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In order to accelerate molecular dynamics simulations using polarizable force fields, we combine a 

new extended Lagrangian approach that eliminates the self-consistent field step (iEL/0-SCF) with a 

stochastic integration scheme that allows for a long time step using a multi-time stepping algorithm 

(SIN(R)). We consider different algorithms for the combined scheme that places different 

components of the non-bonded forces into different timescales, as well as splitting individual non-

bonded forces across timescales, to demonstrate that the combined method works well for bulk water 

as well as for a concentrated salt solution, aqueous peptide, and solvated protein. Depending on 

system and desired accuracy, the iEL/0-SCF and SIN(R) combination yields lower bound 

computational speed-ups of ~6-8 relative to a molecular dynamics Verlet integration using a standard 

SCF solver implemented in the reference program TINKER 8.1. The combined approach embodies a 

significant advance for equilibrium simulations in the canonical ensemble of many-body potential 

energy surfaces for condensed phase systems with speed-ups that exceed what is possible by either 

method alone. 
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INTRODUCTION 

Over the last 50 years molecular simulation has relied on the most tractable classical model for 

condensed phase simulation which assumes pairwise additivity of molecular interactions.1 However, 

pairwise additivity breaks down when one considers “asymmetric environments”2 such as the 

heterogeneity of solutions and interfaces3-4, electric fields in protein active sites5-6, environments used 

to compute hydration free energies of amino acid analogues7-9, solvation structures around peptides10-

11, and structural ensembles for intrinsically disordered proteins12. This has led to the development of 

more advanced force fields13 that include many-body effects such as polarizability14-45. In order to 

gain the full advantage of these advanced potential energy surfaces, better algorithms46-49 and 

software implementations50 must be developed so as to lower the barrier for their use for large 

molecular systems simulated on long timescales.  

 Recently we introduced the iEL/SCF method to classical polarization that reduces the number 

of SCF iterations by dynamically integrating a set of auxiliary dipoles that serve as a time-reversible 

initial guess for the SCF solver for classical polarization46, and extended its use for Born-

Oppenheimer molecular dynamics (BOMD)51. We subsequently built on that work by developing the 

iEL/0-SCF method that eliminates the SCF iterations for the classical polarizable induced dipoles 

altogether.48-49 The iEL/0-SCF method gives excellent results that match the standard SCF solution 

and thus physical properties for water, dilute to concentrated salt solutions, and large solvated proteins 

for polarization models that use induced point dipoles48 as well as Drude particles48 and fluctuating 

charges49, all of which have been implemented in TINKER52. This work therefore reduced the cost 

of full mutual polarization to the two-body cost of just the chosen level of pairwise permanent 

electrostatics.48  

 Tuckerman and colleagues have developed a numerical integration scheme for molecular 

dynamics that allows use of very large time steps47, 53-55 that would otherwise be unstable within 

standard integration approaches such as velocity Verlet. The stochastic-isokinetic integration (SII) 

algorithm works by constraining the amount of kinetic energy in each degree of freedom in a 

simulation so that unphysical flow of energy between fast and slow modes, known as resonance, is 

prevented. By combining SII with the reversible reference system propagator algorithm (RESPA) 

method56, which integrates fast and slow modes on different time scales, the resulting SIN(R) method 

is able to integrate the equations of motion stably with much longer time steps to increase the 

computational efficiency.47, 53-54 The SIN(R) method was recently applied to the integration of the 



equations of motion for the classical polarizable model AMOEBA, which used the standard SCF 

solution for the induced dipoles.47 

 In this work, we combine iEL/0-SCF, which removes the inefficiency of solving the SCF 

calculation at each time step, with SIN(R), which removes resonance effects in any integrator applied 

to either a standard SCF or an iEL/0-SCF solution for polarization. We consider the tradeoffs of 

accuracy and computational speed-ups for different SII-RESPA schemes that place different 

components of the forces into different timescales for increased computational benefits. We also 

consider the case where individual forces are split between timescales, also known as force splitting, 

to further increase accuracy and computational performance. Using the two approaches together, we 

show that we can further increase the efficiency and acceleration of molecular dynamics simulations 

using polarizable force fields, not only for water but also for more complicated systems for which 

polarization is important, such as concentrated salt solutions, aqueous zwitterionic peptides, and large 

solvated protein systems. 

THEORY 

We briefly review the iEL/0-SCF48 and SIN(R)47, 53-54 approaches and present the modifications 

necessary for these methods to be combined. 

 iEL/0-SCF. The iEL/0-SCF method for induced dipoles, 𝝁, performs a polarization calculation 

by introducing a set of auxiliary induced dipoles 𝒂 which are driven dynamically by an equation of 

motion (Eq. 1a) along with the atomic degrees of freedom, 𝒓 (Eq. 1b) 

𝒂̈% = 𝜔(𝛾(𝝁% − 𝒂%) (1a) 

𝑚%𝒓̈% = 	−
𝑑𝑈(𝒓, 𝒂)
𝑑𝒓%

2
𝒂
 (1b) 

where 𝒓%, 𝝁% and 𝒂% are the position, induced dipole, and associated auxiliary induced dipole, of the 

i-th atom. Eq. (1a) drives the auxiliary dipoles according to a harmonic potential that seeks to keep 

the auxiliaries close to a ground state solution, where 𝜔 is the frequency of the harmonic potential 

and is set to its maximum stable value for velocity Verlet integration √2/𝛥𝑡 where 𝛥𝑡 is the 

simulation time step.57 𝛾 is a tunable parameter that comes from estimating a ground state SCF 

solution from a simple linear mixing of real and auxiliary dipoles as discussed in previous work48. 

