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ABSTRACT
A primary goal of computing education research is to discover de-
signs that produce better learning of computing. In this pursuit, we
have increasingly drawn upon theories from learning science and
education research, recognizing the potential benefits of optimiz-
ing our search for better designs by leveraging the predictions of
general theories of learning. In this paper, we contribute an argu-
ment that theory can also inhibit our community’s search for better
designs. We present three inhibitions: 1) our desire to both advance
explanatory theory and advance design splits our attention, which
prevents us from excelling at both; 2) our emphasis on applying
and refining general theories of learning is done at the expense of
domain-specific theories of computer science knowledge, and 3)
our use of theory as a critical lens in peer review prevents the pub-
lication of designs that may accelerate design progress. We present
several recommendations for how to improve our use of theory,
viewing it as just one of many sources of design insight in pursuit
of improving learning of computing.
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1 INTRODUCTION
As a field of inquiry, computing education is broadly concernedwith
searching for designs that improve both the learning of computing
and broader effects of that learning. Our community investigates
a wide range of design ideas including programming IDEs [25],
tutorials [28], learning trajectories [52], curricula [4], pedagogy
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[51], teacher training [15] and more. Our community also consid-
ers diverse broader effects of learning, from gaining knowledge
measured by tests [60], developing identity [23], improving task
performance [31], and gaining expertise [29], to more humanis-
tic and social concerns such as motivation [33], self-efficacy [10],
improved quality of life [20], and equity in outcomes and society
[47].

To achieve these design goals, our field is increasingly using
theory, both to help find better designs and to help interpret their
effects on the world. For example, in the 2017 ACM International
Computing Education Research Conference (ICER) proceedings,
papers drew upon theories of identity development [24], affect
[30], cognitive load theory [34], distributed cognition [9], and col-
laborative learning [19]. This rich body of theoretical work from
other disciplines has offered a foundation upon which to derive
hypotheses about the classes we teach, the tools we build, and the
explanations of computing we form, and to help us interpret what
happens when we share them with learners. In addition, in prin-
ciple, if a theory correctly predicts that a design will be poor, we
can avoid building and evaluating it, and instead pursue designs
predicted to be better.

Simultaneously, we are also increasing the role of theory in peer
reviewing of our research. The reviewing guidelines for most of
the major computing education research conferences and journals
(for example, ICER, ACM Transactions on Computing Education,
and the Computer Science Education journal) explicitly assess the
application of theory in both empirical studies and designs. As
criterion, the incorporation of theory in our field’s design inquiry
has great potential to increase the scientific rigor of our discoveries.

In this paper, we argue that while theory can accelerate our
field’s progress and increase its rigor, if not used carefully, it can
also inhibit progress in subtle but important ways. We will focus
on three ways that theory can inhibit design progress:

• By using theory to explain learning phenomena and pursue
better designs, we may create tensions between breadth and
depth that limit our impact in both pursuits.

• By focusing on general theories of learning, wemay overlook
the need for domain-specific theory about the content of
computing that is so critical to accelerating design progress.

• By using theory as a critical lens in peer review of designs,
we may create a publication bias that inhibits both theory
evaluation and our search for better designs.

In the rest of this paper, we will outline what theory is, how
we use it in computing education for explanation and design, and
then examine our three critiques of its use in detail. Throughout,
we will use Cognitive Load Theory [57] as an example of a theory
that our field has used to provide clear benefits to our search for
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better problem solving instruction, but that may also be impeding
progress. We end with a series of concrete recommendations for
how to better use theory1 in computing education research in our
shared pursuit of better learning.

2 USES OF THEORY IN COMPUTING
EDUCATION

In academic research broadly, a theory may include terms, framing,
causal mechanisms [18], arguments (a collection of related claims),
and a body of evidence that supports or contradicts those arguments
[53]. For this paper we define a descriptive theory as including terms
that name and describe phenomena (called “analysis” theory by
[16] and [7]). We also define an operational theory as one with
procedures for measurement of some terms as well as arguments
and evidence for their validity. For example, Danielsiek et al. [10]
operationalizes self-efficacy for an algorithms class by creating a
survey and studying the survey to validate that it measures self-
efficacy.

