Session1: Novice Programmer

ICER’17, August 18-20, 2017, Tacoma, WA, USA

Comprehension First: Evaluating a Novel Pedagogy and
Tutoring System for Program Tracing in CS1

Greg L. Nelson
University of Washington
Allen School, DUB Group
Seattle, Washington 98195

glnelson@uw.edu

ABSTRACT

What knowledge does learning programming require? Prior work
has focused on theorizing program writing and problem solving
skills. We examine program comprehension and propose a formal
theory of program tracing knowledge based on control flow paths
through an interpreter program’s source code. Because novices
cannot understand the interpreter’s programming language nota-
tion, we transform it into causal relationships from code tokens to
instructions to machine state changes. To teach this knowledge,
we propose a comprehension-first pedagogy based on causal infer-
ence, by showing, explaining, and assessing each path by stepping
through concrete examples within many example programs. To
assess this pedagogy, we built PLTutor, a tutorial system with a
fixed curriculum of example programs. We evaluate learning gains
among self-selected CS1 students using a block randomized lab
study comparing PLTutor with Codecademy, a writing tutorial.
In our small study, we find some evidence of improved learning
gains on the SCS1, with average learning gains of PLTutor 60%
higher than Codecademy (gain of 3.89 vs. 2.42 out of 27 questions).
These gains strongly predicted midterms (R?=.64) only for PLTutor
participants, whose grades showed less variation and no failures.

KEYWORDS

knowledge representation, program tracing, notional machine

1 INTRODUCTION

Programming requires many complex skills, including planning,
program design, and problem domain knowledge [47, 48, 74]. It
also fundamentally requires, however, knowledge of how programs
execute [13, 44, 49, 55, 86]. Unfortunately, many learners still strug-
gle to master even basic program comprehension skills: two large
multinational studies show more than 60% of students incorrectly
answer questions about the execution of basic programs [45, 56].
Teachers and researchers have attempted to address learners’
fragile knowledge of program execution in diverse ways, creating
[37, 51, 62, 63, 65] or changing languages [15, 20, 41, 69, 73] and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICER’17, August 18-20, 2017, Tacoma, WA, USA.

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4968-0/17/08...$15.00

DOI: http://dx.doi.org/10.1145/3105726.3106178

Benjamin Xie
University of Washington
The Information School, DUB Group
Seattle, Washington 98195
bxie@uw.edu

42

Andrew J. Ko
University of Washington
The Information School, DUB Group
Seattle, Washington 98195
ajko@uw.edu

building writing [17, 39, 68] and visualization tools [29, 34, 34,
57, 81, 87, 91]. Pedagogy has also evolved, reordering [23, 61, 80,
84, 85] and changing what is taught [14, 50, 72], refining worked
examples [58], explicitly teaching problem solving [48, 61] and
program design [27], and exploring a discovery pedagogy [46].

Most of these diverse approaches have been evaluated in a writ-
ing-focused pedagogical context. People receive instruction on a
programming construct’s syntax and semantics, practice by writing
code, then advance to the next construct (roughly a spiral syn-
tax approach [76]). In contrast, little prior work has explored a
comprehension-first pedagogy, teaching program semantics—how
static code causes dynamic computer behavior—before teaching
learners to write code. Prior work proposes some approaches and
curricular ordering [6, 21, 38, 76, 79] but lacks implementations and
evaluations on learning outcomes.

This leads us to our central research question: What effects does
a comprehension-first and theoretically-informed pedagogy have on
learning program comprehension and writing skills?

We argue that comprehension-first is not just another peda-
gogical strategy, but instead requires a new conceptualization of
what it means to “know” a programming language. We therefore
contribute a theory of program tracing knowledge, derived from
abstract control flow paths through a programming language in-
terpreter’s execution rules. Based on this theory, we contribute
the first comprehension-first pedagogy that teaches and assesses
tracing skills for a Turing-complete portion of a programming
language, without learners writing or editing code and without
requiring them to infer program behavior from input and output.
Based on this pedagogy, we built an interactive tutorial, PLTutor,
to explore preliminary answers to our research question. We then
conducted a formative experimental comparison of PLTutor and a
writing-focused Codecademy tutorial, investigating the effects of a
comprehension-first pedagogy on CS1 learning outcomes.

2 RELATED WORK

Prior work on tools has enabled comprehension-first pedagogy, but
has lacked high-quality evaluations of its effects on comprehension
and writing. For instance, program visualization can help learn-
ers comprehend detailed low-level operations in programs [57] or
low-level visual program simulation [81], but these have not been
applied in a comprehension-first pedagogy. UUhistle has some tech-
nical features that would support a learner independently following
a comprehension-focused curriculum (e.g., by choosing from a list
of programs with instructor annotations), but that has not been
evaluated [81]. Bayman et al. compared the effects of combina-
tions of syntax and semantic knowledge in diagrams on writing

Session1: Novice Programmer

and comprehension practice [5]. Computer tutors tried low-level
evaluation exercises, but sequenced with writing exercises; this had
no benefits for writing skills vs. only having writing exercises [2].

Other work implements a comprehension-first pedagogy but has
limitations in their evaluations or the breadth of what they teach.
Dyck et al. only assessed writing ability after using a computer-
based manual with rudimentary assessments of program tracing
[25]. To our knowledge, the only self-contained tool that imple-
ments a comprehension-first pedagogy is Reduct [3], an educational
game that teaches operational semantics. Its design focuses on en-
gagement, does not include a textual notation, does not cover vari-
ables, scope, loops, and nested or ordered statements, and shows
some inaccurate semantics for Javascript. Its evaluation also lacks
a validated assessment, a pre-test, or comparison to other tools.

Prior theoretical work on program comprehension spans both
cognitive studies of program comprehension and pedagogical ap-
proaches to teaching program tracing. Neither of these areas have
a theory for what comprehension knowledge is.

Researchers since the 1970s have theorized about how people
comprehend code [11, 32, 60, 75, 77]. This research has developed
cognitive theories of comprehension processes, describing percep-
tion [32, 60], mental structures [11, 19, 55], and novices and experts
differences [11, 19, 53, 77]. These theories facilitate questions about
perceptual strategies that novices and experts use to comprehend
code, what features of code experts use to comprehend code, and
what kinds of knowledge experts use. These theories focus on com-
prehension process and behavior; we contribute a theory that 1)
specifies what knowledge people must have to be able to execute
these processes and 2) formally connects this knowledge to syntax.

Prior work makes key distinctions between writing, syntax, and
semantic knowledge (for example, [5, 32, 52, 54, 77]) but lacks
formal connections across levels of semantics knowledge and a
principled way to derive it. Mayer divides semantics into micro
(statement) and macro (program) levels, and describes transactions
at a sub-statement level as action, object, and location [52, 54].
However, these natural language descriptions lack connections to
the sub-expression parts of the code that causes them.

Berry generated animated program visualizations from opera-
tional semantics, a formalism used by PL researchers for proofs and
reasoning [7]. We instead propose the knowledge needed to learn
program tracing is not the abstract formal semantics for a language,
but the semantics as actually implemented in a language’s inter-
preter, mapped to a notional machine to facilitate comprehension.

Within CS education, early approaches utilized writing tasks
that required program comprehension, focusing on teaching syntax
and semantics one language construct at a time, while gaining
writing knowledge about the construct [74, 76, 85]. In contrast,
around 1980 Deimel et al. [21] and Kimura [38] briefly proposed,
without evaluating, a comprehension-first curriculum starting with
running programs and looking at I/O to infer semantics. Major
literature reviews fail to mention their existence, even since the
1990s [67, 74, 90]. Both of these pedagogies lack a definition of the
knowledge learned, making one unable to determine when language
features have been fully covered. They also lacked assessment
methods beyond I/O prediction, making it hard to give targeted
practice, diagnose misconceptions, and correct them with feedback.

43

ICER’17, August 18-20, 2017, Tacoma, WA, USA

3 PROGRAM TRACING KNOWLEDGE

The critical gaps in prior work are in both tools and theory. No
theories describe the knowledge necessary for program tracing
skills, and no tutorials or visualization tools have been designed or
evaluated with a comprehension-first pedagogy. Therefore, in this
section, we present a theory of what program tracing knowledge
is and build upon it in later sections to inform the design and
evaluation of a tutor that teaches program tracing knowledge.

Our first observation about tracing is that inside the interpreter
that executes programs for a particular programming language
(PL) is the exact knowledge required to execute a program. It just
happens to be represented in a notation designed for computers to
understand rather than people. For example, in many PL courses,
students write an interpreter for a calculator language; it reads
text such as 2+3 and executes that code. The interpreter contains
definitions of execution rules like if (operator == "+") { result
= left + right; }. We argue that this logic is the knowledge
required to accurately trace program execution.

Unfortunately, because this logic is represented as code, it is
not easily learned by novices. First, few materials for learning a
language actually show the interpreter’s logic explicitly. Moreover,
even if this logic was visible, novices would not likely understand
it because they do not understand the notation that it is written in.
This provides a key theoretical explanation for why learning to trace
programs is hard—this notational barrier can only be overcome
once you understand programming languages, creating a recursive
learning dependency.

Execution rule logic, however, is not alone a suitable account
of the knowledge required for tracing. Our second claim is that to
know a programming language, learners also must be able to map
these execution rules to the syntax and state that determines what
rules are followed and in which situations. Therefore, knowledge
of a PL is also the mapping between syntax, semantics, and state.

