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We extend our recently developed QM/MM approach [J. Dziedzic et al., J. Chem. Phys 145,

124106 (2016)] to enable in situ optimization of the localized orbitals. The quantum subsystem

is described with onetep linear-scaling DFT, and the classical subsystem – with the AMOEBA

polarizable force field. The two subsystems interact via multipolar electrostatics, and are fully

mutually polarizable. A total energy minimization scheme is employed for the Hamiltonian of the

coupled QM/MM system. We demonstrate that, compared to simpler models using fixed basis

sets, the additional flexibility offered by in situ optimized basis functions improves the accuracy

of the QM/MM interface, but also poses new challenges, making the QM subsystem more prone

to overpolarization and unphysical charge transfer due to increased charge penetration. We show

how these issues can be efficiently solved by replacing the classical repulsive van der Waals term

for QM/MM interactions with an interaction of the electronic density with a fixed, repulsive MM

potential that mimics Pauli repulsion, together with a modest increase in the damping of QM/MM

polarization. We validate our method, with particular attention paid to the hydrogen bond, in tests

on water-ion pairs, the water dimer, first solvation shells of neutral and charged species and on

solute-solvent interaction energies. As a proof of principle, we determine suitable repulsive potential

parameters for water, K+ and Cl−. The mechanisms we employed to counteract the unphysical

overpolarization of the QM subsystem are demonstrated to be adequate and our approach is robust.

We find that the inclusion of explicit polarization in the MM part of QM/MM improves agreement

with fully QM calculations. Our model permits the use of minimal size QM regions and, remarkably,

yields good energetics across the well-balanced QM/MM interface.

I. INTRODUCTION

Molecular dynamics (MD) is a well-established tech-

nique for simulating the structure and properties of sys-

tems at the atomic scale, with over four decades of ap-

plications in biochemistry and materials science, among

other fields. The aim of MD is to predict macroscopic be-

havior from microscopic interactions[1], and the validity

of results strongly depends on how accurately these inter-

actions are described by the molecular mechanics (MM)

potential.

The continual increase of available computational

power not only extends the scope of MD to larger sys-

tems and longer timescales, but also enables the refine-

ment of MM models describing inter- and intramolecu-

lar interactions. The last two decades have witnessed

the emergence of force fields that directly capture many-

body polarization effects, setting out to circumvent
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well-known deficiencies of pairwise-additive, fixed point

charge models[2–5]. Unable to directly account for po-

larization, fixed point charge force fields struggle to de-

scribe e.g. the interactions of ions with π-electron systems

or polar solutes in low-dielectric media[6], and they are

typically poorly transferable to environments or phases

different from those that they were parametrized for, such

as interfaces[7].

The non-additive, many-body nature of polarization

interactions makes polarizable models more involved

and computationally demanding. Consequently, a va-

riety of competing treatments of polarization exists (see

Refs. 7–9 for a review): Drude oscillators[10, 11], fluc-

tuating charges[12, 13], induced point dipoles[14–21]

or even induced multipoles of higher order[22]. The

AMOEBA force field[15–18], which is of particular sig-

nificance to this work, describes polarization interactions

using damped, induced, point dipoles, while for perma-

nent electrostatics it employs fixed multipoles up to a

quadrupole in lieu of point charges.

Purely classical models, however sophisticated, cannot
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describe electronic properties, such as band gaps or sol-

vent shifts, or processes that intrinsically depend on the

electronic degrees of freedom, such as bond-breaking. To

properly model electronic phenomena it becomes neces-

sary to employ quantum-mechanical (QM) methods. In

practical applications, density functional theory (DFT)

is arguably the most commonly used approach[23], owing

to its relatively low computational cost. Even so, length

scales (∼ 10− 100 nm) and time scales (∼ 1µs) typically

used in classical MD simulations remain beyond the scope

of DFT today.

QM/MM combines the quantum and classical descrip-

tions, exploiting the fact that the properties of interest

are often localized to a part of the system that can be

described quantum mechanically, such as a molecule, em-

bedded in an environment that can be described more ap-

proximately with MM, e.g. a solvent. Since the seminal

work of Warshel and Levitt[24], a profusion of QM/MM

approaches have been proposed, targeting different types

of systems, and varying in the level of sophistication (see

e.g. Refs. 25–36). Even a brief review of QM/MM meth-

ods is beyond the scope of this paper; however, we refer

interested readers to reviews of QM/MM methods and

applications in enzymology[37], biochemistry[38] and ma-

terials science[39].

Recent improvements in force fields promptly be-

come integrated into QM/MM methodologies, and sev-

eral approaches combining QM with polarizable force-

fields (dubbed QM/MMpol) have already been pro-

posed. Many of those approaches employ induced

dipoles[40–55] to model polarization, others use fluctuat-

ing charges[56–59] or Drude oscillators[60, 61]. Typically,

the full QM density is used for all electrostatic QM/MM

interactions[5, 52, 55], but using auxiliary multipolar rep-

resentations of QM (for efficiency or convenience) has also

been proposed[51, 62]. Several groups have developed

models specifically focused on electronic excitations, us-

ing polarizable embedding alongside time-dependent den-

sity functional theory (TDDFT)[42, 43, 45, 46, 50, 54, 57,

59, 63], where dynamic mutual polarization poses an ad-

ditional challenge[46].

We recently presented[51] a novel QM/MM approach

(tinktep), which combines the DFT methodology of

onetep[64], and the polarizable force field AMOEBA[15,

17, 18, 65], as implemented in tinker[16]. In the

tinktep approach the QM and MM subsystems are cou-

pled electrostatically, and undergo mutual polarization.

The electrostatic effect of the MM subsystem is included

in the QM Hamiltonian, polarizing the QM subsystem

by deforming its electronic charge density. Conversely,

the electric field of the QM subsystem is included in the

direct field that drives the polarization of the MM sub-

system. A total energy minimization scheme is employed

for the Hamiltonian of the coupled QM/MM system.

A distinguishing feature of our approach is the use of

linear-scaling DFT[64, 66] to describe the QM subsystem

with the aim of, ultimately, undertaking QM/MMpol cal-

culations with QM regions spanning thousands of atoms.

The main limitation of our first tinktepmodel, as pre-

sented in Ref. 51, was its use of fixed localized orbitals,

which represented a tradeoff between simplicity and en-

ergy accuracy. In this work we describe an extension of

tinktep to the case where the localized orbitals are opti-

mized in situ. The rationale for using optimized orbitals

is the near-complete-basis-set accuracy that they offer,

even when a minimal basis is used. The resultant accu-

racy is comparable or superior to even very large bases

with fixed orbitals[67].

Incorporating in situ orbital optimization requires

computing gradients of all energy terms with respect to

the expansion coefficients of the localized orbitals. We

present the relevant derivation and describe how the cal-

culation can be implemented to run in linear-scaling time.

We subsequently focus on the difficulties that arise as a

consequence of using optimized orbitals – QM overpolar-

ization and unphysical charge transfer from QM to MM

– and discuss workable solutions to these two problems,

using simple QM/MM systems to illustrate our points.

