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Abstract—We propose a novel methodology for fault detection
and diagnosis in partially-observed Boolean dynamical systems
(POBDS). These are stochastic, highly nonlinear, and derivative-
less systems, rendering difficult the application of classical fault
detection and diagnosis methods. The methodology comprises two
main approaches. The first addresses the case when the normal
mode of operation is known but not the fault modes. It applies
an innovations filter (IF) to detect deviations from the nominal
normal mode of operation. The second approach is applicable
when the set of possible fault models is finite and known, in which
case we employ a multiple model adaptive estimation (MMAE)
approach based on a likelihood-ratio (LR) statistic. Unknown
system parameters are estimated by an adaptive expectation-
maximization (EM) algorithm. Particle filtering techniques are
used to reduce the computational complexity in the case of
systems with large state-spaces. The efficacy of the proposed
methodology is demontrated by numerical experiments with
a large gene regulatory network (GRN) with stuck-at faults
observed through a single noisy time series of RNA-seq gene
expression measurements.

Index Terms—Fault Detection and Diagnosis, Partially-
Observed Boolean Dynamical System, Particle Filtering,
Expectation-Maximization, Multiple Model Adaptive Estimation,
Gene Regulatory Network, RNA-Seq Gene Expression.

I. INTRODUCTION

AULT detection and diagnosis in gene regulatory net-

works (GRN) is a problem of current interest in systems
biology [[1]-[4]], since the molecular basis of many diseases,
particularly cancer, resides in the sudden loss of regulatory
power in gene networks due to DNA mutations [5]. The
dynamical behavior of GRNs can be effectively modeled by
Boolean dynamical systems, also known as Boolean networks,
where each gene may be thought to be either in an activated or
suppressed transcriptional state [|6]—[13]]. Indeed, prior biolog-
ical knowledge often consists of gene activation/inactivation
pathway diagrams [[14]]-[18]]. This makes Boolean dynamical
systems a very convenient model for GRNs.

However, uncertainty in state transition and the use of mod-
ern gene-expression technologies require stochastic Boolean
state processes and models for noisy indirect measurement
data, respectively. The Partially-Observed Boolean Dynamical
Systems (POBDS) [10], [13], [19], [20] model addresses
both of these requirements; POBDS are stochastic Boolean
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dynamical systems indirectly observed through a single time
series of noisy measurements. Several tools for the POBDS
model have been developed in recent years. The optimal filter
and smoother based on MMSE criterion, called the Boolean
Kalman Filter (BKF) and Boolean Kalman Smoother (BKS),
were introduced in [10] and [19], respectively. In addition,
schemes for simultaneous state and parameter estimation and
their particle filter implementations were developed in [13],
[21]]. Other tools include sensor selection [22]], fault detection
[20], and control [23]]-[25]]. Most of these tools are freely
available through an open-source R package called “BoolFil-
ter” [26].

The problem of fault detection and diagnosis (also known
as “fault detection and identification”) has been studied exten-
sively in many diverse areas of Engineering [27]-[36]. How-
ever, classical fault detection and diagnosis methods rely on
either system linearity or linearizability assumptions. However,
Boolean dynamical systems are highly nonlinear and deriva-
tiveless, and thus not easily linearizable. This renders difficult
the application of classical fault detection and identification
methods. To address this problem, we propose two approaches
for fault detection and diagnosis using the POBDS model: the
first is meant for the case when only the normal mode of
operation is known, and is based on an innovations filter (IF),
while the second applies to the case when the set of possible
fault models is finite and known, in which case we employ
a nonlinear version of the multiple model adaptive estimation
(MMAE) approach [37]] in combination with a likelihood-ratio
(LR) statistic.