To illustrate this mapping, Table 1 shows an interpreter in pseu-
docode, showing the three conventional stages of transforming
program source code into executable instructions, for a simple
JavaScript-like expression x == 0. The first stage translates charac-
ters into tokens; the second stage translates tokens into an abstract
syntax tree (AST); the final stage translates the AST into machine
instructions that ultimately determine program behavior. We argue
that learners do not need to understand these stages themselves, but
rather that they need to understand each path through these stages
that map syntax and state to behavior. We show one example of a
path underlined in Table 1, which specifically concerns the @ in our
X == 0 expression, showing its translation from character to token
to a machine instruction that pushes @ onto an accumulator stack
for comparison to x by the == operator. This simple mapping rule—
that a numerical literal like @ is a token in an expression that results
in a number being pushed onto a stack for later comparison—is just
one of the execution rule paths; we argue learners must understand
all possible paths to know the whole language.

Some rules have one path (for example, the @ in x==0 only has
one in our example language), but some execution rules have mul-
tiple control flow paths, depending on the code or runtime state
involved. For example, if statements in many imperative languages
can optionally include an else statement. If an AST has an else

Session1: Novice Programmer

Example Output

& Transformation Rule (Pseudocode) .

s (input for next row)

%)

& Any number => Number Name(x)

E) Operator => Op Op(==)

2 Variable name => Name Number(0)
Parse(toks) => AST(

@ AST (Parse(toksy), Op, Parse(toksg)) AST(Name(x))

& ELSE AST(Number) Op(==)

o ELSE AST(Name) AST(Num(0)))

8 Code(AST) =>

S IF AST; Op(==)AST: LOOKUP_AND _-

2 Code(ASTy) PUSH “x”

= Code(AST») PUSH 0

S DO_EQUALS_OP DO_EQUALS_OP

2 ELSE IF Number(n): PUSH n

o ELSE IF Name: LOOK_UP_AND_PUSH name

Table 1: Aninterpreter with pseudocode notation. For input
x==0, the example column shows instances of tokens in the
1st row, ASTs on the 2nd, and instructions on the last. An ex-
ample semantic path is underlined for a PUSH instruction
for the number token.

statement, the mapping is different, because the end of the if block
must include a jump past the else block. Learners must understand
these syntax-dependent branches in compilation and execution.

We therefore view the set of all possible paths through all of the
compilation and execution rules in all of a programming language’s
constructs as the knowledge required to “know” a PL. This symbolic
representation preserves the fidelity of the knowledge because we
derive the knowledge directly from the interpreter. As we will
show, we can then make these abstract paths concrete by presenting
programs that cover these paths.

4 PEDAGOGY AND PLTUTOR

In this section we propose a comprehension-first pedagogy that
embodies our theory of program tracing knowledge. Our design
focuses on helping people learn 1) PL semantics and 2) program
tracing skills; our prototype focuses specifically on JavaScript. The
central pedagogical strategy in PLTutor is to build upon the experi-
ence of using a debugger, but 1) allow stepping forward and back
in time, 2) allow stepping at an instruction-level rather than line-
level granularity, and 3) interleave conceptual instruction about
semantics throughout the program’s execution.

Figure 1 shows the experience of using PLTutor to observe pro-
gram execution over time. For example, Figure 1.a shows the path
underlined in the first and second row of Table 1 for the token @ in
x==0, and Figure 1.b shows the third row in Table 1. The change to
machine state displays on the next time step (see @ on top of stack
at Figure 1.c). This representation addresses the notational barrier
to accessing the information in Table 1. As a side note, for brevity
Figure 1 assumes x has value zero (e.g. at first time step).

The next two subsections discuss in detail how our pedagogy
(partially implemented in PLTutor) teaches learners both the syntax,
state, and semantics mapping and program tracing.

44

ICER’17, August 18-20, 2017, Tacoma, WA, USA

a
Code X ==10 x == [@1” x == 0 x==0
b
Instruction Push x ontothe stack. ~ Push 0 onto the stack. *text in caption
Stack empty 0 0+C true
Time — Time 1 Time 2 0 Time3 End

Figure 1: Stepping through three semantic paths covered by
the example program x==0. “text is “Pop 0 and 0 off the stack,
compute 0==0, and push the result onto the stack”.

4.1 Programming Language Semantics

Now we theorize how learning may occur within PLTutor’s ped-
agogy. We start with an example in another domain, then return
to learning PL semantics. We start from a theory of learning for “a
causes b” relationships (also called causal inference). For instance,
a child may see a switch flipped then a light goes on, and they may
infer the switch caused the light to go on, just from one example.
How can this rapid learning occur? A theory of causal inference
identifies three key enablers for this learning: ontology (differen-
tiating/recognizing entities and their causal types), constraints on
relationships (how plausible are relationships), and functional forms
of relationships (from how effects combine and compare, to specific
forms like f = ma) [28]. For the light example, ontology includes a
light and a switch as mechanical entities, constraints includes close-
ness in time (switches tend to control things quickly), and functional
form may include knowing the switch up position activates (“turns
on”) whatever it controls. With these enablers, causal learning then
occurs by observing examples of the causal relationships [28].

We theorize learning PL semantics as grasping the causal rela-
tionships from code to machine behavior. To enable causal learning,
our key insight is to convert the abstract path representations from
the prior section into a concrete causal visualization, showing the
causal relationship between tokens, machine instructions, and the
machine state changes caused by the instructions.

Now we summarize how our pedagogy provides the three key
enablers for causal learning, for program semantics; afterwards
we will discuss them in a particular implementation (PLTutor). To
provide ontology, we start learning with conceptual content describ-
ing entities (code, instruction, and machine model), show them in
the visualization, and explain how to recognize them in the vi-
sualization. To provide constraints on relationships, we provide
conceptual content emphasizing the mechanical relationship (to
avoid the “computer as person” misconception [66]; causal learning
theory gives us a new lens for why this misconception may be
so damaging - having the wrong relationship misleads the causal
learning process). We also give functional forms via syntax high-
lights for the token part, text descriptions of the instruction part,
and the change in machine model state over each small time step.

To create this causal model, we extract patterns from interpreter
implementations. We introduce two abstractions—the instruction
and the machine model—to simplify this knowledge, while retaining
fidelity. Typically, paths through the interpreter end with manipu-
lating the state of the program being executed (either by generating
machine code or with PL statements (for an implementation hosted
in another language)). We encode these state changes as one or
more instructions for a machine model (which serves as a model

Session1: Novice Programmer ICER’17, August 18-20, 2017, Tacoma, WA, USA

8
Teaching 1 Program Code ready.s

Learning step 15 of 57

Q Var: box =L first frame()

Look in the namespace and find instruction
the variable named box. See that var another_box = 2; - " P
X R This is a variable declaration statement. It declares one or
the variable named box still holds more names and can optionally assign them values.
the value 1 @ 6
var a_third_box = 0;
o - - - ' stack
Before this, the computer would %
execute all instructions created from empty
the code. 9l VaFi Boxd & 6: namespace
If statements allow computers to do {
some set of instructions if a condition var ICanNameVariables = 20:

another_box 2

is true or not. M
var foo = 10; box 1

They look like this
var a = 2000; ¥

if (condition)
{ 15 var b = 15;

code aoes inside the { }'s

Figure 2: PLTutor showing an early lesson on variables: left, 1) the learning content and assessment area with 2) stepping
buttons and 3) conceptual instruction; 4) program code with 5) token-level highlighting to show what caused the instruction;
machine model: 7) timeline of instructions executed for the program 8) current step, 9) current instruction’s description, 10)
stack, 11) namespace, 12) call frame. Lower left inset shows content for conceptual instruction for a later if lesson.

notional machine [24]). The interpreter produces a list of instruc- instructions only 1) push onto an accumulator stack (either from the
tions, which are then sent to the machine model. This separates the literals in the code or the namespace) 2) pop values from the stack,
state of the program’s execution entirely into the machine model. do a local operation only with those values, and push the result
Using the machine instruction as a bridge between syntax and state onto the stack, 3) set a value in the namespace, 4) pop a value and
transformation, we can connect the path through the interpreter to change the program counter (for conditionals, loops, and functions),
machine state changes. or 5) clear the stack (which we map to the ; token). These forms
We can also connect instructions back to the code that causes provide further constraints on relationships: for example, values
them. These connections follow the semantic path, going back to from code tokens only change the stack, namespace values only
the program code via the tokens that caused values in them. For come from the stack, and instructions only come from the code.
example, for the path underlined in Table 1, the PUSH @ instruction These constraints and functional forms should help learners’ causal
connects to the @ in the source code via the token Number(0); the inference [28].
LOOKUP_AND_PUSH "x" instruction connects to the x in Name(x). Besides this causal role, the instruction also makes visible how
Figure 2 shows PLTutor, our web-based prototype that visualizes a language executes syntax. Without it, stepping through the in-
these causal connections. In this figure, PLTutor is visualizing the terpreted program line by line requires understanding how the
beginning of a JavaScript variable declaration statement, which is computer navigates the program code notation. In contrast, step-
mapped to the var keyword in 2.5. The machine state is on the right ping through a list of instructions only requires moving forward
with the machine instruction shown at 2.9. and backwards through an execution history and comprehending
In PLTutor, our pedagogy has learners observe examples of the changes to machine state (see Figure 1).
causal relationships by stepping forward in time in the program’s PLTutor also conveys constraints, functional forms, and ontology
execution, one instruction at a time. A single step changes the by showing natural language explanations of the actions instruc-
token being highlighted, the current instruction, and machine state. tions are taking. PLT reinforces functional forms by showing an
For example, Figure 1 shows three steps for the JavaScript program instruction’s form as a description filled in with concrete values
x == 0. Our prototype supports the full semantics of JavaScript, (see Figure 2.9, which explains how a variable declaration begins).
providing mappings between all constructs in the language and the PLT also shows learning content at 2.3 throughout the lesson.
machine instructions that govern JavaScript program execution. To scaffold causal inference, the curriculum starts with ontology,
Within this representation, our pedagogy identifies a unique with 5-10 minutes of conceptual instruction about the computer,
causal role for the instruction between code and the machine model. code, state, the interpreter, instructions, and machine model. It
The instruction makes visible the causal relationship between syntax provides ontology by describing the entities and how they are
and machine behavior. The instruction also provides constraints on shown in the interface; for example, “The namespace is where
relationships between code and machine state changes (a parser variables are stored. This is like a table with two columns..”. It also
generates instructions from code, which is the only way code causes gives constraints on their relationships; for example, “In general,
machine behavior). We also designed instructions to provide a the list of instructions does not change as a computer executes a
set of functional forms that simplify and localize relationships; all program.” This information also serves as organizing concepts [10].