𝝁89:,% 	≈ 	𝛾𝝁% + (1 − 	𝛾)𝒂%                                                              (1c) 

γ is set to 0.9 for all test systems, although we examine its behavior for the large protein system. To 

be clear Eq. (1c) is not used for the calculation of the true polarization energy and forces, but only 



applies to the derivation of the auxiliary equation of motion (Eq. (1a)). We couple the integration of 

the auxiliary dipoles to an auxiliary thermostat such that the auxiliary pseudo temperature, 𝑇?@A =

1/3〈𝒂̇%(〉, is controlled to a set point as described previously48. 

 Eq. (1b) is the familiar Newtonian equation of motion for the atom positions evolving under 

the potential, 𝑈(𝒓, 𝒂) 

𝑈(𝒓, 𝒂) = 𝑈FGHIJ(𝒓) + 𝑈KFL?J(𝒓, 𝒂) = 	𝑈FGHIJ(𝒓) +
1
2
MM𝝁%N𝑪%P𝝁P

Q
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%RS

−M𝝁%N𝑬%
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%RS

 (2a) 

𝝁% = 𝛼%𝑬% + 𝛼%M𝑻%PW 𝒂P

Q

PRS

						 (2b) 

where 𝑈FGHIJ(𝒓) can include bonds, angles, van der Waals, and permanent electrostatic terms, and 

𝑈KFL?J(𝒓, 𝒂) is a general form of the polarization potential that does not assume an SCF solution; in 

Eq. (2) 𝑬% = ∑ 𝑻%P𝑴P𝒋  is the permanent electrostatic field due to the permanent moments in the 

system, 𝑴%, interacting through the full interaction tensor, 𝑻%P between the ith and jth sites, 𝛼% is the 

polarizability of the i-th atom, while 𝑻%PW  is the induced dipole-induced dipole interaction matrix 

between sites i and j, and 𝑪%P = 𝛼𝑗−1𝛿𝑖𝑗 − 𝑻𝑖𝑗
′ . From Eq. (2a), the polarization potential is solved for 

the real dipoles using Eq. (2b), i.e. a single update needed to define the real dipoles at each time step. 

 Stochastic-Isokinetic Integration. SII constrains the total kinetic energy in each degree of 

freedom to be a fixed quantity that can then transfer between the real degrees of freedom and the 

thermostat variables. The equations of motion under the isokinetic scheme are given in Eq. (3)47. 

																																																								𝑑𝑟%,` = 𝑣%,`𝑑𝑡								𝛼 ∈ 𝑥, 𝑦, 𝑧  (3a) 

																																																							𝑑𝑣%,` = f:g,h(𝒓)
ig

− 𝜆%,`𝑣%,`k 𝑑𝑡  (3b) 

Where 𝑟%,` is the 𝛼 component of the i-th atom’s position and 𝑣%,` and 𝐹%,`(𝒓) are the associated 

velocity and force, respectively, and 𝑚% is the mass. The Lagrange multiplier for each degree of 

freedom, 𝜆%,` is introduced to enforce an isokinetic constraint between the physical velocity vi,α and a 

stochastic Nosé-Hoover (NH) thermostat58 employing two additional sets of velocities 𝑣S,%,`
(m)  and 

𝑣(,%	,`
(m) , k = 1,…,L is the number of stochastic NH thermostats per degree of freedom. The stochastic 

NH equations of motion are 

𝑑𝑣S,%,`
(m) = −𝜆%,`𝑣S,%,`

(m) 𝑑𝑡 − 𝑣(,%,`
(m) 𝑣S,%,`

(m) 𝑑𝑡 (4a) 



𝑑𝑣(,%,`
(m) =

𝑄S(𝑣S,%,`	
(m) )( − 𝑘p𝑇
𝑄(

𝑑𝑡 − 𝛾8q𝑣(,%	,`
(m) 𝑑𝑡 + 𝜎𝑑𝑤%,`

(m) (4b) 

where a friction term with friction constant γSI is employed, and Q1 and Q2 are mass parameters with 

associated time scales τ1 and 𝜏( via the usual expressions Qi = kBTτi2. The last term in Eq. (4b) is a 

stochastic Ornstein-Uhlenbeck (OU) process 𝑑𝑤%,`
(m) to ensure ergodicity, where 𝜎 = u𝑘p𝑇𝛾8q/𝑄(. 

Eqs. (4a) and (4b) are coupled to the physical velocity vi,α via the a kinetic energy constraint of the 

form 

𝑚%𝑣%,`( +
𝐿

𝐿 + 1M𝑄S(𝑣S,%,`	
(m) )(

w

mRS

= 𝐿𝑘p𝑇 (5) 

From this constraint condition, an analytical expression for the Lagrange multiplier λi,α is derived by 

differentiating Eq. (5) with respect to time, substituting in Eqs. (3b) and (4a) for the time 

derivatives, and solving for the multiplier. The resulting expression is 

𝜆%,` =
𝑣%,`𝐹%,`(𝒓) −

𝐿
𝐿 + 1∑ 𝑄S(𝑣S,%,`	

(m) )(𝑣(,%,`
(m)w

mRS

𝑚%𝑣%,`( + 𝐿
𝐿 + 1∑ 𝑄S(𝑣S,%,`	

(m) )(w
mRS

 (6) 

Eq. (6) is then substituted back into the equations of motion to obtain the full set of SII equations. 