We finish by demonstrating the stability, robustness and

accuracy of our model on a number of test cases. We

arrive at a robust, mutually polarizable QM/MM model

with linear-scaling QM cost, which we show to be more

accurate than a non-polarizable QM/GAFF approach,

not only in terms of reducing the electrostatic disrup-

tion to the QM subsystem, but also in terms of improved

energetics across the QM/MM interface.

This paper is organized as follows. In Sec. II we re-

count the original (fixed-orbital) tinktep approach. In

Sec. III we outline the generalization to in situ optimized

orbitals, and describe the additional steps that we found

to be necessary for obtaining a well-behaved method.

The additional steps are best justified using case studies,

which, in the interest of clarity of discussion, we relegated

to the Appendix. Section IV is devoted to validation and

demonstration of the utility of the proposed approach on

a number of carefully selected systems. Conclusions and

closing remarks are found in Section V.
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II. METHOD

A. Conventions and notation

We follow the sign convention where electrons are pos-

itively charged. Atomic units are used throughout the

text, unless indicated otherwise. Quantities typeset in

bold denote Cartesian column vectors (positions r, elec-

tric fields E, dipoles µ, etc.) or Cartesian tensors of

rank 2 (e.g. T d-d
LM ). Matrices with dimensions other than

3 × 3 are typeset with blackboard capitals (e.g. K). In-

dices A, B and C always refer to atoms in the QM sub-

system, and indices L and M refer to atoms in the MM

subsystem. Localized orbitals are indexed with Greek

symbols. By van der Waals interactions we will mean

the sum of the repulsive and dispersive terms, referring

to the attractive term simply as “dispersion”.

B. Initial (fixed-orbital) TINKTEP approach

We begin the exposition of the method by briefly re-

counting the general idea behind tinktep – our first

QM/MM approach proposed in Ref. 51. The system is

separated into a QM subsystem and an MM subsystem,

with the assumption that the separation does not cut

through covalent bonds. The total energy of the coupled

system is given by

E = EQM + EMM + EQM/MM. (1)

The QM region is described by the density matrix for-

mulation of DFT in the pseudopotential approximation:

EQM =

ˆ

[

−
1

2
∇2

r
′ρ (r, r′)

]

r
′=r

dr (2)

+

ˆ

vext (r)n (r) dr

+
1

2

¨

n (r)n (r′)

|r− r′|
drdr′ + EQM

XC [n]

+
1

2

NQM
∑

A

NQM
∑

B 6=A

ZAZB

|RB −RA|

+ EQM
disp ({RA}) ,

with the above terms describing, respectively, the kinetic

energy of valence electrons, the Coulombic energy of va-

lence electrons in the (pseudo)potential vext (r) of the

ionic cores, the Hartree energy, the exchange-correlation

energy, the mutual Coulombic interaction of NQM cores

having charges {ZI} and positions {RI}, and empirical

dispersion-correction. Open boundary conditions have

been assumed. ρ (r, r′) is the density matrix, given by

ρ (r, r′) =
∑

αβ

ϕα (r)Kαβϕ∗
β (r

′) , (3)

where ϕα (r) are non-orthogonal generalized Wannier

functions (NGWFs)[68], which are strictly localized

within atom-centered spherical regions. K =
[

Kαβ
]

,

termed the density kernel, is the matrix representation

of the density matrix in the duals of the NGWFs. The

electronic (pseudo)density n (r) is given by

n (r) = ρ (r, r) , (4)

where we assumed a closed-shell system in the interest of

brevity. The last term, EQM
disp, is an empirical dispersion-

correction term, which accounts for the well-known de-

ficiency of generalized gradient approximation (GGA)

DFT in describing dispersion interactions[69]. The exact

expression depends on the model used, but the general

form is that of a double sum of pairwise terms. This

work uses the Elstner[70] formulation, with parameters

determined by Hill et al.[69].

The MM subsystem is described by the AMOEBA[18]

polarizable force-field, as implemented in the tinker[16]

code, with the following general energy expression:

EMM = EMM
perm + EMM

pol + EMM
val + EMM

vdW, (5)

with the four energy components accounting for: perma-

nent electrostatic interactions, polarization, short-range

valence interactions, and van der Waals interactions, re-

spectively.

EMM
perm is a sum of purely Coulombic multipolar interac-

tions between atoms in the MM subsystem, with scaling

factors[17] used to attenuate or eliminate interactions be-

tween first-, second-, third- and fourth-nearest neighbors

(as determined by bond connectivity). The full expres-

sion is given in Ref. 18, eqs. 1 and 10. The EMM
perm term

is fully local to the MM subsystem, that is to say it is

insensitive to the presence of the coupling with a QM

subsystem.

EMM
pol is the polarization energy of the MM subsystem,

given by (cf. Ref. 51, eq. A1):

EMM
pol =

1

2

NMM
∑

L

NMM
∑

M

µ
⊺

LTLMµM −

NMM
∑

L

E
⊺

LµL

= −
1

2

NMM
∑

L

µ
⊺

LEL, (6)

where EL is the direct electric field at site L, µL is the

dipole induced at site L in response to the total electric
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field, and TLM is a 3 × 3 coupling tensor between sites

L and M :

TLM =

{

−T
d-d
LM , L 6= M

α−1
L I, L = M

. (7)

Here, T d-d
LM is the Thole-damped, Cartesian dipole-dipole

interaction tensor between induced dipoles at sites L and

M (cf. Ref. 51, eq. 28). Thole damping[71–73] is a mod-

ification to Coulombic electrostatics that helps prevent

mutual positive feedback loops involving induced point

dipoles, known as a polarization catastrophe.

In a purely MM calculation, the direct electric field EL

is simply the electric field due to the permanent multi-

poles of MM sites. In a mutually polarizable QM/MM

calculation, the direct electric field includes an additional

contribution arising from the multipoles representing the

QM subsystem. We give the full expression in Ref. 51,

eqs. 26-31, where we also explain in detail how a classical

multipolar representation of a distributed QM density is

obtained (Section II.D therein). We stress that the non-

additive nature of polarization means that the polariza-

tion of MM cannot be separated into additive terms due

to QM and MM, and so the entire polarization of the

MM subsystem is included in EMM
pol , which explains the

absence of an E
QM/MM
pol term.

EMM
val denotes all short-range valence interactions local

to the MM subsystem. The detailed expressions for these

terms can be found in Ref. 18, eqs. 2-6, and we shall

refrain from recounting them here.

EMM
vdW accounts for van der Waals (dispersion-repulsion)

interactions local to the MM subsystem. AMOEBA uses

the Halgren formulation[74] of the buffered 14-7 poten-

tial:

EMM
vdW (Rij) = εij

(

1 + δ

ρij + δ

)7
(

1 + γ

ρ7ij + γ
− 2

)

, (8)

where ρij = Rij/R
0, δ = 0.07, γ = 0.12. The parameters

of the potential are R0 and ε. Mixing rules for obtaining

pairwise values of the parameters and a description of nu-

ances surrounding hydrogen atoms (“reduction factors”)

can be found in Ref. 18, eqs. 7-8.

