Mutually polarizable QM /MM model with in situ optimized localized basis functions

Jacek Dziedzic,'? Teresa Head-Gordon,** Martin Head-Gordon,? and Chris-Kriton Skylaris® *

! School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
2 Faculty of Applied Physics and Mathematics, Gdarisk University of Technology, Poland
3 Pitzer Theory Center and Department of Chemistry,

University of California, Berkeley, California 94720, USA
4 Department of Bioengineering, University of California, Berkeley, California 94720, USA

We extend our recently developed QM/MM approach [J. Dziedzic et al., J. Chem. Phys 145,
124106 (2016)] to enable in situ optimization of the localized orbitals. The quantum subsystem
is described with ONETEP linear-scaling DFT, and the classical subsystem — with the AMOEBA
polarizable force field. The two subsystems interact via multipolar electrostatics, and are fully
mutually polarizable. A total energy minimization scheme is employed for the Hamiltonian of the
coupled QM/MM system. We demonstrate that, compared to simpler models using fixed basis
sets, the additional flexibility offered by in situ optimized basis functions improves the accuracy
of the QM/MM interface, but also poses new challenges, making the QM subsystem more prone
to overpolarization and unphysical charge transfer due to increased charge penetration. We show
how these issues can be efficiently solved by replacing the classical repulsive van der Waals term
for QM/MM interactions with an interaction of the electronic density with a fixed, repulsive MM
potential that mimics Pauli repulsion, together with a modest increase in the damping of QM/MM
polarization. We validate our method, with particular attention paid to the hydrogen bond, in tests
on water-ion pairs, the water dimer, first solvation shells of neutral and charged species and on
solute-solvent interaction energies. As a proof of principle, we determine suitable repulsive potential
parameters for water, K™ and C1~. The mechanisms we employed to counteract the unphysical
overpolarization of the QM subsystem are demonstrated to be adequate and our approach is robust.
We find that the inclusion of explicit polarization in the MM part of QM/MM improves agreement
with fully QM calculations. Our model permits the use of minimal size QM regions and, remarkably,

yields good energetics across the well-balanced QM /MM interface.

I. INTRODUCTION

Molecular dynamics (MD) is a well-established tech-
nique for simulating the structure and properties of sys-
tems at the atomic scale, with over four decades of ap-
plications in biochemistry and materials science, among
other fields. The aim of MD is to predict macroscopic be-
havior from microscopic interactions[1], and the validity
of results strongly depends on how accurately these inter-
actions are described by the molecular mechanics (MM)
potential.

The continual increase of available computational
power not only extends the scope of MD to larger sys-
tems and longer timescales, but also enables the refine-
ment of MM models describing inter- and intramolecu-
lar interactions. The last two decades have witnessed
the emergence of force fields that directly capture many-
body polarization effects, setting out to circumvent
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well-known deficiencies of pairwise-additive, fixed point
charge models[2-5]. Unable to directly account for po-
larization, fixed point charge force fields struggle to de-
scribe e.g. the interactions of ions with m-electron systems
or polar solutes in low-dielectric media[6], and they are
typically poorly transferable to environments or phases
different from those that they were parametrized for, such
as interfaces|7].

The non-additive, many-body nature of polarization
interactions makes polarizable models more involved
and computationally demanding. Consequently, a va-
riety of competing treatments of polarization exists (see
Refs. 7-9 for a review): Drude oscillators[10, 11], fluc-
tuating charges[12, 13], induced point dipoles[14-21]
or even induced multipoles of higher order[22]. The
AMOEBA force field[15-18], which is of particular sig-
nificance to this work, describes polarization interactions
using damped, induced, point dipoles, while for perma-
nent electrostatics it employs fixed multipoles up to a
quadrupole in lieu of point charges.

Purely classical models, however sophisticated, cannot



describe electronic properties, such as band gaps or sol-
vent shifts, or processes that intrinsically depend on the
electronic degrees of freedom, such as bond-breaking. To
properly model electronic phenomena it becomes neces-
sary to employ quantum-mechanical (QM) methods. In
practical applications, density functional theory (DFT)
is arguably the most commonly used approach|[23], owing
to its relatively low computational cost. Even so, length
scales (~10 — 100 nm) and time scales (~ 1 us) typically
used in classical MD simulations remain beyond the scope
of DFT today.

QM/MM combines the quantum and classical descrip-
tions, exploiting the fact that the properties of interest
are often localized to a part of the system that can be
described quantum mechanically, such as a molecule, em-
bedded in an environment that can be described more ap-
proximately with MM, e.g. a solvent. Since the seminal
work of Warshel and Levitt[24], a profusion of QM/MM
approaches have been proposed, targeting different types
of systems, and varying in the level of sophistication (see
e.g. Refs. 25-36). Even a brief review of QM/MM meth-
ods is beyond the scope of this paper; however, we refer
interested readers to reviews of QM/MM methods and
applications in enzymology|[37], biochemistry[38] and ma-
terials science[39).

Recent improvements in force fields promptly be-
come integrated into QM /MM methodologies, and sev-
eral approaches combining QM with polarizable force-
fields (dubbed QM/MMpol) have already been pro-
posed. Many of those approaches employ induced
dipoles[40-55] to model polarization, others use fluctuat-
ing charges[56-59] or Drude oscillators[60, 61]. Typically,
the full QM density is used for all electrostatic QM /MM
interactions[5, 52, 55], but using auxiliary multipolar rep-
resentations of QM (for efficiency or convenience) has also
been proposed[51, 62]. Several groups have developed
models specifically focused on electronic excitations, us-
ing polarizable embedding alongside time-dependent den-
sity functional theory (TDDFT)[42, 43, 45, 46, 50, 54, 57,
59, 63], where dynamic mutual polarization poses an ad-
ditional challenge[46].

We recently presented[51] a novel QM /MM approach
(TINKTEP), which combines the DFT methodology of
ONETEP[64], and the polarizable force field AMOEBA]J15,
17, 18, 65], as implemented in TINKER[16]. In the
TINKTEP approach the QM and MM subsystems are cou-
pled electrostatically, and undergo mutual polarization.
The electrostatic effect of the MM subsystem is included
in the QM Hamiltonian, polarizing the QM subsystem

by deforming its electronic charge density. Conversely,
the electric field of the QM subsystem is included in the
direct field that drives the polarization of the MM sub-
system. A total energy minimization scheme is employed
for the Hamiltonian of the coupled QM/MM system.
A distinguishing feature of our approach is the use of
linear-scaling DFT[64, 66] to describe the QM subsystem
with the aim of, ultimately, undertaking QM /MMpol cal-
culations with QM regions spanning thousands of atoms.

The main limitation of our first TINKTEP model, as pre-
sented in Ref. 51, was its use of fixed localized orbitals,
which represented a tradeoff between simplicity and en-
ergy accuracy. In this work we describe an extension of
TINKTEP to the case where the localized orbitals are opti-
mized in situ. The rationale for using optimized orbitals
is the near-complete-basis-set accuracy that they offer,
even when a minimal basis is used. The resultant accu-
racy is comparable or superior to even very large bases
with fixed orbitals[67].

Incorporating in situ orbital optimization requires
computing gradients of all energy terms with respect to
the expansion coefficients of the localized orbitals. We
present the relevant derivation and describe how the cal-
culation can be implemented to run in linear-scaling time.
We subsequently focus on the difficulties that arise as a
consequence of using optimized orbitals — QM overpolar-
ization and unphysical charge transfer from QM to MM
— and discuss workable solutions to these two problems,
using simple QM/MM systems to illustrate our points.
We finish by demonstrating the stability, robustness and
accuracy of our model on a number of test cases. We
arrive at a robust, mutually polarizable QM/MM model
with linear-scaling QM cost, which we show to be more
accurate than a non-polarizable QM/GAFF approach,
not only in terms of reducing the electrostatic disrup-
tion to the QM subsystem, but also in terms of improved
energetics across the QM /MM interface.

This paper is organized as follows. In Sec. II we re-
count the original (fixed-orbital) TINKTEP approach. In
Sec. IIT we outline the generalization to in situ optimized
orbitals, and describe the additional steps that we found
to be necessary for obtaining a well-behaved method.
The additional steps are best justified using case studies,
which, in the interest of clarity of discussion, we relegated
to the Appendix. Section IV is devoted to validation and
demonstration of the utility of the proposed approach on
a number of carefully selected systems. Conclusions and
closing remarks are found in Section V.



II. METHOD
A. Conventions and notation

We follow the sign convention where electrons are pos-
itively charged. Atomic units are used throughout the
text, unless indicated otherwise. Quantities typeset in
bold denote Cartesian column vectors (positions r, elec-
tric fields E, dipoles p, etc.) or Cartesian tensors of
rank 2 (e.g. T,
3 x 3 are typeset with blackboard capitals (e.g. K). In-
dices A, B and C always refer to atoms in the QM sub-

system, and indices L and M refer to atoms in the MM

). Matrices with dimensions other than

subsystem. Localized orbitals are indexed with Greek
symbols. By van der Waals interactions we will mean
the sum of the repulsive and dispersive terms, referring

to the attractive term simply as “dispersion”.

B. Initial (fixed-orbital) TINKTEP approach

We begin the exposition of the method by briefly re-
counting the general idea behind TINKTEP — our first
QM/MM approach proposed in Ref. 51. The system is
separated into a QM subsystem and an MM subsystem,
with the assumption that the separation does not cut
through covalent bonds. The total energy of the coupled
system is given by

gMM

E=EWM ¢ + EQM/MM, (1)

The QM region is described by the density matrix for-
mulation of DFT in the pseudopotential approximation:

EM — / {%Vip(r,r’)]r,_rdr (2)
+ /vext (r)n(r) dr

// D grdr’ + £ [n]
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with the above terms describing, respectively, the kinetic
energy of valence electrons, the Coulombic energy of va-
lence electrons in the (pseudo)potential v (r) of the
ionic cores, the Hartree energy, the exchange-correlation
energy, the mutual Coulombic interaction of Nqu cores
having charges {Z;} and positions {R;}, and empirical

dispersion-correction. Open boundary conditions have

been assumed. p (r,r’) is the density matrix, given by
= e K00, 3)

where ¢, (r) are non-orthogonal generalized Wannier
functions (NGWFs)[68],
within atom-centered spherical regions.

