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In order to accelerate molecular dynamics simulations using polarizable force fields, we combine a
new extended Lagrangian approach that eliminates the self-consistent field step (iEL/0-SCF) with a
stochastic integration scheme that allows for a long time step using a multi-time stepping algorithm
(SIN(R)). We consider different algorithms for the combined scheme that places different
components of the non-bonded forces into different timescales, as well as splitting individual non-
bonded forces across timescales, to demonstrate that the combined method works well for bulk water
as well as for a concentrated salt solution, aqueous peptide, and solvated protein. Depending on
system and desired accuracy, the iEL/O-SCF and SIN(R) combination yields lower bound
computational speed-ups of ~6-8 relative to a molecular dynamics Verlet integration using a standard
SCF solver implemented in the reference program TINKER 8.1. The combined approach embodies a
significant advance for equilibrium simulations in the canonical ensemble of many-body potential
energy surfaces for condensed phase systems with speed-ups that exceed what is possible by either

method alone.
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INTRODUCTION
Over the last 50 years molecular simulation has relied on the most tractable classical model for
condensed phase simulation which assumes pairwise additivity of molecular interactions.! However,

”2 such as the

pairwise additivity breaks down when one considers “asymmetric environments
heterogeneity of solutions and interfaces**, electric fields in protein active sites®>®, environments used
to compute hydration free energies of amino acid analogues’®, solvation structures around peptides!®
11 and structural ensembles for intrinsically disordered proteins'2. This has led to the development of
more advanced force fields!® that include many-body effects such as polarizability'**. In order to
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gain the full advantage of these advanced potential energy surfaces, better algorithms
software implementations®® must be developed so as to lower the barrier for their use for large
molecular systems simulated on long timescales.

Recently we introduced the iEL/SCF method to classical polarization that reduces the number
of SCF iterations by dynamically integrating a set of auxiliary dipoles that serve as a time-reversible
initial guess for the SCF solver for classical polarization*, and extended its use for Born-
Oppenheimer molecular dynamics (BOMD)?!'. We subsequently built on that work by developing the
iEL/0-SCF method that eliminates the SCF iterations for the classical polarizable induced dipoles
altogether.*®* The iEL/0-SCF method gives excellent results that match the standard SCF solution
and thus physical properties for water, dilute to concentrated salt solutions, and large solvated proteins
for polarization models that use induced point dipoles*® as well as Drude particles*® and fluctuating
charges®, all of which have been implemented in TINKER>2. This work therefore reduced the cost
of full mutual polarization to the two-body cost of just the chosen level of pairwise permanent
electrostatics.*®

Tuckerman and colleagues have developed a numerical integration scheme for molecular
dynamics that allows use of very large time steps*’- 33-5° that would otherwise be unstable within
standard integration approaches such as velocity Verlet. The stochastic-isokinetic integration (SII)
algorithm works by constraining the amount of kinetic energy in each degree of freedom in a
simulation so that unphysical flow of energy between fast and slow modes, known as resonance, is
prevented. By combining SII with the reversible reference system propagator algorithm (RESPA)
method®¢, which integrates fast and slow modes on different time scales, the resulting SIN(R) method
is able to integrate the equations of motion stably with much longer time steps to increase the

computational efficiency.*’- -3 The SIN(R) method was recently applied to the integration of the



equations of motion for the classical polarizable model AMOEBA, which used the standard SCF
solution for the induced dipoles.*’

In this work, we combine iEL/0-SCF, which removes the inefficiency of solving the SCF
calculation at each time step, with SIN(R), which removes resonance effects in any integrator applied
to either a standard SCF or an iEL/O-SCF solution for polarization. We consider the tradeoffs of
accuracy and computational speed-ups for different SII-RESPA schemes that place different
components of the forces into different timescales for increased computational benefits. We also
consider the case where individual forces are split between timescales, also known as force splitting,
to further increase accuracy and computational performance. Using the two approaches together, we
show that we can further increase the efficiency and acceleration of molecular dynamics simulations
using polarizable force fields, not only for water but also for more complicated systems for which
polarization is important, such as concentrated salt solutions, aqueous zwitterionic peptides, and large

solvated protein systems.