45

Session1: Novice Programmer

4.2 Program Tracing

Our theory of program tracing knowledge suggests a general ap-
proach for a pedagogy: show a faithful representation of each in-
terpreter path, assess the learners’ knowledge of each path, correct
misconceptions, and cover all the paths for completeness.

To cover most of the paths, PLTutor uses a fixed, sequenced
curriculum of example programs. Instead of stepping through exe-
cution steps directly as in prior work, each program has a list of
learning steps, specifying 1) the learning content or assessment to
show and 2) which execution step to show. This decoupling allows
the curriculum to navigate anywhere in the program’s execution
when the learner advances to the next learning step. There are three
types of learning steps in the tutorial: conceptual steps (show con-
ceptual instructional content), execution steps (show an instruction
executing), and assessment steps (prompt a learner to fill in values,
described shortly). Learners advance forward or backward through
these steps by clicking the “Back” and “Next” buttons (Figure 2.2) or
using keyboard arrow keys. Learners may also drag the bar (Figure
2.8) to scroll through execution steps. On the final learning step of
a lesson, a “Next Program” button appears, which navigates to the
next program in the curriculum. This contrasts with prior work, in
which learners must find and choose a next program for themselves,
constructing their own curriculum from a menu [81].

Our pedagogy interleaves these three types of steps (conceptual,
execution, and assessment) through a program’s execution. To
illustrate this, we describe the learning steps for a first lesson for a
construct (such as if). These follow a pattern: reference relevant
prior knowledge, contrast what is new (“Before this..” see Figure
2.13), present the goal of the construct (“If statements allow..”,
Figure 2.14), present the syntactic pattern (see 2.15), then scaffold
learning strategies (“step through to see how it works”, and, later,
prompts mental execution “What do you think this next if statement
will do? Read through it and think, then step through it.”). Where
possible, steps introduce constructs with “equivalent” programs,
based on similar instructions or state changes. For instance, in our
arrays lesson, is_day_free_@=false; is_day_free_1=true; pre-
cedes is_day_free = [false, truel; this may help transfer and
provide constraints for causal inference. After such code, steps show
an example path and a low-level assessment (described shortly),
then address common misconceptions in turn by: 1) showing learn-
ing content against it, 2) executing a counter-example, 3) stepping
through code with assessments for the misconception.

Besides the ordering of steps within each program, the stepping
interface scaffolds perception of conceptual and execution informa-
tion. On steps with learning content, learners experience a slight
1-second pause before they can advance, to encourage reading. At
key points in the middle of a program’s execution, learning steps
stop advancing execution to show conceptual instruction. For ex-
ample, PLTutor pauses in the middle of a condition evaluation to
describe what is happening when first learning if statements. Ex-
ecution steps show causality temporally, and having many steps
shows many examples of the causal relationships, as recommended
by [28]. Their granular, sub-expression level of detail may help
structure inferences from these lower level steps into higher level

inferences across multiple steps and lines of code [28].
To aid higher-level causal inferences, PLTutor assesses knowl-

edge of each path at multiple levels. For the single execution step

46

ICER’17, August 18-20, 2017, Tacoma, WA, USA

x=0; namespace |
Back | Next it (X 0) H
X 10; {
} else if (x == 2){ I
+ e hides value -
N“ three steps later % SH03 "n-.'ifﬁb-s-b-;ié-éé
2x . A '
question if ((x==0){ q
What value is on the stack x =10;
answers } else if (x == 2){ !
x = 100; y |
0 10 3 [} else { Sl I
7 x = 1000;
The else's instructions didn't execute because
the first if condition x==0 was true. The else is highlights when
only execute when all the preceding if statement hover over answers
conditions are false. Step back if you feel stuck.
You can also look at code before this point. misconception feedback

Figure 3: Assessments scaffold state, hiding values with a
? (see 1), so learners mentally execute semantics to answer.
The assessment shows three steps later. This allows assess-
ing from the step to multiple line or program level granular-
ity, without requiring navigation restrictions to hide values.

level, it navigates to a step and hides a value for the learner to fill in.
Figure 3 shows an assessment across multiple steps. Using value
hiding and the learning step’s ability to control what execution
step is shown, this enables scaffolded assessments, showing some
instruction or code navigation, across multiple levels of granularity,
including the simple effects of one execution step (done in prior
work [82]) to showing the resulting state of many execution steps
as if it were one large step. PLTutor also scaffolds links between
assessment question phrases and machine state by showing which
question to fill in; hovering over any answer shows a box around the
corresponding value (see Figure 3.2). It also shows misconception
feedback for inaccurate answers (see bottom Figure 3).

In addition to introduction and practice lessons, our pedagogy
includes review lessons, which apply constructs together and oc-
cur after the end of operators, conditionals, and the loops mate-
rial. These lessons describe how constructs can be used with each
other. They contrast larger “equivalent” code segments, justifying
language features by appealing to “good” properties of code like
readability, brevity, and ability to modify or reuse. We include these
integration lessons to increase retention and motivate learning by
showing how constructs are used together for actual problems [10],
and to connect knowledge to the design goals of the language.

4.3 PLTutor Limitations

PLTutor only partially implements the principles we have discussed
for a comprehension-first pedagogy. It covers all the paths in our
JavaScript interpreter except for strings, I/O, objects, some unary
and binary operators (like -- and modulus), and error paths (like
invalid variable names or syntax errors). For example, we do not
show the failing examples required to fully specify variable naming
patterns. We expect later writing pedagogy to cover them, and
language runtimes make them visible with error messages.

While PLTutor’s assessments directly or indirectly cover much
of each semantic path, it leaves some out and does not fade scaffold-
ing entirely. It directly assesses machine state changes by having
users fill in values in the machine state via linked assessments. It
indirectly assesses control flow via simple value changes (which
depend on the variable assignment path in earlier lessons); Figure
3 shows one. PLTutor does not assess ontology directly or fully

Session1: Novice Programmer

remove scaffolding in its curriculum; for example, it always shows
machine state, instruction execution steps, and allows stepping.

Finally, at the time of our evaluation, PLTutor was very much a
research prototype. When we evaluated it, it had usability issues
and the environment made little effort to engage learners, introduc-
ing numerous barriers to sustained engagement and learning.

5 EVALUATION

What effects does a comprehension-first and theoretically-informed
pedagogy have on learning code comprehension and writing skills?
To investigate, we conducted a formative, block-randomized, be-
tween subjects study comparing a comprehension-first tutorial,
PLTutor, with Codecademy [16], chosen for its traditional writing-
focused spiral pedagogy [76] and quality from 4 years of curriculum
refinement. We label the PLTutor condition PLT and the other CC.

5.1 Method

Our inclusion criteria were undergraduates that had not completed
a CS1 course in college and had not used a Codecademy tutorial. We
recruited students starting a CS1 class that followed a procedural-
first writing pedagogy using Java [72]. Participants came to a
Saturday 10:30am-6pm workshop, took a pre-survey and a pre-test,
used a tutorial for 4.33 hours, and then took a post-test and post-
survey. As a pre/post-test we used the SCS1 [26, 64], a validated
measure of CS1 knowledge. Both surveys used validated measures
for fixed vs. growth mindset [8] and programming self-efficacy [71].
The pre-survey also measured daytime/chronic sleepiness using
the Epworth Sleepiness Scale [4], as prior work argues these affect
learning [18, 22, 33, 59, 70].

At the first two lectures and via email, we advertised the study as
a chance to excel in the class, potentially biasing towards motivated
and at-risk students. Overall, 200 of 988 students responded to an
emailed recruitment survey and 90 met our inclusion criteria. Using
this survey, we block randomized [31] participants into a condition
using hours of prior programming, self-reported likelihood of atten-
dance, age, and gender, then invited subjects. From these blocks, we
randomly invited participants from each block, ultimately having
41 attend the workshops. After confirming attendance by email, we
sent subjects the room for their condition.