Combining iEL/0-SCF and SII. When combining iEL/0-SCF with SII, the evolution of the 

auxiliary induced dipoles needs to be formulated in a manner similar to Eq. (3) to yield Eq. (7) 

𝑑𝑎%,` = 𝑣%,`? 𝑑𝑡 (7a) 

𝑑𝑣%,`? = y𝛾𝜔((𝜇%,` − 𝑎%,`) − 𝜆%,`? 𝑣%,`{𝑑𝑡 (7b) 

where we have used the force due to the harmonic potential, and using analogous constraint equations 

using the analytical expression for the Lagrange multiplier given by Eq. (8).  

𝜆%,`? =
𝑣%,`? 𝛾𝜔((𝜇%,` − 𝑎%,`) −

𝐿
𝐿 + 1∑ 𝑄S?(𝑣?S,%,`	

(m) )(𝑣?(,%,`
(m)w

mRS

|𝑣%,`? }
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𝐿 + 1∑ 𝑄S(𝑣?S,%,`	
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(8) 

With the Lagrange multiplier, the pseudo isokinetic constraint for each auxiliary degree of freedom 

is given by Eq. (9) 

|𝑣%,`? }
( 	+

𝐿
𝐿 + 1M𝑄S?(𝑣?S,%,`	

(m) )(
w

mRS

= 𝐿𝑇?@A 
 

(9) 

which couples the auxiliary dipoles to an associated set of stochastic NH thermostat variables that 

evolve according to 



𝑑𝑣?S,%,`
(m) = −𝜆%?𝑣?S,%,`

(m) 𝑑𝑡 − 𝑣?(,%,`
(m) 𝑣?S,%,`

(m) 𝑑𝑡 (10a) 

𝑑𝑣?(,%,`
(m) =

𝑄S?𝑣S,%,`	
(m) (

− 𝑇?@A
𝑄(?

𝑑𝑡 − 𝛾8q? 𝑣?(,%,`	
(m) 𝑑𝑡 + 𝜎𝑑𝑤?

%,`
(m) 

(10b) 

Again, for each 𝑖, 𝛼 auxiliary degree of freedom, we have introduced L thermostat velocities 𝑣?S,%,`
(m)  

and 𝑣?(,%,`
(m) , with k running from 1 to L. The first set, 𝑣?S,%,`

(m)  (Eq. 10a), couple to the isokinetic 

constraint, and the second set couple to a driving force between the actual and set point auxiliary 

temperature 𝑇?@A, a friction term, and an OU stochastic process. Here 𝑄S? = 𝑇?@A(𝜏S?)( and 𝑄(? =

𝑇?@A(𝜏(?)(, 𝛾8q?  controls the friction, and 𝜎 = u𝑇?@A𝛾8q? /𝑄(.  

 Multiple Time Stepping. SII eliminates unphysical energy flow between fast and slow modes. 

To take full advantage of the SII approach, it is combined with a multiple time-scale RESPA 

integration47, where different components of the force field are integrated with different time steps56. 

More specifically, all of the bonded forces 𝑭 are evaluated at the shortest time step of 𝛥𝑡, and the 

non-bonded interactions are then partitioned between a single longer time step, or further partitioned 

into an intermediate timescale integrated at a time step of 𝛥𝑡i, and a longer (outer) time scale with a 

time step of 𝛥𝑡, with corresponding forces 𝑭i and 𝑭𝒍, respectively. The longer time scale time step 

must be an integer multiple of the shorter time step(s), that is 𝛥𝑡 = 𝑚𝛥𝑡i = 𝑚𝑠𝛥𝑡 for integers 𝑚 

and 𝑠. Tuckerman and co-workers refer to this resulting algorithm as the Stochastic Isokinetic Nosé-

Hoover (RESPA) or SIN(R) scheme, which can involve two time steps (𝛥𝑡 and 𝛥𝑡) or three time 

steps (𝛥𝑡, 𝛥𝑡i,	and 𝛥𝑡), both of which we consider in the results section. 

 The three non-bonded interactions for AMOEBA, polarization - including both real and 

auxiliary dipoles- as well as permanent electrostatics and van der Waals interactions, are placed in 

the intermediate and/or long time scales in various combinations to determine optimum efficiency 

and accuracy, as discussed in the Results section. We first consider the case of partitioning individual 

but complete nonbonded forces into a long timescale using a 2-step SIN(R). The second case 

considers the splitting of the individual non-bonded forces into short-ranged and long-ranged 

components using a spatial cutoff, which are evaluated at 𝛥𝑡i and 𝛥𝑡, respectively under a 3-step 

SIN(R). In order to smooth the split forces at the boundary, the following switching function between 

sites, 𝑆%P, is used 

𝑆%P|𝑟%P; 𝑟Ñ, 𝜆} = Ö
1

𝑔%P|𝑟%P; 𝑟Ñ, 𝜆}
0

						
𝑟%P ≤ 𝑟Ñ − 𝜆

𝑟Ñ − 𝜆 ≤ 𝑟 ≤ 𝑟Ñ
𝑟 ≥ 𝑟Ñ

                (11a) 