THEORY
We briefly review the iEL/0-SCF*® and SIN(R)*” >33* approaches and present the modifications
necessary for these methods to be combined.
iEL/0-SCF'. The iEL/0-SCF method for induced dipoles, p, performs a polarization calculation
by introducing a set of auxiliary induced dipoles a which are driven dynamically by an equation of
motion (Eq. 1a) along with the atomic degrees of freedom, r (Eq. 1b)
a; = w’y(u; — a;) (la)

B dUu(r,a)

m;r; = dar-
L

(1b)

a

where 1;, u; and a; are the position, induced dipole, and associated auxiliary induced dipole, of the
i-th atom. Eq. (1a) drives the auxiliary dipoles according to a harmonic potential that seeks to keep
the auxiliaries close to a ground state solution, where w is the frequency of the harmonic potential
and is set to its maximum stable value for velocity Verlet integration V2/At where At is the
simulation time step.’” y is a tunable parameter that comes from estimating a ground state SCF
solution from a simple linear mixing of real and auxiliary dipoles as discussed in previous work*s,
Bscri = Yii+ (1 — y)a (1c)
v is set to 0.9 for all test systems, although we examine its behavior for the large protein system. To

be clear Eq. (1c) is not used for the calculation of the true polarization energy and forces, but only



applies to the derivation of the auxiliary equation of motion (Eq. (1a)). We couple the integration of
the auxiliary dipoles to an auxiliary thermostat such that the auxiliary pseudo temperature, Ty, =
1/3(a?), is controlled to a set point as described previously*S.

Eq. (1b) is the familiar Newtonian equation of motion for the atom positions evolving under

the potential, U(r, a)
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where U°"¢" (r) can include bonds, angles, van der Waals, and permanent electrostatic terms, and
UP°lar (r, a) is a general form of the polarization potential that does not assume an SCF solution; in
Eq. (2) E; = X,;T;;M; is the permanent electrostatic field due to the permanent moments in the
system, M;, interacting through the full interaction tensor, T;; between the i and j* sites, a; is the

polarizability of the i-th atom, while T;; is the induced dipole-induced dipole interaction matrix

between sites i and j, and C;; = aj_l&-j — T’l-j. From Eq. (2a), the polarization potential is solved for
the real dipoles using Eq. (2b), i.e. a single update needed to define the real dipoles at each time step.

Stochastic-Isokinetic Integration. SII constrains the total kinetic energy in each degree of
freedom to be a fixed quantity that can then transfer between the real degrees of freedom and the

thermostat variables. The equations of motion under the isokinetic scheme are given in Eq. (3)*.

dr; o, = Vi qdt a€Exyz (3a)
Fiq(r)
dviq = [M00 = Ligvi | dt (3b)

Where 17, is the a component of the i-th atom’s position and v;, and F; ,(r) are the associated
velocity and force, respectively, and m; is the mass. The Lagrange multiplier for each degree of

freedom, 4, , is introduced to enforce an isokinetic constraint between the physical velocity v;. and a

(k)

stochastic Nosé-Hoover (NH) thermostat®® employing two additional sets of velocities Ve and
vé’? o> k=1,...,L is the number of stochastic NH thermostats per degree of freedom. The stochastic

NH equations of motion are

dv® = 1, p® gt —p® ,® 4p (4a)
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dvl® = i 1'““Q)2 T dt —y5vd? dt + odw (4b)

where a friction term with friction constant ysi is employed, and 01 and Q> are mass parameters with

associated time scales 71 and 7, via the usual expressions Qi = kgT7i2. The last term in Eq. (4b) is a
stochastic Ornstein-Uhlenbeck (OU) process dwi(,];) to ensure ergodicity, where 0 = \/kgTys;/Q>.

Egs. (4a) and (4b) are coupled to the physical velocity v;, via the a kinetic energy constraint of the

form

mivk, + z Q™ )2 = LksT (5)

From this constraint condition, an analytical expression for the Lagrange multiplier 4;, is derived by
differentiating Eq. (5) with respect to time, substituting in Eqgs. (3b) and (4a) for the time
derivatives, and solving for the multiplier. The resulting expression is

L k k

1 = ViaFia(r) — m2i=1 Q1 (vi,i,)a )ng,i,)a ©)
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Eq. (6) is then substituted back into the equations of motion to obtain the full set of SII equations.
Combining iEL/0-SCF and SII. When combining iEL/0-SCF with SII, the evolution of the
auxiliary induced dipoles needs to be formulated in a manner similar to Eq. (3) to yield Eq. (7)
da;, = vj,dt (7a)
dvi, = [sz(lli,a — Qi) — A?,avi,a]dt (7b)
where we have used the force due to the harmonic potential, and using analogous constraint equations
using the analytical expression for the Lagrange multiplier given by Eq. (8).
R Tk, R, e,
(V) + g Ty Q1 0759, 7 ®

