3.2.2 describes how we use normals to determine which
side of a triangular face is inside/outside a 3D object.

3.2.1  Valid Mesh. In order for a 3D CAD model to be printable, the mesh should be valid. Invalid
meshes can have a variety of problems such as zero volume, holes, and dangling faces, which make
them unfit for printing. A valid 3D mesh is one that satisfies the following invariants:

e no overlapping or intersecting faces

e no edges that occur in an odd number of faces

e not open, i.e. should not have holes (or missing faces). This happens if an edge is on an odd
number of faces.

Figure 6 shows 2D analogues of some invalid meshes. We use 2D in the figure for simpler
visualization. In 2D, the faces are segments instead of triangular planes. The analogue of edges in
2D are the vertices. The first figure in Figure 6 shows a 2D mesh that is open. This can happen
when a vertex appears in an odd number of segments. The second figure is another example of an
invalid mesh with a lone face. The 3D analogue of this is a mesh with an extra triangular face. The
third figure is an example of a mesh with zero area. An example of this in 3D would be a mesh
with just one triangular face, which would have zero volume.

3.2.2  Sides of a Mesh. Knowing the vertices of the faces of a mesh is not sufficient to determine
the “inside” and “outside” of the shape. This information is given by normal vectors for each face of
a mesh, which are unit vectors orthogonal to the face that point toward the outside of the shape. We
use L (left) and R (right) to indicate the two possible directions for normals (Figure 5b), depending
on whether the left-hand or right-hand rule should be used on the given face. Typical industrial
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(a) 2D model with missing face. (b) 2D model with extra face. (c) Flat 2D model with zero area

Fig. 6. Analogues of ill-formed meshes in 2D (used for simpler visualization). A 2D face is a line segment
whereas a 3D face is a triangular plane. Thus, a missing face in 3D would be a missing triangle, an extra face
would be an extra triangle, and a mesh with zero volume would be a plane.

formats store normal vectors in the representation of each face [Grimm 2004], but for conceptual
parsimony, we instead compute normals as required using global properties of the mesh.

Specifically, in a valid mesh, the normal vectors can be computed once we have a way of
determining whether a point is inside or outside the mesh. For this, we use the well-known method
of casting rays [de Berg 1997]. A ray, or halfline, h is represented by a starting point, pt and a
direction, d, as shown in Figure 5b. A point is inside a 3D mesh if there is a good halfline starting at
the point that crosses an odd number of faces of the mesh (Figure 7). A good halfline is one that
does not intersect the mesh at its vertices or edges. An important result is that many good halflines
exist for any point not on the boundary of the mesh (Theorem 1).

Theorem 1. For any valid mesh m and point pt not on the boundary of m, almost all directions d
result in good halflines (that is, all directions outside a set of measure 0 result in good halflines).

Proor. The edges and vertices of m, when projected onto a unit sphere around pt, form a set of
measure 0. Any direction d on the sphere outside of this set forms a good halfline for pt. O

It is also essential that the choice of halfline does not matter in a valid mesh (Theorem 2).

Theorem 2. For any valid mesh m, point pt not on any face of m, and good halflines h; and h;
each starting at pt, the halfline h; intersects m an odd number of times if and only if h; intersects
m an odd number of times.

Proor. First, note that there exists a plane containing h; and h,. The intersection of this plane
and the mesh is a simple 2D polygon m, (the mesh is valid so faces do not intersect) containing pt
(since both h; and h; contain pt). We must show that hy and h, intersect m, with equal parity. As
shown by, for example, Hormann and Agathos [Hormann and Agathos 2001], this parity is equal
to a formula over the angles between my’s edges, and must thus be the same for sy and h;. m]

We can now compute normals for a face using any test point pt in the interior of f (we use
Midpoint(f) in our implementation). Consider any good halfline A for pt. If h crosses m an odd
number of times, then h lies on the same side of f as the outward-facing normal. Otherwise, it is
on the opposite side.

This technique also determines a denotational semantics for meshes that denotes a mesh to the
set of points inside it, thus enabling easy comparison with the denotation of CAD objects. Figure 7
defines this semantics based on face and halfline intersection. The intersection of a face and a
halfline can have three outcomes: (1) None indicates that the face and the halfline do not intersect
at any point, (2) InteriorPt indicates that the halfline goes through the face at exactly one point
in its interior, and (3) Other indicates all other possible interactions of a face and a halfline: they
are coplanar and the halfline goes through an edge or a vertex of the face. InsideVia(m, pt, d)
is a predicate that defines when pt is inside the mesh m: if there exists a direction d, such that for
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intersect : Face X HalfLine — {None, InteriorPt, Other}
InsideVia(m, pt,d) : Mesh X point X Direction — bool
InsideVia(m, pt,d) = let h = (pt,d)in

{f | f € mA intersect(f, h) = Other} =0
A US| f € mAintersect(f, h) = InteriorPt}| mod 2 = 1

[-1 : Mesh— P(point)
[m] = ({pt|3d.InsideVia(m, pt,d)}

Fig. 7. Semantics of Mesh using intersection of faces with halflines (rays).

the halfline h = (pt, d), (1) there is no face in m that results in an Other intersection with h, and
(2) h crosses the mesh at an odd number of faces, then pt is inside the mesh, m.

4 3D PRINTING AS COMPILATION

This section presents a meaning-preserving compiler that generates a triangular mesh from ACAD.
The compiler’s specification is given in terms of the geometric denotational semantics of the source
and target languages. The straightforward compilation algorithm described here is used in some
form or another in all industrial CAD tools. Our contributions are (1) to formalize it in terms of
structural recursion and denotational semantics, which enables (2) a proof of correctness.

Figure 9 defines the compiler as a recursive function on the syntax of the CAD program. The
output of compiling a Mesh m construct is the underlying mesh, m. Compiling an Empty CAD
model simply generates an empty mesh. The mesh for Cube is as defined in Figure 9. Since we use
pre-defined meshes to approximate curves in this paper, the output of compiling them is simply
the corresponding pre-defined mesh. For affine transformations, the compiler generates the mesh
by applying the transformation to the result of the recursive call.

4.1 Compiling CSG Operations and Mesh Splitting

To translate the set-theoretic binary operations, the compiler uses corresponding functions on
meshes, mBop(Union)(my, my), mBop(Difference)(my, m;), and mBop(Intersection)(my, my), shown
in Figure 9. These operations are non-trivial for overlapping meshes, since the faces of the resulting
mesh are a complex subset of a refinement of both input meshes. If two input faces overlap, then
some parts of each face may be discarded in the output, while other parts remain. Care is required
to preserve the mesh invariants defined in Section 3.2.1.

The set-theoretic mesh operations first split the input meshes, defined by the relation split (used
in Figure 9) that takes two potentially intersecting meshes and returns two equivalent meshes
that intersection only at vertices and edges. The operation split preserves the semantics of the
meshes, as proved in Theorem 4. The functions mBop(Union)(my, my), mBop(Difference)(my, ms),
and mBop(Intersection)(my, m,) then determine which faces from the split meshes m] and m; should
be kept in the final mesh and which ones should be discarded.

mBop(Union)(m7, m;) keeps faces from m] that are outside m; as well as faces from m, that
are outside m]. For faces from m] that are also on m; (on is defined in Figure 5b), if the face has
the same normal, then it is kept, otherwise it is discarded. This is illustrated (in 2D) in Figure 8.
mBop(Difference)(m7, m,) keeps faces from m] that are outside m., faces from m;, that are inside m].
For faces from mj that are also on my, if the face has the same normal (L or R), then it is discarded,
otherwise it is kept. mBop(Intersection)(m/, m,) keeps faces from m] that are inside m., faces from
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AN =<

(a) Keeping a common edge during mesh union. (b) Removing a common edge during mesh union.