The problem of fault detection in Boolean dynamical sys-
tems has been addressed previously [1], [20]. In contrast to
[1, we do not assume a deterministic system, nor do we
assume that the Boolean gene states are directly observable.
Instead, we employ the POBDS model to address the more
realistic case of an observational layer consisting of a single
time series of noisy measurements of the gene states. The
methodology in [20] was also developed for POBDS models,
but it suffers from two main limitations: (1) it becomes too
computationally intensive in the case of large GRNs and (2)
it assumes that all system parameters, including the network
topology, are known. In this paper, we extend the approach
in [20], addressing each of these difficulties. To address the
computational difficulty with large systems, we employ an
approximate sequential Monte-Carlo (SMC) algorithm for op-
timal filtering, called the Auxiliary Particle Filtering-Boolean
Kalman Filter (APF-BKF) [21], which is adapted here for
fault diagnosis and detection purposes. To estimate unknown



system parameters, we assume an initial (short) fault-free
time interval at the start of system operation, and apply an
adaptive particle filtering technique based on the expectation-
maximization (EM) algorithm for maximum-likelihood system
identification [21]]. As mentioned previously, these tools are
used to obtain an innovations filter in case of unknown faults,
and a MMAE approach based on a likelihood-ratio statistic
for the case when the set of fault models is finite and known.
The efficacy of the proposed methodology is demonstrated via
numerical experiments using a Boolean model of a large cell
cycle GRN with stuck-at faults that model molecular events
commonly found in cancer.

II. METHODS

A. Partially-Observed Boolean Dynamical Systems

In this section, the POBDS model is briefly introduced. It
consists of a state model that describes the evolution of the
Boolean dynamical system, which includes the system input,
and an observation model that relates the state to the system
output (measurements). More details can be found in [10],
[13]].

1) State Model: Assume that the system is described by
a state process {Xy;k = 0,1,...}, where X;, € {0,1}¢
represents the activation/inactivation state of the genes at
time k. The states are assumed to be updated at each discrete
time through the following nonlinear signal model:

Xp = f (Xg—1,u) & ny, (D

for k = 1,2,... where u;, € {0,1}¢ is the input at time k,
£:{0,1}¢ x {0,1}¢ — {0,1}¢ is a Boolean function called
the network function, “®” indicates componentwise modulo-2
addition, and n; € {0,1}¢ is Boolean transition noise. The
noise process {ny;k =1,2,...} is assumed to be “white” in
the sense that the noises at distinct time points are independent
random variables. We also assume that noise processes are
independent of each other and independent of the initial state
Xy. We assume that the components of n; are i.i.d., with
P(ng(i) = 1) = p, for i = 1,...,d. (The general non-i.i.d.
case can be similarly handled, at the expense of introducing
more parameters.) The parameter 0 < p < 1 / 2 corresponds
to the amount of “perturbation” to the Boolean state process;
the case p = 1/2 corresponds to maximum uncertainty.

The model adopted here for the network function f in equa-
tion is motivated by gene pathway diagrams commonly
encountered in biomedical research [13]]:

1 if Y% aux(G) + b +u(i) >0,
Foxwy =4 b e aXU) ) (2)
0 if 375 a;x(j) +b; +u(i) <0,
where a;; = 1 if gene j activates gene ¢, a;; = —1 if gene

J inhibits gene i, a;; = 0 if there is no regulation from gene
j to gene ¢, and parameter b; specifies the regulation bias.
From (2)), a target gene is activated if the number of activation
inputs exceed the number of inhibition inputs, otherwise it is
inactivated. For target gene 4, and assuming that u(¢) = 0, for
simplicity, we can see that tie-breaking is determined by the
bias parameter b;. If this parameter has a small positive value

(say, b; = +1/2), then a tie is decided in favor of activation.
If it is zero, then a tie is decided in favor of inactivation.

2) Measurement Model: The second component of the
signal model is the measurement model. In most real-world
applications, the system state is only partially observable, and
distortion is introduced in the observations by sensor noise —
this is certainly the case with gene expression data.