With the Lagrange multiplier, the pseudo isokinetic constraint for each auxiliary degree of freedom

is given by Eq. (9)

2
(vic.la) +— L + 1 z Ql (vagﬁ?a' )2 = LTaux (9)

which couples the auxiliary dipoles to an associated set of stochastic NH thermostat variables that

evolve according to



dva(k) _ —A?Ua(k) dt — a(k) a(k)a,dt (10a)

Lia = Lia Vo 2,iaV 1,
a,,(®) z_ T (10b)
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Again, for each i, ¢ auxiliary degree of freedom, we have introduced L thermostat velocities v“g{?a
a(®) a(®)

and v%,;,, with k running from 1 to L. The first set, v (Eq. 10a), couple to the isokinetic

1,i,a
constraint, and the second set couple to a driving force between the actual and set point auxiliary

temperature Ty, a friction term, and an OU stochastic process. Here Q% = Ty, (7%)? and Q% =

Toux (T$)%, y& controls the friction, and 0 = /T, V& /Q-.

Multiple Time Stepping. SlI eliminates unphysical energy flow between fast and slow modes.
To take full advantage of the SII approach, it is combined with a multiple time-scale RESPA
integration*’, where different components of the force field are integrated with different time steps>®.
More specifically, all of the bonded forces F are evaluated at the shortest time step of At,, and the
non-bonded interactions are then partitioned between a single longer time step, or further partitioned
into an intermediate timescale integrated at a time step of A¢t,,,, and a longer (outer) time scale with a
time step of At, with corresponding forces F,, and F;, respectively. The longer time scale time step
must be an integer multiple of the shorter time step(s), that is At = mAt,,, = msAt, for integers m
and s. Tuckerman and co-workers refer to this resulting algorithm as the Stochastic Isokinetic Nosé-
Hoover (RESPA) or SIN(R) scheme, which can involve two time steps (4t and At) or three time
steps (4t, At,,, and At), both of which we consider in the results section.

The three non-bonded interactions for AMOEBA, polarization - including both real and
auxiliary dipoles- as well as permanent electrostatics and van der Waals interactions, are placed in
the intermediate and/or long time scales in various combinations to determine optimum efficiency
and accuracy, as discussed in the Results section. We first consider the case of partitioning individual
but complete nonbonded forces into a long timescale using a 2-step SIN(R). The second case
considers the splitting of the individual non-bonded forces into short-ranged and long-ranged
components using a spatial cutoff, which are evaluated at At,, and At, respectively under a 3-step
SIN(R). In order to smooth the split forces at the boundary, the following switching function between
sites, S;;, is used

1 T ST, — A

Sij(rijite A) =495 (rj;7eA)  rm—A<r<rm, (11a)
0 r=21



g(rijire, A) = 1+ uj;(15u;; — 6uf; — 10) (11b)

uij :%(Tij—rc'f‘ﬂ) (110)

where 7;; is the distance between the /™ and ;™ sites, 7, is the cutoff distance between short and long
range, and A is the healing length over which the switch is applied. The van der Waals forces can be
split straightforwardly into short- and long-ranged components using equation (11) with an 7, = 7.5
A and 1 = 0.5 A. For the electrostatic and polarization interactions, which are calculated using the
particle-mesh Ewald method>?, their real space contributions are split into short and long range forces
with the applied cutoff .= 5.0 A and A = 0.5 A, while the reciprocal space contributions for the
permanent and induced multipole and induced dipole interactions fall entirely into the long range
forces.

For the many-body polarization, the full force is calculated at the outer time step and then the
short-range contribution is subtracted to give the resulting long-range contribution. In order to
maintain stability with large outer time steps, a full SCF polarization calculation is done at the outer
time step and iEL/0O-SCF is used to treat the short-range real space polarization forces only. While
this does introduce SCF iterations into our method, it becomes a negligible amount for large outer
time steps for which updates occur much less frequently. Therefore the auxiliary dipoles only
represent short-range interactions, agsg, and create short-range real dipoles according to psg =
aEsg + aT'agg. For completeness, Eq. (12) is the short-range polarization gradient of the iEL/0-SCF

method which accounts for the switching operator in Eq. (11).
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where the permanent electrostatic field at site ith due to other sites within 7, of i is Egz.The d and p
superscripts denote d- and p-scaling of the electrostatic and polarization terms to account for excluded
bonded interactions which depend on the polarization group (d) and the bond separation (p), as has
been described elsewhere!®.