) KBy

which are strictly localized
K = [K°f],
termed the density kernel, is the matrix representation
of the density matrix in the duals of the NGWFs. The
electronic (pseudo)density n (r) is given by

n(r) =p(r,r), (4)

where we assumed a closed-shell system in the interest of

brevity. The last term, Sd is an empirical dispersion-

correction term, which accé)unts for the well-known de-
ficiency of generalized gradient approximation (GGA)
DFT in describing dispersion interactions[69]. The exact
expression depends on the model used, but the general
This
work uses the Elstner[70] formulation, with parameters
determined by Hill et al.[69].

The MM subsystem is described by the AMOEBAJ18]

polarizable force-field, as implemented in the TINKER[16]

form is that of a double sum of pairwise terms.

code, with the following general energy expression:

5vdW’ (5)

with the four energy components accounting for: perma-

MM MM
& gperm

gpol + gval

nent electrostatic interactions, polarization, short-range
valence interactions, and van der Waals interactions, re-
spectively.

gMM

perm 15 @ sum of purely Coulombic multipolar interac-

tions between atoms in the MM subsystem, with scaling
factors[17] used to attenuate or eliminate interactions be-
tween first-, second-, third- and fourth-nearest neighbors
(as determined by bond connectivity). The full expres-
sion is given in Ref. 18, egs. 1 and 10. The S%MH term
is fully local to the MM subsystem, that is to say it is
insensitive to the presence of the coupling with a QM
subsystem.

Spol is the polarization energy of the MM subsystem,
given by (cf. Ref. 51, eq. Al):

NMM Nym
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L
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where Ej, is the direct electric field at site L, p; is the
dipole induced at site L in response to the total electric



field, and Tprys is a 3 x 3 coupling tensor between sites
L and M:

L#M

Y (7)
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Here, 7'%'](&1 is the Thole-damped, Cartesian dipole-dipole
interaction tensor between induced dipoles at sites L and
M (cf. Ref. 51, eq. 28). Thole damping[71-73] is a mod-
ification to Coulombic electrostatics that helps prevent
mutual positive feedback loops involving induced point
dipoles, known as a polarization catastrophe.

In a purely MM calculation, the direct electric field E,
is simply the electric field due to the permanent multi-
poles of MM sites. In a mutually polarizable QM/MM
calculation, the direct electric field includes an additional
contribution arising from the multipoles representing the
QM subsystem. We give the full expression in Ref. 51,
eqgs. 26-31, where we also explain in detail how a classical
multipolar representation of a distributed QM density is
obtained (Section II.D therein). We stress that the non-
additive nature of polarization means that the polariza-
tion of MM cannot be separated into additive terms due

to QM and MM, and so the entire polarization of the

. . . MM
MM subsystem is included in Spol ,

QM/MM
Spol

which explains the

absence of an term.

gMM

ol denotes all short-range valence interactions local

to the MM subsystem. The detailed expressions for these
terms can be found in Ref. 18, eqs. 2-6, and we shall
refrain from recounting them here.

EMM. accounts for van der Waals (dispersion-repulsion)
interactions local to the MM subsystem. AMOEBA uses
the Halgren formulation[74] of the buffered 14-7 poten-

tial:
146\ [ 1+~
NN (Ryy) = ( ) ( - 2) L ®

pij +0 Pl +

where p;; = R;j/R°, § = 0.07, v = 0.12. The parameters
of the potential are R? and . Mixing rules for obtaining
pairwise values of the parameters and a description of nu-
ances surrounding hydrogen atoms (“reduction factors”)
can be found in Ref. 18, egs. 7-8.

The final term in (1), EM/MM "accounts for all inter-
actions between the two subsystems, except for mutual
polarization. As pointed out earlier, QM contributions

5MM

to MM polarization have already been included in £J0}",

because they are not separable from intra-MM polariza-
tion. The effect of MM polarizing QM is automatically
included in EM [n (r)] by the deformation of the elec-

tronic density n (r) in response to the electric field of the
MM subsystem.

The coupling is described by

EQMMM — g 4 £ 25, (9)
where the first term accounts for the electrostatic cou-
pling between QM and permanent MM multipoles, and
the second term accounts for dispersion-repulsion inter-
actions between QM and MM. In our model the elec-
trostatic coupling involves the full QM charge density
interacting with the Coulombic (not damped) potential
of the permanent MM charges, dipoles and quadrupoles:

EI%}/IH{MM = /U%\)/IM (r) nQM (r)dr, (10)
where
NQM
n™M(r)=n(r)+ > 5 —Ra)Za, (11)
A
MM

and the expression for vy'™ (r) can be found elsewhere
(Ref. 51, eqs. 37-38).

For the QM /MM van der Waals interaction, E%WMM,
our original model uses the same classical, pairwise model
that is used for MM/MM (cf. (8)), except the repulsive
wall is softened slightly by using 6 = 0.21 (cf. Ref. 51, Sec-
tion ITI.B.3). This has the advantage of being straight-

forward, but has two disadvantages.

P

First, it requires
choosing vdW parameter values for atoms in the QM
subsystem. Second, and more importantly, this classical
form is insensitive to the electronic density of the QM
subsystem and as such its contributions to electronic den-
sity gradients vanish. This means it fails to provide the
Pauli repulsion that would otherwise prevent electrons
from unphysically collapsing onto MM atoms. We ad-
dress this issue in the revised model presented in this

paper.

III. THEORY

The main limitation of the original model described
briefly above, and in detail in Ref. 51, was that the local-
ized orbitals {¢,} were kept fixed and only the density
kernel K% was optimized. Allowing {p,} to be opti-
mized in situ constitutes the main improvement in our

revised model.



A. In situ optimized NGWF's

Optimizing the NGWF's necessitates deriving and im-
plementing functional derivatives of energy terms with
respect to the NGWFs.
that make up the total energy (1) the following terms

Out of all the energy terms

are specific to our QM/MM model and have no counter-
parts in standard ONETEP: EMM gMM Eg/gr\fn, SQM/MM,
EI(,QelﬂMM, and 5p01 . The first three of these are local
to the MM subsystem and do not depend on the elec-
tronic degrees of freedom, their derivatives with respect
to the NGWF's thus vanish. E%WMM is, so far, described
by an electron-independent classical pairwise sum, so its
derivative similarly vanishes. We postpone the general-
ization of this term to an electron-dependent form until

later in the text. The remaining terms are EI%EAAMM and
Ep o1 which we will consider now in sequence.
EUMM 45 oiven by (cf. (10)-(11)):
EQNIMM — / MM (1) (r) dr (12)

Nqwm

Z 5 I‘fRA)ZAdI‘

+

/ MM (

The potential of permanent MM multipoles vg/IM does
not depend on the electronic degrees of freedom, so the
second term above does not contribute to the derivative.
The first term represents an interaction of an electronic
density with a fixed potential, and so has the same form
as the second term in (2). Thus it can be accounted for
using usual ONETEP algorithms by simply adding vg/IM (r)

to vext (I‘) .

The term due to 5%11\/1 is more complicated, since it
involves differentiating the transformation from the QM
density to the set of multipoles representing the QM sub-
system that take part in QM/MM polarization interac-
We refer the reader to Ref. 51, Section 1.D.2 for

a detailed exposition of this transformation, recounting

tions.

here only the basics needed in the derivation.

All pairs (products) of overlapping NGWFs ¢, and
pp are expanded in terms of truncated spherical waves
fs (r) centered on both NGWFs, with the coefficients of

the expansion given by

G =3 (X e te)

acA BEB

SO I I

acA BEB

=" > K, (13)

acA BEB

Kaﬁ%% (r)

fo)Vis

5 () 1fe) VA

where s and t index the spherical waves originating on
both atoms (of which there are Nt in total), V5 is an el-
ement of the inverse electrostatic overlap matrix between
spherical waves originating on atoms A and B, and the
notation o € A used in the summations is taken to mean
“all NGWF's a belonging to atom A”.

An alternative way to index the spherical waves, and
in turn the coefficients C 5, and ¢4, is via their an-
gular, magnetic and radial numbers: [, m, and ¢ and a
selector for the site on which the spherical wave origi-
nates (1 for the first atom from the subscript or 2 for
the second atom). This indexing scheme is useful when
using the expansion to calculate the spherical multipole
moments {M,,(A)} that constitute the classical repre-
sentation of the density:

- Z > CRE g, (14)

q
SAB?éo

Mlm

where Clmq’
atom A, and Jj, is a radial, analytical integral given in
Ref. 51, eq. 21. The notation SAE#) is taken to mean
“atoms B whose NGWFs overlap with those of atom A”.