In computing education research, we use both kinds of theory
for design inquiry to describe, generate, and predict the effects of
designs. Theory can help describe designs; for example, we might
summarize the role and content of a UI element in a design by call-
ing it a “sub-goal label” and referencing the worked examples and
cognitive load theory literature that created that term [2, 56]. The-
ory can help characterize design spaces that describe many possible
designs, as in how Kafai and Resnick use constructionism to illus-
trate a whole landscape of learning settings and tools [22]. Theories
can be also be used to generate designs and predict their effects. For
example, in recent years, computing education researchers have
leveraged Cognitive Load Theory (CLT) for genres of design and
their effects [2]. For example, Morrison et al. adapted worked ex-
amples from other domains (such as physics [2, 56]) to worked
examples for computing, adding sub-goal labels such as “initialize
variables” and “determine loop condition” to convey programming
problem solving [42]. Figure 1 summarizes how we may use theory
during design inquiry to describe and generate designs.

Predictions based on theory are also used to provide rationale for
design, by arguing for some design choices based on a (usually qual-
itative) prediction of the design’s effects. For example, the design of
the Gidget coding tutorial drew upon social psychological theories
of in-group relation to reason that manipulating animal elements
would engage learners more compared to inanimate objects; this
provided a rationale for that design choice [27].

As Figure 2 depicts, theories can also help us explore design
alternatives. If theories can make reliable predictions about designs
we have not yet fully built, they can help us evaluate designs with-
out having to test them empirically. They provide this value by
providing some explanation of the mechanisms behind a phenome-
non that are useful for a design. For example, CLT is valuable in
principle because it helps a designer reason about different types of

1We are writing this paper to the philosophy of science prior knowledge we expect
most readers to have. This overlooks important and varied philosophical and episteme-
logical issues; for example, Hedstrom et al. review the mechanism-based approach to
explanatory theory [18], which is a major but only one among several approaches. We
believe considering these issues would lead to stronger critical views on use of theory
and higher standards for use of explanatory theory in our field (i.e. beyond the “we
should consider falsifiability when choosing theories” we later argue).
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Figure 1: Theory aids design inquiry by helping us describe
designs, structure the design space, and generate new de-
signs.
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Figure 2: Our field may speed up our design search by prior-
itizing which designs to build and test based on theoretical
predictions of their effects (if the predictions are accurate).
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load (e.g., intrinsic, extraneous, and germane) and make predictions
about which type of load a design is imposing. If CLT’s predic-
tions are correct in general, and a designer’s interpretation of a
design’s various kinds of load are sound with respect to the theory,
a designer may predict their design’s effects on load without empir-
ically testing their design’s effects. Thus, a designer should be able
to more rapidly refine the instructional materials they design, as
they don’t need to wait for empirical testing as they iterate. Recent
applications of CLT do exactly this, proposing more rapid methods
of instructional design through theory [39].

Theories can also be useful to interpret why a design has failed.
For example, CLT provides the concepts necessary to explain why
the split attention effect [6] (in which multiple types of information
presented in the same modality) interferes with learning. In the
same way, when we test new designs for worked examples that
have mixed benefits, CLT can offer useful concepts in interpreting
why those benefits were mixed.

Within computing education, the use of CLT has offered all of
these benefits to our collective search for effective worked examples
of programming. It has helped us name and generate new points
in a design space of worked examples for computing (e.g., [17, 35])
and it has helped us explain the outcomes of evaluations of worked
example designs2 (e.g., [13, 42]). In these respects, it has focused
our community’s design efforts, it has helped us build upon our
own work, and it has helped us build upon more general theories
of learning and education.

3 HOW THEORY CAN INHIBIT DESIGN
PROGRESS

While theory has clearly been useful in computing education re-
search, we have observed three ways in which it may also inhibit
our search for effective designs for learning. In this section, we
present these three forms of inhibition, then in the next section,
provide concrete recommendations for how to avoid them.

3.1 Tensions between explanation and design
Ultimately, the goal of design exploration is breadth of investiga-
tion: by considering many design alternatives, and their numerous
tradeoffs, designers are better positioned to find optimal ways for
people to learn computing. In contrast, the pursuit of explanatory
theory such as CLT promotes depth of investigation of design, iden-
tifying and measuring the causal mechanisms that explain learning
outcomes and broader effects3 of learning. Achieving this depth of
explanation essentially requires holding designs more fixed, so we
may deeply understand the mechanisms behind their benefits. Our
community’s joint interest in breadth and depth creates tensions
and trade-offs in research. We will consider these tensions from
both perspectives.