Let Y, = (Yi(1),...,Yk(d)) be a vector containing the
gene expression data at time k, for k = 1,2, ... We consider
here the case where gene expression data are obtained by the
currently popular RNA-seq platform [38]). In this case, Y (7) is
the read count corresponding to transcript ¢, for : = 1,...,d.
There are multiple methods for modeling RNA-seq reads.
Because of the discrete nature of reads, most methods are
based on either the negative binomial [13]], [39]-[41] or the
Poisson distribution [42]]. In this study, we choose to use
the negative binomial model for the number of reads for
each transcript. The negative binomial model has the ability
to address overdispersion in the count distributions. We also
assume conditional independence of the transcript counts given
the state. Under these assumptions,

M () ()
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3)
where ¢;, \; are inverse dispersion parameters that model
observation noise and mean read count of transcript j, respec-
tively. Recall that, according to the Boolean state model, there
are two possible states for the abundance of transcript j at time
Ek: high (X (j) = 1) and low (X (j) = 0). Accordingly, we
model the parameter \; as follows:

log \j =log s + pp + 6; X5 (4)- 4)

The parameter s is the sequencing depth [43]], and is assumed
here to be common to all transcripts, since a single lane is
being modeled. The sequencing depth s accounts for different
total numbers of reads produced in the lane and plays a
key role, since it determines the approximate range of read
counts that is produced. The parameter p, > 0 accounts for
the baseline level of read counts produced in the single lane
in the inactivated transcriptional state, which is assumed to
be common to all transcripts. On the other hand, §; > 0
expresses the effect on the observed RNA-seq read count as
gene j goes from the inactivated to the activated state, for
j=1,...,d. In summary, the measurement model parameters
are the sequencing depth s, the baseline expression level i,
the transcript-dependent differential expression levels ¢;, for
7 = 1,...,d, and the transcript-dependent inverse dispersion
parameters ¢;, for j =1,...,d.

B. Auxiliary Particle Filter Implementation of the Boolean
Kalman Filter (APF-BKF)

The minimum mean-square error (MMSE) filtering problem
consists of, given observations Y1.x = (Y1,...,Yy), finding



an estimator Xk = h(Y1.) of the state X that minimizes
the mean-square error (MSE),

MSE(Xy | Y1) = B [|Ke = X4l | Yiu], 9

at each value of Y., (so that it also minimizes the frequentist
expected MSE over all possible realizations of Y;.;) up to the
current time k, for k=1,2,...

For a vector v € [0,1]4, define the binarized vector V(i) =
Iy(y>1/2 for @ = 1,...,d. It has been proved [13] that the
optimal MMSE filter XkMS is given by

XMS — E[Xp | Yo (6)

The optimal Boolean MMSE estimator is called the Boolean
Kalman Filter (BKF) [10], [[13]]. Exact calculation of the BKF
requires the computation and storage of 2¢ x 2¢ transition
and update matrices [10]. When the number d of states is
large, exact computation of the BKF becomes intractable due
to the matrix sizes. In this case, approximate methods must be
used, such as sequential Monte-Carlo methods, also known as
particle filter algorithms. In this paper, we employ the APF-
BKF algorithm, an Auxiliary Particle Filter (APF) Monte-
Carlo implementation of the BKF, first proposed in [21], and
briefly reviewed next.

In the APF-BKF algoritm, particles {xj_1 ;}¥ , at time k—
1, with associated normalized weights {Wk_l,,-}ij\il, represent
the state posterior distribution at time step k — 1 via

N
P(Xp1=%x|Yip1) = > Witilxmx ., ()
i=1

where Ix—x,_, , is an indicator which returns 1 if x = x;_1 ;
and O otherwise. Since the intensity of the process noise ny
satisfies p < 1/2, one can write:

fk; = Mode[f(xg—1,:) ®ny] = f(xk-1:), (®)
forv=1,..., N. Now, two stage weights should be computed
as follows:
o The first-stage weights {Vj;}~ , are computed as:
Vii = P(Y5 | pre,i) Wh—1,i &)
fori=1,...,N.