The final term in (1), EQM/MM, accounts for all inter-

actions between the two subsystems, except for mutual

polarization. As pointed out earlier, QM contributions

to MM polarization have already been included in EMM
pol ,

because they are not separable from intra-MM polariza-

tion. The effect of MM polarizing QM is automatically

included in EQM [n (r)] by the deformation of the elec-

tronic density n (r) in response to the electric field of the

MM subsystem.

The coupling is described by

EQM/MM = EQM/MM
perm + E

QM/MM
vdW , (9)

where the first term accounts for the electrostatic cou-

pling between QM and permanent MM multipoles, and

the second term accounts for dispersion-repulsion inter-

actions between QM and MM. In our model the elec-

trostatic coupling involves the full QM charge density

interacting with the Coulombic (not damped) potential

of the permanent MM charges, dipoles and quadrupoles:

EQM/MM
perm =

ˆ

vMM
p (r)nQM (r) dr, (10)

where

nQM (r) = n (r) +

NQM
∑

A

δ (r−RA)ZA, (11)

and the expression for vMM
p (r) can be found elsewhere

(Ref. 51, eqs. 37-38).

For the QM/MM van der Waals interaction, E
QM/MM
vdW ,

our original model uses the same classical, pairwise model

that is used for MM/MM (cf. (8)), except the repulsive

wall is softened slightly by using δ = 0.21 (cf. Ref. 51, Sec-

tion III.B.3). This has the advantage of being straight-

forward, but has two disadvantages. First, it requires

choosing vdW parameter values for atoms in the QM

subsystem. Second, and more importantly, this classical

form is insensitive to the electronic density of the QM

subsystem and as such its contributions to electronic den-

sity gradients vanish. This means it fails to provide the

Pauli repulsion that would otherwise prevent electrons

from unphysically collapsing onto MM atoms. We ad-

dress this issue in the revised model presented in this

paper.

III. THEORY

The main limitation of the original model described

briefly above, and in detail in Ref. 51, was that the local-

ized orbitals {ϕα} were kept fixed and only the density

kernel Kαβ was optimized. Allowing {ϕα} to be opti-

mized in situ constitutes the main improvement in our

revised model.
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A. In situ optimized NGWFs

Optimizing the NGWFs necessitates deriving and im-

plementing functional derivatives of energy terms with

respect to the NGWFs. Out of all the energy terms

that make up the total energy (1) the following terms

are specific to our QM/MM model and have no counter-

parts in standard onetep: EMM
val , EMM

vdW, EMM
perm, E

QM/MM
vdW ,

E
QM/MM
perm , and EMM

pol . The first three of these are local

to the MM subsystem and do not depend on the elec-

tronic degrees of freedom, their derivatives with respect

to the NGWFs thus vanish. E
QM/MM
vdW is, so far, described

by an electron-independent classical pairwise sum, so its

derivative similarly vanishes. We postpone the general-

ization of this term to an electron-dependent form until

later in the text. The remaining terms are E
QM/MM
perm and

EMM
pol , which we will consider now in sequence.

E
QM/MM
perm is given by (cf. (10)-(11)):

EQM/MM
perm =

ˆ

vMM
p (r)n (r) dr (12)

+

ˆ

vMM
p (r)

NQM
∑

A

δ (r−RA)ZAdr.

The potential of permanent MM multipoles vMM
p does

not depend on the electronic degrees of freedom, so the

second term above does not contribute to the derivative.

The first term represents an interaction of an electronic

density with a fixed potential, and so has the same form

as the second term in (2). Thus it can be accounted for

using usual onetep algorithms by simply adding vMM
p (r)

to vext (r).

The term due to EMM
pol is more complicated, since it

involves differentiating the transformation from the QM

density to the set of multipoles representing the QM sub-

system that take part in QM/MM polarization interac-

tions. We refer the reader to Ref. 51, Section I.D.2 for

a detailed exposition of this transformation, recounting

here only the basics needed in the derivation.

All pairs (products) of overlapping NGWFs ϕα and

ϕβ are expanded in terms of truncated spherical waves

fs (r) centered on both NGWFs, with the coefficients of

the expansion given by

Cs
AB =

Nf
∑

t

(

∑

α∈A

∑

β∈B

ϕα (r)Kαβϕ∗
β (r)

∣

∣

∣
ft

)

V ts
AB

=
∑

α∈A

∑

β∈B

Kαβ
Nf
∑

t

(

ϕα (r)ϕ∗
β (r) |ft

)

V ts
AB

=
∑

α∈A

∑

β∈B

Kαβcsαβ , (13)

where s and t index the spherical waves originating on

both atoms (of which there are Nf in total), V ts
AB is an el-

ement of the inverse electrostatic overlap matrix between

spherical waves originating on atoms A and B, and the

notation α ∈ A used in the summations is taken to mean

“all NGWFs α belonging to atom A”.

An alternative way to index the spherical waves, and

in turn the coefficients Cs
AB, and csαβ , is via their an-

gular, magnetic and radial numbers: l, m, and q and a

selector for the site on which the spherical wave origi-

nates (1 for the first atom from the subscript or 2 for

the second atom). This indexing scheme is useful when

using the expansion to calculate the spherical multipole

moments {Mlm(A)} that constitute the classical repre-

sentation of the density:

Mlm(A) =
∑

B
SAB 6=0

∑

q

Clmq,1
AB Jlq, (14)

where Clmq,1
AB correspond to Cs

AB originating only on

atom A, and Jlq is a radial, analytical integral given in

Ref. 51, eq. 21. The notation B
SAB 6=0 is taken to mean

“atoms B whose NGWFs overlap with those of atom A”.

The interaction energy between all multipoles repre-

senting the QM density and the induced MM dipoles is

given by

EMM
pol = tr[KP], (15)

where P is the polarization matrix, with matrix elements

α ∈ A, β ∈ B given by:

Pαβ = −
1

2

∑

lq

Jlq
∑

m

(

clmq,1
αβ wlm

A + clmq,2
αβ wlm

B

)

=
∂EMM

pol

∂Kβα
,

(16)

where wlm
A captures the electrostatic effect of the en-

tire system of MM induced dipoles on the QM site at

RA: w00
A is the Thole-damped electrostatic potential of

MM induced dipoles interacting with the charge at RA,

{w1,−1
A , w1,0

A , w1,1
A } is their Thole-damped electric field in-

teracting with the dipole at RA, and {w1,−2
A , . . . , w1,2

A } is
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their Thole-damped electric field derivative (in spherical

representation) interacting with the quadrupole at RA.

Taking the functional derivative of (15), we obtain

(cf. Ref. 75, eq. 7.25):

δEMM
pol

δϕ∗
γ (r)

= 2
δPαβ

δϕ∗
γ (r)

Kβα + 2
δKβα

δϕ∗
γ (r)

Pαβ , (17)

where the Einstein convention has been used for repeated

Greek indices.