𝑔|𝑟%P; 𝑟Ñ, 𝜆} = 1 + 𝑢%Pã (15𝑢%P − 6𝑢%P( − 10)      (11b) 

𝑢%P =
S
é
(𝑟%P − 𝑟Ñ + 𝜆)      (11c) 

where 𝑟%P is the distance between the ith and jth sites, 𝑟Ñ is the cutoff distance between short and long 

range, and λ is the healing length over which the switch is applied. The van der Waals forces can be 

split straightforwardly into short- and long-ranged components using equation (11) with an 𝑟Ñ	= 7.5 

Å and 𝜆 = 0.5 Å. For the electrostatic and polarization interactions, which are calculated using the 

particle-mesh Ewald method59, their real space contributions are split into short and long range forces 

with the applied cutoff 𝑟Ñ= 5.0 Å and 𝜆 = 0.5 Å, while the reciprocal space contributions for the 

permanent and induced multipole and induced dipole interactions fall entirely into the long range 

forces.  

 For the many-body polarization, the full force is calculated at the outer time step and then the 

short-range contribution is subtracted to give the resulting long-range contribution. In order to 

maintain stability with large outer time steps, a full SCF polarization calculation is done at the outer 

time step and iEL/0-SCF is used to treat the short-range real space polarization forces only. While 

this does introduce SCF iterations into our method, it becomes a negligible amount for large outer 

time steps for which updates occur much less frequently. Therefore the auxiliary dipoles only 

represent short-range interactions, 𝒂8è, and create short-range real dipoles according to 𝝁8è =

𝛼𝑬8è + 𝛼𝑻W𝒂8è. For completeness, Eq. (12) is the short-range polarization gradient of the iEL/0-SCF 

method which accounts for the switching operator in Eq. (11). 

𝑑𝑈8è
KFL(𝒓Q, 𝒂Q)
𝑑𝒓%

ê
?ë
= −

1
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K + 

1
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where the permanent electrostatic field at site ith due to other sites within 𝑟Ñ of i is 𝑬8è.The d and p 

superscripts denote d- and p-scaling of the electrostatic and polarization terms to account for excluded 

bonded interactions which depend on the polarization group (d) and the bond separation (p), as has 

been described elsewhere19. 

 Simulation Details. The combined iEL/0-SCF and SIN(R) methodology was applied to test 

systems of 512 water molecules, a highly concentrated 4.66 M MgCl2 solution, a zwitterionic glycine 

molecule solvated with 256 water molecules, and the dihydrofolate reductase (DHFR) protein in 

water. The water, salt, and proteins test cases used the latest AMOEBA force field 

parameterizations60-61; the glycine system used a recent reparameterization of the AMOEBA force 

field in its zwitterionic state.62 For the systems in which individual forces are not split across 

timescales, the simulation conditions were as follows. All electrostatics were treated via particle-mesh 

Ewald summation59 with a real space cutoff of 7.0 Å. For the scheme employing force splitting, the 

overall cutoff for real space electrostatic and polarization forces and the van der Waals force was 10.4 

Å. The atomic system set point temperature T was 298.0 K and the auxiliary set point pseudo 

temperature was 5.3 e2Å2/ps2. 

  For the auxiliary SIN(R), we found that the best auxiliary thermostat time scale parameters 

were 0.1 ps and 0.001 ps for 𝜏S? and 𝜏(?, respectively. The auxiliary integration also used a friction 

parameter, 𝛾8q? , of 100.0 ps-1. For the atomic integration a value of 0.1 ps was used for 𝜏S and 𝜏( and 

a value of 0.01 ps-1 for 𝛾8q. Atomic and auxiliary integrations used either L = 1 or L = 4 stochastic 

Nosé-Hoover thermostats, and the thermostat equations of motion were integrated with a 3rd-order 

Suzuki-Yoshida decomposition and time step reduced by a factor nc=5 63-64; when the stochastic NH 

thermostat is applied at the intermediate time step, the resulting is scheme is termed XM-SIN(R), and 

in this case, we investigate both L = 1 and L = 4; when it is applied at the outer time step, the scheme 

is termed XO-SIN(R), and in this case, we use L = 4. We integrate with XM-SIN(R) when we use 

force splitting and XO-SIN(R) otherwise.  In either case while the values of the intermediate and 

outer time steps are varied for analysis purposes, the shortest timescale time step was fixed at 𝛥𝑡= 

0.25 fs for L = 4 and 𝛥𝑡= 0.5 fs for L = 1. Simulations that do not use SII integration for comparison 

purposes instead employ the velocity Verlet integrator65 and standard Nosé-Hoover chain thermostats 

for temperature control66 in the canonical ensemble.  

 

RESULTS 



Figure 1 summarizes the polarization properties collected from bulk water using a standard SCF and 

iEL/0-SCF, both integrated with velocity Verlet (henceforth referred to as the reference or standard 

method), as well as our new scheme that combines iEL/0-SCF with SII using a single 1 fs time step. 