Simulation Details. The combined iEL/0-SCF and SIN(R) methodology was applied to test
systems of 512 water molecules, a highly concentrated 4.66 M MgCl; solution, a zwitterionic glycine
molecule solvated with 256 water molecules, and the dihydrofolate reductase (DHFR) protein in
water. The water, salt, and proteins test cases used the latest AMOEBA force field
parameterizations®®-¢!; the glycine system used a recent reparameterization of the AMOEBA force
field in its zwitterionic state.> For the systems in which individual forces are not split across
timescales, the simulation conditions were as follows. All electrostatics were treated via particle-mesh
Ewald summation® with a real space cutoff of 7.0 A. For the scheme employing force splitting, the
overall cutoff for real space electrostatic and polarization forces and the van der Waals force was 10.4
A. The atomic system set point temperature 7 was 298.0 K and the auxiliary set point pseudo
temperature was 5.3 e?’A%/ps>.

For the auxiliary SIN(R), we found that the best auxiliary thermostat time scale parameters
were 0.1 ps and 0.001 ps for ¢ and 75, respectively. The auxiliary integration also used a friction
parameter, y&, of 100.0 ps™!. For the atomic integration a value of 0.1 ps was used for 7, and 7, and
a value of 0.01 ps! for yg;. Atomic and auxiliary integrations used either L = 1 or L = 4 stochastic
Nosé-Hoover thermostats, and the thermostat equations of motion were integrated with a 3™-order
Suzuki-Yoshida decomposition and time step reduced by a factor nc=5 4-%4; when the stochastic NH
thermostat is applied at the intermediate time step, the resulting is scheme is termed XM-SIN(R), and
in this case, we investigate both L = 1 and L = 4; when it is applied at the outer time step, the scheme
is termed XO-SIN(R), and in this case, we use L = 4. We integrate with XM-SIN(R) when we use
force splitting and XO-SIN(R) otherwise. In either case while the values of the intermediate and
outer time steps are varied for analysis purposes, the shortest timescale time step was fixed at At =
0.25 fs for L =4 and At,= 0.5 fs for L = 1. Simulations that do not use SII integration for comparison
purposes instead employ the velocity Verlet integrator®® and standard Nosé-Hoover chain thermostats

166

for temperature control® in the canonical ensemble.

RESULTS



Figure 1 summarizes the polarization properties collected from bulk water using a standard SCF and
iEL/0-SCF, both integrated with velocity Verlet (henceforth referred to as the reference or standard
method), as well as our new scheme that combines iEL/0-SCF with SII using a single 1 fs time step.
It is clear that the equilibrium induced dipole distributions match well between the methods for water
oxygen and water hydrogen (Fig. 1a and 1b), and thus the system potential energy is well reproduced
(Table 1). The induced dipole time autocorrelations for both water atom types under the SII scheme
exhibit deviations from the reference, and the diffusion constants are found to be too slow by a factor

of ~5.
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Figure 1. Comparison of standard SCF, SCF+SII, and iEL/0-SCF+SII for water. Induced dipole
probability distributions for (a) water oxygen, (b) water hydrogen, (c¢) water induced dipole
autocorrelations. All simulations were performed with a 1.0 fs time step and at a temperature of 298.0
K. The x-, y-, and z-components correspond to internal molecular axes (see ! for details).

This is not surprising since SII is only canonical in positions but not velocities>*, so one can
expect deviations in dynamical properties, placing it within the same class of thermodynamic methods
such as Monte Carlo, Replica Exchange calculations, or the use of Langevin or Anderson thermostats.

For the first time, we present the formulation and results of SII for many-body polarization for systems



other than water, including a 4.66 M MgCl, salt solution and a solvated zwitterionic glycine peptide
(and later we show results for a protein in water). We find that the iEL/0-SCF and SII combination
yields excellent results for the concentrated 4.66 M MgCl; salt solutions, as given in Table 1 and Fig.
S1. We find more disagreement using SII for the detailed polarization properties for certain atoms of
the glycine peptide (Fig. S2), but they are relatively small and the resulting potential energy for the
aqueous peptide solution is within the uncertainties of the standard iEL/0-SCF solution (Table 1).