The non-vanishing derivative δKβα

δϕ∗

γ(r)
appearing in the

second term results from the use of a so-called purifying

transformation in onetep. It has already been derived

(cf. Ref. 75, eq. 7.29 or Ref. 76, eq. 4.4.6) and imple-

mented in onetep and as such can be omitted from fur-

ther discussion. Instead, we focus on the more interesting

first term, involving the quantity
δPαβ

δϕ∗

γ(r)
. From (16) we

obtain

δPαβ

δϕ∗
γ (r)

= −
1

2

∑

lq

Jlq
∑

m

δ

δϕ∗
γ (r)

(

clmq,1
αβ wlm

A + clmq,2
αβ wlm

B

)

,

(18)

where we have used the fact that Jlq is independent of

the NGWFs. The quantities wlm
A and wlm

B involve in-

duced MM dipoles and, as these induce in response to

a combined QM+MM electric field, they depend on the

NGWFs. However, a zero residual condition at induced

dipole self-consistency:

∀L

dEMM
pol

dµL

= 0 (19)

obviates the need to calculate
δµL

δϕ∗

γ(r)
(compare Ref. 51,

eq. 33), allowing us to only consider the dependence of

clmq,1
αβ and clmq,2

αβ on the NGWFs, and so

δPαβ

δϕ∗
γ (r)

= −
1

2

∑

lq

Jlq
∑

m

[

δclmq,1
αβ

δϕ∗
γ (r)

wlm
A +

δclmq,2
αβ

δϕ∗
γ (r)

wlm
B

]

.

(20)

The remaining functional derivative
δclmq,1

αβ

δϕ∗

γ(r)
can be cal-

culated as follows:

δclmq,1
αβ

δϕ∗
γ (r)

=

Nf
∑

t

δ

δϕ∗
γ (r)

(

ϕα (r)ϕ∗
β (r) |ft

)

V t,lmq,1
AB

= δγβϕα (r)

Nf
∑

t

vt (r) V
t,lmq,1
AB , (21)

where vt (r) is the potential of a spherical wave (for which

an analytical expression is available).
δclmq,2

αβ

δϕ∗

γ(r)
is calculated

analogously.

By combining (17), (20) and (21), and expressing the

sums in the first term explicitly, we obtain

δEMM
pol

δϕ∗
γ (r)

=−

NQM
∑

A
SAC 6=0

∑

α∈A

Kγα
∑

lq

Jlq
∑

m

ϕα (r)

[

wlm
A

Nf
∑

t

vt (r) V
t,lmq,1
AC + wlm

C

Nf
∑

t

vt (r)V
t,lmq,2
AC

]

+ 2
δKβα

δϕ∗
γ (r)

Pαβ , (22)

where atom C is the host to the NGWF with respect

we differentiate, i.e. γ ∈ C. The presence of both wlm
C

and wlm
A in (22) indicates that the gradient with respect

to a particular NGWF γ ∈ C depends not only on the

electrostatic effect of MM’s induced dipoles at RC , but

also at all centres of overlapping NGWFs RA. This is a

consequence of the two-center spherical wave expansion

scheme used in onetep.

To maintain linear scaling, an implementation must be

able to evaluate (22) in O (1) time, since this calculation

must be repeated for all NGWFs γ, and the number of

NGWFs is proportional to NQM. Our implementation in

onetep does this by re-ordering (22) as

δEMM
pol

δϕ∗
γ (r)

= −

NQM
∑

A
SAC 6=0

UAC (r)
∑

α∈A

Kγαϕα (r) + 2
δKβα

δϕ∗
γ (r)

Pαβ ,

(23)
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where

UAC (r) =
∑

lq

Jlq
∑

m

[

wlm
A

Nf
∑

t

vt (r)V
t,lmq,1
AC

+wlm
C

Nf
∑

t

vt (r)V
t,lmq,2
AC

]

(24)

only needs to be evaluated in the intersection of the lo-

calization spheres of A and C (cf. (22)). The cost of

evaluating UAC for a single pair of atoms A-C is system-

size independent (O(1)), and only depends on the quality

of the SW basis set. For any particular atom C, the num-

ber of atoms A whose localization spheres overlap with

it plateaus at a constant that depends on the density

of the system, even if the system size NQM is increased

to arbitrarily large values. This is made explicit by the

A-C overlap condition in the first summation of (22).

That means that each evaluation of (22) has O(1) cost

and, with O(N) such operations, the approach is linear-

scaling.

B. Increased polarization damping

Polarizable force-field models that rely on the induced

point dipole approximation have to contend with what is

known as a polarization catastrophe. This well-known[77]

artifact consists in an unbounded mutual polarization of

two nearby sites through positive feedback, and reflects

the breakdown of the point-dipole model at short range.

The polarization catastrophe is typically mitigated by re-

placing Coulombic interactions involving induced dipoles

with interactions that are suitably attenuated at short

range using schemes such as Thole damping[71–73]. This

is the case in AMOEBA[15] and in our model[51]. The

intensity of the damping depends on the polarizabilities

of the two atoms – i.e. interactions involving atoms that

polarize more readily are more aggressively damped. Be-

yond several Å the difference between the Thole-damped

and Coulombic quantities (potential, electric field, elec-

tric field derivative) becomes negligible and the correct

long-range behavior is recovered.

The rationale for using optimized NGWFs in our

model, and in onetep in general, is the near-complete-

basis-set accuracy that they offer, comparable or superior

to even very large bases with fixed orbitals[67]. How-

ever, this additional flexibility results in the basis be-

coming more diffuse, which is problematic in the con-

text of distributed multipole analysis (DMA[78, 79]) that

we employ to obtain the multipole representation QM∗

(cf. (13)-(16)). More diffuse bases are known[80, 81] to

engender instabilities in the DMA procedure, and lead

to increased charge penetration errors (CPE) due to dis-

crepancies between the potential of the original density

and that of the multipolar expansion, although improved

approaches have recently been proposed[81, 82]. Indeed,

our initial tests revealed that once the NGWFs are no

longer fixed and are allowed to change shape during the

SCF process, our QM/MM model becomes prone to a

QM/MM analog of polarization catastrophe, whereby

the QM subsystem becomes excessively polarized by a

nearby MM site and vice versa. The problem is particu-

larly severe for MM sites carrying a charge (ions), as they

provide a larger initial polarization of QM. We devote a

section in the Appendix (Sec. A) to an elucidation of this

mode of failure using a H2O:Cl− system as an example.

In the same section we show that a simple increase in

the damping of QM/MM polarization interactions is suf-

ficient to prevent the QM/MM polarization catastrophe.

C. Repulsive MM potential

Like most QM/MM models, our initial model used

a classical, atom-pairwise description of QM/MM

dispersion-repulsion (vdW) interactions (cf. (8)). This

strictly classical description has the disadvantage of be-

ing insensitive to the electronic degrees of freedom in the

QM subsystem, that is to say the QM/MM vdW en-

ergy only depends on the positions and species of the

atoms. The most striking manifestation of this deficiency

is that electrons in the QM subsystem do not experience

any Pauli repulsion from MM sites. This can be espe-

cially problematic when the MM site is a cation, whose

electrostatic potential attracts the QM electrons. With

no Pauli repulsion to balance this attraction, unphysical

charge transfer from QM to MM takes place.