« For the second-stage weights, one first needs to perform
the following sampling process:

{Gridily ~ Cat({Vii}ily), (10)
and then compute the particles and weights as:
Xpi = Pk, D0 ~ P(Xg | Xp1.6.,)
Wi, = P(Yy | xp:) ' (1)
i P(Yk |Mk,Ck,i)
for: =1,..., N. Here, “Cat” stands for the categorical

(discrete) distribution.

Using the first and second-stage weights, it is shown in [21]]
that an unbiased estimator of the unnormalized posterior

probability of the state given the observations up to time &
is given by:

X 1 1L
1Bkl = <N ZVk,i> (N ZWk,i> . (12
=1 =1

Given the normalized second-stage weights Wj; =

] N ;
Wi,i/ 221 Wk, i =1,..., N, one can write

N
EXi | Yin] = 2= > WiiXpi (13)
=1

From @, it follows that the MMSE state estimator at time step
k can be approximated as XI,X[S ~ Zy. The entire procedure is
summarized in Algorithm [I| For more information, see [21]].

Algorithm 1 APF-BKF: Auxiliary Particle Filter implemen-
tation of the Boolean Kalman Filter [21]]

1: xg,; ~ Moo, Wo; = 1/N, fori =1,... N.

2: for k=1,2,..., do

3: for i =1to N do

4: P = F(Xp—1).

5 Vii = P(Yk | ki) Wi—1-

6: end for

7 AL ~ Cat({Vii b))

8: for i=1to N do

o Xhyi = kG, D M-

. o _P(Yklxk,i)
10: Wk’z T P(Yklpk,, ;) °
11: end for

. N N o~

2 B = (F X Vi) (F 2 ).

~ N )

13: Wk,i:Wk,i/ijlwk,j771:17~~-;N~
N

14: Zj = Zi:l Wk,i Xk,i-

15 XMS = 7,

16: end for

C. Parameter Estimation

Suppose that the POBDS model is incompletely specified;
i.e., the transition noise intensity p, or the parameters of the
RNA-seq model in (3) and (@) may be unknown or only
partially known. Let the missing information be encoded into
a finite-dimensional vector 8 € ©, where © C R™.

In [13]], a maximum likelihood adaptive filter was developed
for simultaneous state and parameter estimation for POBDS
with unknown continuous parameters. The method is based
on the well-known expectation maximization (EM) algorithm
[44] and the BKF. The EM method attempts to maximize
the “complete” log-likelihood function log Py(Xo.7, Y1.7) in
an iterative fashion by estimating a sequence of parameters
{6(™;n = 0,1,...}. Given the current estimate 6("), the



algorithm obtains the next estimate #("*1) in the sequence
by computing the ) function (E-step):

Q0,0™)) = Y log Py(Xo.r, Y1.1) Poon (Xour | Y1)
Xo:r
(14
and then maximizing it (M-step):
0D = argmax Q(0,0™) . (15)
0

The exact computation of the E-Step requires applying the
BKS, which is computationally expensive and uses a large
amount of memory for storing values. The APF-CPMLA-
BKS algorithm [13] provides an efficient particle filtering
implementation of the EM algorithm for POBDS, which is
suitable for large systems with tight time constraints.

The APF-CPMLA-BKS algorithm is briefly explained next.
It consists of two main steps:

1) Forward Step: the APF-BKF algorithm is employed to
obtain particles {xo:T,i}ﬁ\Ll, and their associated weights
{WO;Tﬂ-}zN:l, from time 0 to 7.

2) Backward Step: the backward procedure simulates N
trajectories from the joint conditional distribution:

{x07i 3N, ~ PXo.r | Yir).

The obtained trajectories can be used for approximating the
Q-function in (14) as:

1 N
5 2 [log o)

i=1

Q( g(n)

+ Zlog Py(%s,i | Roo1,i) + Zlog Py(Y, | x)}
s=1 s=1
(16)

Unique ,,

113

The procedure is described in Algorithm [2| Here,
computes the unique particles with their associated weights or
indices. For more information, see [21]].