Fig. 8. Examples (in 2D) demonstrating when common faces are retained or removed by mBop(Union).

m, that are inside m]. For faces from m] that are also on m, if the face has the same normal (L or
R), then it is kept, otherwise it is discarded.

Definition 3. If f; is a face on m; that overlaps with some face on m;, split splits f; in to
fits fizs --» fin such that

Ufs=F and (£ =0
j=1 j=1

Theorem 4 (Mesh splitting correctness). Given two valid meshes, m; and my, split (my, my, m}, mj)
is a relation such that:

[mi]=[mi] and [m,]=[m;]

Proor. We prove [ m; | = [m] ]; the proof for the second part is similar. Let pt be an arbitrary
point. We show pt € [m;] & pt € [m]]. Consider any halfline h that is good for pt and m]
(such a halfline exists by Theorem 1), and consider the points of intersection between h and the
two meshes m; and m]. By definition, split ensures that the intersection of split faces are disjoint,
so each point of intersection between h and m; lies on exactly one face of m]. Conversely, split also
ensures that the union of split faces give the original face, so each intersection point between h
and m; also lies on a face of m;. Thus the intersection points along h are exactly the same for m;
and m]. O

4.2 Compiler Correctness

Our definition of compiler correctness is based on the denotational semantics we described in
Section 3. Specifically, we prove that the compiler returns a mesh with the same denotation as
the input CAD program. For binary operations, we provide the proof for union. The cases for
intersection and difference are similar and hence omitted.

Theorem 5 (Compiler correctness). For all CAD expressions e, [ compile(e) ] = [e].

Proor. By induction on e. We show a few representative cases.

Case Empty:

[ compile(Empty)] = [[] By definition of compile().
=0 By definition of mesh [ |.
= [Empty] By definition of CAD [ ].

Case Cube:
[ compile(Cube)] = [meuve] By definition of compile().

= [Cube] By Lemma 6.
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compile(Mesh m) = m, compile(Empty) = [], compile(Cube) = mcype

C; = [((0,0),(1,0),(1,1)),((0,0), (0, 1), (1,1))]
Mmewpe = [fU,C2) | f € [ix, 1y, iz],j € [0,1]]
ix,iy,i; : R*>R3
ix(x0,(a,b)) = (x0,a,b)
iy (o, (@,0) = (@,y0,b)
iz(z0,(a,0)) = (a,b,z)
compile(Affinep qgc) = mapyertex (Av. pv + q) (compile(c))
compile(Binop o c; c;) = mBop(o)(compile(c1), compile(cz))

mBop(Union)(mq,my) = let m{, my s.t., split (my, my, m{, my) in
[f € m} | 3d. InsideVia(m}, Midpoint(f),d)] ++
[f € m | 3d. InsideVia(m], Midpoint(f), d)] ++
[f € m] | On(mj, f) A Norm(m{, f) = Norm(mj, )]

mBop(Difference)(my,my) = let mj, m s.t., split (my, my, mj, m}) in
[f € m} | 3d. InsideVia(m}, Midpoint(f),d)] ++
[f € my | 3d. InsideVia(m], Midpoint(f),d)] ++
[f € m] | On(m}, f) A Norm(m], f) # Norm(m;, f)]

mBop(Intersection)(mi, my) = let m{, m; s.t., split (my, my, mj, my) in
[f € m] | 3d. InsideVia(m;, Midpoint(f),d)] ++
[f € my | 3d. InsideVia(m], Midpoint(f),d)] ++
[f € m] | On(my, f) A Norm(m{, f) = Norm(mj, )]

Fig. 9. Representative cases of CAD-to-Mesh compiler. Midpoint, On and Norm are as defined in Figure 5b.

Case Affine p q e’: Let m’ represent compile(e’).

[ compile(Affinepqe’)] = [mapyertex (Av. pv +¢q) (m’)] By definition of compile().
= {pv+qlov e [m]} By Lemma 7.
= {pv+qlove[e]} By induction hypothesis.
= [Affinepqe’] By definition of CAD [ ].

Case Union e; e;: Let my, m; represent compile(e;) and compile(e;) respectively.

[ compile(Binop Union e; e;) | [ mBop(Union)(my, m;)] By definition of compile().

= [m]U[m;] By Lemma 8.
= [eJUlez] By induction hypothesis.
= [Unione; e;] By definition of CAD [ ].

Lemma 6. [meype | = [Cube]

Proor.  (C) Suppose pt € [ mcype |- Then there exists d such that InsideVia(m, pt, d). Let h be
the half-line from pt in direction d. Since m,. is convex, there is exactly one face through
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4 ya

/

//

pt pt

(a) Before (b) After

Fig. 10. Examples demonstrating (in 2D) several cases in the proof of Lemma 8.

which h passes. Let f; be this unique face and consider the intersection of f; and h. Since h
intersects m.,p. exactly once, h must leave the cube at f;. So just before leaving the cube at
fo, h is inside the cube. Unless pt € Cube, h would leave the cube again.

(2) Suppose pt € [ Cube]. If pt is on the boundary of Cube, say on face f, then let d be the
outward-facing normal of f, so that h = (pt, d) intersects m.,p. exactly once. On the other
hand, suppose pt is in the interior of Cube. Then choose d = (0,0, 1), somewhat arbitrarily.
Again, h = (pt, d) intersects m,p. exactly once.

O
Lemma 7. For all meshes m and invertible affine transformations given by p and g,
{po+qlv e [m]} =[mapyertex (Av. pv +q) m].
Proor. Let pt be arbitrary.
prefpo+qloe[m]l = ppt-q) e[m]
& 3d.InsideVia(m,p~l(pt — q),d)
& 3Id’.InsideVia(mapyertex (Av. pv + q) m, pt,d’)
& pt € [ mapyertex (Av. pv +q) m]
O

Lemma 8. For all meshes m; and ms,
[ mBop(Union)(my, my) ] = [mi] U [m2].

Proor. Let ms = mBop(Union)(my, m,) and let pt be an arbitrary point. We show pt € m3 <=
pt € [m] Vv pt € [ my]. Consider a ray h that intersects only interior points of the faces of m,
and my (and thus also of m3). It suffices to show that h crosses an odd number of faces in ms iff it
crosses an odd number of faces of m; or an odd number of faces of m,.

Subdivide h into n contiguous regions h;, separated by h’s intersections with m; and m,, which
we call crossing points. The first region, hy, starts at infinity and proceeds to the first crossing point.
Each subsequent pair of regions is divided by a crossing point on the face of one or several of m;,
mgy, and ms. These crossing points are not considered to be included in any regions. Finally, the
region h,_; ends at pt, which is considered a part of that region, since it is not itself a crossing
point.
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Since m; and m; are split, each h; is entirely inside or outside of m; and m,. Since each face of
ms is a face of either m; or my, each region h; is also entirely inside or outside of ms. We now show
that h; is inside mjs iff it is inside m; or inside m,. We proceed by induction on i:

Case i = 0: The statement follows since hy is the infinitely long region, which lies outside all
three meshes.

Case i + 1: Consider the crossing that happens between h; and h;,;. There are 16 cases in total,
depending on whether h; and h;. 1 lie inside or outside of m; and m,. We illustrate four typical
cases. A 2D example is described in Figure 10.