The two instructors of the one day workshops followed a written
experimental protocol and coordinated to make any necessary day-
of changes jointly. They then showed an introductory SCS1 test
directions video, gave the pre-test, then showed video instructions
for their condition’s tutorial and stated students would have 4 hours
and 20 minutes to learn the material. They served lunch during
the tutorial period at 1PM. After a 10-minute break following the
tutorial, students had 1 hour for the SCS1 post-test and could start
the post-survey when done. The instructors then served dinner.

We operationalized learning outcomes by proxying program
comprehension with SCS1 score and writing skills with midterm
grade. Learning gain (posttest score—pretest score) is noisy be-
cause it combines pre and post test measurement error [9]; we
also counted per-question and per-individual performance from
incorrect on pre-test to correct on post-test (which we call FT, for
false-to-true), as well as likely prior knowledge as correctly answer-
ing a question on both the pre and post test (TT, for true-to-true).
We defined learning capacity for a person as (the # of questions

47

ICER’17, August 18-20, 2017, Tacoma, WA, USA

not left blank)-TT and learning capacity for each question as (#
of people that did not leave the question blank)-TT. We defined
LCL, the % learned that could learn, as FT / learning capacity (like
normalized gain in [83]).

The SCS1 system randomly lost some tests; we dropped those
participants, reducing sample size to 18 in PLT and 19 in CC. We sep-
arated novices (operationalized as less than 10 hours of self-reported
experience and no prior CS class) from experienced students (had
prior CS class or >10 hours of self-reported experience).

5.2 Results

Despite random assignment, we found differences that may have
confounded measures of learning gains. We analyzed these and
other differences by default with the Wilcoxon rank-sum test for
non-normal data. We add and note a t-test when Shapiro-Wilks’s
normality test had p > 0.1 for each group (still has low power for
our sample size). Pre-test SCS1 differences between the two condi-
tions were large and marginally significant (CC-PLT mean=1.65,
W p < .111, t-test p < 0.058), but self-reported prior programming
experience and mindset did not differ significantly.

While many individuals in both groups achieved higher SCS1
scores, comparing within each condition, only PLT’s post-scores
were significantly different from its pre-scores (p<.0044) (for CC
p<.089). Figure 4 shows descriptive statistics; for comparison,
students near the end of a CS1 course score from 2 to 20, m =
9.68,SD = 3.5 [64]. Comparing conditions, PLT had higher indi-
vidual FT, with Cohen’s d=.59 (p<.12, t-test p<.075); for learning
gain: Cohen’s d=.398 (p<.41, t-test p<.24); for the % learned that
each person could learn (LCL): d=.34 (p<.39, t-test p<.31). To con-
trol our analysis for other variables, we tried to fit post-score with
linear and binomial generalized linear models, but residuals strongly
violated modeling assumptions.

When we consider the specific questions in the SCS1, PLT out-
performed CC on 37% of questions and CC outperformed PLT on
22%, based on between group difference of > .1 in LCL (the % of
people who got the question right that did not already get that ques-
tion right on the pre-test). Figure 5 shows questions sorted from
left to right by this LCL difference, with * at bottom for non-overlap
of their 95% confidence intervals of the probability p of a binomial
distribution estimated from x=FT and n=capacity (Wilson [12]).

CC did better for some code completion (Q18,25,21) and writ-
ing conceptual questions (e.g., Q1: When would you not write a
for loop... Q6: Imagine writing code for each task - can you do
it without conditional operators...). It also did better on topics
missing from PLT’s curriculum like strings (Q18) and a tracing
question with modulus (Q19). In contrast, PLT did better for tracing
(Q2,23,3,12,24,14,8), a tracing conceptual question relying on sub-
expression detail (Q10), and complex code completion questions
(Q13,Q26). PLT also did better on topics missing from CC’s curricu-
lum like recursion (Q14 and even Q24 involving strings). PLT also
did better on a tracing question with strings that only used array
syntax and semantics (Q15).

PLT had less variation and a more normal distribution for later
writing outcomes compared to CC (see Figure 4.f, 4.e). Shapiro-
Wilks normality test rejected CC’s midterm distribution (p<.013)
but not PLT’s (p=.4723). For PLT, midterm fit a linear model on
each of: learning gain: (adj-R?=.6469 (95% CI: .28, .84 by [35, 36])

Session1: Novice Programmer

Pre-Score Post-Score Learning Gain
. CC
Z: BIlR k)
| r-a - | J
i ﬂill ﬁ:‘f (N | "L‘i&;l
U PLT
< Li ‘
_c o 9 18 27 0 9 18 27 o 5 10 0 5
5 g cc
o~§“ll "1 s mu
| 5 . PLT
1<
h (N E N | ks o
o
Q
X o
5
8 3 |”||| [Ii i |* [N
w € . PLT
23
22y hl bk s s ds sl bk

il mhE

10 150

ad . al, LI

JJII

Figure 4: Histograms (with mean then SD inside) by condition (top) colored by post-score (dark grey:

ICER’17, August 18-20, 2017, Tacoma, WA, USA

TtoT Midterm

|
ILj.i d :
o e

- |

05 1.00 5 10 150 5 10 1530 50 70 90

ILI | B
W .

Ll v Dukad
da. la.. L

> 13 (about a SD above

h-

the mean of students finishing CS1 from [64], grey: within a SD, light grey for below), then experience (mindset color).

Questions sorted by PLT LCL - CC LCL

1.0 PLTLCL (% learned that could learn) Width is Capacity

351015 18

0.5
“ll | | U T

10 CCLCL (% learned that could learn)

0.5
0.0 -.-I _I-l-__.--_-l.lll III
0.5 PLT Capacity - CCCapacltyS | N
bar width here and be -\\:u_\,

0.0 O —_ —— B
05 Difference (PLT LCL-CC LCL) =
0.5
0.0 -
05 Novices, PLT LCL - CC LCL
0.5
0.0 I jl
6iE More experienced, PLT LCL - CC LCL
-0.5

NOOMMMANTITOORNNUDTNAIINNOOAN DO A

* N — N = N NN i i — N N N

Figure 5: Per-question statistics, ordered by PLT’s LCL mi-
nus CC’s LCL. Bar width shows capacity.

p<.00004 residual SE=5.37), post-score: (adj-R?=.5502 p<.00025),
LCL: (adj-R?=.53 p<.00037), and FT: (adj-R?=.4983 p<.00064). For
CC, only a post-score model had significance (adj-R?=0.1784, p<.041,
SE 14.21). PLT had no midterm failures (vs. 2 in CC). Midterm av-
erage did not differ significantly between PLT or CC (see 4.e), or
those in the recruitment group that met the inclusion criteria and
did not participate, midterm m = 72.1,SD = 22.1 (n=38).

To partly check the validity of midterm as a proxy for writing
skill, we offered $6 for a photo of the midterm (with per question
grades) to those that met the inclusion criteria (90) and got 17.
A linear model from total score predicted the writing part (adj-
R?=.85) much better than the other parts (adj-R?=.61), suggesting
total midterm score varies fairly closely with the writing portion.

48

As a manipulation check, two months after the workshops we
offered post-midterm tutoring. In each session, before tutoring, we
conducted a think-aloud interview for tracing mental model granu-
larity by prompting learners to “Underline the code as the computer
sees it, then describe what the computer does” for Java versions of
program B2 & G3 from [78]. Learning gains and midterms mostly
increased with more sub-expression tracing (except P5). Two par-
ticipants (P1 and P2) responded from CC. P1 had 2 TT, 2 FT, and a
54 midterm; her tracing model had some sub-expression (but not
for control structures and had an early loop exit error); P2 (2 TT,
6 FT, 79 midterm) was mostly line-level but separated assignment
(like y=1+1;) into 3 steps: the left side y, then =, then the rest 1+1;.
Four participants (P3 to P6) responded from PLT. Compared to P2,
two showed more but non-uniform sub-expression with self-caught
misconceptions, P3 (4 TT, 7 FT, 72 midterm) and P4 (5 TT,7 FT, 77
midterm). P5 (8 TT, 12 FT, 86 midterm) had a line level model. P6
had a consistent sub-expression model (3 TT, 11 FT, 85 midterm).

We also asked which tutorial features they remembered, as a
gross check on importance or causality. Better learning outcomes
mostly increased with more correct and complete feature recall,
suggesting they impacted learning. In CC P1 and P2 both recalled
writing, exercise feedback, and help; only P2 had the print output.
In PLT, P3 recalled learning content and (incorrectly) writing code
only, with the stack shown briefly during execution with no step-
ping controls; the others recalled content, stepping and assessments;
for the state display (see right side of Figure 2), P4 had namespace
(2.11), P5 had steps bar (2.8), P6 had all except instruction (2.9).

6 THREATS TO VALIDITY

While we made efforts to ensure validity (minimizing confounds,
block-randomizing group assignment, measuring confounding fac-
tors, avoiding early-riser effects[22], mitigating experimenter bias,
etc.), there are still several threats to validity.

Differences between our study and the validation of SCS1 com-
plicate the interpretation of our results. We post-tested within 4.3
hours of the pre-test; a carry-over effect may inflate post-scores (e.g.