The interaction energy between all multipoles repre-
senting the QM density and the induced MM dipoles is
given by

correspond to (9 originating only on

EM

pol

= tr[KP), (15)

where P is the polarization matrix, with matrix elements
a € A, B € B given by:

oEM

1 Imag.1 Img.2 1 pol
Paﬁziizjqu( an[;q wA tc mq wén) = K Ba’
lq m
(16)
where w!f" captures the electrostatic effect of the en-

tire system of MM induced dipoles on the QM site at
RA w
MM induced d1poles interacting with the charge at R4,

{wl ™! wh® wh' is their Thole-damped electric field in-

is the Thole-damped electrostatic potential of

teractlng with the dipole at R 4, and {wk_Q, . ,wL’Q} is



their Thole-damped electric field derivative (in spherical
representation) interacting with the quadrupole at R 4.
Taking the functional derivative of (15), we obtain

(cf. Ref. 75, eq. 7.25):

JEMM 5P, 5K
pol af Ba

KPo o — Pa, 17
5ot (1)~ 26 (1) 5o <> o D)

where the Einstein convention has been used for repeated
Greek indices.

fg’—i; appearing in the
second term results from the use of a so-called purifying

The non-vanishing derivative

transformation in ONETEP. It has already been derived
(cf. Ref. 75, eq. 7.29 or Ref. 76, eq. 4.4.6) and imple-
mented in ONETEP and as such can be omitted from fur-
ther discussion. Instead, we focus on the more interesting
first term, involving the quantity %. From (16) we

obtain
5P g lmq,1, 1 Imq,2, |
= E L g (el el
(18)
where we have used the fact that .Jj, is independent of
the NGWFs. The quantities w4® and w!® involve in-

duced MM dipoles and, as these induce in response to
a combined QM+MM electric field, they depend on the
NGWFs.

However, a zero residual condition at induced

dipole self-consistency:
deM
VL p01 = (19)
d
Ky, |
LS I
pol
- Y TR AT
SAcyéOQEA
SK B
+2

—— = Faus,
5y (x) 7

where atom C' is the host to the NGWF with respect
we differentiate, i.e. v € C. The presence of both wl(}”
and w! W in (22) indicates that the gradient with respect
to a particular NGWF ~ € C depends not only on the
electrostatic effect of MM’s induced dipoles at R, but
also at all centres of overlapping NGWFs R 4. This is a
consequence of the two-center spherical wave expansion
scheme used in ONETEP.

To maintain linear scaling, an implementation must be

obviates the need to calculate 3 *(Lr)

eq. 33), allowing us to only consider the dependence of

ngq,l and c%qg on the NGWFs, and so

(compare Ref. 51,

lmq,1 Ilmgq,
(SPalg 1 Ca,@ 1 aff l
= ——= Jl wm g
AR DI b R R
(20)

Imag,1

The remaining functional derivative 6;*—5([,) can be cal-
v
culated as follows:

o (0) | ) Vige!

=2l (et

Pa (1) D e (v) Vig" ™,

t

= 5) (21)

where v; (r) is the potential of a spherical wave (for which

Imaq,2

an analytical expression is available). l;:*—ﬁ(r) is calculated
analogously.
By combining (17), (20) and (21

sums in the first term explicitly, we obtain

), and expressing the

Nf Nt

o (1) Vi w3 S (0) Vi

able to evaluate (22) in O (1) time, since this calculation
must be repeated for all NGWFs v, and the number of
NGWFs is proportional to Ngnm. Our implementation in
ONETEP does this by re-ordering (22) as

55MM PRI JKPe
pol «
UAC K7 Yo () + 2 Pog,
% (r Z ; ") o5, (r)
SAC7’50

(23)



where
N¢
Va0 =3 7, 3 [wf;n Sy () Vi
lq m t

N¢
Tl Y v (r) v,z’é’"q’ﬂ (24)
t

only needs to be evaluated in the intersection of the lo-
calization spheres of A and C (cf. (22)). The cost of
evaluating U for a single pair of atoms A-C' is system-
size independent (O(1)), and only depends on the quality
of the SW basis set. For any particular atom C|, the num-
ber of atoms A whose localization spheres overlap with
it plateaus at a constant that depends on the density
of the system, even if the system size Nqu is increased
to arbitrarily large values. This is made explicit by the
A-C overlap condition in the first summation of (22).
That means that each evaluation of (22) has O(1) cost
and, with O(N) such operations, the approach is linear-
scaling.

B. Increased polarization damping

Polarizable force-field models that rely on the induced
point dipole approximation have to contend with what is
known as a polarization catastrophe. This well-known[77]
artifact consists in an unbounded mutual polarization of
two nearby sites through positive feedback, and reflects
the breakdown of the point-dipole model at short range.
The polarization catastrophe is typically mitigated by re-
placing Coulombic interactions involving induced dipoles
with interactions that are suitably attenuated at short
range using schemes such as Thole damping[71-73]. This
is the case in AMOEBA[15] and in our model[51]. The
intensity of the damping depends on the polarizabilities
of the two atoms — i.e. interactions involving atoms that
polarize more readily are more aggressively damped. Be-
yond several A the difference between the Thole-damped
and Coulombic quantities (potential, electric field, elec-
tric field derivative) becomes negligible and the correct
long-range behavior is recovered.

The rationale for using optimized NGWFs in our
model, and in ONETEP in general, is the near-complete-
basis-set accuracy that they offer, comparable or superior
to even very large bases with fixed orbitals[67]. How-
ever, this additional flexibility results in the basis be-
coming more diffuse, which is problematic in the con-
text of distributed multipole analysis (DMA[78, 79]) that
we employ to obtain the multipole representation QM*

(cf. (13)-(16)). More diffuse bases are known[80, 81] to
engender instabilities in the DMA procedure, and lead
to increased charge penetration errors (CPE) due to dis-
crepancies between the potential of the original density
and that of the multipolar expansion, although improved
approaches have recently been proposed[81, 82]. Indeed,
our initial tests revealed that once the NGWFs are no
longer fixed and are allowed to change shape during the
SCF process, our QM/MM model becomes prone to a
QM/MM analog of polarization catastrophe, whereby
the QM subsystem becomes excessively polarized by a
nearby MM site and wice versa. The problem is particu-
larly severe for MM sites carrying a charge (ions), as they
provide a larger initial polarization of QM. We devote a
section in the Appendix (Sec. A) to an elucidation of this
mode of failure using a HoO:Cl™ system as an example.
In the same section we show that a simple increase in
the damping of QM /MM polarization interactions is suf-
ficient to prevent the QM/MM polarization catastrophe.

C. Repulsive MM potential

Like most QM/MM models, our initial model used
a classical, atom-pairwise description of QM/MM
This

strictly classical description has the disadvantage of be-

dispersion-repulsion (vdW) interactions (cf. (8)).

ing insensitive to the electronic degrees of freedom in the
QM subsystem, that is to say the QM/MM vdW en-
ergy only depends on the positions and species of the
atoms. The most striking manifestation of this deficiency
is that electrons in the QM subsystem do not experience
any Pauli repulsion from MM sites. This can be espe-
cially problematic when the MM site is a cation, whose
electrostatic potential attracts the QM electrons. With
no Pauli repulsion to balance this attraction, unphysical
charge transfer from QM to MM takes place.

A number of approaches have been proposed to circum-
vent the problem (see e.g. [83-86]), but not in the context
of linear-scaling QM methods, where it becomes partic-
ularly problematic. This is because the spilled electrons
accumulate near the peripheries of the localization re-
gions, disrupting SCF convergence, which assumes local-
ized orbitals to be well-decayed at the truncation point.

We refer the reader to the Appendix (Sec. B) for a
case study of this undesired effect on a HyO:K™ system,
where we also demonstrate the feasibility and accuracy
of an improved model which eliminates this issue. The

improvement consists in replacing the repulsive term of



Halgren’s vdW potential with a density overlap model[85]
that is sensitive to the QM electronic degrees of freedom,
accounting for QM /MM Pauli repulsion. We retain Hal-
gren’s classical description for QM /MM dispersion inter-
actions.

In an overlap model the Pauli repulsion energy is as-
sumed to be proportional to the overlap between densi-

ties, i.e.

Ny

E/MM / n(r) > wpny™ (r—Rp)dr,  (25)
L

where n (r) is the QM electronic density, n¥™ (r) is a
model density centered on MM atom L, and K, is a pro-
portionality constant with a suitable unit.

A reasonable model density is that of a 1s Slater-type

function:
MM > ( —2¢rr
np (1) = [P, (r)]" = e : (26)

Instead of working with model densities we can think
of MM atoms as equipped with a model repulsive electro-
static potential, leading to an equivalent energy expres-
sion:

Num
EQM/MM /n (r) oy ™M (p — R ) dr (27)

rep
L

together with an equivalent MM repulsive potential

U?/IMrep (r) = ﬁefzgm _ ﬂefzgr’ (28)
7r T
characterized by two parameters — a magnitude A and an
inverse-width ¢, both of which depend on the chemical
species of MM atom L.
The form of (27) is that of a static external po-

tential acting on the electronic density, which means

N, MM
,UMMrep (I‘) — LMM vy rep

added to vy (r) in (2), and no new energy gradient ex-

(r—Ry) can simply be

pressions need to be derived for this term. Unless stated
otherwise, all results presented in this paper have been
obtained with the model that includes the MM repulsive
potential (and excludes the repulsive contribution from
the Halgren QM/MM vdW expression).

As regards computational efficiency, we point out that
the integral in (27) only needs to be computed over the
union of localization spheres of the QM subsystem (since
n (r) vanishes elsewhere). Furthermore, and more impor-

. MDMrep
tantly, since v}

(r) decays exponentially, only those
regions of the QM subsystem that are within a short

cutoff radius (say, 5A) from any MM atom need to be

. . MM
considered. Generating v, "

(r) in a sphere around
R, with the sphere radius system-size independent, is
an O(1) operation for a single MM atom L. The number
of MM atoms within a cutoff radius from the QM subsys-
tem will be proportional to the surface area of the QM
subsystem, and so to Néﬁ The total cost of evaluating
(27) thus scales O(Néﬁ)

Naturally, physically reasonable values for Ay, and (g,
need to be determined for all species of interest appearing
in the MM subsystem. As a proof of concept, in Sec. IV A
we show how suitable values can be found for C17, K+
and H5O.