Case h; outside m; and mgy; h;4+; inside m; but outside my: Consider the face f that divides
h; and h; 1. The case hypothesis implies that f is a face of m; but not m,. This further means
that f is entirely outside of my, and so f is also a face of ms3 by definition of mBop(Union).
Thus h also crosses ms at f, and so h;j. is inside ms.

Case h; inside m; but outside mg; h;1; inside both m; and my: The crossing face f is a face
of my, which is entirely inside m;, and thus not included in mjs. Inductively, h; is inside ms,
and since f is not in ms, h;4; is also inside ms.

Case h; inside both m; and my; h;;1 outside both m; and m;: The crossing face f is a face of
both m; and m;,, and f’s normals with respect to each mesh point in the same direction.
Further, these normals are on the same side of f as pt. Thus f is a face of ms. Inductively,
h; is in m3, and so it crosses out of ms for h;4;.

Case h; inside m; but outside mj; h;1; inside my but outside m;: The crossing face f is a face
of both m; and m;, but the normals point in opposite directions. In my, the outward normal
is on the same side as pt, while for m; it is on the opposite side. Thus, no copy of the face
appears in ms. Inductively, h; is in ms, and since the crossing face is not in ms, h;4; is as
well.

The remaining cases are similar.

4.3 Implementation and Challenges

Implementing the CAD compiler required several nontrivial computational geometry routines,
which involved issues from 3D geometry as well as numerical computing. This section describes
some design decisions targeted at reducing the burden of implementing the compiler.

4.3.1 1D — 3D. Problems that arise in 3D geometry often have analogous problems in lower
dimension. Understanding which parts of the problem cut across all dimensions versus those that
arise only in 3D helped us develop clean solutions that are as dimension-agnostic as possible. To
that end, we first implemented a 1D CAD compiler, then moved on to 2D and finally to 3D. ACAD
supports all three dimensions. An example of a dimension agnostic concept in our compiler is
the technique for compiling CSG operations in Section 4.1. On the other hand, the technique for
finding the intersection of a face and a halfline in Section 3.2.2 is a geometric operation, which is
more complex in 3D where faces are triangular planes and halflines are 3D rays than in 2D where
faces are 2D segments and halflines are 2D rays.

I-dimensional CAD. : 1D CAD objects are simply line segments represented by 1D end points. The
only affine transformations in 1D are translation and scaling. The binary set-theoretic operations
are analogous in all dimensions. A 1D CAD compiler compiles a 1D CAD program to generate a
1D mesh. Figure 11 shows a 1D CAD program and the corresponding mesh. Segment represents a
unit segment starting at 0 and ending at 1. A face of a 1D mesh is merely a 1D point. As explained
in section 3.2, a valid 1D mesh should not have repeating faces or odd number of faces.
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1D 2D 3D
Translate (5) Union Union
(Scale (7) Segment) Square Cube
(Translate (—0.5,—0.5) Square) (Translate (0,0.5,0.5) Cube)

Fig. 11. Examples of 1D, 2D, 3D CADs and meshes. In order to keep the figures simple, the axes are not shown
to intersect at the origin.

2-dimensional CAD. : 2D CAD objects include rectangles, squares, circles, triangles etc. In 2D,
affine transformations include those from 1D (i.e. translation and scaling, but with 2D vectors)
together with rotations about the origin. A 2D mesh consists of faces that are line segments ending
in vertices. Figure 11 shows a 2D CAD program and the mesh generated by our compiler.

3-dimensional CAD. : In 3D, rotations about many different axes are possible. In our implementa-
tion, we provide convenient syntax for rotating about the coordinate axes, rotateX, rotateY,
rotateZ. Translation and scaling are obviously possible, but using 3D vectors. Figure 11 shows a
3D CAD program and the corresponding triangular mesh.

4.3.2  Fully Functorial Design. We designed our compiler infrastructure in a hierarchical manner
using a fully functorial approach which allows us to swap out components of the compiler with
other implementations. OCaml’s module system facilitated this design decision. This is particu-
larly useful for differential testing our compiler against other solid geometry based tools such
as OpenSCAD [OpenSCAD 2018], swapping our geometry module with another computational
geometry library for comparison, and in tackling numerical issues. The geometric functionalities
in our compiler and synthesis implementation are conceptually designed to execute using real
numbers. Since reals are only approximated by floating point numbers, running these routines
using floating point often leads to rounding errors due to semantic mismatch between floats and
reals, and undecidable branching. We implemented several number systems with varying levels
of accuracy and were able to use them interchangeably as and when required. All modules are
functorized over a number system, whose signature contains basic arithmetic, square root, and
trigonometric operations. We have implemented this signature using floating points, arbitrary pre-
cision number systems such as MPFR [Fousse et al. 2007; Zimmermann 2010], and exact arithmetic
(see Section 8.1).

5 SYNTHESIZING EDITABLE CAD BY REVERSE COMPILATION

To demonstrate how the foundations established in previous sections can help develop better tools
for desktop-manufacturing users, we describe a novel algorithm for “reverse compiling” meshes to
CAD programs that recaptures the high-level structure of a design. In this section we show how
our CAD and mesh formalizations suggest a natural search strategy for synthesis. In Section 6
we detail case studies that demonstrate the promise of this approach: once meshes are reverse
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B7 > [T B (7 b

Diff ( Diff (
Scale (2,2, 2) ( Scale (2,2,2) (
Cylinder(6) Cylinder(3)
)
Cylinder(50) Cylinder(50)

) )

Fig. 12. Synthesis workflow: starting with a mesh for a 3D model, our synthesis tool can reverse engineer a
CAD program, which can be easily edited to get a different 3D model.

E =[] | AffineR¥>3R3E | Binop op E C | Binop op (Mesh m) E
S = A | Binop (Union|Diff)SS A:u=P|AffineR*>3R3>A  P:= Cube| Cylinder N | ...

c—pc m—qc P € Qprim(m)
E[c] = E[¢]  Cube —, Mesh mcype E[Mesh m] -5 E[c] Meshm —q p
Mapyertex (A0. po+ q) m=m’' (my1, my) € Qaqa(m)
Affine p g (Mesh m) —, Mesh m’ Mesh m —q Binop Union (Mesh my) (Mesh my)
mBop(o)(my, my) = m’ (m1, mz) € Qqup(m)
Binop o (Mesh my) (Mesh my) —, Mesh m’ Mesh m —q Binop Diff (Mesh m;) (Mesh m;)

Fig. 13. Representative cases of small step CAD compilation (=, left) and synthesis (—g, right) with
evaluation contexts and synthesis target language (E, S).

compiled to CAD, many edits which would be tedious or prohibitively difficult at the mesh level
become trivial. For example, Figure 12 shows an example of creating a triangle candle holder by
starting with a hexagonal one in mesh form, synthesizing CAD, then tweaking the number of sides
in Cylinder(n) before printing the desired object.

To develop our synthesis algorithm, we first rephrase our CAD compiler as an equivalent small-
step relation using evaluation contexts and then “flip the arrows” to formalize possible reverse
compilations. The resulting synthesis relation captures the fact that many distinct CAD designs
may compile down to the same mesh, leading us to introduce a notion of geometric oracles which
model the mesh-level heuristics necessary to guide synthesis toward more-editable CAD programs.
Following the synthesis relation, our algorithm provides a principled approach to reverse compiling
meshes to CAD and enables proving properties of the algorithm as well as clearly delineating the
role of heuristics. We assign specifications for the oracles and prove that our synthesis algorithm is
correct, i.e., that it preserves semantics. Throughout the section we note key design insights specific
to the CAD domain that focus the heuristics and shrink the search space to speed up synthesis.