Session1: Novice Programmer

remembering questions) [1]. Guessing, especially by novices, may
have impacted scores. While the SCS1 is the best publicly available
measure, it’s validity arguments do not formally generalize i) to
novice test takers, ii) in a pretest-posttest context, and iii) as a mea-
sure of learning gains. Our measure of writing skills (the midterm)
had unknown measurement error and lacks validation.

Motivation differences, participant fatigue, measurement error,
unmeasured participant variation, and differences in workshop
setting also threaten validity. Internally, instructor variations may
favor the Codecademy condition, which had a more experienced
teacher. The PLTutor instructor also had to leave the room for
45 minutes to handle a lunch issue. Externally, the study’s short
duration may create a ceiling effect on learning gains. The study
protocol, curricular quality, time-on-task, program domain, and
pedagogical and lack of adaptive tutorial features affect results. In
particular, in informal interviews, participants reported frustration
with repetitive practice in the PLTutor curriculum, which may have
reduced engagement and therefore learning.

7 DISCUSSION

We have presented a new theoretical account of program tracing
knowledge, a new pedagogy for teaching this knowledge embodied
by PLTutor, and empirical evidence of the effects of PLTutor on
program tracing and writing skills. These effects included:

e Higher total and question-specific learning gain than Code-
cademy (overall 37% of questions and 70% for novices).

e Less midterm variation and no failure on the midterm.
Learning gains from the tutorial also strongly predicted
the midterm, suggesting a strong relationship or shared
factors between learning rate in the tutorial and the class.

e More learners who started with low pre-scores had large
learning gains (see dark grey in pre-score and TT (likely
prior knowledge) in Figure 4.b).

Our study suggests greater learning gains for PLTutor compared
to Codecademy. PLTutor matched Codecademy’s post-scores even
with a significant initial deficit (see Figure 4.b). This might just be
mean-reversion for Codecademy (guessing on the pre-test with less
luck on the post) but true to false shows little to no difference (see
4.c). The other interpretation is that PLTutor brought its less expe-
rienced group to parity with Codecademy (see 4.d); if the writing
tutorial was better at teaching program tracing, it ought to have
magnified initial differences. PLTutor also had more learning at the
question level, doing better on 37% vs. 22% for Codecademy (1.68
times more). Question-level differences might come from sampling
error, which is hard to model without item response theory param-
eters for the SCS1. However, these differences always aligned with
curricular differences (no recursion in CC, no strings or modulus
in PLTutor) and theoretical explanations—for example, writing did
better on 3 out of 9 code completion problems, as did PLTutor for 8
out of 13 tracing problems. This supports the interpretation that
our results do not just come from noise or guessing differences,
though our small study still has threats to validity.

Our empirically strongest result is that PLTutor normalized
midterm outcomes. PLTutor had no failures vs. 2 in CC (see 4.f vs.
4.e). With only one early measurement, in our small study only
PLTutor learning gains predicted midterm (adj-R?=.64), among the

49

ICER’17, August 18-20, 2017, Tacoma, WA, USA

best of work predicting CS1 outcomes (adj-R? .44 to .46 [54, 88, 89]),
better even than those using mid-course measures like homework
or self-efficacy (adj-R? .35, .58, .61) [40, 43, 88]). In pre-score in
Figure 4.b, PLTutor also has more dark high post-scorers coming
from lower scores vs. CC. This improved equity in outcomes may
help scale learning in diverse populations. Future work should
confirm this pattern and see if normalizing has the downside of
reducing outlier high outcomes (compare far right of 4.e & 4.f).

We also saw learning gains comparable to full quarter or semester
long courses with both tutorials in ~4 hours (see Figure 4.a), similar
to prior work [42], yet unexplained by prior CS knowledge or traits
we measured. Some gains varied from losing to gaining 2-3 points
on the post-test, perhaps guessing noise. However, our participants’
post-test distribution looked similar to those near the end of CS1 in
[64]; this was either genuine learning, recruiting bias that skewed
our sample towards more motivated or at-risk students, or test-
retest carry-over score inflation. Even extreme learning was not
uncommon; in ~4 hours, in PLTutor 4 learners (22%) moved from
a below average pre-score to nearly above a SD of [64]’s mean (3
(16%) above 13.18), and one from a score of 8 to 20, the maximum
from 189 students in [64] (in CC, one 8 to 14 and an 11 to 20 also).
In PLT these outcomes continue in the midterm (see dark at 4.e).

What skills or knowledge explains such fast learning without
prior domain knowledge? Can we teach it and dramatically improve
CS1 and even other CS education? Most learning theories frame
learning as hard and time consuming, and transfer as fragile; they
poorly explain these results. In contrast, causal inference theory
says learning is facile and transfer instantaneous with the right
conditions. We applied this theory in our pedagogy design and
saw large gains, making it a promising direction. Future work may
search for factors that lead to rapid learning by measuring learners’
prior knowledge or traits then analyzing learning outcomes only, or
jointly change the design of pedagogy or tools used, in an attempt
to either increase or reduce extreme learning gains.

Decades of studies have attempted to improve outcomes for
learning programming; we found something one can measure in
only 8 hours (learning gain from PLTutor) which is highly predictive
of long-term outcomes. We might be able to use this (or other good
predictors) to improve the rate of experimentation and discovery,
going from 3-4 studies per year using course outcomes to one per
day using a proxy (if larger studies confirm their predictive ability).

Future work should investigate tools and curricula based on
comprehension-oriented strategies, especially given the compara-
tive lack of exploration and positive early results (ours and others
like [30]). PLTutor had as good or better overall performance com-
pared to a mature writing-oriented tutorial created with millions
in funding. It seems unlikely that our team of three people, with
almost no curriculum experimentation, has found the ceiling for
comprehension tutorials or pedagogy.

ACKNOWLEDGMENTS

This material is based upon work supported by Microsoft, Google,
Adobe, and the National Science Foundation (Grant No. 12566082,
1539179, 1314399, 1240786, and 1153625). Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect funder views.

Session1: Novice Programmer

REFERENCES

(1]
(2]

(3]

[4

flaa

[11]

[12]

[13

[14

[15

[16]
[17
[18]

[19]

[20]

[21]

[23]

[24]

[25]

Mary J. Allen and Wendy M. Yen. 2001. Introduction to Measurement Theory.
Waveland Press.

John R. Anderson, Frederick G. Conrad, and Albert T. Corbett. 1989. Skill
acquisition and the LISP tutor. Cognitive Science 13, 4 (1989), 467-505. DOI:
http://dx.doi.org/10.1016/0364-0213(89)90021-9

Tan Arawjo, Cheng-yao Wang, Andrew C Myers, Erik Andersen, and Francois
Guimbretiere. 2017. Teaching Programming with Gamified Semantics. In Proceed-
ings of the SIGCHI conference on Human factors in computing systems Reaching
through technology - CHI ’17. ACM Press, New York, New York, USA.

Sally Bailes, Eva Libman, Marc Baltzan, Rhonda Amsel, Ron Schondorf, and
Catherine S. Fichten. 2006. Brief and distinct empirical sleepiness and fatigue
scales. Journal of Psychosomatic Research 60, 6 (2006), 605-613. DOI:http://dx.
doi.org/10.1016/j.jpsychores.2005.08.015

Piraye Bayman and Richard E. Mayer. 1988. Using conceptual models to teach
BASIC computer programming. Journal of Educational Psychology 80, 3 (1988),
291-298. DOI:http://dx.doi.org/10.1037/0022-0663.80.3.291

Mordechai Ben-Ari. 2001. Constructivism in computer science education. Journal
of Computers in Mathematics and Science Teaching 20, 1 (2001), 45-73.

Dave Berry. 1991. Generating Program Animators from Programming Language
Semantics. Ph.D. Dissertation. University of Edinburgh. DOI:http://dx.doi.org/
10.1016/0377-0427(93)90083-N

Lisa S Blackwell, Kali H Trzesniewski, and Carol Sorich Dweck. 2007. Implicit
theories of intelligence predict achievement across an adolescent transition:
a longitudinal study and an intervention. Child development 78, 1 (jan 2007),
246-63. DOI:http://dx.doi.org/10.1111/j.1467-8624.2007.00995.x

Peter L. Bonate. 2000. Analysis of Pretest-Posttest Designs. CRC Press.

J. D. Bransford, A. L. Brown, and R. R. Cocking. 2000. How People Learn: Brain,
Mind, Experience, and School: Expanded Edition. National Academies Press. 1-27
pages. DOI:http://dx.doi.org/10.1016/0885-2014(91)90049-]

Ruven Brooks. 1983. Towards a theory of the comprehension of computer
programs. International Journal of Man-Machine Studies 18, 6 (jun 1983), 543-554.
DOI : http://dx.doi.org/10.1016/S0020-7373(83)80031-5

LD. Brown, TT. Cai, and A. DasGupta. 2001. Interval Estima-
tion for a Binomial Proportion. Statist. Sci. 16, 2 (2001), 101-133.
https://www.scopus.com/inward/record.uri?eid=2-52.0-0000460102&
partnerID=40&md5=0997011d7da77720486e29¢728a95d34 cited By 988.