IV. RESULTS

In this section we demonstrate the accuracy and via-
bility of the proposed approach on a number of systems.
In all QM calculations we used the PBE[87] exchange-
correlation functional, with an empirical dispersion cor-
rection in the Elstner[70] formulation, with parameters
determined by Hill et al.[69]. The NGWF localization
radius was set to 3.7 A.

A. Interaction energy curves

We begin by examining the interaction energy curves
of three simple systems: HoO:K*, HyO:Cl™ and a wa-
ter dimer. The latter two systems were studied in our
earlier works[5, 52|, using a different QM/MM model,
and using energy decomposition analysis (EDA) to com-
pare AMOEBA against a high-quality DFT functional
wBI97X-V[88]. For each of the systems we compare the
predictions of the QM/MM model that is the focus of
this paper, and those of AMOEBA, against reference re-
sults obtained from fully QM calculations (i.e. PBE-D
as described above). All QM calculations used a kinetic
energy cutoff of 1290 eV.

By performing a parameter scan in the space of {A, (}
we established MM repulsive potential parameters for K+
that, for this system, are optimal in the sense of mini-
mizing the mean squared difference between the inter-
action energy curves from QM/MM and fully QM cal-
culations. The values we obtained are Ap+ = 230Ha/e
and i+ = 1.379a, !, The interaction energy curves are
compared in Fig. 1. AMOEBA (green curve) is seen to
model this interaction faithfully, with the position of the
minimum accurate to 0.007 A and only very slight under-
binding (less than 1kcal/mol). This degree of agreement
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Figure 1. Interaction energy for a HoO:K™ system as a func-
tion of the O--K™ distance. QM /MM results (blue) are com-
pared against full QM (black). Pure MM results obtained
with AMOEBA are shown in green.

is expected, since the charge density of KT is tightly lo-
calized and thus well-approximated by a point multipole
model, with very little charge penetration error. The
QM HoO/MM K™ description is in even better agree-
ment with full QM — the position of the minimum is
accurate to 0.002A and the energy is no further than
0.3 kcal/mol from the fully QM result for all interatomic
separations.

We now turn our attention to the HoO:Cl™ system,
which we expect to be more difficult for a polarizable
point dipole model due to the larger electronic delo-
calization of Cl™, which increases the charge penetra-
tion error. By following the same protocol as for the
HyO:K™ system, we established optimal parameters for
the repulsive MM potential for C17: Ay - = 250Ha/e
and (- = 1.140 %—17 which, compared to KT, represent
a marginally stronger and somewhat less localized poten-

tial, consistent with expectations.

The interaction energy curves are compared in Fig. 2.
Compared to our QM reference, AMOEBA is seen to
underbind at all interatomic separations, particularly at
short distances, where the magnitude of the error in-
creases from =~ 1kcal/mol to over 5kcal/mol. A large
fraction of this error can be attributed to the neglect of
charge transfer. In our reference fully QM calculations as
much as 0.22 ¢ is transferred from the C1~ ion to the wa-
ter molecule at the shortest studied separation (2.8 A),
corresponding to a stabilizing effect of ~ —5kecal/mol.
As the separation is increased, this charge transfer be-
comes less pronounced — at 4 A only 0.05 e is transferred

and the corresponding change in energy is only about
—0.2keal/mol.

-8 T T
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Figure 2. Interaction energy for a HoO-CI™ system as a func-
tion of the O--Cl~ distance. QM/MM results (blue) are com-
pared against full QM (black). Pure MM results obtained
with AMOEBA are shown in green.

However, we must acknowledge the fact that the QM
reference curve against which AMOEBA is benchmarked
DFT calculations
involve a number of approximations, chief among which

is too a result of a physical model.

are the use of an approximate exchange-correlation func-
tional, the pseudopotential approximation, the use of a
finite basis, and — in linear-scaling DF'T — the use of finite
radii for the localized orbitals. Different choices for these
parameters will lead to slightly, but noticeably, different
interaction energy curves, particularly since the water
molecule is well-known to be difficult to describe with
GGA DFT (see e.g. Refs. 89-91). For instance, when in-
stead of PBE, wB97X-V[88] is used for the same system
(as reported by some of us in Ref. 5, cf. Fig. 3 therein),
the reference curve shifts upwards by ~ 1kcal/mol in the
long range (practically matching AMOEBA), and by as
much as =~ 3.2kcal/mol at 2.8 A, reducing AMOEBA'’s
perceived underbinding at the shortest separation stud-
ied here to 2kcal/mol. We thus caution against treat-
ing all differences between MM and QM reported here
strictly as deficiencies of the MM model.

Naturally, charge penetration error is also expected to
be more significant for C1~ than for K. AMOEBA does
not explicitly model charge transfer or account for charge
penetration and must resort to approximating these ef-
fects through polarization and vdW interactions. More
severe underbinding at short distances leads to a shift in
the position of the minimum, which, compared to our QM



reference, AMOEBA overestimates by 0.08 A (or 0.05 A
against the QM reference of Ref. 5). Our QM/MM model
achieves better agreement with fully QM results, under-
binding by less than 2kcal/mol, with the magnitude of
the error being almost independent of the distance be-
tween Cl~ and the water molecule. Thus, the predicted
interaction energy curve is very similar in shape to the
reference one, only shifted by a constant, and the position
of the minimum is predicted very accurately (to 0.002 A),
showing the QM/MM interface to be well-balanced in
this scenario.

We now turn our attention to the HoO dimer. In ear-
lier work[52] on the same system we showed that charge
penetration is significant at the equilibrium distance and
below it, making this system challenging for AMOEBA,
which has to compensate for CPE by artificially soften-
ing the repulsive vdW wall, relying on cancellation of
errors to model the hydrogen bond. Thus (cf. Fig. 3),
the agreement between AMOEBA and a fully QM calcu-
lation worsens at short separations, where AMOEBA un-
derbinds by as much as 4 kcal/mol (2.9 kcal/mol against
the QM reference of Ref. 5), but is still remarkably good
at the equilibrium distance and beyond, where AMOEBA
underbinds by only ~ 0.5kcal/mol. The r.m.s. error
across the entire curve is 1.1kcal/mol. The position of
the minimum is also predicted accurately (to 0.004 A).

QM (reference)
MM (AMOEBA) ———
4 QM/MM with AMOEBA (QM donor, MM acceptor) R
QM/MM with AMOEBA (QM acceptor, MM donor) — — -

donor acceptor

Energy (kcal/mol)
o

3 3.2 34 3.6 3.8 4
O- -0 distance (A)

Figure 3. Interaction energy for a water dimer as a func-
tion of the O--O distance. QM/MM results (blue) are com-
pared against full QM (black). Pure MM results obtained
with AMOEBA are shown in green.

Determining suitable parameters for our model’s re-
pulsive MM potential for O and H atoms is more chal-
lenging than in the previous two cases. First, there are
four parameters to be simultaneously optimized (A, (o,
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Ao, €o0), making the parameter scan more involved. Sec-
ond, if our model is to be well-transferable, it must ac-
curately describe both the situation where the hydrogen
bond donor is described by QM (and the acceptor by
MM), and the situation where QM is used to describe
the hydrogen bond acceptor (and MM — the donor).

After a thorough parameter scan we determined the
following suitable values for the parameters of the
MM repulsive potential: Ay = 35Ha/e, (g = 2.40a; ",
Ao =550Ha/e, (o = 1.58 agl. With these values the in-
teraction energy curves predicted by our QM /MM model
(Fig. 3, blue curves) are in very good agreement with fully
QM results. When QM is used to model the hydrogen
bond donor (solid blue curve), the r.m.s. error in energy
across the entire curve is 0.7 kcal/mol and the position of
the minimum is accurate to 0.002 A. When QM is used to
model the hydrogen bond acceptor (dashed blue curve),
the r.m.s. error in energy is only 0.4 kcal/mol, but the
position of the minimum is predicted less accurately and
is underestimated by 0.026 A. Crucially, in both cases
the interaction energy curve stays within 1 kcal/mol from
the reference curve obtained with fully QM calculations,
even at separations below the equilibrium distance. This
indicates that the QM /MM interface in our model is well-
balanced even in the presence of hydrogen bonds.

The above examination of the performance of our
QM/MM model for three representative systems (MM
cation, MM anion, MM neutral molecule with a hydrogen
bond spanning the QM/MM interface) can be considered
a proof of concept. We showed that our QM /MM model
is stable for all studied intermolecular separations, even
well below the equilibrium distance, and that it gives rea-
sonable predictions for interaction energy profiles, which
we find remarkable given that in the studied systems the
crucial interactions crossed the QM/MM boundary.

In all examples so far we used the HoO molecule for
the QM subsystem and so the question of whether our
QM/MM model is transferable, particularly concerning
the parametrization of the MM repulsive potential, re-
mains open. In the text that follows we will examine the
model’s performance for a number of different molecules,
both neutral and charged, demonstrating that it is indeed
transferable as its predictions remain accurate.

The need to determine suitable parameters for the re-
pulsive MM potential of all MM species of interest can be
seen as a weakness of our model. Intuitively, one would
hope that the parameters Ay, and (7, could be derived
from corresponding classical vdW parameters e7, and RY
—e.g. we expected Ay ~ e, and (;, ~ 1/ROL. However,



we found this not to be the case. For instance, for the
parameters we determined Ag ~ 15.7, whereas 8“ =~ 8.1,
that is, our model uses a substantially weaker potentlal

on H. Similarly, we have CH ~ 1.52, whereas 1;}?,0 ~ 1.28,
meaning the potential on H used in our model is also
slightly tighter.