5.1 Specifying Reverse Compilation

Just as in traditional compilation, translating a CAD program to a mesh loses source-level informa-
tion. For example, consider the intersection of two cylinders placed side-by-side to form a rounded
lozenge in Figure 14a. The resulting mesh only contains fragments of the cylinder primitives the
programmer originally specified, yet intuitively we expect synthesis to “figure it out”.
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To both make this goal precise and support reasoning by induction on the synthesis search space,
we first rephrase our CAD compiler as a small step relation — in Figure 13 which satisfies the
property

¢ —>F Meshm < compile(c) = m

At this point, we could specify the target of synthesis as the inverse of —.*. However, a key
component of any mesh-to-CAD synthesis algorithm will be heuristics which infer information lost
during compilation. To support reasoning about heuristics’ role in synthesis, we instead define the
synthesis relation — on the right of Figure 13. The geometric oracle Qpm provides the base case
for synthesis by directly recognizing meshes that correspond to a sequence of affine transformations
applied to a primitive, while Q,44 and Qg indicate when a mesh can be generated by unioning or
differencing two “simpler” meshes:

¢ € Qrim(m) = [m]=[c]
(m1,my) € Qug¢(m) = [m] = [ Binop Union (Mesh m;) (Mesh m;) |
(m1,mz) € Qgup(m) = [m] = [ Binop Diff (Mesh m;) (Mesh my) ]

Assuming these oracle specifications, Mesh m—%c implies compile(c) = m. Also, in principle,
there exist oracles such that compile(c) = m implies Mesh m—%c. However, synthesis does not
assume that its input was generated by our compiler; in fact, we intend synthesis to work for
meshes obtained from arbitrary sources like online repositories and 3D scanners. In such cases, it
is impossible to know what CAD operations (if any) were used to generate the input model.

Synthesis is inherently under-constrained since there is never a unique CAD program that
compiles to a given mesh, e.g., for all ¢, [c¢] = [Binop Union c ¢]. Furthermore, for any mesh
m, there is a trivial “complete” synthesis strategy: simply map each face of m to the base of an
appropriate inward-facing tetrahedron and take the intersection of the resulting set of tetrahedrons.
Such approaches are clearly undesirable as they fail to recover any of the higher-level structure of
the original design. To address this, synthesis depends on a ranking function ¢; <e4jt ¢z to capture
the notion that c; is “more editable” than c¢;. In general, the right choice for <.g4;; will depend on
how a user wants to customize a given design, but we have found that program size serves as a
good default proxy.

Another challenge is the branching factor in the search space of CAD programs. To help mitigate
this issue we restrict the target language of synthesis to the subset S in Figure 13 where only
union and difference CSG operations are allowed and are above all affine transformations which
in turn are above all primitives. Intuitively, these restrictions are mild since intersections A N B
can be equivalently expressed as differences A — (A — B) and affine transformations distribute
through CSG operations. Two key benefits of this approach are that it focuses the search space
by eliminating many equivalent candidates and also suggests a high level strategy composing the
primitive, additive, and subtractive oracles. One downside is that CAD programs where affine
operations have all been distributed down below CSG operations can be substantially larger; we
have found that a simple post-pass to factor out repeated affine operations can often address this
issue. Furthermore, once a mesh has been synthesized up to the CAD level, traditional syntax-based
synthesis techniques [Bornholt et al. 2016; Phothilimthana et al. 2016; Solar-Lezama 2008] could be
applied to further improve editability and optimize other constraints.

Given these definitions and design considerations, we can prioritize some general guidelines for
mesh-to-CAD synthesis algorithms with oracles Q:

Correct: Synthesis must preserve semantics, [ synthq(m)] = [m].
Useful: Synthesis should strive to generate editable CAD models, i.e., maximize <egit.
Predictable: Synthesis should be deterministic in that synthqo(compile(syntho(m))) = synthq(m).
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(a) Information lost in compilation. (b) Composition depends on context.

Fig. 14. Figure 14a shows how compiling a CAD to a mesh leads to loss of high level structural information
(the fact that the lozenge shape is obtained by intersecting two cylinders). Figure 14b shows how evaluation
context can be used to synthesize the union of two spheres.

searchqo([Mesh m], [], fuel)

maxc,,, (fs ++ cs)

synthg(m)

searchq(cs, fs, 0

)
searcho([1, fs, fuel)
searchq(c :: cs, fs, fuel)
let E[Mesh m] = focus(c) in
let ps = map (Ac. E[c]) Qprim(m) in
let as = map (A(mq, my). E[Binop Union (Mesh m;) (Mesh mz)]) Qadda(m) in
let ss = map (A(my, my). E[Binop Diff (Mesh m;) (Mesh mz)]) Qsyp(m) in
let (fs’, cs”) = partition (Ac. ¢ € S) (ps ++ as ++ ss) in

max Sedit f:s

let cs”” = fold schedule cs cs’ in
searchq(cs”, ¢ fs" ++ fs, fuel — 1)

Fig. 15. Core synthesis algorithm.

Complete: <.4;; should prefer CAD models without embedded meshes (e.g., in S).

5.2 Algorithm

Algorithm 15 shows our synthesis strategy synthq(). The core searchq function maintains a worklist
of candidate CAD programs reachable from the input mesh by the — relation. In each iteration, it
pops the most promising candidate ¢ from the front of the worklist, focuses on a particular mesh m
within ¢, applies oracles in Q to m to generate new candidates, and schedules those candidates in
the worklist. The algorithm is bounded by a fuel parameter to ensure termination and once it runs
out or no candidates remain, searchq returns the most editable result according to <egit.

Our synthesis algorithm is designed to be modular: it is straightforward to implement and add new
oracles to synthesize a greater variety of CAD programs and control the search by modifying the
fuel, focus, schedule, and <.g4it parameters. Below we describe strategies for effectively implementing
geometric oracles and setting these parameters. Since this the goal of this section is to demonstrate
the utility of our programming language foundation for CAD, we describe geometric heuristics at

a high level.
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Qprim- This oracle recognizes meshes that can be generated by CAD programs in language
A from Figure 13, i.e., a sequence of affine transformations applied to a basic primitive. This is
straightforward when the mesh corresponds to a primitive in language P, but is more challenging
for meshes which correspond to rotated, translated, scaled, or skewed versions of a primitive. In
such cases, the oracle implementation canonicalizes the input mesh and compares it to canonicalized
versions of primitives. If a match is found, it reorients the mesh using the inferred canonicalization
parameters and returns the result. We describe canonicalization in more detail in Section 5.4.1.

To implement mesh matching, we designed recognizers for the basic primitives in P. These
recognizers use geometric properties of the corresponding primitive 3D solids. For example, in order
to recognize a cuboid, we check that the mesh is composed of 6 face groups (sets of adjacent faces
with equivalent normals), and use the normals of each group to invert any affine transformations
which may have been applied to the underlying Cube primitive. To recognize spheroids, we similarly
check for (potentially multiple) centroids that have equivalent distances to the faces of the mesh.
Similarly, for cylinder and hexagon, we partition the mesh into face groups and use normals to
heuristically invert affine transformations.

Q.44- We experimented with several mesh splitting strategies for this oracle, and ultimately
settled on three high level strategies. Disjoint split partitions the mesh by connected components.
Convex split identifies a splitting based on rings of coplanar gradient changes. Group split identifies
common features between face groups, e.g., being parallel/orthogonal, and separates the mesh
along those boundaries.