It is clear that the equilibrium induced dipole distributions match well between the methods for water 

oxygen and water hydrogen (Fig. 1a and 1b), and thus the system potential energy is well reproduced 

(Table 1). The induced dipole time autocorrelations for both water atom types under the SII scheme 

exhibit deviations from the reference, and the diffusion constants are found to be too slow by a factor 

of ~5.   
  (a)      (b)  

 
(c) 

 
Figure 1. Comparison of standard SCF, SCF+SII, and iEL/0-SCF+SII for water. Induced dipole 
probability distributions for (a) water oxygen, (b) water hydrogen, (c) water induced dipole 
autocorrelations. All simulations were performed with a 1.0 fs time step and at a temperature of 298.0 
K. The x-, y-, and z-components correspond to internal molecular axes (see 19 for details).  

 This is not surprising since SII is only canonical in positions but not velocities54, so one can 

expect deviations in dynamical properties, placing it within the same class of thermodynamic methods 

such as Monte Carlo, Replica Exchange calculations, or the use of Langevin or Anderson thermostats. 

For the first time, we present the formulation and results of SII for many-body polarization for systems 



other than water, including a 4.66 M MgCl2 salt solution and a solvated zwitterionic glycine peptide 

(and later we show results for a protein in water). We find that the iEL/0-SCF and SII combination 

yields excellent results for the concentrated 4.66 M MgCl2 salt solutions, as given in Table 1 and Fig. 

S1. We find more disagreement using SII for the detailed polarization properties for certain atoms of 

the glycine peptide (Fig. S2), but they are relatively small and the resulting potential energy for the 

aqueous peptide solution is within the uncertainties of the standard iEL/0-SCF solution (Table 1).  

Table 1. The average total potential energy of bulk water, a concentrated salt solution, and a solvated 
glycine peptide as calculated from the different methods evaluated in this work. The iEL/0-SCF 
method is used as the reference calculation in all reported figures given its excellent agreement with 
a standard SCF solver. The remaining entries are combining iEL/0-SCF with SII using different 
RESPA schemes integrated with XO-SIN(R) and XM-SIN(R), with and without force splitting, and 
using different intermediate 𝛥𝑡i and outer time steps 𝛥𝑡. 

Potential energy <U> (kcal/mol) 
Method Water 4.66 M MgCl2 Glycine 

Standard SCF -4621.9 +/- 40.7 -43188 +/- 48 -2431.7 +/- 30.3 
iEL/0-SCF -4604.6 +/- 42.0 -43175 +/- 51 -2424.7 +/- 30.4 
iEL/0-SCF + SII (𝜟𝒕𝒔 = 𝜟𝒕𝒎 = 𝜟𝒕 = 1.0 fs) -4648.8 +/- 41.9 -43108 +/- 55 -2443.3 +/- 30.0 
iEL/0-SCF + XO-SIN(R) (L = 4, 𝜟𝒕𝒎 = 𝜟𝒕 = 6.0 fs) -4399.0 +/- 55.4 -42876 +/- 64 -2315.9 +/- 39.4 
iEL/0-SCF + XM-SIN(R) (split, L = 4, 𝜟𝒕𝒎 = 3.0 fs, 𝜟𝒕 = 90.0 fs) -4483.9 +/- 45.4 - - 
iEL/0-SCF + XM-SIN(R) (split, L = 1, 𝜟𝒕𝒎 = 3.0 fs, 𝜟𝒕 = 90.0 fs) -4577.1 +/- 44.0 -43108 +/- 55 -2163.7 +/- 42.0 
iEL/0-SCF + XM-SIN(R) (split, L = 1, 𝜟𝒕𝒎 = 5.0 fs, 𝜟𝒕 = 90.0 fs) -4491.0 +/- 44.2 -4300.9 +/- 57 - 
iEL/0-SCF + XM-SIN(R) (split, L = 1, 𝜟𝒕𝒎 = 3.0 fs, 𝜟𝒕 = 18.0 fs) -4643.0 +/- 39.9 - -2439.6 +/- 30.4 
iEL/0-SCF + XM-SIN(R) (split, L = 1, 𝜟𝒕𝒎 = 5.0 fs, 𝜟𝒕 = 10.0 fs) - - -2410.0 +/- 30.0 
iEL/0-SCF + XM-SIN(R) (L = 1, 𝜟𝒕𝒎 = 𝜟𝒕 = 6.0 fs) -4525.5 +/- 41.4 -43060 +/- 47 -2382.5 +/- 30.3 
iEL/0-SCF + XM-SIN(R) (L = 1, 𝜟𝒕𝒎 = 𝜟𝒕 = 8.0 fs) -4328.9 +/- 43.8 -42795 +/- 55 -2285.0 +/- 31.8 
 
 Ultimately, the purpose of using SII is to eliminate resonances between fast and slow modes, 

which in turn empowers SII when combining it with RESPA to separate and maximize the integration 

timestep of the more expensive but more slowly varying non-bonded forces, leading to a significant 

savings in computational time within the SIN(R) approach. The actual integration performed with 

SIN(R) involves a choice as to whether to apply the NH thermostats at the outer time step (XO-

SIN(R)), which requires more (L=4) thermostat variables versus application of the NH thermostats at 

an intermediate time step (XM-SIN(R)), or inner most time step (XI-SIN(R)), which we show requires 

only L = 1 set of thermostat variables on each degree of freedom. 