3.1.1 Design goals undermine explanation goals. To make high-
quality tests of explanations, we need to make high-quality vali-
dated measures for them. The time we spend broadly exploring
innovative designs takes resources away from building these val-
idated measures. Consider, for example, the series of papers by
2Ericson et al. [13] is also an example of design-based research, a research method
that tries to balance iterative design exploration and theory.
3See introduction paragraph 1, e.g. identity development, equity, self-efficacy.

Morrison et al. on worked examples. This work began with some
investment in measurement depth by building a validated measure
of cognitive load [44], but it was largely followed by broad design
explorations [37, 42], at the expense of addressing the measurement
issues that may have led to some of the inconclusive explanatory
results reported in their papers (learning outcomes varied for the
designs but their cognitive load had little to no difference). This
balance of design and explanation that Morrison et al. chose is
not inherently good or bad; rather, it is an example of the inher-
ent tradeoff between pursuing deep explanations and innovative
designs.

This tradeoff can also lead to problematic split attention. To
properly build upon the bodies of evidence related to design and
explanation, we must apply limited resources to reading papers
about both domain-specific design innovations we publish in our
own community, but also papers on the general theories being
refined in learning and education research. Because our time to
read is limited, every paper we read about design is a paper we do
not read about the explanatory theories that inform design. While
as researchers we might hope we take time to read deeply, the fact
that we need to read two bodies of knowledge can change what we
even perceive as sufficient depth, given the reality of our limited
resources.

One concrete manifestation of this split attention on reading is
that we miss ongoing critical debates about the theories we choose
to use. For example, there is active debate about CLT in the learning
science community about CLT’s falsifiability. (A theory is falsifiable
if someone can conduct an experiment and, in principle, observe
outcomes that contradict predictions by the theory, thus demon-
strating the causal mechanisms cannot explain those outcomes
[50]). Recent work in the learning science community argues that
cognitive load theory is actually not falsifiable4 [11, 41]. If a theory
is unfalsifiable, experiments with explanatory goals may always ap-
pear to validate the theory, because an unfalsifiable theory cannot
be disproved (at most, results might appear inconclusive). Falsifia-
bility should thus be an important factor in choosing which theories
we use5. We have found no papers from our community that cite or
discuss CLT’s falsifiability debate among the 22 papers published

4CLT (which can only measure total cognitive load with independent validity) is
unfalsifiable because it can explain any observed outcome (see [11, 14, 41] for fuller
arguments and other difficulties). To illustrate, if an experiment compares two designs
and observes higher cognitive load and higher learning outcomes for one design, a
researcher can suggest that there was higher intrinsic load to explain outcomes. If the
observation was higher load and lower outcomes, one can suggest there was higher
extraneous load to explain outcomes. For lower load and lower outcomes, one suggests
there was lower intrinsic load, and for lower load and higher outcomes, one suggests
there was less extraneous load. Thus, CLT can explain any observable outcomes of
total cognitive load and learning outcomes. If a measure could distinguish between the
components, the theory could be falsified; however, all validated ways of measuring
cognitive load components assume their relationship with learning outcomes during
their development and validation [14].
5Popper’s notion of falsifiability is seen as problematic among most present-day
philosophers of science; for example, the Duhem-Quine thesis argues that even if an
experiment’s results contradict a theory’s prediction, one cannot deduce the theory is
flawed (perhaps the design used was not analyzed properly with the theory, perhaps
the experimental design was flawed, etc.). Beyond falsification, more nuanced socio-
cultural perspectives have richer notions of scientific practice [26]. We leaves as
important future work deeper engagement with these philosophical issues (including
explanatory theory and issues with naive empiricism), which is critical for informing
recommendations on appropriate theory use in our field. For an example in another
community, the papers criticizing CLT engage with these issues and use more modern
perspectives [11, 14, 41]. On the limits of falsifiability, see [21] as an accessible example.
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Figure 3: Splitting attention between design goals and explanation goals may lead to work with shallower contributions and
less overall contribution.

in our community on CLT (counted via a search of the ACM Digital
Library under SIGCSE’s conferences for “cognitive load”).