Teresa Busjahn and Carsten Schulte. 2013. The use of code reading in teaching
programming. Proceedings of the 13th Koli Calling International Conference
on Computing Education Research (2013), 3-11. DOI:http://dx.doi.org/10.1145/
2526968.2526969

William Campbell and Ethan Bolker. 2002. Teaching programming by immersion,
reading and writing. In 32nd Annual Frontiers in Education, Vol. 1. IEEE, T4G-
23-T4G-28. DOI :http://dx.doi.org/10.1109/FIE.2002.1158015

David Clark, Cara MacNish, and Gordon F Royle. 1998. Java as a teach-
ing languagefil?opportunities, pitfalls and solutions. Proceedings of the 3rd
Australasian conference on Computer science education (1998), 173-179. DOI:
http://dx.doi.org/10.1145/289393.289418

Codecademy. 2016. https://www.codecademy.com. (2016). Accessed: 2016-12-12.
CodingBat. 2016. https://www.codingbat.com. (2016). Accessed: 2016-12-12.
Giuseppe Curcio, Michele Ferrara, and Luigi De Gennaro. 2006. Sleep loss,
learning capacity and academic performance. Sleep Medicine Reviews 10, 5 (2006),
323-337. DOI:http://dx.doi.org/10.1016/j.smrv.2005.11.001

J Dalbey and Marcia C Linn. 1985. The demands and requirements of
computer programming: A review of the literature. Journal of Educa-
tional Computing Research 1, 3 (1985), 253—-274. DOI: http://dx.doi.org/10.2190/
BC76-8479-YMO0OX-7FUA

M. De Raadt, M. Toleman, and R Watson. 2002. Language Trends in Intro-
ductory Programming Courses On the internet. Informing Science (2002),
329-337. http://proceedings.informingscience.org/IS2002Proceedings/papers/
deRaal36Langu.pdf

Lionel Deimel and David Moffat. 1982. A More Analytical Approach to Teaching
the Introductory Programming Course. In Proceedings of the National Educational
Computing Conference. 114-118.

Julia F. Dewald, Anne M. Meijer, Frans J. Oort, Gerard A. Kerkhof, and Susan M.
Bogels. 2010. The influence of sleep quality, sleep duration and sleepiness on
school performance in children and adolescents: A meta-analytic review. Sleep
Medicine Reviews 14, 3 (2010), 179-189. DOI:http://dx.doi.org/10.1016/j.smrv.
2009.10.004

Allen Downey and Lynn Stein. 2006. Designing a small-footprint curriculum in
computer science. In Proceedings. Frontiers in Education. 36th Annual Conference.
IEEE, 21-26. DOI:http://dx.doi.org/10.1109/FIE.2006.322660

Benedict du Boulay, Tim O’Shea, and John Monk. 1981. The black box inside the
glass box: presenting computing concepts to novices. International Journal of
Man-Machine Studies 14, 3 (apr 1981), 237-249. DOI:http://dx.doi.org/10.1016/
S0020-7373(81)80056-9

Jennifer L. Dyck and Richard E. Mayer. 1989. Teaching for Transfer of Computer
Program Comprehension Skill. Journal of Educational Psychology 81, 1 (1989),

50

I
o

[27

(28]

(33]

(34]

[36

(37]

(38]

@
20,

[40

[41

[42

[43]

[44

[45

[46

N
)

ICER’17, August 18-20, 2017, Tacoma, WA, USA

16-24. DOI:http://dx.doi.org/10.1037//0022-0663.81.1.16

Allison Elliott Tew. 2010. Assessing fundamental introductory computing con-
cept knowledge in a language independent manner. December 2010 (2010), 147.
http://search.proquest.com/docview/873212789

Matthias Felleisen, Robert Bruce Findler, Mathhew Flatt, and Shriram Krish-
namurthi. 2001. How to Design Programs. MIT Press (2001), 720. DOI:
http://dx.doi.org/10.1136/bjsm.27.1.58

Thomas L. Griffiths and Joshua B. Tenenbaum. 2009. Theory-based causal induc-
tion. Psychological Review 116, 4 (2009), 661-716. DOI : http://dx.doi.org/10.1037/
0017201

Philip J. Guo. 2013. Online python tutor. In Proceeding of the 44th ACM technical
symposium on Computer science education - SIGCSE '13. ACM Press, New York,
New York, USA, 579. DOI:http://dx.doi.org/10.1145/2445196.2445368

Matthew Hertz and Maria Jump. 2013. Trace-Based Teaching in Early Program-
ming Courses. Proceedings of the 44th ACM Technical Symposium on Computer Sci-
ence Education (2013), 561-566. DOI : http://dx.doi.org/10.1145/2445196.2445364
Klaus Hinkelmann and Oscar Kempthorne. 2008. Design and Analysis of Experi-
ments, Volume I: Introduction to Experimental Design. Wiley.

Jean-Michel Hoc and Anh Nguyen-Xuan. 1990. Chapter 2.3 - Language Semantics,
Mental Models and Analogy. In Psychology of Programming, J.-M. Hoc, TR.G.
Green, R. Samuray, and D.J. Gilmore (Eds.). Academic Press, London, 139 - 156.
DOI:http://dx.doi.org/10.1016/B978-0-12-350772-3.50014-8

Aaron Hochanadel and D. Finamore. 2015. Fixed And Growth Mindset In Edu-
cation And How Grit Helps Students Persist In The Face Of Adversity. Journal
of International Education Research fi First Quarter 11, 1 (2015), 47-51. DOI:
http://dx.doi.org/10.19030/jier.v11i1.9099

Ville Karavirta, Riku Haavisto, Erkki Kaila, Mikko-Jussi Laakso, Teemu Rajala,
and Tapio Salakoski. 2015. Interactive Learning Content for Introductory Com-
puter Science Course Using the ViLLE Exercise Framework. 2015 International
Conference on Learning and Teaching in Computing and Engineering (2015), 9-16.
DOI:http://dx.doi.org/10.1109/LaTiCE.2015.24

Ken Kelley. 2007. Confidence Intervals for Standardized Effect Sizes :. Journal of
Statistical Software 20, 8 (2007), 1-24. DOI : http://dx.doi.org/10.18637/jss.v020.i08
arXiv:arXiv:0908.3817v2

Ken Kelley. 2007. Methods for the Behavioral, Educational, and Social Sciences:
An R package. Behavior Research Methods 39, 4 (nov 2007), 979-984. DOI:
http://dx.doi.org/10.3758/BF03192993

John G Kemeny, Thomas E Kurtz, and David S Cochran. 1968. Basic: a manual
for BASIC, the elementary algebraic language designed for use with the Dartmouth
Time Sharing System. Dartmouth Publications.

Takayuki Kimura. 1979. Reading before composition. In Proceedings of the tenth
SIGCSE technical symposium on Computer science education - SIGCSE "79. ACM
Press, New York, New York, USA, 162-166. DOI : http://dx.doi.org/10.1145/800126.
809575

Michael Kolling, Bruce Quig, Andrew Patterson, and John Rosenberg. 2003. The
Blue] System and its Pedagogy. Computer Science Education 13, 4 (2003), 249-268.
DOI : http://dx.doi.org/10.1076/csed.13.4.249.17496

A. Krapp, S. Hidi, and K.A. Renninger. 1992. Factors Affecting Performance
in First-year Computing. The Role of interest in learning and development 32, 2
(1992), 368.

Olivier Lecarme. 1974. Structured programming, programming teaching and
the language Pascal. ACM SIGPLAN Notices 9, 7 (jul 1974), 15-21. DOI:http:
//dx.doi.org/10.1145/953224.953226

Michael J. Lee and Andrew J. Ko. 2015. Comparing the Effectiveness of Online
Learning Approaches on CS1 Learning Outcomes. Proceedings of the eleventh
annual International Conference on International Computing Education Research -
ICER ’15 (2015), 237-246. DOI :http://dx.doi.org/10.1145/2787622.2787709

Alex Lishinski, Aman Yadav, Jon Good, and Richard Enbody. 2016. Introduc-
tory Programming : Gender Differences and Interactive Effects of Students ’
Motivation , Goals and Self-Efficacy on Performance. Proceedings of the 12th
International Computing Education Research Conference (2016), 211-220. DOI:
http://dx.doi.org/10.1145/2960310.2960329

Raymond Lister, Colin Fidge, and Donna Teague. 2009. Further evidence of
a relationship between explaining, tracing and writing skills in introductory
programming. ACM SIGCSE Bulletin 41, 3 (2009), 161. DOI :http://dx.doi.org/10.
1145/1595496.1562930

Raymond Lister, Otto Seppald, Beth Simon, Lynda Thomas, Elizabeth S. Adams,
Sue Fitzgerald, William Fone, John Hamer, Morten Lindholm, Robert McCartney,
Jan Erik Mostrom, and Kate Sanders. 2004. A multi-national study of reading
and tracing skills in novice programmers. ACM SIGCSE Bulletin 36, 4 (dec 2004),
119. DOI:http://dx.doi.org/10.1145/1041624.1041673