A number of approaches have been proposed to circum-

vent the problem (see e.g. [83–86]), but not in the context

of linear-scaling QM methods, where it becomes partic-

ularly problematic. This is because the spilled electrons

accumulate near the peripheries of the localization re-

gions, disrupting SCF convergence, which assumes local-

ized orbitals to be well-decayed at the truncation point.

We refer the reader to the Appendix (Sec. B) for a

case study of this undesired effect on a H2O:K+ system,

where we also demonstrate the feasibility and accuracy

of an improved model which eliminates this issue. The

improvement consists in replacing the repulsive term of
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Halgren’s vdW potential with a density overlap model[85]

that is sensitive to the QM electronic degrees of freedom,

accounting for QM/MM Pauli repulsion. We retain Hal-

gren’s classical description for QM/MM dispersion inter-

actions.

In an overlap model the Pauli repulsion energy is as-

sumed to be proportional to the overlap between densi-

ties, i.e.

EQM/MM
rep =

ˆ

n (r)

NMM
∑

L

κLn
MM
L (r−RL) dr, (25)

where n (r) is the QM electronic density, nMM
L (r) is a

model density centered on MM atom L, and κL is a pro-

portionality constant with a suitable unit.

A reasonable model density is that of a 1s Slater-type

function:

nMM
L (r) = |ψ1s,L (r)|

2
=

ζ3L
π
e−2ζLr. (26)

Instead of working with model densities we can think

of MM atoms as equipped with a model repulsive electro-

static potential, leading to an equivalent energy expres-

sion:

EQM/MM
rep =

ˆ

n (r)

NMM
∑

L

vMMrep
L (r−RL) dr (27)

together with an equivalent MM repulsive potential

vMMrep
L (r) =

κLζ
3
L

π
e−2ζLr =

AL

π
e−2ζLr, (28)

characterized by two parameters – a magnitude A and an

inverse-width ζ, both of which depend on the chemical

species of MM atom L.

The form of (27) is that of a static external po-

tential acting on the electronic density, which means

vMMrep (r) =
∑NMM

L vMMrep
L (r−RL) can simply be

added to vext (r) in (2), and no new energy gradient ex-

pressions need to be derived for this term. Unless stated

otherwise, all results presented in this paper have been

obtained with the model that includes the MM repulsive

potential (and excludes the repulsive contribution from

the Halgren QM/MM vdW expression).

As regards computational efficiency, we point out that

the integral in (27) only needs to be computed over the

union of localization spheres of the QM subsystem (since

n (r) vanishes elsewhere). Furthermore, and more impor-

tantly, since vMMrep
L (r) decays exponentially, only those

regions of the QM subsystem that are within a short

cutoff radius (say, 5 Å) from any MM atom need to be

considered. Generating vMMrep
L (r) in a sphere around

RL, with the sphere radius system-size independent, is

an O(1) operation for a single MM atom L. The number

of MM atoms within a cutoff radius from the QM subsys-

tem will be proportional to the surface area of the QM

subsystem, and so to N
2/3
QM. The total cost of evaluating

(27) thus scales O(N
2/3
QM).

Naturally, physically reasonable values for AL and ζL
need to be determined for all species of interest appearing

in the MM subsystem. As a proof of concept, in Sec. IVA

we show how suitable values can be found for Cl−, K+

and H2O.

IV. RESULTS

In this section we demonstrate the accuracy and via-

bility of the proposed approach on a number of systems.

In all QM calculations we used the PBE[87] exchange-

correlation functional, with an empirical dispersion cor-

rection in the Elstner[70] formulation, with parameters

determined by Hill et al.[69]. The NGWF localization

radius was set to 3.7 Å.

A. Interaction energy curves

We begin by examining the interaction energy curves

of three simple systems: H2O:K+, H2O:Cl− and a wa-

ter dimer. The latter two systems were studied in our

earlier works[5, 52], using a different QM/MM model,

and using energy decomposition analysis (EDA) to com-

pare AMOEBA against a high-quality DFT functional

ωB97X-V[88]. For each of the systems we compare the

predictions of the QM/MM model that is the focus of

this paper, and those of AMOEBA, against reference re-

sults obtained from fully QM calculations (i.e. PBE-D

as described above). All QM calculations used a kinetic

energy cutoff of 1290 eV.

By performing a parameter scan in the space of {A, ζ}

we established MM repulsive potential parameters for K+

that, for this system, are optimal in the sense of mini-

mizing the mean squared difference between the inter-

action energy curves from QM/MM and fully QM cal-

culations. The values we obtained are AK+ = 230Ha/e

and ζK+ = 1.379 a−1
0 . The interaction energy curves are

compared in Fig. 1. AMOEBA (green curve) is seen to

model this interaction faithfully, with the position of the

minimum accurate to 0.007 Å and only very slight under-

binding (less than 1 kcal/mol). This degree of agreement
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Figure 1. Interaction energy for a H2O:K+ system as a func-

tion of the O··K+ distance. QM/MM results (blue) are com-

pared against full QM (black). Pure MM results obtained

with AMOEBA are shown in green.

is expected, since the charge density of K+ is tightly lo-

calized and thus well-approximated by a point multipole

model, with very little charge penetration error. The

QM H2O/MM K+ description is in even better agree-

ment with full QM – the position of the minimum is

accurate to 0.002 Å and the energy is no further than

0.3 kcal/mol from the fully QM result for all interatomic

separations.

We now turn our attention to the H2O:Cl− system,

which we expect to be more difficult for a polarizable

point dipole model due to the larger electronic delo-

calization of Cl−, which increases the charge penetra-

tion error. By following the same protocol as for the

H2O:K+ system, we established optimal parameters for

the repulsive MM potential for Cl−: ACl− = 250Ha/e

and ζCl− = 1.140 a−1
0 , which, compared to K+, represent

a marginally stronger and somewhat less localized poten-

tial, consistent with expectations.

The interaction energy curves are compared in Fig. 2.

Compared to our QM reference, AMOEBA is seen to

underbind at all interatomic separations, particularly at

short distances, where the magnitude of the error in-

creases from ≈ 1 kcal/mol to over 5 kcal/mol. A large

fraction of this error can be attributed to the neglect of

charge transfer. In our reference fully QM calculations as

much as 0.22 e is transferred from the Cl− ion to the wa-

ter molecule at the shortest studied separation (2.8 Å),

corresponding to a stabilizing effect of ≈ −5 kcal/mol.

As the separation is increased, this charge transfer be-

comes less pronounced – at 4 Å only 0.05 e is transferred

and the corresponding change in energy is only about

−0.2 kcal/mol.
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Figure 2. Interaction energy for a H2O-Cl− system as a func-

tion of the O··Cl− distance. QM/MM results (blue) are com-

pared against full QM (black). Pure MM results obtained

with AMOEBA are shown in green.