Splitting our attention between design and explanation goals
may also lead to missed opportunities to do deeper explanatory
work, as our community also has not engaged in such debates. Com-
pared to the 22 papers published in our community on CLT, we
only found two papers by computing education researchers who
published in the learning science communities about CLT [35, 37]
and two in the educational psychology community[36, 38]. This en-
gagement has come mostly in the form of confirming CLT, and not
in sharing contradictory evidence with the broader learning science
or educational psychology community to inform the broader fal-
sifiability debate. For example, CLT generally explains differences
in learning outcomes via differences in cognitive load; it generally
predicts higher cognitive load will reduce learning. However, in
our community, three studies measured learning outcomes and cog-
nitive load with a validated instrument for different designs [44].
They saw differences in learning gains with little to no difference
in cognitive load, and reported those to our community, with some
potential theoretical explanations framed within CLT [34, 42, 43].
We are unaware of work sharing these conflicting results with the
broader learning sciences community, nor the educational psychol-
ogy community.

Again, we are not arguing that these authors’ individual choices
of how and whether to engage in this debate are inherently good
or bad. Rather, it reveals a fundamental tension between the goals
of design and explanation, and how that tension leads to missed
opportunities for deeper explanatory work on CLT.

3.1.2 Explanation goals undermine design goals. Taking the op-
posite view, when we pursue deeper theoretical explanations, we

tend to limit our design exploration. This occurs for a few reasons.
First, because the pursuit of deeper theoretical accounts of a de-
sign’s effects can be done with sufficiently effective designs, there is
no incentive to pursue optimally effective designs. For example, the
community’s work on CLT can be done with the worked example
designs originally published byMorrison et al. [42], and so it largely
has been, at the expense of more radical interpretations of what
constitutes a worked example for programming problems.

A second way that explanatory goals inhibit design exploration
is that wemay not explore designs because it is unclear theoretically
why they might work. This deters the exploration of designs that do
not yet have a theoretical justification, even though those designs
might be objectively better in a way we cannot yet explain.

In summary, our community’s joint interest in breadth for de-
sign and depth for explanation creates tensions and trade-offs in re-
search, given our fixed resources. Figure 3 illustrates these tensions
by contrasting hypothetical research examples with explanatory or
design goals only, and a mix of both.

3.2 Less effort towards domain-specific theory
One effect of our community grappling with the tensions between
explanation and design is that we may contribute less time to ad-
vancing our own domain-specific theories of computer science
learning. For example, these theories might include theories of
what it means to know a programming language, what it means
to know how to program, what it means to be an expert software
engineer, what it means to have computer science literacy, and
numerous other unanswered and yet foundational questions that
are specific to computing education. These theories are critical to
design progress in our field, because, without them, we cannot
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know if we are making progress on our shared goal of helping
people acquire and use such knowledge and expertise.

This lack of attention on domain-specific theory is particularly
acute because of our community’s limited research resources. While
we have applied resources to making domain-specific validated
measures for constructs from general theories like cognitive load
[44], the volume of this work, in past decades, showswe havemostly
applied resources towards general theories of learning and identity,
while overlooking major gaps in our domain-specific theories of the
content of computing knowledge. This trend is clear inMalmi et al.’s
literature review of theory use covering 2005-2011, which found
that we use external theories frequently [32]: of papers referencing
theory, 60% reference theory from Education, Psychology, or other
parent disciplines, compared to 16% using theories created from
within computing education.

While some use of general theory may help us, it may also divert
resources from one of the most critical gaps in our field: domain-
specific theories of the knowledge of computing we want people to
learn. Little work has proposed such theories; only recently, Nelson
et al. have proposed one for program tracing knowledge [45], and
Loksa et al. have proposed one for programming problem solving
[31]. Some theoretical work (such as [54]) has considered program
dynamics as a threshold concept, proposing a mechanism to explain
the large variation in outcomes for learning programming; this kind
of nascent theory of knowledge may develop with more work into
part of a theory relating conceptual knowledge and the ability to
learn programming skills. Other partial work towards a theory
of knowledge includes work on learning trajectories (paths from
initial knowledge to deeper knowledge), though recent work still
lacks direct observations and instead is based on aggregating results
from the scholarly literature [52].