Table 1. The average total potential energy of bulk water, a concentrated salt solution, and a solvated
glycine peptide as calculated from the different methods evaluated in this work. The iEL/0-SCF
method is used as the reference calculation in all reported figures given its excellent agreement with
a standard SCF solver. The remaining entries are combining iEL/0-SCF with SII using different

RESPA schemes integrated with XO-SIN(R) and XM-SIN(R), with and without force splitting, and
using different intermediate A¢,, and outer time steps At.

Potential energy <U> (kcal/mol)

Method Water 4.66 M MgCl, Glycine

Standard SCF -4621.9 +/- 40.7 -43188 +/-48  -2431.7 +/- 30.3
iEL/0-SCF -4604.6 +/- 42.0 -43175 +/-51  -2424.7 +/- 30.4
iEL/0-SCF + SII (4t = At,, = At =1.0 f5) -4648.8 +/-41.9 -43108 +/- 55 -2443.3 +/- 30.0
iEL/0-SCF + XO-SIN(R) (L = 4, At,,, = At = 6.0 fs) -4399.0 +/- 55.4 -42876 +/- 64  -2315.9 +/-39.4
iEL/0-SCF + XM-SIN(R) (split, L = 4, At,, = 3.0 fs, At =90.0 fs)  -4483.9 +/-45.4 - -

iEL/0-SCF + XM-SIN(R) (split, L =1, At,, = 3.0 fs, At =90.0 fs)  -4577.1 +/- 44.0 -43108 +/-55  -2163.7 +/- 42.0
iEL/0-SCF + XM-SIN(R) (split, L = 1, At,, = 5.0 fs, At =90.0 fs)  -4491.0 +/- 44.2 -4300.9 +/- 57 -

iEL/0-SCF + XM-SIN(R) (split, L =1, At,, = 3.0 fs, At = 18.0 fs)  -4643.0 +/-39.9 - -2439.6 +/-30.4
iEL/0-SCF + XM-SIN(R) (split, L = 1, At,,, = 5.0 fs, At = 10.0 fs) - - -2410.0 +/- 30.0
iEL/0-SCF + XM-SIN(R) (L =1, At,, = At = 6.0 fs) -4525.5 +/-41.4 -43060 +/-47  -2382.5+/-30.3
iEL/0-SCF + XM-SIN(R) (L =1, At,,, = At =8.0 f5) -4328.9 +/-43.8 -42795 +/- 55 -2285.0 +/- 31.8

Ultimately, the purpose of using SII is to eliminate resonances between fast and slow modes,
which in turn empowers SII when combining it with RESPA to separate and maximize the integration
timestep of the more expensive but more slowly varying non-bonded forces, leading to a significant
savings in computational time within the SIN(R) approach. The actual integration performed with
SIN(R) involves a choice as to whether to apply the NH thermostats at the outer time step (XO-
SIN(R)), which requires more (L=4) thermostat variables versus application of the NH thermostats at
an intermediate time step (XM-SIN(R)), or inner most time step (XI-SIN(R)), which we show requires
only L =1 set of thermostat variables on each degree of freedom.

We first consider the combination of iEL/0-SCF with a 2-step XO-SIN(R) scheme where the
bonded forces are updated with a time step of Aty = 0.25 fs, while all of the non-bonded forces
(electrostatic, polarization, van der Waals) are then treated at a variable longer time scale time step,
At. Figure 2 tracks the average value of the induced dipole molecular moment, {(j,,;) of water; we

see that the larger time step can be increased to At = 6.0 fs with only a small error in this property.
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Figure 2: Two-step XO-SIN(R)+iEL/0-SCF compared to standard iEL/0-SCF for water. All bonded
forces are in the inner time step (At = 0.25 fs) and all non-bonded forces in the outer time step. (a)
(Umo1) and (b) algorithmic speed-ups relative to iEL/0-SCF as a function of the outer RESPA time
step, At. Probability distributions of the vector components of the induced dipole on (c) oxygen and
(d) hydrogen, and radial distribution functions (e) goo(r) and (f) gou(r) using an outer time step of At
= 6.0 fs. Timings were performed with 16 CPU cores and 10000 water molecules. The x-, y-, and z-
components correspond to internal molecular axes.!”