 We first consider the combination of iEL/0-SCF with a 2-step XO-SIN(R) scheme where the 

bonded forces are updated with a time step of 𝛥𝑡 = 0.25 fs, while all of the non-bonded forces 

(electrostatic, polarization, van der Waals) are then treated at a variable longer time scale time step, 

𝛥𝑡. Figure 2 tracks the average value of the induced dipole molecular moment, 〈µúùû〉 of water; we 

see that the larger time step can be increased to 𝛥𝑡 = 6.0 fs with only a small error in this property.  



 (a)         (b)      

 
 (c)       (d) 

 
 (e)         (f)    

 
Figure 2: Two-step XO-SIN(R)+iEL/0-SCF compared to standard iEL/0-SCF for water. All bonded 
forces are in the inner time step (Δ𝑡† = 0.25 fs) and all non-bonded forces in the outer time step. (a) 
〈µúùû〉 and (b) algorithmic speed-ups relative to iEL/0-SCF as a function of the outer RESPA time 
step, Δ𝑡. Probability distributions of the vector components of the induced dipole on (c) oxygen and 
(d) hydrogen, and radial distribution functions (e) gOO(r) and (f) gOH(r) using an outer time step of 𝛥𝑡 
= 6.0 fs. Timings were performed with 16 CPU cores and 10000 water molecules. The x-, y-, and z-
components correspond to internal molecular axes.19  



A computational speed-up of ~2 is achieved relative to standard iEL/0-SCF; the latter is, in turn, ~1.6 

times faster than an SCF solution using the preconditioned conjugate gradient solver available in 

TINKER 8.152. To put this in perspective, typical TINKER timings using standard integrators and 

SCF solvers reported for DHFR in water on 16 cpu cores allows for sampling of ~2 ns/day. Thus, we 

would expect the sampling time to increase to ~6.8 ns/day with similar accuracy using the combined 

2 step XO-SIN(R) and iEL/0-SCF method with the TINKER 8.1 reference code.  

 When fixing the outer time step to a value of 𝛥𝑡 = 6.0 fs, more sensitive polarization 

properties such as the distributions of the vector components of the water dipole show overall good 

agreement with only a small degradation relative to iEL/0-SCF and an error in the average potential 

energy, <U>, of ~4-5% (Table 1); an insensitive property such as the radial distribution function for 

water maintains good agreement with the standard SCF solution under this 2-step XO-SIN(R) 

scheme. Furthermore, a single outer time step of 𝛥𝑡 =6 fs for the 2 step XO-SIN(R) is excellent across 

all properties for the concentrated MgCl2 system (Fig. S3 and Table 1), whereas the solvated glycine 

peptide is comparable to the pure water result, with small degradation of the detailed induced dipole 

properties and <U>, and little effect on structural properties (Fig. S4 and Table 1).  

 In order to fully exploit the SIN(R) approach, we next split the individual non-bonded terms 

of AMOEBA into their own short- and long-ranged contributions as was done by Margul and 

Tuckerman47, thereby creating a 3-time step SIN(R) scheme that permits substantially larger outer 

time steps. In order to maintain stability, we used the iEL/0-SCF method for all short-ranged 

polarization forces at the intermediate time step and perform a full SCF optimization at the outer time 

step, as described in Methods. Figure 3a shows how the polarization property 〈µúùû〉 changes with 

different combinations of 𝛥𝑡i and 𝛥𝑡 using the 3 step XM-SIN(R) with the force splitting scheme 

with L = 4. This basic property is well reproduced with 𝛥𝑡i	= 1 or 3 fs, and for outer time steps 

reaching up to ~120 fs; it is evident that for 𝛥𝑡i = 5 fs,	〈µúùû〉 accrues more error at any value of the 

outer time step.  

 Overall, we find that the best tradeoff between large outer time step and accuracy using iEL/0-

SCF with the 3-step XM-SIN(R) and force splitting with L = 4 algorithm is 𝛥𝑡i =3 fs and 𝛥𝑡 = ~90-

100 fs for liquid water, with good reproduction of the probability distributions of the vector 

components of the induced dipole (Figs. 3b and 3c), structural metrics such as gOO(r) and gOH(r) (Figs. 

3d and 3e), and an acceptable ~2-3% error in <U> (Table 1). However, the computational speed-up 

is no better than a 2-step XO-SIN(R) scheme at any value of the outer time step (Fig. 3f).  
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Figure 3: Three-time scale XM-SIN(R)+iEL/0-SCF with L = 4 using force splitting compared to 
standard iEL/0-SCF for pure water. (a) 〈µúùû〉 as a function of the outer time step for various values 
of the intermediate time step, 𝛥𝑡i. Probability distributions of the vector components of the induced 
dipole on (b) oxygen and (c) hydrogen, and radial distribution functions (d) gOO(r) and (e) gOH(r) for 
𝛥𝑡i = 3.0 fs and 𝛥𝑡 = 90.0 fs. (f) speed-ups for bulk water as a function of the outer time step for 
various values of the intermediate time step, 𝛥𝑡i measured relative to an iEL/0-SCF single time scale 
integration at 1.0 fs. Further details are given in Figure 2. 