III. FAULT DETECTION AND DIAGNOSIS

In this section, we present the proposed algorithms for
fault detection and diagnosis. First, we assume that an initial
sequence of data of fixed length is available for the system
under normal operation. This sequence is used for estimation
of the unknown parameters of the system using the APF-
CPMLA-BKS algorithm.

Regarding the fault detection process,
considered in this paper:

1) Innovations-Filter (IF) Method: The fault models are
unknown, and an innovations-based change detection
algorithm using a particle filter is proposed — in this
case, no fault diagnosis is possible;

2) Likelihood-Ratio (LR) Method: The set of possible fault
models is finite and known, and fault detection and di-
agnosis is accomplished simultaneously using a multiple
model estimation approach based on a likelihood-ratio
statistic.

two options are

Algorithm 2 APF-CPMLA-BKS: APF implementation of the
continuous-parameter ML Adaptive BKS [21]]

: Specify 6© (initial guess) and tolerance € > 0.
:n+— —1.

n<4n-+1.
{XO;T}i, WO:T,’L'}7N 1 < Run APF-BKF tuned to 0(")

6 {xiy Wi R S o, Wi}y, k=0, T
7: Sample {nr(i) N, ~ Cat ({WT,]'}]':1)~

1
2
3: repeat
4
5

8: Set Xr,i = X7 (s, for i =1,..., N.
9: for s=T —1to 0 do
Uniqu ~
10: {xi J,§S+1} SH e {XKst1,}ile
11: for j =1to Ss+1 do
12: D], = W;iP(fc‘;H,j | x¢:),i=1,..., Fs.
il s
13: s} ~ cat (D)),
14: i5’5§+1(t) = X¢, (), fort= 1., 08,
15: end for
16: end for

17: Find Q(6,6) using equation (16).
18: Find 6"t = argmax, 0 (0, 9(”>>.

19: until |§("D — 9| > ¢
20: ML = gD,

A. Fault Detection based on Innovations Filter

It is a well-known fact in the theory of linear Kalman
filtering that the innovations of the optimal state estimator
constitute a “white noise” sequence [45]. This fact also applies
to nonlinear, non-Gaussian systems. For completeness, we
give the main result below. Given the history of observations
Y1 = (Y1,...,Yg) up to the present time k, let Y,fMS =
E[Yr | Yi.5-1] be the MS-predictable component of Yy,
with YMS(5) = E[Y1(j) | Yi.k-1], for j = 1,...,d. The
innovation Vi, at time k is defined as the MS-unpredictable
component of Y, as:

Vi =Y, -Y)S
=Yr - E[Yr| Y],
for k = 1,2,.... It can be shown [20] that the innovations
sequence {Vy;k = 0,1,...} is zero mean and uncorrelated,
which means E[Vy] = 04 and E[V; V] = 04x, for k =
1,2...,and k #£ L.
One can write Y}XIS as

YV = B[Yr | Yig-1]

a7

=E[E Y| Xk Yik-1] | Yig—1]
= E[E[Yy | Xi] | Yig-1]
2d
== Z E[Yk | Xk = Xi]P (Xk == Xi | Yl:kfl) .
i=1
(18)
Using , E[Y} | X} = x'] can be written as:
BlYw(j) | Xk =x"] = X = s exp(u +0;(x'(j)), (19)



for j = 1,...,d and i = 1,...,2% Tt is clear that the
computation of YMS requires performing a BKF for posterior
computation. However, we are dealing here with large systems,
to which the BKF cannot be applied due to the large com-
putational complexity. In the following paragraph, we show
how the whiteness of the innovations sequence can be tested
approximately using the particles and weights computed by
the APF-BKF.