One reason is that while v} P (r) (cf. (28)) is linear
in Az just like EMM (R;;) (cf. (8)) is linear in e, the
energy expression (27) for Er%g[/MM is not linear in Ap.
This is because n (r) implicitly depends on Ay, that is
to say, the electronic density responds to the MM repul-
sive potential by deforming accordingly. Thus, not only
is Er%g/l /MM 4ot linear in A L, but also other energy terms
are indirectly influenced by the repulsive MM potential
through the change in n (r). Another reason is that the
vdW parameters adopted in AMOEBA have been fit-
ted to partially compensate for the deficiencies in the
classical treatment of electrostatics, some of which are
no longer present in our QM/MM formulation. Finally,
AMOEBA employs additional “tweaks” in its vdW for-
mulation, for instance the repulsive sites of H atoms are
slightly offset from the actual atomic sites (“reduction
factor”).

While we plan to investigate routes for automatically
obtaining Ay, and {7 in future work, in this paper we will
focus on MM water, for which we have obtained good pa-
rameters already. In this way we can apply our model to
a large class of systems that is of practical interest — QM
solutes embedded in MM water.
with different MM species to a later time.

We defer applications

B. Interaction energies of solutes with water shells
of increasing size

We now set out to demonstrate the transferability of
our model, turning our attention to a number of QM
solutes embedded in spherical shells of MM water. We
will use the same systems and the same methodology
as in our earlier work[51] — the QM subsystem will only
encompass the solute, and we will study the behavior of
the QM/MM system as the size of the MM HyO shell is
increased (cf. Fig. 3 in Ref 51).

Three of the solutes were chosen from the SAMPIL4
blind challenge[92]: a) (—)-menthol, b) diphenylhydra-
mine, and ¢) 2-chloro-4-hydroxy-3,5-dimethoxybenzalde-
hyde. These moderately-sized molecules (31, 40, and 23
atoms, respectively) encompass a number of chemical fea-

tures: a cyclohexane ring (a), an ether group (b), an
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aromatic ring (b), an amine group (b), a halogen atom
(¢c), and an aldehyde group (c). The remaining three
molecules were d) ammonia (NHj), e) the ammonium
ion (NHJ) and f) the cyanide ion (CN™)

with the aim of verifying if our model correctly describes

— were chosen

small and charged solutes.
We compared four computational approaches:

a) Fully QM calculations with no embedding (entire
system treated at the DFT level of theory), which

serve as reference;

b) QM calculations using a purely electrostatic em-
bedding, where the QM subsystem encompassed
only the solute, and HoO molecules were described
with fixed partial charges. In this set-up only a

fixed, external potential is included in the QM

Hamiltonian; we emphasize the neglect of vdW in-

teractions between the QM and the embedding;

¢) QM/MM calculations with either a fixed point-
charge embedding (GAFF v1.5[93]) or a polariz-
able embedding (AMOEBA). Here too the QM sub-
system encompassed only the solute, and all wa-
ter molecules were described by a classical force
field. For the fixed point-charge (GAFF) embed-
ding vdW interactions between the solvent and
solute were included at the MM level of theory
Thus, the MM repul-
sive potential introduced in Sec. IIIC was not

(Lennard-Jones potential).

used in this case. Similarly, polarization damping
(Sec. IIIB) was not relevant here as the force field
was not polarizable. For the polarizable embedding
(AMOEBA) we used the final, refined QM/MM
model, as described in Secs. III B-ITI C;

d) Fully MM calculations, where the entire system
was treated classically (with GAFF or AMOEBA).

In fixed point charge QM /MM calculations and in QM
calculations with fixed point-charge embedding we used
partial charges of 0.417 e for H atoms and —0.834 e for
O atoms, which are identical to the TIP3P[94] model
used in GAFF. All QM calculations used a kinetic energy
cutoff of 1000eV. For details on how the configurations
were prepared, see Ref. 51, Sec. 3.B.1.

We begin by comparing the interaction energies be-
tween the QM solute and the MM water shell as a func-
tion of the size of the shell (number of HoO molecules).
To better elucidate the long-range behavior, in Fig. 4 we
only plot the error in the energy with respect to the fully
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Table I. Comparison of interaction energy accuracy offered by fixed point charge (GAFF) and multipolar polarizable (AMOEBA)
force-fields in MM calculations and QM/MM calculations, and by electrostatic embedding (QM+EE). The values shown are
errors (kcal/mol) with respect to DFT (PBE-D) reference calculations, averaged over systems with 200+ H2O molecules.

RMSE: root mean square error, MSE: mean signed error.

molecule MM MM QM+EE QM/MM QM/MM
GAFF AMOEBA (point-charge) GAFF AMOEBA (this work)
(—)-menthol 11.1 2.7 17.1 5.0 1.9
diphenylhydramine 15.3 1.5 36.4 10.8 -3.4
2-Cl-4-OH-3,5-dimethoxy-BALD 6.2 1.0 22.2 4.9 -14
NHs 3.1 1.9 0.9 1.3 2.9
NH 5.7 1.7 —5.0 4.4 0.0
CN™ —5.8 9.0 —2.2 —4.9 4.0
RMSE 8.9 4.0 18.9 5.9 2.6
MSE 5.9 3.0 11.6 3.6 0.7

QM calculation that we use as reference. Even though
the systems studied here are the same as in our earlier
work[51], we point out that the energy error curves are
not directly comparable with those of Ref. 51, since in
current work we used a more refined QM approach with
in situ optimized NGWFs both for QM /MM calculations
and for the fully QM reference.

Our first observation is that for all six systems purely
MM calculations with AMOEBA (green circles) clearly
outperform GAFF (grey diamonds). With the exception
of NH3 and CN™, typical errors in the GAFF descrip-
tion are at least three times larger than their AMOEBA
counterparts. Even in cases where GAFF fares relatively
well (NHs), or where AMOEBA’s error is rather large
(CN7), long-range behavior is clearly much better de-
scribed by AMOEBA. This can be appreciated from the
much flatter profiles of the AMOEBA curves, which in-
dicate an almost constant energy shift from the reference
QM calculation. The energy changes from adding subse-
quent water molecules are more erratic for GAFF and the
convergence with the number of HoO molecules is much
worse. As expected, this is particularly pronounced for
charged solutes — in the case of CN™, for instance, the
binding energy is not well converged even at 400 MM
H50 molecules. We attribute this to polarization partly
compensating for the boundary effects that result from
truncating the water shells.

The behavior of point-charge electrostatic embedding
(QM+EE, red diamonds) is best understood by com-
paring it against QM /MM with GAFF (orange crosses),
since these two approaches only differ by the neglect of
QM/MM vdW interactions in the former. This neglect
leads to a very rapid accumulation of error at short range,

particularly for larger solutes (a, b, ¢), where this interac-
tion is more significant. At longer range QM /MM vdW
interactions are well-decayed, which is reflected in the al-
most identical profiles of QM/MM-GAFF and QM+EE
curves starting at approx. 150 HoO molecules for large so-
lutes (a, b, ¢) and as early as approx. 50 H2O molecules
for small solutes (d, e, f). As expected, the neglect of
QM/MM vdW interactions makes the QM+EE approach
inadequate for calculating interaction energies between
the QM solute and embedding, although occasionally
(e.g. for NH3 and CN7) the error fortuitously cancels
out some of the errors in the electrostatics.

It is also worthwhile to compare the results of
QM/MM-GAFF (orange crosses) against purely MM
GAFF calculations (grey diamonds), because it reveals
the effect of treating the solute at the QM level of theory,
all other components of the two models being identical.
For all six solutes QM /MM-GAFF is more accurate, and,
as the long-range profiles of the two curves are almost
identical, it is clear that this gain in accuracy is due to
a much improved description of short-range interactions,
i.e. the ability of the QM subsystem to realistically po-

larize in response to the MM environment.

Of greatest interest to this paper is, of course, the com-
parison between QM/MM-AMOEBA (blue squares) and
QM/MM-GAFF (orange crosses). In terms of absolute
errors in energy, our model outperforms QM/MM-GAFF
in all cases except for NHs. Moreover, the long-range
behavior of QM/MM-AMOEBA is much better (flatter
curves), particularly for charged solutes, where all fixed-
point charge approaches (MM-GAFF, QM/MM-GAFF,
QM+EE) clearly suffer from neglecting polarization. Out
of all five models the QM/MM-AMOEBA model has the



lowest maximum error in the long range (4 kcal/mol for
CN~, compared with 9kcal/mol of AMOEBA, and max-
imum errors in excess of 10kcal/mol for the other ap-
proaches). We summarize these results in Table I, from
which it also becomes clear that, when averaged over all
six systems, our approach has the lowest signed and un-
signed errors of all the considered approaches.

C. Dipole moments of solutes in water shells of
increasing size

Satisfied that the energetics of our QM/MM interface
is accurate, we now focus on how the QM solute is af-
fected by the presence of the QM/MM interface. Natu-
rally, we would like the electronic structure of the QM
solute in the presence of MM embedding to resemble the
electronic structure of the full QM system as much as
possible, i.e. for the MM embedding to faithfully mimic
QM. Since we cannot compare electronic energy levels be-
tween QM/MM and full QM, and comparing electronic
densities would require density partitioning, we will use
the total dipole moment of the solute as a proxy.

In Fig. 5 we plot the magnitudes of the solute dipole
moment for the same six solutes as a function of the size
of the water shell. In QM/MM calculations the solute
(QM) dipoles are immediately available. In fully QM
calculations the solute dipoles were obtained from DMA
analysis. In fully MM calculations the solute dipoles are
either obtained by a suitable vector summation of per-
manent dipoles with induced dipoles (AMOEBA) or, in
the absence of polarization, are simply constant (GAFF).
For neutral systems the dipole moment is invariant to the
choice of the reference point. For charged systems, and
in fully QM calculations where charge transfer between
the solute and solvent can make the total solute charge
non-zero, we chose the centroid of the molecule as the
reference point.