Qgup. Given a mesh m, this oracle searches for a bounding mesh that snugly contains m and
returns the bound and its difference with m. In our current implementation, we limit bounding
meshes to those corresponding to CAD primitives. This can be relaxed, and we have observed
examples where it would be useful to recursively synthesize more complex bounds, e.g., using
convex hull.

Scheduling. To effectively navigate the exponential synthesis search space, the function searchg
prioritizes meshes in its worklist deemed more likely to lead to editable CAD programs. As one
example from our current implementation of the schedule parameter, we detect when newly
generated candidates have meshes of higher overall complexity than where they started and insert
such candidates later in the worklist.

focus. In general, a CAD program can match many evaluation contexts. For compilation, only
one of these will leave a redex in the context’s hole, but for synthesis we may choose any context
that places a mesh in the hole. focus examines the full CAD program ¢ and decomposes it to select
the most promising mesh. In our current implementation, meshes are selected based on number of
face groups and their height in the CAD syntax tree. Focusing has a significant impact on synthesis
performance, and more work is needed to characterize the tradeoff between more spending more
time to accurately select the most promising mesh and quickly exploring many candidates. We
speculate that the tradeoff is actually dynamic in the sense that it often seems to depend on the
depth of a mesh within the CAD program.

5.2.1 Context and Sharing. The context of a mesh plays a critical role in synthesis. For example,
consider the case of a union of two overlapping spheres? in Figure 14b. Q,4q will use convex
splitting to break union into two truncated spheres. No affine transformation of a primitive can
match a truncated sphere. Without evaluation context, synthesis would at best be able to return
the union of the two meshes of the truncated spheres. However, in context, using full spheres to

2 As mentioned in Section 3.1, this paper approximates curves. To represent the sphere, we use a predefined mesh.
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match the truncated spheres works correctly. This is because when we union the complete spheres,
the parts of the spheres that are “lost” inside each other are correctly compiled, as we explained in
Section 4.

Another important implementation technique is sharing common structure among evaluation
contexts to limit memory usage. While the worklist may grow exponentially, we can efficiently
represent its contents by reusing common prefixes of each generated evaluation context across the
explored programs.

5.3 Synthesis Correctness

We briefly sketch the correctness of our synthesis algorithm below and defer evaluating other
criteria to the case studies in the following section. One property we rely on is that for any CAD
programs c; and ¢; and evaluation context E, [c¢1] = [c2] implies [ E[c1]] = [E[c2]] by the
compositional definition of [ |.

[ syntho(m) ] = [m]. We first show that Mesh m — ¢ implies [m] = [¢]. To get a strong
enough induction hypothesis we generalize to prove that ¢ —} ¢’ implies [c¢] = [ ¢’ ], and proceed
by induction on the derivation.

Base Case: For 0 steps, ¢ = ¢’ and the goal trivially holds.
Inductive case: ¢ —s ¢’ —% ¢
By inversion, c = E [ Meshm ] and ¢’ = E [ ¢* ] for some CAD c".
By the induction hypothesis, [¢” ] = [¢’]-
To show [ c] = [ ¢’], it is sufficient to establish [ ¢ ] = [¢” . This follows from case analysis
on the synthesis step, the oracle specifications, and the compositional definition of [ ].

Now [ synthq(m)] = [m] follows from the invariant that all CAD programs in the worklist
during search are reachable under the synthesis relation and the fact that the result of synthesis is
drawn from the worklist.

]

5.4 Implementation and Challenges

We implemented our synthesis tool, Relncarnate to work with the compiler tools we built in
Section 4.3. Due to our full functorial design strategy (Section 4.3.2), we were able to implement
synthesis as an extension to the existing system by making Synthesis a functor over NumSys,
Geometry, Mesh and CAD.

5.4.1 Canonicalization and Re-orientation. In order to match a mesh to a primitive (from a list of
predefined primitives) in an arbitrary location and orientation in 3D space, Qpim performs canoni-
calization, which is a series of affine transformations applied at the mesh level. This normalizes a
mesh with respect to affine transformations—for a mesh, m, and an arbitrary sequence of affine
transformations, given by a matrix p and translation vector g, canonicalize m= canonicalize
(pm + q). The order in which the series of affine transformations in canonicalization are applied is
important due to the non-commutativity of affine transformations. The first step in canonicalization
is to identify three mutually perpendicular axes of m. We do this by identifying three orthogonal
directions along which the sum of the areas of the faces is the largest. We call these three axes,
Xo» Yo, and z, the object coordinate system. We already know the orthogonal coordinates of the
Cartesian coordinate system: x = (1,0,0), y = (0,1,0), and z = (0,0, 1) (we call this the world
coordinate system). canonicalize solves a linear system of equations using Euler angles [Kim
2013] to find three rotations, about x, y, and z that can align the world coordinate system to the
object coordinate system. Note that this is the opposite of our goal—we want to align the object
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coordinate system to the world coordinate system. canonicalize does this by using the angles
obtained from Euler equations, but applying them in the reverse order, and negating the value. If
the Euler angles are ry, ry, and r_, then after canonicalizing with respect to rotation, the new mesh
is:

m, = rotateX(-ry) (rotateY(-ry) (rotateZ(-r;) m))

After the axes are aligned, the next step is to scale the mesh to unit dimensions. canonicalize
does this by first computing the dimensions of the bounding box of m,, (d, dy,d,) and scaling it
by the reciprocal of the dimensions:

mg = scale(1/dy,1/dy,1/d;) m,

The final step of canonicalization is to place the center of m; at the origin by translation by
finding the bounding box of my and translating the mid point along each dimension to (0, 0, 0). If
Cx, ¢y, and ¢, are the centers along x, y, and z respectively, then

Mcanonicalized = Mt = translate(—cx, —Cy, _CZ) ms
Canonicalization is used for primitive matching. Once a primitive p is matched, to synthesize
the correct CAD, p has to be re-oriented to the original location in 3D space. For this, the algorithm
applies the above affine transformations to p in the order:

p’ = rotateZ(r;)(rotateY(ry)(rotateX(ryx)(scale(dy,dy, d;) p)))

The last step is to translate the scaled and rotate primitive, p’ to the right coordinates. The

distance to be translated is the distance between the center of compile(p’) and the center of the

’ ’ ’
original mesh m: (7, C‘Z - (e eyt cr!

Porientea = translate((cd b, ) — (., c™) p’

The elegance of canonicalization and reorientation for primitives is that it pushes the affine
transformations to the leaves of the AST. This makes the rest of synthesis simpler because it
saves us from finding canonical orientations of arbitrary binary combinations of CAD programs.
This design decision was based on the key insight that while the order of application of affine
transformations cannot be changed within themselves, when affine transformations appear with
binary transformations, they can be pushed inside the binary operations.