Let {Wy_1.,Xk_1:}Y, be the particles and their associ-
ated weights at time step kK — 1 computed by the APF-BKF
algorithm from the sequence of measurements Yi.;—1. The
predicted particles at time step k, before observing measure-
ment Y, can be computed as:

xp = f(xp_1,,u) & nj,

32

(20)

for © = 1,..., N. Using the predicted particles at time step
k, and also the particles and their associated weights at time
step k — 1, equation can be approximated as:

N
VI S BV | X = X IP (X = x| Vi)

=1

N
:ZE[Yk | Xk = Xi,i] P (Xk = Xz,i | Xk,1 = kal,j)
i=1
X P (X1 =%xp—1,5 | Y1ik—1)

N N
= " sexp(uy+ x5 ) Y Pk [ k1) Wi,

i=1 j=1

1)
Assuming normal system operation, the APF-BKF is run,
and the residue at time k£ can be computed as:

er = Y — Y5, (22)

for k=1,2,...

From the previous results, the sequence {ex; k = 1,2,...}
is the innovations sequence, and therefore “white noise”,
provided that the normal-operation model, assumed by the
APF-BKF, matches the actual model producing the data.
Therefore, a fault detection method results from testing the
hypothesis that the residue sequence is white. In this paper,
similarly to [20]], a chi-square test is applied to L lags of the
samples auto-correlation function based on an “window” of
Lp observations preceding the current time ky. To improve
false-positive error rates, we adopt the fault certification step
described in [46]], in which a fault is signaled only if the
number of false detections over a window of Lo observations
preceding kg exceeds a threshold t¢.

B. Fault Detection and Diagnosis based on Likelihood Ratios

If the set of possible faults is finite and known beforehand,
we propose an approach for simultaneous fault detection
and diagnosis, which consists of an online likelihood-ratio
cumulative sum (CUSUM) procedure [47] within a multiple
model adaptive estimation (MMAE) scheme, where a bank of
particle filters runs in parallel, each tuned to a different fault
model [21]].

Let {0, ... 6™} parametrize the set of all possible fault
models, and let #° correspond to the normal-operation model.
Given a sequence of measurements Y 1.;, the cumulative sum
of the log-likelihood ratio can be computed recursively for
each fault model as follows:

Pym (Y1.1)
S, = log ————=
F & Pyo(Y1.1)
~ log Py (Y | Yi—1)Pom (Y1:6-1)
Pyoo (Y | Yik—1)Poo(Yip—1)
m Py (Y | Yoo (23)
— S0 log L0 (Yi | Yig_1)
Pypo(Yr | Y1)
N 077l
=S¢, +log L'Bféo I ,
1B 1
L™
form =1,..., M, where 3, is the unnormalized posterior

probability of the APF-BKF tuned to parameter "™ at time
step k. The likelihood-ratios are thus computed by a bank
of M + 1 APF-BKFs running in parallel, as in the MMAE
algorithm [21].

The typical behavior of the log-likelihood ratio S,‘jm for a
faulty system is a negative drift before change, and a positive
drift after change [47]. Therefore, we would like to track the
difference between the value of the log-likelihood ratio and its
current minimum value:

g™ 9 . oM

= - 24

Ik Sk g_gllgksl : (24)

for m = 1,..., M. A fault is detected at the first time step

at which the value of the adaptive cumulative log-likelihood
ratio g exceeds a a conveniently selected threshold h
for one of the fault models 6*, at which time the fault is
also diagnosed as 6* (thus, fault detection and diagnosis are
processed simultaneously). Formally, the detection time kp is
given by:

kg = min{k | g¢" > h for some m=1,..., M} (25)
and the fault is diagnosed as
R = argmax gz;n . (26)

m=1,....M

yee

Notice that this has the advantage of breaking ties in case two
or more models signal a fault at time kg .
The likelihood-ratio procedure is described in Algorithm [3]

IV. RESULTS AND DISCUSSION

Several metrics can be defined to assess the performance of
the proposed fault detection and diagnosis algorithms; e.g. see
[46]. The error rates and average lag times are used here for
our analysis. Let K be the total length of the time series of
observations, ky < K be the time at which a fault occurs, and
kq be the time at which a fault is first detected or diagnosed.
If kg < kg, a false alarm has occurred. If kg > kg, a fault has
been correctly detected, and we are interested in how fast the
fault is detected, i.e., how small kq — ko is. The average of
these quantities has been used in our numerical experiments.