A computational speed-up of ~2 is achieved relative to standard iEL/0-SCF; the latter is, in turn, ~1.6
times faster than an SCF solution using the preconditioned conjugate gradient solver available in
TINKER 8.1%2. To put this in perspective, typical TINKER timings using standard integrators and
SCF solvers reported for DHFR in water on 16 cpu cores allows for sampling of ~2 ns/day. Thus, we
would expect the sampling time to increase to ~6.8 ns/day with similar accuracy using the combined
2 step XO-SIN(R) and iEL/0-SCF method with the TINKER 8.1 reference code.

When fixing the outer time step to a value of At = 6.0 fs, more sensitive polarization
properties such as the distributions of the vector components of the water dipole show overall good
agreement with only a small degradation relative to iEL/0-SCF and an error in the average potential
energy, <U>, of ~4-5% (Table 1); an insensitive property such as the radial distribution function for
water maintains good agreement with the standard SCF solution under this 2-step XO-SIN(R)
scheme. Furthermore, a single outer time step of At =6 fs for the 2 step XO-SIN(R) is excellent across
all properties for the concentrated MgCl, system (Fig. S3 and Table 1), whereas the solvated glycine
peptide is comparable to the pure water result, with small degradation of the detailed induced dipole
properties and <U>, and little effect on structural properties (Fig. S4 and Table 1).

In order to fully exploit the SIN(R) approach, we next split the individual non-bonded terms
of AMOEBA into their own short- and long-ranged contributions as was done by Margul and
Tuckerman?®’, thereby creating a 3-time step SIN(R) scheme that permits substantially larger outer
time steps. In order to maintain stability, we used the iEL/0-SCF method for all short-ranged
polarization forces at the intermediate time step and perform a full SCF optimization at the outer time
step, as described in Methods. Figure 3a shows how the polarization property ([ y,01) changes with
different combinations of At,, and At using the 3 step XM-SIN(R) with the force splitting scheme
with L = 4. This basic property is well reproduced with At,, = 1 or 3 fs, and for outer time steps
reaching up to ~120 fs; it is evident that for At,,, =5 f5, (L ;no1) accrues more error at any value of the
outer time step.

Overall, we find that the best tradeoff between large outer time step and accuracy using iEL/0-
SCF with the 3-step XM-SIN(R) and force splitting with L = 4 algorithm is At,,, =3 fs and 4t = ~90-
100 fs for liquid water, with good reproduction of the probability distributions of the vector
components of the induced dipole (Figs. 3b and 3c¢), structural metrics such as goo(r) and gon(r) (Figs.
3d and 3e), and an acceptable ~2-3% error in <U> (Table 1). However, the computational speed-up

is no better than a 2-step XO-SIN(R) scheme at any value of the outer time step (Fig. 3f).
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Figure 3: Three-time scale XM-SIN(R)+iEL/0-SCF with L = 4 using force splitting compared to
standard iEL/0-SCF for pure water. (a) (Ilmo1) as a function of the outer time step for various values
of the intermediate time step, 4t,,. Probability distributions of the vector components of the induced
dipole on (b) oxygen and (c) hydrogen, and radial distribution functions (d) goo(r) and (e) gou(r) for
At,, = 3.0 fs and At = 90.0 fs. (f) speed-ups for bulk water as a function of the outer time step for
various values of the intermediate time step, 4t,, measured relative to an iEL/0-SCF single time scale
integration at 1.0 fs. Further details are given in Figure 2.



This is not due to the cost of the full SCF update in the outer time step for long-ranged polarization,
which is performed infrequently but is a result of the high computational overhead associated with
the NH-Langevin thermostats for both the real and auxiliary degrees of freedom when L = 4, as these
are evaluated every 1-3 fs at the intermediate timestep. Hence, efficiency can be gained by reducing
the value of L to 1, which brings with it the added benefit of increased accuracy.

Therefore, we examine an XM-SIN(R) with L = 1 to examine the performance and timings of
a combined iEL/0-SCF and SII method with a reduced number of thermostat variables. Figure 4a
shows how (py,01) changes with different combinations of At,, and At under the 3-step XM-SIN(R)
scheme with L = 1 and force splitting and the corresponding computational speed-ups for water. We
find that there is negligible change in () for all combinations of values of At,, and At, and
intermediate timesteps can be as large as At,,= 5 fs. When fixing At,,, = 3.0 or 5.0 fs and At = 90.0
fs, detailed polarization properties such as the induced dipole vector components, as well as RDFs,
are excellent (Fig. S5), and the more careful integration using XM-SIN(R) improves the <U> error
for water to be within the uncertainties of the standard SCF calculation (Table 1). Under the same
simulation conditions, we find very good agreement with the standard iEL/0-SCF approach for the
concentrated salt solution as well (Fig. S6 and Table 1). Fig. 4b shows that molecular fluids and
solutions can be accurately simulated when iEL/0-SCF is combined with the 3-step XM-SIN(R) and
force splitting to yield speed-ups that are ~4-5 over the standard iEL/0-SCF calculation, and therefore
a factor of ~7-8 relative to a standard SCF solver and Verlet integration in TINKER 8.1.
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Figure 4: Three-time scale XM-SIN(R)+iEL/0-SCF with L = 1 using force splitting compared to
standard iEL/0-SCF for pure water. (a) Accuracy in (l,01) and (b) speed-ups as a function of the
outer time step for various values of the intermediate time step, At,,. Timings used 16 cores and
10,000 water molecule simulations with an inner time step of At; = 0.5 fs.