Not only do we lack theories of computing knowledge, but criti-
cal for evaluating designs, we also lack robust, validated measure-
ments of this knowledge. Some work has advanced towards con-
cept inventories for computer science [12, 46], drawing inspiration
from work in other domain-specific research communities such as
physics [58]. Concept inventories attempt to validly assess core top-
ics rather than covering a broad theory of knowledge in an area, so
they might also act as steps towards broader theories of knowledge.
Within this genre the FCS1 [12] and SCS1 [46] are major points of
progress, as they show some feasibility for language-independent
validated assessments. Their validity argument extended a classic
approach in education research to model knowledge that builds on
existing teaching practices - 1) start with how a subject is taught to-
day (here, CS1 textbooks), 2) synthesize a conceptual theory of the
knowledge [59], and 3) validate the theory and a test specification
for it with a panel of experts. This socially validates that the FCS1
and SCS1 measure something like what CS1 textbooks cover and
CS1 finals and midterms measure, and represents a sophisticated va-
lidity argument and methodology that education researchers have
taken years to develop.

While our community can make progress by using such methods
and conceptual domain-specific theories of CS knowledge, when
we build conceptual theory starting from existing practice, we
somewhat assume that current practice actually works. However,
it might be that some learners “figure out” tacit unsaid knowledge
to succeed (for example, in CS1), which is not actually covered in

textbooks or the class itself. This can lead to gaps in our domain-
specific knowledge theories that are hard to see.

As CER researchers we might lead education research by rep-
resenting knowledge beyond the conceptual level, as programs
or with other formal representations; these more formal domain-
specific theories might potentially lead to better assessments and
designs for learning. For example, we have tried building a nascent
formal theory of program tracing knowledge as knowing all paths
through the compiler program for a language [45]; this uses a for-
mal programming language to represent the knowledge. One can
argue for validity of a formal knowledge theory by showing a com-
puter can use that representation to perform tasks that require
that knowledge (for example, we know that a compiler program
can trace programs because we use them all the time to execute
programs). This forces the knowledge theory to be complete and
potentially more decomposable; it is less clear when a conceptual
theory is truly complete. Formal domain-specific theory might in-
form assessment creation; for example, our nascent formal theory
of program tracing knowledge could inform a more complete as-
sessment for program tracing by requiring test questions that cover
each path. Formal domain-specific theory may also inform design;
for example, we also used our nascent formal theory to gain insight
into what knowledge needs to be shown to learners, leading to
a new design for teaching tracing that shows more detailed con-
nections between AST tokens and program execution [45]. These
examples are just for tracing, and we hope the community will
work on others as well.

Ultimately, without domain-specific theories of computing knowl-
edge, we cannot know when we are making progress on design. We
need these theories and measurements to compare the designs we
create across standard measurements. We need validated measure-
ments to be confident in our results. And we need theories of the
knowledge to make clear to both researchers and teachers precisely
what knowledge we are helping learners acquire. With our commu-
nity’s limited resources, when we choose to advance non-domain
specific theories, we make less progress on our critically necessary
domain-specific theories.

3.3 Publication bias in peer review
While theory can bias what work we choose to do and what work
we read, it can also bias how we evaluate each others’ work. In
particular, we argue that when theory is used as a critical lens in
reviewing publications about innovative designs, we are at risk of re-
jecting papers that describe designs that may be valuable but cannot
yet be explained theoretically. This ultimately reduces the breadth
of design exploration as well as the base of published evidence for
building and testing new or alternative explanatory theories.

To substantiate this publication bias, let us consider one case of
a paper being rejected for its use of CLT as a theoretical framework.
Because these are the critiques of just one case, we are not arguing
that these peer review criteria are pervasive in our community.
Rather we use this case to highlight the potential for more wide-
spread publication bias, if such rationales were to become prevalent.
We will show that the negative consequences of such bias are suffi-
ciently severe that a single case of the review and meta-reviewing
process failing to catch this is cause for concern and discussion.
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In our original submission, we shared excerpts from reviews that
an anonymous author had shared with us for use in this analysis;
none of the authors of our paper were on or involved in that work.
However, the ICER program chairs would not let us list quotes from
these reviews or paraphrased quotes out of concerns for the poten-
tial impact on reviewers, and so we explain the reviews’ arguments
here in our own words.