However, we must acknowledge the fact that the QM

reference curve against which AMOEBA is benchmarked

is too a result of a physical model. DFT calculations

involve a number of approximations, chief among which

are the use of an approximate exchange-correlation func-

tional, the pseudopotential approximation, the use of a

finite basis, and – in linear-scaling DFT – the use of finite

radii for the localized orbitals. Different choices for these

parameters will lead to slightly, but noticeably, different

interaction energy curves, particularly since the water

molecule is well-known to be difficult to describe with

GGA DFT (see e.g. Refs. 89–91). For instance, when in-

stead of PBE, ωB97X-V[88] is used for the same system

(as reported by some of us in Ref. 5, cf. Fig. 3 therein),

the reference curve shifts upwards by ≈ 1 kcal/mol in the

long range (practically matching AMOEBA), and by as

much as ≈ 3.2 kcal/mol at 2.8 Å, reducing AMOEBA’s

perceived underbinding at the shortest separation stud-

ied here to 2 kcal/mol. We thus caution against treat-

ing all differences between MM and QM reported here

strictly as deficiencies of the MM model.

Naturally, charge penetration error is also expected to

be more significant for Cl− than for K+. AMOEBA does

not explicitly model charge transfer or account for charge

penetration and must resort to approximating these ef-

fects through polarization and vdW interactions. More

severe underbinding at short distances leads to a shift in

the position of the minimum, which, compared to our QM
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reference, AMOEBA overestimates by 0.08 Å (or 0.05 Å

against the QM reference of Ref. 5). Our QM/MMmodel

achieves better agreement with fully QM results, under-

binding by less than 2 kcal/mol, with the magnitude of

the error being almost independent of the distance be-

tween Cl− and the water molecule. Thus, the predicted

interaction energy curve is very similar in shape to the

reference one, only shifted by a constant, and the position

of the minimum is predicted very accurately (to 0.002 Å),

showing the QM/MM interface to be well-balanced in

this scenario.

We now turn our attention to the H2O dimer. In ear-

lier work[52] on the same system we showed that charge

penetration is significant at the equilibrium distance and

below it, making this system challenging for AMOEBA,

which has to compensate for CPE by artificially soften-

ing the repulsive vdW wall, relying on cancellation of

errors to model the hydrogen bond. Thus (cf. Fig. 3),

the agreement between AMOEBA and a fully QM calcu-

lation worsens at short separations, where AMOEBA un-

derbinds by as much as 4 kcal/mol (2.9 kcal/mol against

the QM reference of Ref. 5), but is still remarkably good

at the equilibrium distance and beyond, where AMOEBA

underbinds by only ≈ 0.5 kcal/mol. The r.m.s. error

across the entire curve is 1.1 kcal/mol. The position of

the minimum is also predicted accurately (to 0.004 Å).
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Figure 3. Interaction energy for a water dimer as a func-

tion of the O··O distance. QM/MM results (blue) are com-

pared against full QM (black). Pure MM results obtained

with AMOEBA are shown in green.

Determining suitable parameters for our model’s re-

pulsive MM potential for O and H atoms is more chal-

lenging than in the previous two cases. First, there are

four parameters to be simultaneously optimized (AH, ζH,

AO, ζO), making the parameter scan more involved. Sec-

ond, if our model is to be well-transferable, it must ac-

curately describe both the situation where the hydrogen

bond donor is described by QM (and the acceptor by

MM), and the situation where QM is used to describe

the hydrogen bond acceptor (and MM – the donor).

After a thorough parameter scan we determined the

following suitable values for the parameters of the

MM repulsive potential: AH = 35Ha/e, ζH = 2.40 a−1
0 ,

AO = 550Ha/e, ζO = 1.58 a−1
0 . With these values the in-

teraction energy curves predicted by our QM/MM model

(Fig. 3, blue curves) are in very good agreement with fully

QM results. When QM is used to model the hydrogen

bond donor (solid blue curve), the r.m.s. error in energy

across the entire curve is 0.7 kcal/mol and the position of

the minimum is accurate to 0.002 Å. When QM is used to

model the hydrogen bond acceptor (dashed blue curve),

the r.m.s. error in energy is only 0.4 kcal/mol, but the

position of the minimum is predicted less accurately and

is underestimated by 0.026 Å. Crucially, in both cases

the interaction energy curve stays within 1 kcal/mol from

the reference curve obtained with fully QM calculations,

even at separations below the equilibrium distance. This

indicates that the QM/MM interface in our model is well-

balanced even in the presence of hydrogen bonds.

The above examination of the performance of our

QM/MM model for three representative systems (MM

cation, MM anion, MM neutral molecule with a hydrogen

bond spanning the QM/MM interface) can be considered

a proof of concept. We showed that our QM/MM model

is stable for all studied intermolecular separations, even

well below the equilibrium distance, and that it gives rea-

sonable predictions for interaction energy profiles, which

we find remarkable given that in the studied systems the

crucial interactions crossed the QM/MM boundary.

In all examples so far we used the H2O molecule for

the QM subsystem and so the question of whether our

QM/MM model is transferable, particularly concerning

the parametrization of the MM repulsive potential, re-

mains open. In the text that follows we will examine the

model’s performance for a number of different molecules,

both neutral and charged, demonstrating that it is indeed

transferable as its predictions remain accurate.

The need to determine suitable parameters for the re-

pulsive MM potential of all MM species of interest can be

seen as a weakness of our model. Intuitively, one would

hope that the parameters AL and ζL could be derived

from corresponding classical vdW parameters εL and R0
L

– e.g. we expected AL ∼ εL and ζL ∼ 1/R0
L. However,
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we found this not to be the case. For instance, for the

parameters we determined AH

AO
≈ 15.7, whereas εH

εO
≈ 8.1,

that is, our model uses a substantially weaker potential

on H. Similarly, we have ζH
ζO

≈ 1.52, whereas
1/R0

H

1/R0
O

≈ 1.28,

meaning the potential on H used in our model is also

slightly tighter.

One reason is that while vMMrep
L (r) (cf. (28)) is linear

in AL just like EMM
vdW (Rij) (cf. (8)) is linear in εL, the

energy expression (27) for E
QM/MM
rep is not linear in AL.

This is because n (r) implicitly depends on AL, that is

to say, the electronic density responds to the MM repul-

sive potential by deforming accordingly. Thus, not only

is E
QM/MM
rep not linear in AL, but also other energy terms

are indirectly influenced by the repulsive MM potential

through the change in n (r). Another reason is that the

vdW parameters adopted in AMOEBA have been fit-

ted to partially compensate for the deficiencies in the

classical treatment of electrostatics, some of which are

no longer present in our QM/MM formulation. Finally,

AMOEBA employs additional “tweaks” in its vdW for-

mulation, for instance the repulsive sites of H atoms are

slightly offset from the actual atomic sites (“reduction

factor”).

While we plan to investigate routes for automatically

obtaining AL and ζL in future work, in this paper we will

focus on MM water, for which we have obtained good pa-

rameters already. In this way we can apply our model to

a large class of systems that is of practical interest – QM

solutes embedded in MM water. We defer applications

with different MM species to a later time.