5.4.2 A Concrete Instance of the Synthesis Algorithm. Following is a concrete example of how the
Relncarnate algorithm in Figure 15 works. Consider the mesh m of the model in Figure 16 showing
a hexagonal prism in arbitrary location in 3D space. Initially, fuel is greater than 0 and the worklist,
cs has one candidate, Mesh m. Consequently, m is the mesh in focus. From Figure 15, we can see
that the algorithm will attempt to apply all three oracles to m. Qi Will canonicalize the mesh and
apply the primitive recognizers. Figure 16 (second figure) shows the canonicalized mesh. Since this
already matches with an affine transformed primitive (Cylinder(6)), ps will be a list containing
the corresponding ACAD program. This program is shown in Figure 16. Next, the other two oracles,
Q.44 and Qg,p, will also be applied. Q.44 Will return the original candidate Mesh m since none of the
splitting strategies will generate two sub-meshes from m. Qg will return the same result as Qpim
since in this case, the snuggest fitting bounding primitive is the affine transformed hexagonal prism.
Hence, as will contain Mesh m and ss will contain the same ACAD program as ps. The algorithm
will concatenate ps, as and ss and remove duplicates before applying the partition function. This
will split the list into two parts: fs’ will contain the ACAD program shown in Figure 16, and cs’
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Translate(2.4,0.8,5.2) (
RotateZz(80.5) (
RotateY(—40.5) (
RotateX(—124.7) (
Scale(2.0,1.7,1.0) (
Cylinder (6) )))))

Fig. 16. Canonicalization and ACAD synthesis of arbitrary object in 3D space.

will contain the remaining program, i.e. the result of applying Q,44, which is the original program,
Mesh m. Before scheduling the next mesh to focus on, the algorithm checks whether any of the
current candidates were already explored in the previous step. In this case, Mesh m has already
been explored, so it will be removed from the list of candidates. At this point, cs” thus is an empty
list. Therefore, according to the third line in Figure 15, it will now apply max<_, to fs. Since fs

contains only one ACAD program (shown in Figure 16), this will be the output of synthesis.

5.4.3  Simplify. We implemented a recursive simplification algorithm, that, given a CAD AST,
traverses it to remove redundant nodes. Synthesis can return CAD programs that have redundant
nodes in the AST. For example, Binop Union c ¢ is equivalent to ¢ for any CAD program c. To remove
such redundant nodes, the CAD program is passed on to simplify as the final step. For primitives
shapes, simplify simply returns the same node. For nodes that are affine transformations, simplify
compiles the child node and if the mesh thus obtained is the same as the mesh with the affine
transformation, then simplify removes the affine node. For binary operations, simplify compiles
the left child first. If the mesh obtained is the same as the mesh with the binary operation, then
simplify returns the left child. If not, it tries the same with the right child. If that fails, then simplify
will return the original AST with the binary operation node. Since simplify compiles the child
nodes in every recursive step, it can slow down the performance of the synthesis algorithm for
very large ASTs. That is why Relncarnate only uses simplify on the final ACAD program and not at
the intermediate stages of synthesis.

6 CAD SYNTHESIS CASE STUDIES

We demonstrate three case studies on which we ran Relncarnate. Two of the case studies are
downloaded from Thingiverse and one is our own design (Table 1). They are representative of
three of the most common tasks end users of 3D printers typically tend to design for: tools parts,
household items, and hobbyist designs [Alcock et al. 2016]. In order to evaluate Relncarnate’s
output, we define six tasks:

e scale components of a model, for example a hole inside a bigger part.

translate components of a model with respect to each other.

rotate a model as a whole or part of it about one or more axes.

combine two models or add a new component to an existing model.

remove a component from a model.

change # sides in a regular polygon primitive. This could be for example changing a hexagonal
prism to a cylinder or a pentagonal prism.

We give examples of editing tasks from the above categories for each case study to discuss the
relative difficulty at both ACAD and mesh levels. Our overall conclusion is that editing a model
after generating ACAD using Relncarnate is always easier or the same level of difficulty as editing
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Table 1. Summary of case studies.

Benchmark Source Category
ICFP original hobby
Candle holder Thingiverse | household
Hex wrench holder | Thingiverse | tool
Diff (
Translate(1.5, -1.9, 0.5) (
Scale(3.9, 6.0, 1.0) (
Translate(-0.5, -0.5, -0.5) (
Cube
)
)
)
Union (

Translate(2.5, -2.0, 0.5) (
Scale(1.0, 4.0, 1.0) (
Translate(-0.5, -0.5, -0.5) (
Cube
)
)
)
Translate(0.5, -2.0,
Scale(1.0, 4.0, 1.0
Translate(-0.5, -
Cube

0.5) (
) (
.5, -0.5) (

ACAD program for I synthesized by Relncarnate. Rendered ACAD programs for ICFP and CFP.

the corresponding mesh using mesh editing tools. In several cases, editing the mesh model is as
difficult as manually editing the triangular faces which is usually not recommended.

6.1

ICFP

This model (shown in Figure 17) was entirely generated by our tools. We designed it in ACAD,
compiled it to STL using our compiler (the mesh has approx. 150 faces), and then synthesized a
ACAD program using Relncarnate. The synthesized programs for the individual letters I, C, F,
P are 25, 16, 23, and 23 LOC respectively. The synthesized CAD program for the model ICFP has 89
LOC. Figure 17 shows the ACAD program for I synthesized by Relncarnate.

e Remove: Consider the task of removing a letter from the model. For example, one can remove
the I to model the acronym for Call For Papers shown in Figure 17. Figure 19 shows the
ACAD program for CFP that we obtained by editing the program Relncarnate synthesized for
ICFP. The program is a union of the three letters. Since all the letters are separated, this task
should also be relatively easy to perform at the mesh level.

e Translate: Consider an edit where the user wants to increase the spacing between all the
letters uniformly. After running Relncarnate on the mesh, this task is easy: one needs to
simply change the translation vector that is used to separate the letters. At the mesh level,
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1 Diff (
2 Translate(@, 0, 0.5) (
3 Scale(2, 1.732, 1) (
4 Translate(-0, -0, -0.5) (
5 Scale(0.5, 0.57, 1.0) (
6 Cylinder(6)
7 )
8 )
9 )
10 )
11 Translate(0.0, 0.0, 0.55) (
12 Scale(1.0, ©0.998, 0.9) (
13 Translate(-0.0, -0.0, -0.5) (
14 Scale(0.5, 0.5, 1.0) (
15 Cylinder(50)
16 )
17 )
18 )
19 )
20 )
(a) Synthesized ACAD for the candle holder. (b) Rendered hex holder.

Fig. 18. Figure 18a shows the ACAD program that Relncarnate synthesized for the candle holder [Thingiverse
2018a]. Figure 18b shows the hex wrench holder from Thingiverse [Thingiverse 2018c].

this seemingly simple task can get confusing and tedious because the user has to drag the
letters around to make the spacing uniform.

6.2 Candle Holder

Our next example is the candle holder (shown in Figure 2 in Section 2) that we downloaded from
Thingiverse [Thingiverse 2018a]. This model is available in STL format, and also in a specific CAD
format [Rhinoceros 2018], which is only useful for users who have that CAD package. From a
mesh with hundreds of triangular faces, ReIncarnate produced a 20 line CAD program shown in
Figure 18a.

e Comments from users [Thingiverse 2018a] indicate that they were unsuccessful in modifying
the mesh model to scale it only along z-axis using mesh editing tools—it would also change
the x and y dimensions. From the user’s comment, it seems like even though in theory
this task is possible using mesh editing tools [Blender 2018; Meshmixer 2018], it is much
more tedious than editing the ACAD model where it is as simple as adding a scale affine
transformation with the right vector (Figure 3).

e Rotating part of the mesh such as the cylindrical hole (about any axis perpendicular to the
length of the cylinder) is as difficult as editing the mesh manually because it causes the
triangular faces of the hole and the base to intersect with one another, thereby breaking the
mesh. This task can be easily done at the ACAD level using RotateX, RotateY.

e Due to the same reason as above, combining the outer polygons to make a bigger base for
more than one candle is nearly impossible at the mesh level but very easy at the ACAD level
(using the Union operation).

e Changing the number of sides on the outer polygon is trivial at the ACAD level (it only
requires a single character change to the argument n of Cylinder(n)) but as difficult as
manually editing the triangular faces at the mesh level.
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6.3 Hex Wrench Holder

We were inspired to synthesize the CAD program for a hex wrench holder [Thingiverse 2018c] by
a hobbyist maker who downloaded a hex wrench holder mesh and 3D printed it only to find that
his hex wrenches did not fit right due to the holes being oriented differently from the shape of his
wrenches. The hobbyist tried to used a mesh editing tool to rotate the holes but it was impossible
to do this edit because the triangulation of the mesh would break. We synthesized ACAD for the
holder using Relncarnate. The entire ACAD program has 196 LOC (the mesh has over 500 faces).
Figure 19 shows a part of the ACAD program.

e One can use RotateZ(0) as shown in Figure 19 to rotate the holes easily in ACAD, but at the
mesh level, it is very difficult.

e Scaling the holder holes is yet another task that is very tedious at the mesh level, especially
if it is non-uniform. It has the same problem as rotation in that it causes the mesh to break
due to intersections between faces.

e Adding or removing a hole are both very easy at the ACAD level because it requires one to
simply scale the cuboidal base of the holder and either subtract another hexagonal prism
(adding a hole) or union the model with a hexagonal prism of the right dimensions (removing
a hole). These tasks while not impossible at the mesh level, are extremely tedious.