Our first observation is that, particularly for larger
solutes, the solute dipole moment is rather sensitive to
the environment and can change abruptly depending on
where subsequent HoO molecules are added. The qual-
itative behavior of this sensitivity is captured to a sim-
ilar degree by all models, except of course MM-GAFF,
which does not permit solute polarization. The accu-
racy of the constant dipole moment of the GAFF so-
lute is hit-and-miss — e.g. GAFF’s prediction is excellent
for (—)-menthol, severely underestimated for diphenylhy-
dramine and NH; , and severely overestimated for CN~.
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The predictions of QM+EE (red diamonds) and
QM/MM-GAFF (orange crosses) are expected to be
identical, since the two approaches only differ by the ab-
sence/presence of a classical QM/MM vdW term that
does not affect the electronic degrees of freedom. In prac-
tice we observe very small differences (< 0.1D) that are
the consequence of different smearing of the singulari-
ties of the Coulombic permanent fixed-point charges of
the embedding on the Cartesian grid on which electronic
density is evaluated in ONETEP.

For all six solutes the predictions of our QM/MM
model are more accurate than those of AMOEBA, in-
dicating the expected superiority of a QM description
of the solute (this is most striking for NHJ, which
is underpolarized with AMOEBA). For three of the
six solutes ((—)-menthol, NHz, CN7) the predictions of
our model are closest to the fully QM results in ab-
solute terms. For the remaining three molecules our
model is slightly less accurate than QM /MM-GAFF, but
not much so. Furthermore, this only happens when
AMOEBA itself fares worse (diphenylhydramine, 2-Cl-
4-OH-3,5-dimethoxy-BALD, and NHJ ), possibly impli-
cating the polarizable water model, rather than the
QM/MM interface, as the culprit. When the errors are
averaged over all the systems, our QM /MM model yields
the lowest RMSE. Details are summarized in Tab. II.

D. Interaction energies of solutes with 1st
solvation shell

We now turn our attention to the interaction between
three solutes: HoO, C17, Na™ and their first solvation
shells.

tive of neutral, anionic, and cationic species, respec-

The three solutes are meant to be representa-

tively. To benchmark our QM /MM approach we model
only the solute at the QM level of theory, while the sol-
vent (water) is be described by AMOEBA. We calculate
solute-solvent interaction energies, comparing the perfor-
mance of our approach against a non-polarizable model
(QM/MM-GAFF), and purely classical models (where
the entire system is described with GAFF or AMOEBA).
Purely QM calculations are used as reference.

To obtain meaningful statistics, we performed calcu-
lations for 100 configurations (for each solute) obtained
from MD runs, where each solute was solvated in 215
H>0O molecules. In each MD snapshot all but Nig, HoO
molecules closest to the solute were then stripped, leav-
ing only the first solvation shell. The values of Ny4 were
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Table II. Comparison of solute dipole moment accuracy offered by fixed point charge (GAFF) and multipolar polarizable
(AMOEBA) force-fields in MM calculations and QM/MM calculations, and by electrostatic embedding (QM+EE). The values
shown are r.m.s. errors (debye) with respect to DF'T (PBE-D) reference calculations, averaged over all systems (solute + water
shells). RMSE: root mean square error.

molecule MM MM QM+EE QM/MM QM/MM
GAFF AMOEBA (point-charge) GAFF AMOEBA (this work)
(-)-menthol 0.31 1.13 1.19 1.14 0.77
diphenylhydramine 3.00 1.18 0.32 0.24 0.38
2-Cl-4-OH-3,5-dimethoxy-BALD 0.45 0.73 0.30 0.28 0.61
NH3 0.47 0.94 0.95 0.95 0.70
NH 0.74 0.41 0.02 0.02 0.05
CN™ 1.69 0.11 0.13 0.14 0.11
RMSE 1.47 0.84 0.65 0.63 0.52
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Figure 6. Interaction energies (kcal/mol) between three solutes (H20, C1~ and Na™) and their first solvation shells — comparison
of MM and QM/MM models (y axis) with fully QM reference results (z axis) for 100 snapshots.

4, 8 and 6 for HO, Cl~, and Na™, respectively. The
configurations studied are the same as used in our earlier
work[52]. For a more detailed description of how the con-
figurations were obtained, and the rationale for choosing
Nigt, we refer the reader to Ref. 52, Sec. II1.C.

The calculated solute-solvent interaction energies are
plotted in Fig. 6, while Table III reports crucial statis-
For the HyO solute our QM/AMOEBA model
performs well, with a general trend of underbinding

tics.

by about 1 kcal/mol, and comparing favorably against
QM/GAFF in all five metrics (rms error, mean signed
error, maximum error, correlation coefficient and slope
of linear fit to the model’s interaction energy vs. refer-
ence). We find this rather remarkable, since QM/MM
models are typically not very good at reproducing in-
teraction energies spanning the interface. The largest
error for our model is 3.7 kcal/mol, which is better than

pure AMOEBA (4.6 kcal/mol), and much better than

pure GAFF (6.2 kcal/mol) or QM/GAFF (7.3 kcal/mol).
The correlation between the model and reference is also
very good (r = 0.95), although pure AMOEBA does
marginally better (r = 0.96).

The CI™ solute exposes the weaknesses of purely MM
treatments. GAFF is particularly inaccurate here, with
rms and mean signed errors in excess of 10 kcal/mol and a
maximum error of over 40 kcal/mol, which is not surpris-
ing, given the likely importance of polarization effects in
this sytem, for both the solute and solvent. AMOEBA’s
predictions are better (rms error of 6.6 kcal/mol), but
it does not avoid occasional embarrassments (max er-
ror of 20.7 kcal/mol). Both QM/MM models perform
significantly better, which highlights the importance of
treating the Cl~ ion at the QM level of theory, in or-
der to be consistent with the latter. Our QM/AMOEBA
model correlates better with pure QM (r = 0.98 against
r = 0.92 for QM/GAFF, linear slope of 0.97 against
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Table III. Comparison of accuracy offered by fixed point charge (GAFF) and multipolar polarizable (AMOEBA) force-fields in
MM calculations and QM/MM calculations for the interaction energies between three solutes (H2O, C1~ and Na™) and their
first solvation shells. AE are errors in energy (kcal/mol) with respect to DFT (PBE-D) reference calculations, averaged over

all 100 snapshots: AFyms — root mean square error, AFEyse — mean signed error, AFmax — maximum error. 7 is the Pearson

correlation coefficient between Ei,odqe1 and Equ, @ is the slope of linear fit of Emodel vs. Eqm. Values in blue denote the most

accurate model in each category, values in red denote the least accurate model.

system MM MM QM/MM QM/MM
GAFF AMOEBA GAFF AMOEBA (this work)
AEms 2.1 1.7 3.1 1.4
AFmse -0.8 1.3 —24 0.9
H>0-H,0 AEmax 6.2 4.6 7.3 3.7
r 0.88 0.96 0.91 0.95
a 1.05 0.91 1.17 0.85
A FErms 15.8 6.6 3.9 4.1
AFmmse —12.7 —1.1 —14 3.9
Cl™-H,0 AEmax 40.2 20.7 9.4 7.1
r 0.47 0.53 0.92 0.98
a 0.77 0.57 1.23 0.97
AFErms 10.4 1.0 10.5 13.5
AFEmse —9.2 0.5 -9.3 —13.3
Na™-H,O AFEmax 19.2 2.9 19.3 19.4
7 0.95 0.99 0.95 0.95
a 1.50 0.96 1.50 0.99

1.23 for QM/GAFF), but it is seen to underbind slightly
across the board (rms error of 4.1 kcal/mol, compared
to 3.9 kcal/mol for QM/GAFF). Its maximum error is
7.1 keal/mol, which is rather large, but still better than
QM/GAFF (9.4 kcal/mol) and much better than the
double-digit errors of MM models.

For Nat and its first solvation shell AMOEBA per-
forms very well, while all the remaining models are rather
inaccurate. Since Na' is a compact, barely polarizable
ion, it is well-described by MM methods. This explains
why GAFF results are almost identical to QM/GAFF
results. What is significantly more important in this
system is the description of the water solvent. GAFF’s
water model cannot capture the polarization of the sol-
vent, which is highly relevant here, due to the charge
on the Nat solute. Thus GAFF and QM/GAFF both
yield a poor description of the whole system, with rms
errors above 10 kcal/mol and maximum errors of almost
20 kcal/mol. AMOEBA, in contrast, performs very well,
with an rms error of only 1 kcal/mol and good corre-
lation with purely QM results (r = 0.96), highlighting
the importance of a polarizable description of the wa-
ter solvent. Since our QM/AMOEBA model shares its
description of the solvent with AMOEBA, one would ex-
pect it to yield a similarly good description. However,

this is not the case. While the correlation with purely
QM results is good (r = 0.95, slope of 0.99), there is
significant overbinding for all snapshots, leading to large
errors in energy, dominated by a mean signed error of
-13.3 kcal/mol. This almost constant shift points to a
deficiency of our QM /MM interface in handling cationic
solutes, presumably due to the repulsive MM potential
having been parametrized only using HoO-H3O interac-
tions. We attribute the observed overbinding to an in-
sufficient repulsion between the compact Na™ and nearby
MM oxygen atoms.

We will now briefly investigate the effect of using in situ
optimized orbitals on the quality of QM/AMOEBA. We
calculated the interaction energies of the three systems
from Fig. 6 using fixed pseudoatomic orbitals (single-
zeta, double-zeta and polarization, triple-zeta and polar-
ization) and compared them with results obtained using
an in situ optimized minimal basis. We report the results
in Fig. 7 and Table IV. As expected, for a compact Na™
cation a minimal (SZ) basis is sufficient, and increasing
the flexibility of the basis makes very little difference,
with the slope and correlation coefficients practically un-
changed, and an essentially rigid shift of the interaction
energies by 0.5 — 0.7 kcal/mol compared to an in situ op-
timized basis. Since our model systematically overbinds
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Figure 7. Interaction energies (kcal/mol) between three solutes (H2O, C1~ and Na™) and their first solvation shells — comparison
of QM/AMOEBA using fixed pseudoatomic orbital basis and in situ optimized minimal basis (y axis) with fully QM reference
results (z axis) for 100 snapshots.