This is not due to the cost of the full SCF update in the outer time step for long-ranged polarization, 

which is performed infrequently but is a result of the high computational overhead associated with 

the NH-Langevin thermostats for both the real and auxiliary degrees of freedom when L = 4, as these 

are evaluated every 1-3 fs at the intermediate timestep. Hence, efficiency can be gained by reducing 

the value of L to 1, which brings with it the added benefit of increased accuracy. 

 Therefore, we examine an XM-SIN(R) with L = 1 to examine the performance and timings of 

a combined iEL/0-SCF and SII method with a reduced number of thermostat variables. Figure 4a 

shows how 〈µúùû〉 changes with different combinations of 𝛥𝑡i and 𝛥𝑡 under the 3-step XM-SIN(R) 

scheme with L = 1 and force splitting and the corresponding computational speed-ups for water. We 

find that there is negligible change in 〈µúùû〉 for all combinations of values of 𝛥𝑡i and 𝛥𝑡, and 

intermediate timesteps can be as large as 𝛥𝑡i= 5 fs. When fixing 𝛥𝑡i = 3.0 or 5.0 fs and 𝛥𝑡 = 90.0 

fs, detailed polarization properties such as the induced dipole vector components, as well as RDFs, 

are excellent (Fig. S5), and the more careful integration using XM-SIN(R) improves the <U> error 

for water to be within the uncertainties of the standard SCF calculation (Table 1). Under the same 

simulation conditions, we find very good agreement with the standard iEL/0-SCF approach for the 

concentrated salt solution as well (Fig. S6 and Table 1). Fig. 4b shows that molecular fluids and 

solutions can be accurately simulated when iEL/0-SCF is combined with the 3-step XM-SIN(R) and 

force splitting to yield speed-ups that are ~4-5 over the standard iEL/0-SCF calculation, and therefore 

a factor of ~7-8 relative to a standard SCF solver and Verlet integration in TINKER 8.1.  
  (a)        (b) 

 
Figure 4: Three-time scale XM-SIN(R)+iEL/0-SCF with L = 1 using force splitting compared to 
standard iEL/0-SCF for pure water. (a) Accuracy in 〈µúùû〉 and (b) speed-ups as a function of the 
outer time step for various values of the intermediate time step, 𝛥𝑡i. Timings used 16 cores and 
10,000 water molecule simulations with an inner time step of 𝛥𝑡 =	0.5 fs. 



  We also find that the three-time scale XM-SIN(R) and iEL/0-SCF with force splitting method 

and an outer time step of 90 fs performs well for the dihydrofolate reductase (DHFR) protein in water; 

Figure 5 compares the root mean square deviation between iEL/0-SCF alone and when combined 

with the SIN(R) scheme. In our previous iEL/0-SCF study48 we found that the 𝛾 value of 0.9 (see Eq. 

(1)) did not work well for the large protein, requiring us to vary 𝛾 to a new value of 0.7 or to assign 

different 𝛾 values for protein and water to achieve stability comparable to a standard SCF solution 

(Figure 5a). However, when iEL/0-SCF is combined with the SI integration, we reach a far more 

satisfactory result that any 𝛾 variation now performs similarly–thus making it insensitive to the value 

of 𝛾–and the RMSD plateaus at a significantly lower value than found using Verlet integration  

(Figure 5b). Hence we have shown for the first time that SI integration not only allows for much 

larger time steps, but it results in a more accurate solution by removing undesired energy partitioning 

in solvated protein systems using many-body potentials. 

  (a)        (b) 

 
Figure 5:  RMSD of dihydrofolate reductase (DHFR) using different integration schemes. (a) the 
standard SCF method and iEL/0-SCF using a single value of γ = 0.7 and dual values of γS=0.9 and 
γP=0.1 were used for the local kernel definition for solvent and protein (reproduced with permission 
from [48]). (b) three-time scale XM-SIN(R)+iEL/0-SCF with force splitting using Δt† = 0.5, Δtú = 
3.0 fs, and Δt = 90.0 fs with L = 1 thermostat variables along with several variations 𝛾 values. 
 

 However, from a much more detailed analysis we find that the 90 fs outer time step does 

degrade the accuracy of the polarization properties, shown for the glycine peptide system in Figure 6 

and Figure S7, and <U> is in error in excess of 10% (Table 1). We note that previous work using 

SIN(R) for small solvated peptides55 or large gas phase biomolecules53, showed little changed in 

accuracy over a wide range in time steps compared to standard integration methods when using 



simpler fixed charge force fields. This discrepancy with smaller outer timesteps is not due to iEL/0-

SCF but is due to the complexity of the AMOEBA model, in particular a combination of higher order 

poles, geometric flexibility, and intramolecular polarization, that reduces the allowed time steps due 

to rapid variations in force at the short-ranged; these more complex features are not part of the simpler 

fixed charge force fields. 
  (a)     (b) 

 
  (c)     (d) 

 
   
Figure 6: 3-step XM-SIN(R)+ iEL/0-SCF with L = 1 using force splitting relative to standard iEL/0-
SCF for glycine in water. All bonded forces use Δt† = 0.5 fs and non-bonded forces split into short-
ranged and long-ranged evaluated at Δtú = 3.0	fs 𝛥𝑡 = 90.0 fs, respectively. Probability distributions 
for the induced dipole vector components of the backbone for (a) N and (b) C𝛼. Radial distribution 
functions for water interacting with for (c) N and (d) C𝛼. Data was collected from 5.0 ns simulations. 
 