J Littlefield, V Delclos, S Lever, K Clayton, J Bransford, and J Franks. 1988.
Learning Logo: Methods of teaching, transfer of general skills, and attitudes
toward school and computers. In Learning computer programming: Multiple
research perspectives, Richard E. Mayer (Ed.). Erlbaum, Hillsdale, NJ, 111-135.
Dastyni Loksa and Andrew J. Ko. 2016. The Role of Self-Regulation in Pro-
gramming Problem Solving Process and Success. In Proceedings of the 2016 ACM
Conference on International Computing Education Research (ICER ’16). ACM, New

http://dx.doi.org/10.1016/0364-0213(89)90021-9
http://dx.doi.org/10.1016/j.jpsychores.2005.08.015
http://dx.doi.org/10.1016/j.jpsychores.2005.08.015
http://dx.doi.org/10.1037/0022-0663.80.3.291
http://dx.doi.org/10.1016/0377-0427(93)90083-N
http://dx.doi.org/10.1016/0377-0427(93)90083-N
http://dx.doi.org/10.1111/j.1467-8624.2007.00995.x
http://dx.doi.org/10.1016/0885-2014(91)90049-J
http://dx.doi.org/10.1016/S0020-7373(83)80031-5
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0000460102&partnerID=40&md5=0997011d7da77720486e29c728a95d34
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0000460102&partnerID=40&md5=0997011d7da77720486e29c728a95d34
http://dx.doi.org/10.1145/2526968.2526969
http://dx.doi.org/10.1145/2526968.2526969
http://dx.doi.org/10.1109/FIE.2002.1158015
http://dx.doi.org/10.1145/289393.289418
http://dx.doi.org/10.1016/j.smrv.2005.11.001
http://dx.doi.org/10.2190/BC76-8479-YM0X-7FUA
http://dx.doi.org/10.2190/BC76-8479-YM0X-7FUA
http://proceedings.informingscience.org/IS2002Proceedings/papers/deRaa136Langu.pdf
http://proceedings.informingscience.org/IS2002Proceedings/papers/deRaa136Langu.pdf
http://dx.doi.org/10.1016/j.smrv.2009.10.004
http://dx.doi.org/10.1016/j.smrv.2009.10.004
http://dx.doi.org/10.1109/FIE.2006.322660
http://dx.doi.org/10.1016/S0020-7373(81)80056-9
http://dx.doi.org/10.1016/S0020-7373(81)80056-9
http://dx.doi.org/10.1037//0022-0663.81.1.16
http://search.proquest.com/docview/873212789
http://dx.doi.org/10.1136/bjsm.27.1.58
http://dx.doi.org/10.1037/a0017201
http://dx.doi.org/10.1037/a0017201
http://dx.doi.org/10.1145/2445196.2445368
http://dx.doi.org/10.1145/2445196.2445364
http://dx.doi.org/10.1016/B978-0-12-350772-3.50014-8
http://dx.doi.org/10.19030/jier.v11i1.9099
http://dx.doi.org/10.1109/LaTiCE.2015.24
http://dx.doi.org/10.18637/jss.v020.i08
http://arxiv.org/abs/arXiv:0908.3817v2
http://dx.doi.org/10.3758/BF03192993
http://dx.doi.org/10.1145/800126.809575
http://dx.doi.org/10.1145/800126.809575
http://dx.doi.org/10.1076/csed.13.4.249.17496
http://dx.doi.org/10.1145/953224.953226
http://dx.doi.org/10.1145/953224.953226
http://dx.doi.org/10.1145/2787622.2787709
http://dx.doi.org/10.1145/2960310.2960329
http://dx.doi.org/10.1145/1595496.1562930
http://dx.doi.org/10.1145/1595496.1562930
http://dx.doi.org/10.1145/1041624.1041673

Session1: Novice Programmer

[48]

[49]

[50]

[51]

[52]

[53]

[54

[55]

[56

[57

[58]

[59

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68

[69]

)
=

York, NY, USA, 83-91. DOI:http://dx.doi.org/10.1145/2960310.2960334

Dastyni Loksa, Andrew J. Ko, Will Jernigan, Alannah Oleson, Christopher J.
Mendez, and Margaret M. Burnett. 2016. Programming, Problem Solving, and
Self-Awareness: Effects of Explicit Guidance. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems (CHI ’16). ACM, New York,
NY, USA, 1449-1461. DOI:http://dx.doi.org/10.1145/2858036.2858252

Mike Lopez, Jacqueline Whalley, Phil Robbins, and Raymond Lister. 2008. Rela-
tionships between reading, tracing and writing skills in introductory program-
ming. Proceeding of the fourth international workshop on Computing education re-
search - ICER 08 (2008), 101-112. DOI : http://dx.doi.org/10.1145/1404520.1404531
Andrew Luxton-Reilly. 2016. Learning to program is easy. Proceedings of the 2016
ACM Conference on Innovation and Technology in Computer Science Education
(2016), 284-289. DOI:http://dx.doi.org/10.1145/2899415.2899432

John Maloney, Mitchel Resnick, and Natalie Rusk. 2010. The Scratch program-
ming language and environment. ACM Transactions on Computing Education 10,
4(2010), 1-15. DOI : http://dx.doi.org/10.1145/1868358.1868363.http arXiv:-
Richard E. Mayer. 1979. Analysis of a Simple Computer Programming Language:
Transactions, Prestatements and Chunks. Technical Report. Series in Learning
and Cognition, Tech. Rep. No. 79-2, U. of California, Santa Barbara, California.
1-34 pages. https://eric.ed.gov/?id=ED207549

Richard E. Mayer. 1981. The Psychology of How Novices Learn Computer
Programming. Comput. Surveys 13, 1 (1981), 121-141. DOI:http://dx.doi.org/10.
1145/356835.356841

Richard E. Mayer. 1985. Learning In Complex Domains: A Cognitive Analysis
of Computer Programming. Vol. 19. Academic Press. 89-130 pages. DOI:http:
//dx.doi.org/10.1016/S0079-7421(08)60525-3

Anneliese Von Mayrhauser and a Marie Vans. 1995. Program Comprehension
During Software Maintenence and Evolution. Computer 28, 8 (1995), 44-55. DOI :
http://dx.doi.org/10.1109/2.402076

Michael McCracken, Tadeusz Wilusz, Vicki Almstrum, Danny Diaz, Mark Guz-
dial, Dianne Hagan, Yifat Ben-David Kolikant, Cary Laxer, Lynda Thomas, and
Tan Utting. 2001. A multi-national, multi-institutional study of assessment of
programming skills of first-year CS students. ACM SIGCSE Bulletin 33, 4 (dec
2001), 125. DOI:http://dx.doi.org/10.1145/572139.572181

Andrés Moreno, Niko Myller, Erkki Sutinen, and Mordechai Ben-Ari. 2004. Visual-
izing programs with Jeliot 3. Proceedings of the working conference on Advanced vi-
sual interfaces - AVI 04 (2004), 373. DOI : http://dx.doi.org/10.1145/989863.989928
Briana Morrison, Lauren Margulieux, and Mark Guzdial. 2015. Subgoals, Context,
and Worked Examples in Learning Computing Problem Solving. In Proceedings of
the eleventh annual International Conference on International Computing Education
Research - ICER ’15. ACM Press, New York, New York, USA, 267-268. DOI:
http://dx.doi.org/10.1145/2787622.2787744

Laurie Murphy and Lynda Thomas. 2008. Dangers of a fixed mindset: implications
of self-theories research for computer science education. ACM SIGCSE Bulletin
40, 3 (2008), 271-275. DOI :http://dx.doi.org/10.1145/1597849.1384344

Michael O’Brien. 2003. Software Comprehension - A review and research direction.
Technical Report UL-CSIS-03-3. University of Limerick. 1-29 pages.

D. B. Palumbo. 1990. Programming Language/Problem-Solving Research: A
Review of Relevant Issues. Review of Educational Research 60, 1 (jan 1990), 65-89.
DOI : http://dx.doi.org/10.3102/00346543060001065

John F Pane. 2002. A programming system for children that is designed for usability.
Ph.D. Dissertation. Carnegie Mellon University.

Seymour Papert. 1971. A Computer laboratory for elementary schools. Technical
Report. Massachusetts Institute of Technology. Artificial Intelligence Laboratory.
19 pages.

Miranda C Parker and Mark Guzdial. 2016. Replication, validation, and use of
a language independent CS1 knowledge assessment. Proceedings of the 12th
International Computing Education Research Conference (2016), 93-101. DOI:
http://dx.doi.org/10.1145/2960310.2960316

Randy Pausch, Wanda Dann, and Stephen Cooper. 2000. Alice : a 3-D Tool for
Introductory Programming Concepts. Journal of Computing Sciences in Colleges
15, 5 (2000), 107-116.

Roy D Pea. 1986. Language-independent conceptual” bugs” in novice program-
ming. Journal of Educational Computing Research 2, 1 (1986), 25-36. DOI:
http://dx.doi.org/10.2190/689T- 1R2A-X4W4-29]2

Arnold Pears, Stephen Seidman, Lauri Malmi, Linda Mannila, Elizabeth Adams,
Jens Bennedsen, Marie Devlin, and James Paterson. 2007. A Survey of Literature
on the Teaching of Introductory Programming. In Working Group Reports on
ITiCSE on Innovation and Technology in Computer Science Education (ITiCSE-WGR
’07). ACM, New York, NY, USA, 204-223. DOI: http://dx.doi.org/10.1145/1345443.
1345441

Practicelt. 2016. http://practiceit.cs.washington.edu. (2016). Accessed: 2016-12-
12.