The reviews concern a paper contributing a system that used
a design genre from CLT (worked examples), prototyped a new
design, and performed two studies: 1) a randomized comparison
with a large sample size of the system vs. existing practice materials
that had mixed results and 2) a large in-the-wild self-selected “open
to students to use” evaluation showing positive effects. This paper
was submitted as a CS education research paper to ICER twice,
SIGCSE once, and rejected each time. There were not substantive
issues with the paper’s evaluation, in fact one meta-review noted a
consensus among the reviewers that the experimental design was
good, with random assignment and a large sample size.

This paper was rejected for several reasons, many of these rea-
sons using CLT as a critical lens. One CLT critique in the reviews
was that a theoretically-framed design evaluation must produce re-
sults that support the theory. More specifically, in this case CLT
predicted a design with worked examples should do better, but
instead the empirical results of the paper were mixed. Reviews
praised the study design and the paper’s aims to build on theory,
noted the paper would have been a good “reproducing” experiment
if it had positive results, and ultimately emphasized the results were
only promising and that the system’s design seemed different from
work that had found positive results.

Rejecting work with this rationale impedes both design and
theory progress. First, if peer review requires that a design framed
from a CLT perspective must produce positive results in support
of CLT, we will never share evidence about designs that provide
evidence against CLT, losing insight about how the theory might
be refined. Second, if we do not publish designs that work poorly,
our community risks wasting resources on re-implementing and re-
evaluating designs that have already been explored. Third, sharing
novel designs with non-optimal effects also may inspire designs
with improved effects. Finally, this critique undervalues studies that
compare existing designs, even when those comparisons reveal no
differences.

A second CLT critique was that a design should be consistent with
the recommendations of the theory. More specifically, in this case the
logic was that, since the design followed some recommendations
from CLT, but it had mixed results, the design should be revised to
follow all the recommendations and re-evaluated. Reviews noted
the system’s design lacked sub-goals and self-explanation steps and
did not seem to fit recommendations that prior research made for
designing worked examples. Reviews went so far as questioning if
the system’s “worked examples” met theoretical criteria for being
a worked example, and raised issues with interpreting the results
as related to CLT and worked examples.

If we were to follow this criteria in peer review, we would not
publish designs that contradict theories, which would otherwise
allow us to refine or reject theories via new evidence. Additionally,
rejecting papers that explore new design variations that go beyond
a theory’s current recommendations prevents us from discovering

designs that might be superior to existing ones and from generating
new and improved theories. This policy thus shrinks the space of
design search to only designs compatible with existing theories,
and precludes the refinement of CLT. In fact, the critique that a
design should be consistent with the recommendations of the theory
means that a design must exhaustively meet the recommendations
of theory in order for negative results to be publishable (otherwise,
the reviews will say to “improve your design and resubmit”); this
creates a potentially insurmountable burden of proof for publishing
conflicting evidence.

A third critique was that an evaluation that does not provide
a causal account of positive results is not worth sharing. Reviews
generally praised the methodology for the randomized part of the
evaluation with mixed results, which had a stronger causal inter-
pretation. In contrast, reviews criticized that the positive results
in the observational evaluation came from a self-selected group of
learners, while acknowledging the paper highlighted that fact in
its discussion. Reviews expressed concerns focusing on potential
confounders to causal interpretations of results: 1) learners opted-
in to using the system for extra practice, making it vulnerable to
self-selection bias, and 2) observed differences might come from
the system or other factors, such as from unmeasured individual
factors such as prior knowledge or field of study. Reviews also
wanted more causal interpretability for the evaluation as a whole,
criticizing that the system was only studied at one institution with
its own potential contextual factors, the analysis explained little of
the overall variation in exam scores, and the potential for a ceiling
effect in the evaluation tasks. The potential for misinterpretation of
the observational results by readers was also raised in the reviews.

This critique inhibits design exploration in several ways. First,
it prevents the sharing of designs that may produce real effects of
learning, but that cannot yet be explained by existing theories6. This
biases our evidence base toward only designs with well-explained
effects. Second, only publishing designs with a clear benefit (rather
than just promise) creates a harmful incentive to design simpler
interventions with measurable but incremental gains, rather than
exploring more radical, innovative designs that have the poten-
tial to improve learning, but may take multiple publications to
refine and systematically measure benefits. Third, many designs
may actually be deployed for discretionary use (a self-selected set-
ting) or even designed specifically for discretionary use; devaluing
empirical studies of discretionary use creates barriers to building
design knowledge on how to improve the effects of learning in
discretionary contexts.