 To illustrate the consequences, we have previously shown that with our standard iEL/0-SCF 

method we can take 6-7 fs timesteps using a simple Drude model for water, PSPC, which is rigid and 

uses point charges and Drude particle on heavy atoms only48, whereas we could not go beyond ~1-2 

fs timesteps for the corresponding evaluation with the AMOEBA water model. Like the iEL/0-SCF 



method, the SIN(R) outer time step will also be dependent on the underlying force field. We find that 

<U> values improve substantially for the peptide system if we reduce the outer time step to 18 fs, as 

seen in Table 1 and for properties as reported in Fig. S8; changing the intermediate time step to 

Δtú =5 fs and outer time step to 𝛥𝑡 = 10 fs also yields good results. Although both variations reduce 

the speed-up by half (see Fig. 4b) for bonded systems such as peptides and proteins in the present 

Tinker 8.1 implementation, it is nonetheless a computational win for the combined iEL/0-SCF and 

SIN(R) methods. 

 Since the size of the intermediate time step ultimately controls the computational gains, we 

return to the simpler non-bonded force decomposition that uses no force splitting, but this time, we 

employ the XM-SIN(R) with L = 1 for the water, 4.66 M MgCl2, and the aqueous glycine systems. 

Figure 7a shows how 〈µúùû〉 for water changes with 𝛥𝑡 under the 2-step XM-SIN(R) scheme. Very 

acceptable levels of accuracy in properties is evident at 𝛥𝑡 = 6 fs for water (Figs. S9) and the 

concentrated salt solution (Fig. S10), while accuracy degrades noticeably using the larger 8 fs time 

step, evident from the <U> values reported in Table 1. Although the 3-step XM-SIN(R) integration 

with force splitting provides a faster simulation for water (Fig. 4b), the simpler 2-step XM-SIN(R) 

integration still yields speed-ups of close to a factor of ~4 relative to iEL/0-SCF, or a factor of ~6 

relative to a standard SCF solver (Figure 7b) in Tinker 8.1. 

 (a)         (b) 

 
Figure 7: Accuracy and improvements in computational costs with a 2 step XM-SIN(R) with L = 1 
using no force splitting and iEL/0-SCF relative to standard iEL/0-SCF for pure water. (a) 〈µúùû〉 and 
(b) speed-ups, as a function of the outer time step. Timings used 16 cores and 10,000 water molecule 
simulations. All data referenced to an iEL/0-SCF single time scale integration at 1.0 fs. 



 The primary benefit of the simpler 2-step XM-SIN(R) is that it is more accurate than the 3-

step XM-SIN(R) for the glycine peptide (comparing Figs. 6 and 8 and Figs. S7 and S11) and hence 

for general protein systems. Furthermore the 2-step XM-SIN(R) with the L = 1 algorithm at 𝛥𝑡 = 6 fs 

has computational efficiency that is nearly as good as the 3-step XM-SIN(R) with force splitting using 

𝛥𝑡i = 3.0 fs and 𝛥𝑡 = 18.0 fs, with a speed-up relative to a standard SCF solution of 6X in the 

present Tinker 8.1 implementation. 
 
 (a)      (b) 

 
  (c)     (d) 

 
Figure 8: 2-step XM-SIN(R) and iEL/0-SCF with L = 1 relative to standard iEL/0-SCF for glycine in 
water. All bonded forces are evaluated at Δt† = 0.5 fs, and all non-bonded forces are evaluated at 𝛥𝑡 
= 6.0 fs. Probability distributions for the induced dipole vector components of the backbone (a) N and 
(b) C𝛼. Radial distribution functions for water interacting with backbone (c) N and (d) C𝛼. Data was 
collected from 5.0 ns simulations. 
 

CONCLUSION 

In this work we have combined an SCF-less solution to classical polarization48-49 with an integration 

scheme that eliminates the resonances that inhibit long integration time steps47, 53-55 to increase 



computational efficiency for condensed phase systems including water, salt solutions, and more 

complicated bonded systems such as peptides and proteins. We achieve excellent accuracy when 

iEL/0-SCF is combined with the XM-SIN(R) stochastic isokinetic integration algorithm, that 

classifies forces into bonded (evaluated at 0.5 fs) and nonbonded components (evaluated at 6.0 fs) 

with L = 1 thermostat variables, with very good computational speed-ups ~6X compared to a 

conventional AMOEBA calculation in Tinker 8.1 for all systems investigated here, including water, 

4.66M MgCl2 solution, a zwitterionic glycine peptide, and DHFR protein in water. Greater 

computational efficiencies for water and the concentrated salt solution can be found using the same 

XM-SIN(R) approach, by further splitting the non-bonded forces into a short-ranged component 

evaluated at an intermediate time scale of 3-5 fs, and a long-ranged and more smoothly varying force 

evaluated at ~90-100 fs, to give speed-ups close to a factor of ~8X. In both cases, better optimized 

code could improve the performance over what could be achieved in the comparisons done here using  

the TINKER 8.1 software release52. We will reserve such a comparison for future work.  In summary, 

the iEL/0-SCF and XM-SIN(R) combination can achieve both accuracy and meaningful speed-ups 

that represent a significant advance for equilibrium simulations in the canonical ensemble for many-

body potential energy surfaces. 
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