Table IV. Comparison of accuracy offered by the QM/AMOEBA model for the interaction energies between three solutes (H20,
Cl™ and Na™) and their first solvation shells depending on the quality of the QM basis set. AF are errors in energy (kcal/mol)
with respect to DFT (PBE-D) reference calculations, averaged over all 100 snapshots: A Frms — root mean square error, A Emge

— mean signed error, AFEmax —

maximum error. 7 is the Pearson correlation coefficient between Emodel and Equ, a is the slope

of linear fit of Fmodel vS. Eqm. Npasis is the number of QM basis functions for the solute. Values in blue denote the most
accurate model in each category, values in red denote the least accurate model.

system QM/MM AMOEBA  QM/MM AMOEBA  QM/MM AMOEBA QM/MM AMOEBA
S7Z DZp T7ZpP in situ optimized minimal
AFErms 34.1 4.8 4.1 1.4
AFmse 31.2 4.2 3.6 0.9
H20-H20 A Emax 68.4 10.9 10.1 3.7
r —0.07 0.78 0.82 0.95
a —0.26 0.75 0.79 0.85
Nhasis 6 23 29 6
AFErms 8.6 7.4 6.1 4.1
AFmse —8.4 —7.2 —5.8 3.9
Cl7-H20 APFEmax 13.9 12.0 10.0 7.1
r 0.96 0.97 0.97 0.98
a 0.99 1.00 1.00 0.97
Nyasis 9 13 17 9
AFims 12.8 12.9 12.9 13.5
AFmse —12.6 —12.7 —12.8 —13.3
Na™-H20 AFEmax 18.1 18.5 18.5 19.4
r 0.95 0.95 0.95 0.95
a 0.99 0.99 0.99 0.99
Nbasis 8 21 29 8

this system, the resultant shift actually makes the fixed-
basis results marginally better, owing to cancellation of a
small fraction of the error. For a diffuse C1~ anion the ef-
fect of the basis size is more pronounced, with a clear sys-
tematic improvement of about 1.5 kcal/mol in the MSE
for each time the basis set quality is increased, although
the optimized basis “overshoots” by a small amount, un-

derbinding by 3.9 kcal/mol. Nevertheless, QM /MM with
an in situ optimised basis yields the most accurate results
under all metrics, except for the slope (where the differ-
ences between basis set qualities are marginal). For HoO
the effect of using an optimized basis is dramatic, which is
expected, since we anticipate the orbitals in a molecule to
be poorly described with small basis sets. Consequently,



a minimal fixed basis (SZ) yields entirely wrong results,
consistently predicting large and positive interaction en-
ergies, with an MSE as large as 31.2 kcal/mol. The addi-
tion of polarization functions improves results dramati-
cally, but convergence with the size of the basis set is slow
— DZP yields an MSE of 4.2 kcal/mol, and TZP yields
3.6 kcal/mol, with correlation coefficients of only ~ 0.8.
Only when in situ optimized orbitals are used do the re-
sults improve markedly — the MSE falls below 1 kcal/mol,
the correlation coefficient exceeds 0.95, and maximum er-
ror diminishes by a factor of 2.7 compared to TZP. The
optimized orbital formulation of QM/AMOEBA is a clear
winner in this case, underscoring the advantages of using
an in situ optimized basis set for the QM subsystem.

E. Dipole moments of solutes with 1st solvation
shell

Having examined the energetics of our model, in the
last step of our analysis we will verify how the QM subsys-
tem (solute) is affected by the presence of the QM/MM
interface. Following the rationale of Sec. IV C, we will
compare solute dipole moments as a proxy for the shape
of the electronic density. As reference we use fully QM
calculations, where we partitioned the dipole moments
into atomic contributions using DMA[95]. We compare
the magnitudes of the total solute dipole between the
two QM /MM approaches (where the solute dipole is sim-
ply the total QM dipole), and the two purely MM ap-
proaches (where the solute dipole is directly obtained
from atomic dipoles (including induced dipoles in the
case of AMOEBA) and charges).

We begin our discussion with the water pentamer sys-
tem. While an isolated water molecule is charge-neutral,
and its dipole moment is position-independent, in fully
QM calculations of a solvated water molecule we ob-
serve moderate charge transfer (below +0.1e) between
the central HoO molecule and the solvation shell, which
makes the solute dipole position-dependent, and neces-
sitates choosing a reference point. For consistency with
the rest of this work, we chose the centroid of the so-
lute as the point, where we evaluate the dipole moment.
The total dipole moments, as well as individual atom-
centered dipole moments (for O and H atoms separately)
are plotted in Fig. 8 and summarized in Tab. V.

Qualitatively, the total dipole moment of the central
H50 molecule (solute) is described similarly by both MM
and QM/MM approaches — with substantial scatter and
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Table V. Comparison of solute dipole moment accuracy of-
fered by fixed point charge (GAFF) and multipolar po-
larizable (AMOEBA) force-fields in MM calculations and
QM/MM calculations. The values shown are r.m.s. errors
(debye) with respect to DFT (PBE-D) reference calculations,
averaged over 100 snapshots.

solute MM MM
GAFF AMOEBA

QM/MM  QM/MM
GAFF AMOEBA
(this work)

H20 0.521 0.713 0.612 0.624
H,O (O atom)  — - 0.099 0.059
H2O (H atoms) - — 0.229 0.136
Cl™ 0.232 1.140 0.584 0.330
Na™ 0.044 0.021 0.013 0.007

overpolarization (of about 0.6 D) relative to the purely
QM results. We attribute this to the differences in the de-
scription of the four surrounding HoO molecules — here
only the reference uses a DFT description, while both
MM and QM/MM approaches use a classical descrip-
tion. Given that standard DFT GGA models are known
to struggle to correctly describe the structure and prop-
erties of water (cf. e.g. Refs. 89-91), and that we ex-
pect the dipole moment to be larger than the gas phase
value (1.85 D) and lower than the value for bulk wa-
ter (=~ 2.7 D)[96], we believe that it is in fact the ref-
erence calculation that underpolarizes the solvated HoO
molecule. Neither of the MM or QM/MM models seems
to have a particular advantage in this case, although
QM/AMOEBA correlates slightly better with the refer-

ence.

It is more interesting to examine the individual atom-
centered dipoles. Here we expect MM and QM/MM re-
sults to differ substantially, because both MM approaches
are disadvantaged by the constraint of fixed charge on the
atoms, while in QM/MM the charge density is free to
transfer between atoms. GAFF, being non-polarizable,
additionally yields zero atom-centered dipoles by con-
struction. Thus, it is only meaningful here to bench-
mark the two QM /MM approaches against one another.
For the O atom we find QM/AMOEBA to be superior
to QM/GAFF in terms of correlation with the reference
result and a lower rms error (0.059 D vs 0.099 D). For
the H atom QM/GAFF does not reproduce the change
in the dipole moment between the snapshots at all, while
QM/AMOEBA shows the right trend, although it mostly

overpolarizes.

We finish with an examination of the two ionic so-
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lutes (Fig. 9, Tab. V). We evaluate the dipole at the
position of the ion. For C1~ we find all approaches, ex-
cept for the non-polarizable GAFF, to generally over-
polarize the ion, which is again expected, given the dif-
ferences between classical and DFT treatments of the
AMOEBA is the least accurate, possi-
bly because of the large magnitude of charge penetration

water solvent.

error for a diffuse C1~ ion. QM/AMOEBA performs bet-
ter than QM/GAFF (rms error of 0.330 D vs. 0.584 D).
For Na™, which barely polarizes at all (uz < 0.1 D)
QM/AMOEBA turns out the be the most accurate (rms
error of 0.007 D vs. 0.013 D for QM/GAFF), although
all models are qualitatively correct.

We conclude that, at least for small hydrated solutes,
our model is superior to QM/GAFF not only in how the
QM subsystem is affected by the QM /MM interface, but
also in better energetics across the interface.

V. CONCLUSIONS

We presented and benchmarked a new mutually po-
larizable QM /MM model, where the QM subsystem is
described using DFT with in situ optimized, localized
orbitals (non-orthogonal generalized Wannier functions,
NGWFs), and the MM subsystem is described using the
AMOEBA force field. By implementing our model in
the ONETEP linear-scaling DFT framework, we pave the
way for affordable large-scale QM /MM calculations, with
QM subsystems spanning thousands of atoms. However,
in this work we only studied small QM subsystems (up
to 40 atoms), which are outside the linear-scaling regime.

The rationale for optimizing NGWFs is the near-
complete-basis-set accuracy that they enable even with



a minimal basis. This high accuracy is comparable or
superior to even very large bases with fixed orbitals[67].
As part of this work we derived and implemented the
necessary gradients of the total QM-+MM energy with
respect to the NGWFs, enabling their in situ optimiza-
tion also in the context of QM/MM calculations. We
demonstrated how the additional flexibility of an in situ
optimized basis exacerbates known problems of polariz-
able QM/MM methods — catastrophic overpolarization
of the QM region (particularly in the presence of MM
ions), and unphysical charge transfer (“charge spilling”)
from QM to MM sites (particularly in the presence of
MM cations).