In our simulation, we generate 7' time series of length K.
Without loss of generality, the true time kg at which the fault



Algorithm 3 Likelihood-ratio procedure for fault detection and
diagnosis based on a bank of APF-BKFs

1Sy =0,form=1,....M
2: for k=1,2,..., do

~6°
3: Compute 3, using an APF-BKF tuned to 6°.
4 for m=1,...,M do

o™
5: Compute 3;, using an APF-BKF tuned to 6.
Bgm
6: S = 80" +log 15, 1 o~ s
125 1
oM g™ . m
7. =5 — S
9k k élzlgk /)
8: end for
9: if " > h for some m =1,..., M then
10: kp =k
11: LR = argmax,,_; g,‘zz.
12: Stop.
13: end if
14: end for

occurs is assumed to be fixed for all time series. The false
detection rate (FDR) is defined as:

T
1
FDR = = > Ty i, 27)
t=1

where kfi is the time when a fault is detected for time series ¢,
fort =1,...,T, and I4 returns 1 if condition A is true and
0, otherwise. The average time until correct detection (ATCD)
is defined as:
1 I
ATCD = > (Kl = ko) I >y »

t=1

(28)

where Ty = Zthl 1 k> ko is the number of time series for
which a correct detection has been made. Finally, let 6* and
R be the true model and diagnosed fault model for the tth
trajectory, respectively. The false diagnosis rate (FDGR) is
defined as:

T
1
FDGR = 7 D Tgirsg-Tetzng - (29)
t=1

We employ in our experiments the GRN in [48|], which
models the dynamical response of the budding yeast cell
cycle to osmotic and pheromone stress. The network contains
14 genes and two inputs, Farl and Hog. The regulatory
relationships between genes in this network are shown in
Figure 1| We use these relationships to set the parameters in
the network model in (Z). All biases b; are set to zero.

All numerical experiments use the parameter values dis-
played in Table [l The transition noise parameter p, the
baseline expression pp, and differential expression §;, i =
1,2,...,14, are assumed to be unknown and are estimated

@%9

Fig. 1. Boolean model of the regulatory network of cell cycle under two
different extracellular signals osmatic stress and the a-factor.

using an initial fault-free sequence of length K, as described
previously (initially, Ky = 50 is fixed, but later it is varied
to examine its effect on the proposed fault detection and
diagnosis methods). The true fault time kg is set to Ky + 200
for fault detection based on the innovations filter (IF), when
there are no knowledge of the fault models (and thus no fault
diagnosis), and to Ky + 50 for fault detection and diagnosis
based on likelihood-ratios (LR), when the fault models are
assumed to be known. The length of the time series is set to
K = 400 for the IF method and K = 100 for the LR method.
The reason for these choices is the fact that the IF method
assumes less information (no knowledge about the possible
fault models) and therefore requires more data. The sequencing
depth s (which is instrument-dependent and usually available)
is assumed to be known, and so are the inverse dispersion
parameters ¢; =2, ¢ =1,2,...,14.

Table [ displays the results with Ky = 50. One can see that
the false detection rate (FDR) and average time until correct
detection (ATCD) are generally larger for the IF method than
for the LR method. The reason of these results can again be
justified by the availability of prior information on the possible
fault models in the LR method. In addition, the LR method
requires a smaller window for detection in comparison with
the IF method. One can observe that in nearly all cases the
results improve substantially as the number of NGS reads
increases, as expected. Some faults can be harder to detect
than others. For example, the Swi5 gene under a stuck-at-1
fault, and SBF gene under stuck-at-0 present an elevated FDR.
This is a consequence of the specific structure of this Boolean
network.