Anthony Ralston. 1971. Fortran and the First Course in Computer Science. Acm
Sigese 3, 4 (1971), 24-29. DOI:http://dx.doi.org/10.1145/382214.382499

Vennila Ramalingam, Deborah LaBelle, and Susan Wiedenbeck. 2004. Self-
Efficacy and Mental Models in Learning to Program. Proceedings of the 9th annual

51

[71

(78]

[79]

[80]

(82]

(83]

[84

%0
2

(86

(87]

(88

[90]

[91

ICER’17, August 18-20, 2017, Tacoma, WA, USA

SIGCSE conference on Innovation and technolngg/ in computer science education -
ITiCSE "04 36, 3 (2004), 171-175. DOI:http://dx.doi.org/10.1145/1007996.1008042

Vennila Ramalingam and Susan Wiedenbeck. 1999. Development and validation
of scores on a computer programming self-efficacy scale and group analyses of
novice programmer self-efficacy. Journal of Educational Computing Research 19,
4(1999), 367-381. DOI : http://dx.doi.org/10.2190/C670-Y3C8-LT]1-CT3P
Stuart Reges. 2006. Back to basics in CS1 and CS2. ACM SIGCSE Bulletin 38, 1
(2006), 293. DOI:http://dx.doi.org/10.1145/1124706.1121432

Eric Roberts. 2004. The dream of a common language. Proceedings of the 35th
SIGCSE technical symposium on Computer science education - SIGCSE "04 36, 1
(2004), 115. DOI: http://dx.doi.org/10.1145/971300.971343

Anthony Robins, Janet Rountree, and Nathan Rountree. 2003. Learning and
Teaching Programming: A Review and Discussion. Computer Science Education
13, 2 (jun 2003), 137-172. DOI :http://dx.doi.org/10.1076/csed.13.2.137.14200
Carsten Schulte, Tony Clear, Ahmad Taherkhani, Teresa Busjahn, and James H.
Paterson. 2010. An introduction to program comprehension for computer science
educators. Proceedings of the 2010 ITiCSE working group reports on Working
group reports - ITICSE-WGR °10(2010), 65. DOI : http://dx.doi.org/10.1145/1971681.
1971687

Ben Shneiderman. 1977. Teaching programming: A spiral approach to syntax
and semantics. Computers & Education 1, 4 (jan 1977), 193-197. DOI:http:
//dx.doi.org/10.1016/0360-1315(77)90008- 2

Ben Shneiderman and Richard Mayer. 1979. Syntactic/semantic interactions in
programmer behavior: A model and experimental results. International Journal
of Computer & Information Sciences 8, 3 (jun 1979), 219-238. DOI :http://dx.doi.
org/10.1007/BF00977789

D. Sleeman, Ralph T. Putnam, Juliet Baxter, and Laiani Kuspa. 1986. Pascal and
high school students: A study of errors. Journal of Educational Computing Re-
search 2,1 (1986), 5-23. DOI:http://dx.doi.org/10.2190/2XPP-LTYH-98NQ-BU77
Juha Sorva. 2013. Notional machines and introductory programming education.
ACM Transactions on Computing Education 13, 2 (2013), 1-31. DOI : http://dx.doi.
org/10.1145/2483710.2483713

Juha Sorva and Otto Seppéld. 2014. Research-based design of the first weeks of
CS1. Proceedings of the 14th Koli Calling International Conference on Computing
Education Research (Koli Calling °14) November 2014 (2014), 71-80. DOI:http:
//dx.doi.org/10.1145/2674683.2674690

Juha Sorva and Teemu Sirkia. 2010. UUhistle: a software tool for visual program
simulation. Proceedings of the 10th Koli Calling International Conference on
Computing Education Research Koli Calling 10 (2010), 49-54. DOI :http://dx.doi.
0rg/10.1145/1930464.1930471

Juha Sorva and Teemu Sirkid. 2011. Context-sensitive guidance in the UUhistle
program visualization system. Proceedings of the Sixth Program Visualization
Workshop (PVW 2011) (2011), 77-85.

C. Taylor, D. Zingaro, L. Porter, K.C. Webb, C.B. Lee, and M. Clancy. 2014. Com-
puter science concept inventories: past and future. Computer Science Education
24, 4 (2014), 253-276. DOI :http://dx.doi.org/10.1080/08993408.2014.970779
Franklyn Turbak, Constance Royden, Jennifer Stephan, and Jean Herbst. 1999.
Teaching recursion before loops in CS1. Journal of Computing in Small Colleges
14, May (1999), 86-101. http://cs.wellesley.edu/

Jeroen J. G. Van Merrienboer and Hein P. M. Krammer. 1987. Instructional
strategies and tactics for the design of introductory computer programming
courses in high school. Instructional Science 16, 3 (sep 1987), 251-285. DOI:
http://dx.doi.org/10.1007/BF00120253

Anne Venables, Grace Tan, and Raymond Lister. 2009. A Closer Look at Tracing,
Explaining and Code Writing Skills in the Novice Programmer. Proceedings of
the Fifth International Workshop on Computing Education Research Workshop -
ICER °09 2009 (2009), 117-128. DOI:http://dx.doi.org/10.1145/1584322.1584336
Antti Virtanen, Essi Lahtinen, and Hannu-Matti Jarvinen. 2005. VIP, a Visual
Interpreter for Learning Introductory Programming with C++. Koli Calling
2005 Conference on Computer Science Education November (2005), 125-130. http:
/[citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.101.9111

Christopher Watson, Frederick W B Li, and Jamie L Godwin. 2014. No tests
required: comparing traditional and dynamic predictors of programming success.
Proceedings of the 45th ACM technical symposium on Computer science education
- SIGCSE ’14 (2014), 469-474. DOI :http://dx.doi.org/10.1145/2538862.2538930
Brenda Cantwell Wilson and Sharon Shrock. 2001. Contributing to success in an
introductory computer science course: a study of twelve factors. ACM SIGCSE
Bulletin 33, 1 (2001), 184-188. DOI:http://dx.doi.org/10.1145/366413.364581
Leon E. Winslow. 1996. Programming Pedagogy - A Psychological Overview.
ACM SIGCSE Bulletin 28, 3 (1996), 17-22. DOI:http://dx.doi.org/10.1145/234867.
234872

Cecile Yehezkel. 2003. Making program execution comprehensible one level
above the machine language. ITiCSE 03 Proceedings of the 8th annual conference
on Innovation and technology in computer science education (2003), 124. DOI:
http://dx.doi.org/10.1145/961290.961547

http://dx.doi.org/10.1145/2960310.2960334
http://dx.doi.org/10.1145/2858036.2858252
http://dx.doi.org/10.1145/1404520.1404531
http://dx.doi.org/10.1145/2899415.2899432
http://dx.doi.org/10.1145/1868358.1868363.http
http://arxiv.org/abs/-
https://eric.ed.gov/?id=ED207549
http://dx.doi.org/10.1145/356835.356841
http://dx.doi.org/10.1145/356835.356841
http://dx.doi.org/10.1016/S0079-7421(08)60525-3
http://dx.doi.org/10.1016/S0079-7421(08)60525-3
http://dx.doi.org/10.1109/2.402076
http://dx.doi.org/10.1145/572139.572181
http://dx.doi.org/10.1145/989863.989928
http://dx.doi.org/10.1145/2787622.2787744
http://dx.doi.org/10.1145/1597849.1384344
http://dx.doi.org/10.3102/00346543060001065
http://dx.doi.org/10.1145/2960310.2960316
http://dx.doi.org/10.2190/689T-1R2A-X4W4-29J2
http://dx.doi.org/10.1145/1345443.1345441
http://dx.doi.org/10.1145/1345443.1345441
http://dx.doi.org/10.1145/382214.382499
http://dx.doi.org/10.1145/1007996.1008042
http://dx.doi.org/10.2190/C670-Y3C8-LTJ1-CT3P
http://dx.doi.org/10.1145/1124706.1121432
http://dx.doi.org/10.1145/971300.971343
http://dx.doi.org/10.1076/csed.13.2.137.14200
http://dx.doi.org/10.1145/1971681.1971687
http://dx.doi.org/10.1145/1971681.1971687
http://dx.doi.org/10.1016/0360-1315(77)90008-2
http://dx.doi.org/10.1016/0360-1315(77)90008-2
http://dx.doi.org/10.1007/BF00977789
http://dx.doi.org/10.1007/BF00977789
http://dx.doi.org/10.2190/2XPP-LTYH-98NQ-BU77
http://dx.doi.org/10.1145/2483710.2483713
http://dx.doi.org/10.1145/2483710.2483713
http://dx.doi.org/10.1145/2674683.2674690
http://dx.doi.org/10.1145/2674683.2674690
http://dx.doi.org/10.1145/1930464.1930471
http://dx.doi.org/10.1145/1930464.1930471
http://dx.doi.org/10.1080/08993408.2014.970779
http://cs.wellesley.edu/
http://dx.doi.org/10.1007/BF00120253
http://dx.doi.org/10.1145/1584322.1584336
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.101.9111
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.101.9111
http://dx.doi.org/10.1145/2538862.2538930
http://dx.doi.org/10.1145/366413.364581
http://dx.doi.org/10.1145/234867.234872
http://dx.doi.org/10.1145/234867.234872
http://dx.doi.org/10.1145/961290.961547

	Abstract
	1 Introduction
	2 Related Work
	3 Program Tracing Knowledge
	4 Pedagogy and PLTutor
	4.1 Programming Language Semantics
	4.2 Program Tracing
	4.3 PLTutor Limitations

	5 Evaluation
	5.1 Method
	5.2 Results

	6 Threats to Validity
	7 Discussion
	Acknowledgments
	References