B. Interaction energies of solutes with water shells

of increasing size

We now set out to demonstrate the transferability of

our model, turning our attention to a number of QM

solutes embedded in spherical shells of MM water. We

will use the same systems and the same methodology

as in our earlier work[51] – the QM subsystem will only

encompass the solute, and we will study the behavior of

the QM/MM system as the size of the MM H2O shell is

increased (cf. Fig. 3 in Ref 51).

Three of the solutes were chosen from the SAMPL4

blind challenge[92]: a) (–)-menthol, b) diphenylhydra-

mine, and c) 2-chloro-4-hydroxy-3,5-dimethoxybenzalde-

hyde. These moderately-sized molecules (31, 40, and 23

atoms, respectively) encompass a number of chemical fea-

tures: a cyclohexane ring (a), an ether group (b), an

aromatic ring (b), an amine group (b), a halogen atom

(c), and an aldehyde group (c). The remaining three

molecules were d) ammonia (NH3), e) the ammonium

ion (NH+
4 ) and f) the cyanide ion (CN−) – were chosen

with the aim of verifying if our model correctly describes

small and charged solutes.

We compared four computational approaches:

a) Fully QM calculations with no embedding (entire

system treated at the DFT level of theory), which

serve as reference;

b) QM calculations using a purely electrostatic em-

bedding, where the QM subsystem encompassed

only the solute, and H2O molecules were described

with fixed partial charges. In this set-up only a

fixed, external potential is included in the QM

Hamiltonian; we emphasize the neglect of vdW in-

teractions between the QM and the embedding;

c) QM/MM calculations with either a fixed point-

charge embedding (GAFF v1.5[93]) or a polariz-

able embedding (AMOEBA). Here too the QM sub-

system encompassed only the solute, and all wa-

ter molecules were described by a classical force

field. For the fixed point-charge (GAFF) embed-

ding vdW interactions between the solvent and

solute were included at the MM level of theory

(Lennard-Jones potential). Thus, the MM repul-

sive potential introduced in Sec. III C was not

used in this case. Similarly, polarization damping

(Sec. III B) was not relevant here as the force field

was not polarizable. For the polarizable embedding

(AMOEBA) we used the final, refined QM/MM

model, as described in Secs. III B-III C;

d) Fully MM calculations, where the entire system

was treated classically (with GAFF or AMOEBA).

In fixed point charge QM/MM calculations and in QM

calculations with fixed point-charge embedding we used

partial charges of 0.417 e for H atoms and −0.834 e for

O atoms, which are identical to the TIP3P[94] model

used in GAFF. All QM calculations used a kinetic energy

cutoff of 1000 eV. For details on how the configurations

were prepared, see Ref. 51, Sec. 3.B.1.

We begin by comparing the interaction energies be-

tween the QM solute and the MM water shell as a func-

tion of the size of the shell (number of H2O molecules).

To better elucidate the long-range behavior, in Fig. 4 we

only plot the error in the energy with respect to the fully
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Figure 4. Error in the solute-solvent interaction energy with increasing number of H2O molecules surrounding the solute with

reference to DFT calculation – with fixed point charge embedding (red, ⋄), with GAFF embedding (orange, ×), with AMOEBA

embedding (blue, �), and in purely MM calculations with GAFF (grey, �) and AMOEBA (green, ◦). In QM/MM calculations

only the solute is included in the QM subsystem.
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Table I. Comparison of interaction energy accuracy offered by fixed point charge (GAFF) and multipolar polarizable (AMOEBA)

force-fields in MM calculations and QM/MM calculations, and by electrostatic embedding (QM+EE). The values shown are

errors (kcal/mol) with respect to DFT (PBE-D) reference calculations, averaged over systems with 200+ H2O molecules.

RMSE: root mean square error, MSE: mean signed error.

molecule MM MM QM+EE QM/MM QM/MM

GAFF AMOEBA (point-charge) GAFF AMOEBA (this work)

(–)-menthol 11.1 2.7 17.1 5.0 1.9

diphenylhydramine 15.3 1.5 36.4 10.8 −3.4

2-Cl-4-OH-3,5-dimethoxy-BALD 6.2 1.0 22.2 4.9 −1.4

NH3 3.1 1.9 0.9 1.3 2.9

NH+
4 5.7 1.7 −5.0 4.4 0.0

CN−

−5.8 9.0 −2.2 −4.9 4.0

RMSE 8.9 4.0 18.9 5.9 2.6

MSE 5.9 3.0 11.6 3.6 0.7

QM calculation that we use as reference. Even though

the systems studied here are the same as in our earlier

work[51], we point out that the energy error curves are

not directly comparable with those of Ref. 51, since in

current work we used a more refined QM approach with

in situ optimized NGWFs both for QM/MM calculations

and for the fully QM reference.

Our first observation is that for all six systems purely

MM calculations with AMOEBA (green circles) clearly

outperform GAFF (grey diamonds). With the exception

of NH3 and CN−, typical errors in the GAFF descrip-

tion are at least three times larger than their AMOEBA

counterparts. Even in cases where GAFF fares relatively

well (NH3), or where AMOEBA’s error is rather large

(CN−), long-range behavior is clearly much better de-

scribed by AMOEBA. This can be appreciated from the

much flatter profiles of the AMOEBA curves, which in-

dicate an almost constant energy shift from the reference

QM calculation. The energy changes from adding subse-

quent water molecules are more erratic for GAFF and the

convergence with the number of H2O molecules is much

worse. As expected, this is particularly pronounced for

charged solutes – in the case of CN−, for instance, the

binding energy is not well converged even at 400 MM

H2O molecules. We attribute this to polarization partly

compensating for the boundary effects that result from

truncating the water shells.

The behavior of point-charge electrostatic embedding

(QM+EE, red diamonds) is best understood by com-

paring it against QM/MM with GAFF (orange crosses),

since these two approaches only differ by the neglect of

QM/MM vdW interactions in the former. This neglect

leads to a very rapid accumulation of error at short range,

particularly for larger solutes (a, b, c), where this interac-

tion is more significant. At longer range QM/MM vdW

interactions are well-decayed, which is reflected in the al-

most identical profiles of QM/MM-GAFF and QM+EE

curves starting at approx. 150 H2Omolecules for large so-

lutes (a, b, c) and as early as approx. 50 H2O molecules

for small solutes (d, e, f). As expected, the neglect of

QM/MM vdW interactions makes the QM+EE approach

inadequate for calculating interaction energies between

the QM solute and embedding, although occasionally

(e.g. for NH3 and CN−) the error fortuitously cancels

out some of the errors in the electrostatics.

It is also worthwhile to compare the results of

QM/MM-GAFF (orange crosses) against purely MM

GAFF calculations (grey diamonds), because it reveals

the effect of treating the solute at the QM level of theory,

all other components of the two models being identical.

For all six solutes QM/MM-GAFF is more accurate, and,

as the long-range profiles of the two curves are almost

identical, it is clear that this gain in accuracy is due to

a much improved description of short-range interactions,

i.e. the ability of the QM subsystem to realistically po-

larize in response to the MM environment.