These three uses of theory in peer review —reviewers judging
that a) a theoretically-framed design evaluation must produce re-
sults that support the theory, b) a design should be consistent with
the recommendations of the theory, and/or c) an evaluation that
does not provide a causal account of positive results is not worth
sharing — ultimately inhibit the breadth of design exploration,
which, in turn, may inhibit the learning gains and broader effects of
learning we can achieve through better design. They also severely
limit our ability to falsify theories that are actually inaccurate and

6This is particularly an issue for broader effects of learning, see introduction paragraph
1, e.g. identity development, equity, self-efficacy.
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impede our ability to evaluate, refine, and build new theory by
restricting the available evidence.

Fundamentally, these peer review critiques confuse the relation-
ship between theory and a body of evidence: a body of evidence
tells us if a theory is meaningful and useful, not the other way
around. Observations of designs and their immediate and broader
effects are inherently valuable to progress on improved designs,
whether they are consistent with existing theories or not.

While we present only one actual paper here (as we cannot
sample or search all peer reviews), unless we resist these uses of
theory in peer review, they have the potential to seriously restrict
and bias the base of evidence used for creating and evaluating
theories, as well as our community’s search for better designs.

4 IMPLICATIONS
While theory can help our search for effective designs, we have
argued that it can also inhibit design progress by creating tensions
between design and explanation, lowering investment in domain-
specific theories of computing knowledge, and biasing peer review.
In this section we make recommendations for how to avoid these
problems.

4.1 Focus on design and use theory as a guide
First, we believe our community should wholeheartedly commit to
focusing on design and not on refining general theories of learning.
First, general learning researchers will be best at refining general
theories of learning. Second, our community has carefully culti-
vated skills and knowledge for creating domain-specific designs
that improve computing learning outcomes and broader effects of
learning computing. Third, other learning research communities
lack these skills, and are therefore unlikely to make design advances
in computing. In summary, our skills uniquely position us to make
designs to improve effects7 of learning in our domain; others cannot
do this work.

By committing to design, we can focus our use of theory on guid-
ing design. We should use theory as a guide for selecting designs
to explore, as just one of many sources of insight to guide design.
These sources include: prior designs (even in other domains), the-
ory, intuition, experience, learner and teacher insights, and iterative
and qualitative methods. Design-based research methods from the
learning sciences use theory as a guide and include iterative testing
of design hypotheses [1, 3, 5, 8]; these methods may also help bridge
domain-specific education research and broader education research
[48]. However, this method can favor starting with existing the-
ory, which may limit radical design exploration and the creation of
new theories. As our community explores these and other methods
[40, 49, 55], we should not privilege conformance with or expla-
nation via theory, as this reduces the potential positive impact of
other ways to guide design. If someone made an argument based
on strong evidence that theory performs better as a guide, perhaps
we should privilege it relative to other ways to guide design, but
not before we consider and debate that argument as a community,
and not at the expense of other valuable sources of insight.

7Broadly defined, see introduction paragraph 1, e.g. identity development, equity,
self-efficacy.

In our use of theory as a guide, we should explicitly read ongoing
debates about theory in their communities of origin, so that we
use theory with full awareness of its strengths and weaknesses. We
should incentivize deeper reading by encouraging papers that take
a large body of work on one or more theories and distills it to make
it accessible and actionable for our research on designs and to guide
design search. We should extend the page lengths of our archival
venues to allow for discussion of such nuance.

4.2 Invest in CER-specific theories and
validated measures for effects of learning

In addition to focusing our use of theory as a guide, we should rec-
ognize that improved effects of learning are the ultimate guide and
indicator of progress for our community’s design search. Therefore,
we should invest significant resources in building domain-specific
theories and measures of those effects (especially computing knowl-
edge) so that we may use them as indicators of progress. These
theories include: 1) domain-specific theories and validated mea-
sures of what people want to learn about computing, providing a
map for the community’s design efforts, 2) domain-specific theories
and measures of effects of learning like self-efficacy, motivation,
identity development, improved quality of life, and equity in out-
comes and society (even when they are more difficult to measure
and evaluate), and 3) theories of external validity, relating these
measures to professional performance and achievement of wider
goals that learners have, within and beyond computer science. Bet-
ter measures of all of these effects (such as learning gains) may
even help us gather more resources as a community, providing a
return on invested effort.