Synthesizing ACAD for this model opens up directions for future work on CAD synthesis.
Figure 18b shows that the holes in the hex holder are all made using the same ACAD primitive, but
they are separated by some distance and are scaled differently. Relncarnate can be extended using
classic program synthesis techniques [Bornholt et al. 2016; Phothilimthana et al. 2016] to detect
such repetitions and optimize the generated ACAD programs.

7 RELATED WORK

To the best of our knowledge, this is the first work that (1) relates the semantics of CAD and surface
meshes using programming-languages techniques and (2) uses program synthesis for reverse
engineering CAD from surface meshes. There are numerous examples from other fields such as
human computer interaction, computational geometry, mechanical engineering, computer vision,
and design, that have explored 3D models, mesh generation, slicing, and user interfaces to help
mitigate current limitations in 3D printing. Below we highlight examples from other communities
working on desktop manufacturing. We also provide an overview of state-of-the-art in program
synthesis research.

7.1 Compilers for 3D Printing

Sutherland’s Sketchpad [Sutherland 1964], invented in the 1960s, is one of the first computer-aided
design tools. It revolutionized the field of graphical user interfaces and computer-aided simulations.
Since then, numerous CAD tools have been developed [Rhinoceros 2018; SketchUp 2018; Solidworks
2018]. Unfortunately, many of these are proprietary and do not provide clear semantics, so it is
difficult to reason about them formally.

The core CAD components of ACAD are similar to OpenSCAD [OpenSCAD 2018], which is
a popular programmatic CAD tool in the 3D design sharing community [Thingiverse 2018b].
OpenSCAD builds on the CGAL [CGAL 2018] computational geometry library. There are other
programmatic CAD languages such as ImplicitCAD [ImplicitCAD 2018] which is implemented
in Haskell. ImplicitCAD is similar to OpenSCAD but provides more functionality. Our language
and formalism inherits certain restrictions that are also present in OpenSCAD such as lack of
direct support for fillets. Unlike our tool, both OpenSCAD and ImplicitCAD lack formal semantics
for reasoning about CAD programs. We show that functional programming techniques can be
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ACAD synthesized for ICFP after removing I:

1 Union (
2 Union (
Synthesized ACAD for hex holder: 3 (x C %)
4 Diff (
1 Diff ( 5 Translate(2.0, 0.5, 0.5) (
2 Translate(65.0, 15.0, 2.5) ( 6 Translate(-0.5, -0.5, -0.5) (
3 Scale(130.0, 30.0, 5.0) ( 7 Cube ))
4 Translate(-0.5, -0.5, -0.5) ( 8 Translate(2.175, 0.5, 0.5) (
5 Cube 9 Scale(@.65, 0.5, 1.09) (
6 ) 10 Translate(-0.5, -0.5, -0.5) (
7 ) 11 Cube ))))
8 ) 12 (x F %)
9 Translate(5.0, 23.0, 2.5) ( 13 Diff (
10 Scale(2.0, 1.7, 0.5) ( 14 Translate(3.5, 0.5, 0.5) (
1 Cylinder(6) 15 Translate(-0.5, -0.5, -0.5) (
12 ) 16 Cube ))
13 ) 17 Diff (
14 D) 18 Translate(3.6, 0.4, 0.5) (
19 Scale(0.8, 0.8, 1.0) (
20 Translate(-0.5, -0.5, -0.5) (
21 Cube )))
. . . 22 Translate(3.4, 0.5, 0.5) (
Adding rotation about Z on line 9: 2 Scale(0.4, 0.2, 1.0) (
24 Translate(-0.5, -0.5, -0.5) (
1 Diff ( 25 Cube ))))))
2 Translate(65.0, 15.0, 2.5) ( 26 (* P %)
3 Scale(130.90, 30.0, 5.0) ( 27 Diff (
4 Translate(-0.5, -0.5, -0.5) ( 28 Translate(5.0, 0.5, 0.5) (
5 Cube 29 Translate(-0.5, -0.5, -0.5) (
6 ) 30 Cube ))
7 ) 31 Union (
8 ) 32 Diff (
9 Rotatez(15.0) ( 33 Translate(5.15, 0.15, 0.5) (
10 Translate(5.0, 23.0, 2.5) ( 34 Scale(0.7, 0.3, 1.0) (
11 Scale(2.0, 1.7, 5.0) ( 35 Translate(-0.5, -0.5, -0.5) (
12 Cylinder(6) 36 Cube )))
13 ) 37 Empty )
14 ) 38 Diff (
15 ) 39 Translate(5.05, 0.65, 0.5) (
16 ca) 40 Scale(@.5, 9.3, 1.0) (
41 Translate(-0.5, -0.5, -0.5) (
42 Cube )))
43 Empty ))))

Fig. 19. The top left code fragment is part of the ACAD program for the hex holder synthesized by Relncarnate.
The bottom left code fragment shows an edit to a hole in the hex wrench holder by rotating the hole by 15
degrees about the z-axis on line 9. The ACAD program on the right shows the model for CFP that can be
obtained from the ACAD program of ICFP synthesized by Relncarnate by deleting the I. This program is the
simply the union of the three letters.

extended to provide a rigorous foundation for reasoning about the implementation and composition
of CAD tools. Several projects have investigated 3D-printing performance. WirePrint [Mueller et al.
2014a] and faBrickator [Mueller et al. 2014b] show how non-uniform height slicing and hybrid
build approaches can expedite rapid prototyping. OpenFab [Vidimce et al. 2013] is a framework
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for specifying material and texture properties for 3D printing with the help of a domain-specific
language. Several projects have developed CAD compilers for unconventional tasks like automated
knitting [McCann et al. 2016]. There are also design tools to use 3D printing for modifying existing
objects [Chen et al. 2015, 2016] and tools that allow users to correct for measurement errors in CAD
models [Kim et al. 2017]. Dumas et al. [Dumas et al. 2015] proposed a texture-synthesis technique
that can be used to synthesize texture based on input patterns. Schulz et al. [Schulz et al. 2014]
have designed a system that lets casual users design 3D models by example. They first create a
database of design templates based on designs by experts, and then let users choose a template and
change the parameters. We have previously proposed using PL techniques for 3D-printing, but
presented only a preliminary vision without results [Nandi et al. 2017].