Figure [2] displays the adaptive cumulative log-likelihood
ratio g, in (24) for the LR method as a function of time
(excluding the initial K time points used for system identifi-
cation). The true fault occurs at time point 50 in all plots. It can
be seen that in nearly all cases, the adaptive cumulative log-
likelihood ratio starts to increase at the time the fault occurs.

Table [[II) displays parameter estimation results obtained by
the APF-CPMLA-BKS algorithm using the fault-free sequence
of length Ky = 50. As expected, the results converge to the
true parameter values for large sequencing depths.

Finally, the effect of the length K of the initial fault-free



1K-50K 50K-100K

Clb2 stuck-at-1 Clb2 stuck-at-1

250K-300K 1M-1M+50K

Clb2 stuck-at-1 Clb2 stuck-at-1

50

30
50 100 150

0

600 1000

200 400 600

0 200

0

0 20 40 60 80 100 0 20 40 60 80 100

SBF stuck-at-1

0 20 40 60 80 100 0 20 40 60 80 100

SBF stuck-at-1

50
1

30
1

300 500
1
1000 1500

500

0 100
I

0
L

0 20 40 60 80 100 0 20 40 60 80 100

Mcm1 stuck-at-0 Mcm1 stuck-at-0

0 20 40 60 80 100 0 20 40 60 80 100

Mcm1 stuck-at-0 Mcm1 stuck-at-0

120

40 80
I I T T |

0 10 20 30 40
1

500 1000 1500
1

0
1

0 20 40 60 80 100 0 20 40 60 80 100

Swi5 stuck-at-0 Swi5 stuck-at-0

0 20 40 60 80 100 0 20 40 60 80 100

Swi5 stuck-at-0

50
|
120

80

30
1

40

400
I
600
I

200
I

0 200

0 20 40 60 80 100

0 20 40 60 80 100 0 20 40 60 80 100

Fig. 2. Cumulative log-likelihood ratios for the LR method as a function of time for Hog=1 and Far1=0. The true fault occurs at time 50 in all plots.

sequence for system identification on the performance of the
proposed LR method was examined. The time at which the
fault occurs is Ko+50. The false diagnosis rate (FDGR) of the
proposed LR method for various values of Kj is displayed in
Figure @ It can be seen that as K increases, the performance
of the LR fault detection and diagnosis method improves, as
expected, since parameter estimation becomes more accurate.
There is a point of diminishing returns, which varies according
to the fault, beyond which the FDGR rates converge to fixed
values, and additional data for system identification does
not increase performance significantly. Notice also that the
limiting value for the FDGR is not always zero.

V. CONCLUSION

In this paper, fault detection and diagnosis of partially-
observed Boolean dynamical systems (POBDS) has been
discussed. The parameters of the system are assumed to be
partially-known. First, the particle-based maximum likelihood
adaptive filter was used for estimating the unknown parameters
of the system using an initial fault-free samples. Then, the
estimated parameters were used as true unknown parameters
of the system for fault detection and diagnosis process. Two
cases were considered in this paper: 1) In the first case, the
fault models were assumed to be unknown and the whiteness
of innovation auxiliary particle filter is used for detecting the
fault in the system. 2) In the second case, the fault models

were assumed to be known and the maximum likelihood ratio
technique was developed for simultaneous detection and diag-
nosis processes. The efficacy of the proposed methodologies
was demonstrated via numerical experiments using synthetic
RNA-seq gene expression data from a realistic GRN model
of the cell cycle with stuck-at mutational events. We remark
that it was not our purpose to develop a finished product
for fault detection in GRNs using experimental data. The
challenges associated with designing experiments to obtain
such data go beyond the scope of the present paper, and they
were left for future work. Nevertheless, the results obtained
with the synthetic data indicate that the proposed methods are
promising in monitoring and diagnosing biological changes at
the transcriptomic level.
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