We developed, presented and validated conceptually
straightforward solutions to both of these issues. We
demonstrated that QM overpolarization can be mitigated
by modifying the value of the Thole damping parameter
only for polarization interactions spanning the QM /MM
interface. This suitably attenuates QM /MM polarization
at very short range while having negligible medium-range
and long-range effect. We addressed the charge spilling
by introducing a more refined model of QM/MM Pauli
repulsion interactions. This refinement replaces classical
Halgren vdW repulsion with an electrostatic repulsive po-
tential originating on MM atoms, which is parametrized
to mimic Pauli repulsion. This approach is functionally
equivalent to a density-overlap-based Pauli repulsion en-
ergy model with fixed, species-dependent densities placed
on MM atoms, and, crucially, actual QM densities. This
formulation is sensitive to the electronic degrees of free-
dom, which prevents the electronic density from excessive
spilling.

Our modified approach requires parametrizing the re-
pulsive potential with two values per MM species. We
demonstrated how suitable values could be determined
for K™ and Cl~ ions and for the atomic components of
water, giving us confidence that this can be done in prin-
ciple. We did not identify a simple relation that would
enable us to easily derive the sought parameters from
classical vdW parameters, but we plan to investigate this
further in future work.

We performed extensive tests to evaluate the trans-
ferability and reliability of our model with focus on the
MM treatment of water. Using a variety of molecules,
from small ions and neutral systems, to larger molecules
(up to 40 atoms), we showed that our model is in gen-
eral, although not universally, superior to nonpolarizable
QM/MM and to purely MM approaches. This was re-
flected in lower disruptive effect of the QM/MM inter-
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face on the QM subsystem (which we assessed by com-
paring the dipole moments against a fully QM reference),
but also by better energetics, when calculating interac-
tion energies between the QM and MM subsystems. We
find the latter particularly promising, as QM /MM mod-
els are typically very poor at describing interaction ener-
gies across the QM /MM boundary.
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Appendix A: QM /MM polarization catastrophe:
diagnosis and prevention

In this section we elaborate on the QM/MM polar-
ization catastrophe (cf. Sec. IIIB) that can arise when
NGWFs in the QM subsystem are optimized in situ. We
use an HoO:Cl1™ system as an example. Fig. 10 shows the
magnitudes of atom-centered dipoles computed from the
DMA procedure for QM atoms, and the induced dipole
of the MM C1~ ion (whose permanent dipole is of course
zero) in the course of SCF optimization. A mutual posi-
tive feedback can be observed to intensify at about step
80, quickly leading to absurdly large dipole moments (in
excess of 1000 D). The sharp, step-like changes to the
dipole values correspond to NGWF optimization steps
and the relatively flatter parts of the graph — to the den-
sity kernel optimization steps. The classical degrees of
freedom (MM induced dipoles) are fully optimized for
each energy evaluation. The expected dipole moments
on all atoms (as calculated from a fully QM reference cal-
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Figure 10. Atom-centered dipoles (magnitudes) on atoms in
the QM subsystem (red, blue) and in the MM subsystem
(green) in the course of SCF optimization for a HoO-C1™ sys-
tem (shown in inset). In the point-dipole model under stan-
dard Thole damping the two subsystems polarize one another
to infinity. Dashed lines denote reference values obtained from
a fully QM calculation.

culation), shown with dashed lines, are well below 1 D.
It is clear that the MM site in particular is overpolarized
from the very first step of the optimization.

The main underlying reason for this is the inaccuracy
of the multipolar approximation of QM density at short
range, i.e. charge penetration error (in this system the
Cl~ ion is 1.8 A away from the H atom, while localized
NGWFs extend for 3.7A). This can be appreciated in
Fig. 11, where we plot the relevant component of the
electric field due to the QM subsystem along the line
joining the MM C1~ ion and the leftmost H atom in the
QM subsystem.

At first glance the field from the full electronic density
(solid red line) seems to agree rather well with the field
from the multipole approximation (dashed red line), up
to ~ 1.5 A, where the multipole expansion starts to di-
verge. However, this field is to a large degree cancelled
out by the field of the QM core, making the relative error
in the total (blue) much more pronounced. Additionally,
the shoulder to the left of the C1™ ion (a result of a small
fraction of the electronic density being attracted there by
the electrostatic potential dip from Cl~’s induced dipole)
cannot be well-represented by the multipole expansion
and contributes to the charge penetration error. The is-
sue is compounded by the fact that NGWF optimisation
is driven by a gradient expression (cf. (22)) that, for con-

22

8000 T
QM elec

QM*elec - - - -
QM total (elec+pspot) ———
QM* total (elec+point core) — - - -

6000

4000

2000

X-component of electric field (MV/cm)

1

~2000 *
-5 -4 -3 2 - 0

X-component of position relative to H atom (A)

Figure 11. Electric field due to the QM subsystem along the
Cl™-H line in a HoO-Cl™ system (cf. Fig. 10). The field due
to electrons alone is shown in red (solid line — full electronic
density, dashed line — point-multipole approximation). The
total field is shown in blue (solid line — full electronic density
+ core pseudopotential, dashed line — point-multipole approx-
imation). The multipole approximation breaks down at short
range (here: ~ 2 A), leading to unphysical charge transfer and
lack of SCF convergence due to a polarization catastrophe.

sistency with a multipolar energy expression, has itself
been derived via an intermediate step of a multipolar
expansion. In consequence, the NGWF gradient is only
sensitive to the MM potential, field and field derivative
at the QM atom centres, rather than in the entire local-
ization sphere (cf. comment directly below (22)).

1.2

CI™ ion

H atom #1
t O atom

H atom #2

-

Atom-centered dipole (D)
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Energy evaluation

Figure 12. Atom-centered dipoles (magnitudes) on atoms in
the QM subsystem (red, blue) and in the MM subsystem
(green) in the course of SCF optimization for a HoO-Cl™ sys-
tem (shown in inset of Fig. 10). With a suitable increase in
polarization damping, the polarization catastrophe is avoided.
Dashed lines denote reference values obtained from a fully QM
calculation.

One way to avoid the QM/MM polarization catastro-
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Figure 13. Electric field due to the QM subsystem along the
Cl™-H line in a H,O-C1~ system (cf. Fig. 10). The field due to
electrons alone is shown in red (solid line — full electronic den-
sity, dashed line — point-multipole approximation). The total
field is shown in blue (solid line — full electronic density +
core pseudopotential, dashed line — point-multipole approx-
imation). Once the polarization catastrophe is avoided by
increased polarization damping, the multipole approximation

remains accurate up to 1 A and SCF convergence is achieved.

phe is to simply reduce the NGWF localization region
(e.g. we found 3 A to be sufficient) — this makes the or-
bitals less diffuse and the point-multipole approximation
more accurate. However, this would sacrifice some accu-
racy in the QM calculation — ONETEP calculations typi-
cally use localization radii of 3.5 — 5 A.

What we propose instead is to slightly attenuate
QM/MM polarization interactions, leaving permanent
QM/MM interactions and MM/MM polarization un-
changed. We retain the Thole functional form of the
damping but we reduce Thole’s a parameter by a factor
of 2.45, which has the effect of attenuating the interac-
tions at very short range, having negligible effect else-
where. This modification can be effected without any
changes to ONETEP or TINKER simply by rescaling the
apparent polarizabilities of QM atoms as seen by TINKER
by a square of the above factor. The value of 2.45 has
been found by numerical experiments on several small
QM/MM systems and we do not claim it to be optimal
(indeed for the system studied here it leads to slight un-
derpolarization, as seen in Fig. 12).

The practicability of the proposed solution is demon-
strated in Fig. 12, which shows that all dipoles now con-
verge to reasonable, finite values, and in Fig. 13 which
shows how the total QM (electronic + core) electric field
is now much better approximated by point multipoles, up
to well below 1 A. The unexpected charge transfer from
QM to the left of the C1~ ion seen in Fig. 11 disappears,
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owing to the dipole on Cl~ now being well-behaved.

Appendix B: Unphysical charge transfer from QM
to MM: diagnosis and prevention

In this section we elaborate on the unphysical charge
transfer from QM to MM that can manifest when
QM/MM Pauli repulsion is not adequately taken into
account. We will demonstrate that our improved model
(cf. Sec. III C) addresses this issue satisfactorily. We use
an HyO:K™ system as an example.

a)
} Q/
QM MM
b) 4
QM MM
Figure 14. Electronic density isosurface (0.1e/A3) for a

water-K* system. Panel a): unphysical charge transfer from
the QM subsystem to the MM subsystem. Panel b): Repul-
sive potential centered on the MM atom mimics Pauli repul-
sion, preventing the unphysical charge transfer.

Fig. 14, panel a) shows an isosurface of the electronic
density at one point in the SCF optimization, where
the unphysical charge transfer is apparent. The density
shown is not the converged density, as the calculation
fails to converge. This is because the spilled electrons ac-
cumulate near the peripheries of the orbital localization
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Figure 15. Radial cross-section of one of the p NGWF's on the
QM oxygen atom for the system in Fig. 14. The NGWF lo-
calization radius is 7 ao &~ 3.7 A. In the absence of a repulsive
potential the NGWF is excessively delocalized (red curve).
Adding the repulsive potential restores the correct behavior
(green curve), as seen by comparing against the fully QM
result (black curve). The point on the x axis indicates the
position of the MM K™ ion.
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regions, and a localized-orbital formulation of DFT that
assumes the orbitals to be well-decayed by the time they
can be truncated cannot cope well with this situation.
This is illustrated in Fig. 15, where a radial cross-section
of one of the NGWFs on the QM oxygen atom (red curve)
is seen to differ markedly from its counterpart in a fully
QM calculation (black curve).

Once a more physically sound model is used for
QM/MM Pauli repulsion interactions (what we pro-
pose in Sec. IITC), the charge transfer is prevented
(Fig. 14, panel b)) and the orbitals reacquire the cor-
rect shape (Fig. 15, green curve). The parameters
used in this demonstration were A+ = 230Ha/e and

(v = 1.379 a5
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