7.2 Analysis of CAD Models

CAD models can be analyzed before printing to check for structural defects using properties
related to materials and geometry [Stava et al. 2012; Zhou et al. 2013]. There are interactive
interfaces [McCrae et al. 2014] that let user specify functional parts and provide real-time simulations
visualizing stress. Print orientation is a well studied area that focuses on statically analyzing CAD
models for maximizing mechanical strength [Umetani and Schmidt 2013]. Other constraints to
optimize for could be minimal material usage. Patching existing prints [Teibrich et al. 2015]
and analyzing strength properties at the CAD level [Galjaard et al. 2015] are two techniques to
accomplish this. Smooth surface finish is another interesting requirement. Delfs et al. [Delfs et al.
2016] developed a tool that achieves smooth surfaces by optimizing the orientation of the part
during printing. Krishnamurthy et al. [Krishnamurthy and Levoy 1996] introduced a technique that
uses b-splines to smooth models at the mesh level. This work has witnessed tremendous application
in the graphics community for rendering 3D characters.

7.3 Recreating CAD Models

There are several tools for reverse engineering CAD from 3D scans [Geomagic Design X 2018;
Powershape 2018; SpaceClaim 2018]. The goal of these tools is to help experts manually (re-)create a
CAD design. These tools enhance the traditional CAD workflow primarily by enabling an engineer
to “snap" features and dimensions to points from a scan or mesh. Some of these tools also attempt
to detect some features and suggest possible primitives (which is similar to the role of Q;;p, in
our synthesis algorithm) or detect coplanar features. Since these tools are proprietary, few details
about their implementations are available. These tools are designed to be interactively driven by
an expert CAD engineer and do not produce full CAD programs from meshes.

Thingiverse Customizer [Thingiverse 2018d] is a tool that allows one to modify 3D models
uploaded on Thingiverse. It is however only useful for models that include the underlying CAD file.
The majority of Thingiverse models do not have an accompanying CAD file, and consist only of
mesh-level information in the form of STL files. Customizer cannot reverse engineer CAD programs
from the STL meshes, which is the novelty of Relncarnate.

7.4 Applications

Desktop-class 3D printing has started to reach mainstream adoption. Its applications are not only
confined to rapid prototyping, and printing tool parts and aesthetic models. The accessibility
community has started to use democratized manufacturing to make society more inclusive for
people with disabilities [Baldwin et al. 2017; Banovic et al. 2013; Guo et al. 2017; Hofmann et al.
2016b; Hofmann 2015]. The Enable community [The Future 2018] uses 3D printing to print custom
prosthesis. This has a huge impact in the developing world where doctors and medical facilities are
not available in abundance [Hofmann et al. 2016a].
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7.5 Program Synthesis

Program synthesis is applied to a wide range of applications such as super optimizations for
low power spatial architectures [Phothilimthana et al. 2014, 2016], education [Alur et al. 2013]
and end-user programming [Wang et al. 2017]. Program synthesis can be inductive or deductive.
Inductive syntax-guided program synthesis techniques [Solar-Lezama 2008] fall into the following
categories: (1) enumerative search [Udupa et al. 2013], (2) stochastic search [Schkufza et al. 2013], (3)
symbolic [Jha et al. 2010]. The main components of these techniques are: a specification that is used
to guide the synthesis, a search algorithm to find a candidate program that satisfies the specification,
and a feedback mechanism to efficiently prune the search space. In deductive synthesis [Joshi et al.
2002], the specification is a reference implementation and the synthesis algorithm finds an optimal
program that is equivalent to the specification on all inputs.

Our synthesis algorithm can be viewed as a reverse-compilation process that starts with a mesh
representation of a 3D model as a specification, and searches for a CAD representation of the
same. The oracles described in Section 5.2 navigate the search in the right direction. Unlike both
traditional deductive and inductive synthesis, neither meshes nor CAD programs take inputs or
produce outputs.

8 FUTURE WORK

In this section we briefly survey some opportunities for future work to build upon our programming-
languages foundation for 3D printing tools. We focus on numeric and computational geometry
challenges to improving mesh-to-CAD synthesis in particular and discuss some directions for
exploring further stages of the 3D printing software pipeline.

8.1 Exact Arithmetic

One challenge to implementing the semantics described in Sections 3.1 and 3.2 is the need to
implement mathematical operations such as square roots and trigonometric functions. Standard
floating-point arithmetic and its inherent rounding error is unattractive for reasoning about numer-
ical equivalence [Goldberg 1991; Panchekha et al. 2015]. However, standard exact approaches such
as rational arithmetic lack support for trigonometric functions, which are essential in geometry.
We have started to investigate the problem of accurate mathematical computation based on the
insight that most angles in CAD programs are rational multiples of 7. Such values are algebraic, so
can be represented in a splitting field [Artin 2011] of the rational numbers with exact operations
and decidable equality/inequality. We can choose a representation of the splitting field where any
number is represented by the field size n, integer coefficients a; and denominator d, representing
the value

18 i
E ; a; cos %

We implemented a prototype of arithmetic operations over these values, including decidable
ordering and equality functions, and symbolic square root and arctangent functions, all free from
any rounding error. With an overhead of roughly 600X, these exact operations are substantially
slower than floating-point operations, but competitive with arbitrary-precision packages. Thanks
to our fully-functorial design, users can choose whether to use floating-point or exact arithmetic
for their CAD programs, depending on whether speed or high assurance is more important to
them. Independently from its benefit to users, this design also allowed us to easily test and debug
floating-point code. As a result, though our CAD compiler carries weaker guarantees when run
in floating-point mode, we have fairly high confidence that the code is correct. In the future, we
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would like to pursue this direction further and investigate ways to make the number system more
complete and performant.

8.2 Hull

Computing the convex hull of an object can be added as a built-in unary operator in CAD, and it is
a useful one provided by various other tools. The ACAD implementation already has support for
convex hull, but it causes a number of semantic complications that we have not yet fully investigated.
Notably, the denotation of the hull operation is not compositional — we need to “inspect” the object
whose hull is being computed for things like minimal and maximal points in various dimensions.
Semantically this is no problem since we can specify such points with existential quantifiers, but
the connection to how hull is compiled is much more subtle. Conversely, our current synthesis
procedure never uses hull. Hull is a powerful primitive, and it is unclear in what situations its use
helps or hinders producing editable CAD objects.

8.3 Challenges in Computational Geometry

Implementing computational geometry involves numerous challenges relating to robustness and
performance [Demmel and Hida 2004]. Many of these challenges are due to numerical precision
problems [Shewchuk 1997] and as mentioned in Section 8.1, we have started some preliminary
investigation in this direction. However, this work’s main focus has been on using programming
languages to address orthogonal issues of formal specification, correctness and synthesis for CAD.
These ideas generalize beyond the details of specific computational geometry techniques and can
serve as a foundation for future research.

8.4 Compiling down to G-code

Section 2 described that after compiling a CAD program to a mesh, there are two more main
compilation steps: slicing and generation of G-code. We have implemented prototypes of both but
have not yet proven correctness in terms of semantics. Slicing inherently introduces approximation
via discretization since each slice must have a small but nonzero height. Also, not all approaches to
slicing produce achievable print strategies due to issues like gravity and the size of the printer.

9 CONCLUSIONS

We presented a functional-programming approach to designing and implementing computer-aided
design tools. We formalized CAD and surface mesh and provided denotational semantics to both.
We implemented a compiler for the semantics and sketched its correctness. We proposed a synthesis
technique that uses reverse engineering and geometric oracles to provide CAD programs from
surface meshes and showed that it works on real surface meshes downloaded from one of the most
popular online repositories for 3D models (Thingiverse). We are optimistic that programming-
language semantics can continue to provide clarity and functionality in this space, positively
affecting an emerging area of computing with potential for mass adoption.
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