4.3 Do not use theory or evaluation results as a
barrier to publishing novel designs

As we use theory as a guide in design exploration, we should not
use theory as a barrier to publication. We should at least publish
novel designs with objectively promising benefits, regardless of
their theoretical framing. This practice prioritizes building a broad
design body of knowledge faster by removing publication barriers.
There are three important reasons to do this. First, more radical,
innovative designs that have the potential to improve learning may
take multiple publications to refine and systematically measure
benefits. Second, sharing novel designs with non-optimal effects
also may inspire designs with improved effects. Third, if we do
not publish designs, our community risks wasting resources on
re-implementing and re-evaluating designs that have already been
explored.

The same three reasons above actually support publishing all
novel designs, not just those with measurable benefits. We should
trust that our community will not try to game the system and make
up novel designs for the sole sake of publication; those strategies
will not work well in the long term anyway, as they will not result
in convincing letters for tenure cases, job applications, or other
career advancement. We might worry that such abuse will happen,
but we know real harms occur from not publishing designs, as we
argued above and as we showed in our section on publication bias.

Even more radical than publishing all novel designs, we believe
we should not require all designs to have theoretical framing or
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rationale. Requiring these actually inhibits both design exploration
as well as the development and evaluation of theory, by restricting
what designs we share. Moreover, it encourages researchers to
generate unhelpful post-hoc design rationale just to satisfy a design
rationale requirement. This can also cloud our understanding of
how we actually design and what helps design in practice, which
limits our ability to improve how we design.

One way to implement these recommendations is to create new
tracks for work at publication venues. The publication threshold
already varies by publication venue and track; for example, the
"Experience Reports and Tools" track at SIGCSE and the "Innovative
Practice" track at Frontiers in Education (FIE) invite work without
formal experimental evaluations.

However, multiple tracks alone is not a solution to the issues
raised in this paper. First, evenwithin a track, the publication thresh-
old may vary in an ad hoc way among reviewers, creating unseen
publication bias that may harm our community’s design progress.
Second, even if we had consistent reviewing within tracks, sepa-
rate tracks can encourage rejecting work that pushes boundaries or
tries to improve an aspect of their contribution without meeting the
bar for high quality work in that area; for example, having a non-
randomized quantitative evaluation (instead of a “student’s liked
it" evaluation [61]) may make an experience report seem more like
a research paper with a lower-quality evaluation. Third, reviewers
may reject work for “being in the wrong track", authors may revise
then submit it to another track, only to have it rejected there again
for “being in the wrong track". While it is only one case, this actually
happened to the worked examples paper we discussed in our peer
review section (it was rejected from the Experience Report track
at SIGCSE, and ICER twice). In summary, our community should
discuss publication thresholds and how to help reviewers achieve
consistency pragmatically, in order to improve design progress and
build a broader unbiased evidence base.

4.4 Improve support for and audit peer review
We hope that these peer-reviewing biases in the previous section
and in section 3.3 are not prevalent in our community, but, upon
reflection, our community has little way to know this because peer
reviews are not shared widely. Moreover, individual peer review-
ers cannot see the aggregate effects of their critiques on our field.
Therefore, to gain awareness of biases in our empirical knowledge
base, our journal editorial boards and conference steering commit-
tees should conduct qualitative studies of the reasons that papers
are rejected for publication, using best practices for such studies
(such as multiple raters, calculating inter-rater reliability, and blind-
ing each review’s author and the paper under review). The results
should also be given to individual reviewers for each specific paper
they review, to check the results and so they can reflect on their
reviewing process. The final anonymized data (and any conflicts)
should be published publicly along with a paper interpreting the
data.

In summary, we strongly recommend the computing education
research community:

(1) Focus on design, domain-specific theories of learning, and
validated measures of effects of learning.

(2) Publish work that distills theory from other fields to make it
actionable for design and guiding design search.

(3) Publish all novel designs with some promise of improving
outcomes.

(4) Publish all novel designs that future work might build on to
then actually improve learning.

(5) Publish all novel designs that appear not to work well that
other researchers might recreate, to avoid wasted effort.

(6) Conduct a periodic qualitative study of the critiques used in
peer review in our community to detect and mitigate bias.

We face an urgent need to scale learning of computing in a
changing world. While CLT and other theories have greatly ma-
tured computing education research, it is time to view theory as just
one powerful way among many to guide our community’s design
inquiry.
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