We also find that the three-time scale XM-SIN(R) and iEL/0-SCF with force splitting method
and an outer time step of 90 fs performs well for the dihydrofolate reductase (DHFR) protein in water;
Figure 5 compares the root mean square deviation between iEL/0-SCF alone and when combined
with the SIN(R) scheme. In our previous iEL/0-SCF study*® we found that the y value of 0.9 (see Eq.
(1)) did not work well for the large protein, requiring us to vary y to a new value of 0.7 or to assign
different y values for protein and water to achieve stability comparable to a standard SCF solution
(Figure 5a). However, when iEL/O-SCF is combined with the SI integration, we reach a far more
satisfactory result that any y variation now performs similarly—thus making it insensitive to the value
of y—and the RMSD plateaus at a significantly lower value than found using Verlet integration
(Figure 5b). Hence we have shown for the first time that SI integration not only allows for much
larger time steps, but it results in a more accurate solution by removing undesired energy partitioning

in solvated protein systems using many-body potentials.
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Figure 5: RMSD of dihydrofolate reductase (DHFR) using different integration schemes. (a) the
standard SCF method and iEL/0-SCF using a single value of y = 0.7 and dual values of ys=0.9 and
vp=0.1 were used for the local kernel definition for solvent and protein (reproduced with permission
from [*]). (b) three-time scale XM-SIN(R)+EL/0-SCF with force splitting using Aty = 0.5, At,, =
3.0 fs, and At = 90.0 fs with L = 1 thermostat variables along with several variations y values.

However, from a much more detailed analysis we find that the 90 fs outer time step does
degrade the accuracy of the polarization properties, shown for the glycine peptide system in Figure 6
and Figure S7, and <U> is in error in excess of 10% (Table 1). We note that previous work using
SIN(R) for small solvated peptides™ or large gas phase biomolecules>, showed little changed in

accuracy over a wide range in time steps compared to standard integration methods when using



simpler fixed charge force fields. This discrepancy with smaller outer timesteps is not due to iEL/0-
SCF but is due to the complexity of the AMOEBA model, in particular a combination of higher order
poles, geometric flexibility, and intramolecular polarization, that reduces the allowed time steps due
to rapid variations in force at the short-ranged; these more complex features are not part of the simpler

fixed charge force fields.
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Figure 6: 3-step XM-SIN(R)+ iEL/0-SCF with L = I using force splitting relative to standard iEL/0-
SCF for glycine in water. All bonded forces use Aty = 0.5 fs and non-bonded forces split into short-
ranged and long-ranged evaluated at At,, = 3.0 fs At =90.0 fs, respectively. Probability distributions
for the induced dipole vector components of the backbone for (a) N and (b) Ca. Radial distribution
functions for water interacting with for (c¢) N and (d) Ca. Data was collected from 5.0 ns simulations.

To illustrate the consequences, we have previously shown that with our standard iEL/0-SCF
method we can take 6-7 fs timesteps using a simple Drude model for water, PSPC, which is rigid and
uses point charges and Drude particle on heavy atoms only*¥, whereas we could not go beyond ~1-2

fs timesteps for the corresponding evaluation with the AMOEBA water model. Like the iEL/0-SCF



method, the SIN(R) outer time step will also be dependent on the underlying force field. We find that
<U> values improve substantially for the peptide system if we reduce the outer time step to 18 fs, as
seen in Table 1 and for properties as reported in Fig. S8; changing the intermediate time step to
At,,, =5 fs and outer time step to At = 10 fs also yields good results. Although both variations reduce
the speed-up by half (see Fig. 4b) for bonded systems such as peptides and proteins in the present
Tinker 8.1 implementation, it is nonetheless a computational win for the combined iEL/0-SCF and
SIN(R) methods.

Since the size of the intermediate time step ultimately controls the computational gains, we
return to the simpler non-bonded force decomposition that uses no force splitting, but this time, we
employ the XM-SIN(R) with L =1 for the water, 4.66 M MgCl,, and the aqueous glycine systems.
Figure 7a shows how (p,1) for water changes with At under the 2-step XM-SIN(R) scheme. Very
acceptable levels of accuracy in properties is evident at At = 6 fs for water (Figs. S9) and the
concentrated salt solution (Fig. S10), while accuracy degrades noticeably using the larger 8 fs time
step, evident from the <U> values reported in Table 1. Although the 3-step XM-SIN(R) integration
with force splitting provides a faster simulation for water (Fig. 4b), the simpler 2-step XM-SIN(R)
integration still yields speed-ups of close to a factor of ~4 relative to iEL/0-SCF, or a factor of ~6

relative to a standard SCF solver (Figure 7b) in Tinker 8.1.

() (b)

5 ‘ 2.9
PE ]
4 5l 2.85
g3 e } +
Fc /. /‘\_‘ =~ -
827 /r/ g 2 8 {\\\
v -~ .ol
: 275 }
0 ‘ ‘ ‘ ‘ 2.7 |
0 2 4 6 8 10 0 2 4 6 8 10
At (fs) At (fs)

Figure 7: Accuracy and improvements in computational costs with a 2 step XM-SIN(R) with L = 1
using no force splitting and iEL/0-SCF relative to standard iEL/0-SCF for pure water. () (llymo)) and
(b) speed-ups, as a function of the outer time step. Timings used 16 cores and 10,000 water molecule
simulations. All data referenced to an iEL/0-SCF single time scale integration at 1.0 fs.



The primary benefit of the simpler 2-step XM-SIN(R) is that it is more accurate than the 3-
step XM-SIN(R) for the glycine peptide (comparing Figs. 6 and 8 and Figs. S7 and S11) and hence
for general protein systems. Furthermore the 2-step XM-SIN(R) with the L = 1 algorithm at At =6 fs
has computational efficiency that is nearly as good as the 3-step XM-SIN(R) with force splitting using
At,, = 3.0 fs and At = 18.0 fs, with a speed-up relative to a standard SCF solution of 6X in the

present Tinker 8.1 implementation.
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Figure 8: 2-step XM-SIN(R) and iEL/0-SCF with L = I relative to standard iEL/0-SCF for glycine in
water. All bonded forces are evaluated at Aty = 0.5 fs, and all non-bonded forces are evaluated at At
= 6.0 fs. Probability distributions for the induced dipole vector components of the backbone (a) N and
(b) Ca. Radial distribution functions for water interacting with backbone (c¢) N and (d) Ca. Data was
collected from 5.0 ns simulations.

CONCLUSION

48-49

In this work we have combined an SCF-less solution to classical polarization**** with an integration

scheme that eliminates the resonances that inhibit long integration time steps*”> 333 to increase



computational efficiency for condensed phase systems including water, salt solutions, and more
complicated bonded systems such as peptides and proteins. We achieve excellent accuracy when
iEL/0-SCF is combined with the XM-SIN(R) stochastic isokinetic integration algorithm, that
classifies forces into bonded (evaluated at 0.5 fs) and nonbonded components (evaluated at 6.0 fs)
with L = 1 thermostat variables, with very good computational speed-ups ~6X compared to a
conventional AMOEBA calculation in Tinker 8.1 for all systems investigated here, including water,
4.66M MgCl> solution, a zwitterionic glycine peptide, and DHFR protein in water. Greater
computational efficiencies for water and the concentrated salt solution can be found using the same
XM-SIN(R) approach, by further splitting the non-bonded forces into a short-ranged component
evaluated at an intermediate time scale of 3-5 fs, and a long-ranged and more smoothly varying force
evaluated at ~90-100 fs, to give speed-ups close to a factor of ~8X. In both cases, better optimized
code could improve the performance over what could be achieved in the comparisons done here using
the TINKER 8.1 software release>?. We will reserve such a comparison for future work. In summary,
the iEL/0-SCF and XM-SIN(R) combination can achieve both accuracy and meaningful speed-ups
that represent a significant advance for equilibrium simulations in the canonical ensemble for many-

body potential energy surfaces.
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