Of greatest interest to this paper is, of course, the com-

parison between QM/MM-AMOEBA (blue squares) and

QM/MM-GAFF (orange crosses). In terms of absolute

errors in energy, our model outperforms QM/MM-GAFF

in all cases except for NH3. Moreover, the long-range

behavior of QM/MM-AMOEBA is much better (flatter

curves), particularly for charged solutes, where all fixed-

point charge approaches (MM-GAFF, QM/MM-GAFF,

QM+EE) clearly suffer from neglecting polarization. Out

of all five models the QM/MM-AMOEBA model has the
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lowest maximum error in the long range (4 kcal/mol for

CN−, compared with 9 kcal/mol of AMOEBA, and max-

imum errors in excess of 10 kcal/mol for the other ap-

proaches). We summarize these results in Table I, from

which it also becomes clear that, when averaged over all

six systems, our approach has the lowest signed and un-

signed errors of all the considered approaches.

C. Dipole moments of solutes in water shells of

increasing size

Satisfied that the energetics of our QM/MM interface

is accurate, we now focus on how the QM solute is af-

fected by the presence of the QM/MM interface. Natu-

rally, we would like the electronic structure of the QM

solute in the presence of MM embedding to resemble the

electronic structure of the full QM system as much as

possible, i.e. for the MM embedding to faithfully mimic

QM. Since we cannot compare electronic energy levels be-

tween QM/MM and full QM, and comparing electronic

densities would require density partitioning, we will use

the total dipole moment of the solute as a proxy.

In Fig. 5 we plot the magnitudes of the solute dipole

moment for the same six solutes as a function of the size

of the water shell. In QM/MM calculations the solute

(QM) dipoles are immediately available. In fully QM

calculations the solute dipoles were obtained from DMA

analysis. In fully MM calculations the solute dipoles are

either obtained by a suitable vector summation of per-

manent dipoles with induced dipoles (AMOEBA) or, in

the absence of polarization, are simply constant (GAFF).

For neutral systems the dipole moment is invariant to the

choice of the reference point. For charged systems, and

in fully QM calculations where charge transfer between

the solute and solvent can make the total solute charge

non-zero, we chose the centroid of the molecule as the

reference point.

Our first observation is that, particularly for larger

solutes, the solute dipole moment is rather sensitive to

the environment and can change abruptly depending on

where subsequent H2O molecules are added. The qual-

itative behavior of this sensitivity is captured to a sim-

ilar degree by all models, except of course MM-GAFF,

which does not permit solute polarization. The accu-

racy of the constant dipole moment of the GAFF so-

lute is hit-and-miss – e.g. GAFF’s prediction is excellent

for (–)-menthol, severely underestimated for diphenylhy-

dramine and NH+
4 , and severely overestimated for CN−.

The predictions of QM+EE (red diamonds) and

QM/MM-GAFF (orange crosses) are expected to be

identical, since the two approaches only differ by the ab-

sence/presence of a classical QM/MM vdW term that

does not affect the electronic degrees of freedom. In prac-

tice we observe very small differences (< 0.1D) that are

the consequence of different smearing of the singulari-

ties of the Coulombic permanent fixed-point charges of

the embedding on the Cartesian grid on which electronic

density is evaluated in onetep.

For all six solutes the predictions of our QM/MM

model are more accurate than those of AMOEBA, in-

dicating the expected superiority of a QM description

of the solute (this is most striking for NH+
4 , which

is underpolarized with AMOEBA). For three of the

six solutes ((–)-menthol, NH3, CN
−) the predictions of

our model are closest to the fully QM results in ab-

solute terms. For the remaining three molecules our

model is slightly less accurate than QM/MM-GAFF, but

not much so. Furthermore, this only happens when

AMOEBA itself fares worse (diphenylhydramine, 2-Cl-

4-OH-3,5-dimethoxy-BALD, and NH+
4 ), possibly impli-

cating the polarizable water model, rather than the

QM/MM interface, as the culprit. When the errors are

averaged over all the systems, our QM/MM model yields

the lowest RMSE. Details are summarized in Tab. II.

D. Interaction energies of solutes with 1st

solvation shell

We now turn our attention to the interaction between

three solutes: H2O, Cl−, Na+ and their first solvation

shells. The three solutes are meant to be representa-

tive of neutral, anionic, and cationic species, respec-

tively. To benchmark our QM/MM approach we model

only the solute at the QM level of theory, while the sol-

vent (water) is be described by AMOEBA. We calculate

solute-solvent interaction energies, comparing the perfor-

mance of our approach against a non-polarizable model

(QM/MM-GAFF), and purely classical models (where

the entire system is described with GAFF or AMOEBA).

Purely QM calculations are used as reference.

To obtain meaningful statistics, we performed calcu-

lations for 100 configurations (for each solute) obtained

from MD runs, where each solute was solvated in 215

H2O molecules. In each MD snapshot all but N1st H2O

molecules closest to the solute were then stripped, leav-

ing only the first solvation shell. The values of N1st were
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Figure 5. Comparison of solute dipole moments with increasing number of H2O molecules surrounding the solute – with fixed

point charge embedding (red, ⋄), with GAFF embedding (orange, ×), with AMOEBA embedding (blue, �), and in purely MM

calculations with GAFF (grey, �) and AMOEBA (green, ◦). Reference QM calculations: black, +. In QM/MM calculations

only the solute is included in the QM subsystem.
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Table II. Comparison of solute dipole moment accuracy offered by fixed point charge (GAFF) and multipolar polarizable

(AMOEBA) force-fields in MM calculations and QM/MM calculations, and by electrostatic embedding (QM+EE). The values

shown are r.m.s. errors (debye) with respect to DFT (PBE-D) reference calculations, averaged over all systems (solute + water

shells). RMSE: root mean square error.

molecule MM MM QM+EE QM/MM QM/MM

GAFF AMOEBA (point-charge) GAFF AMOEBA (this work)

(–)-menthol 0.31 1.13 1.19 1.14 0.77

diphenylhydramine 3.00 1.18 0.32 0.24 0.38

2-Cl-4-OH-3,5-dimethoxy-BALD 0.45 0.73 0.30 0.28 0.61

NH3 0.47 0.94 0.95 0.95 0.70

NH+
4 0.74 0.41 0.02 0.02 0.05

CN− 1.69 0.11 0.13 0.14 0.11

RMSE 1.47 0.84 0.65 0.63 0.52
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Figure 6. Interaction energies (kcal/mol) between three solutes (H2O, Cl− and Na+) and their first solvation shells – comparison

of MM and QM/MM models (y axis) with fully QM reference results (x axis) for 100 snapshots.

4, 8 and 6 for H2O, Cl−, and Na+, respectively. The

configurations studied are the same as used in our earlier

work[52]. For a more detailed description of how the con-

figurations were obtained, and the rationale for choosing

N1st, we refer the reader to Ref. 52, Sec. III.C.

The calculated solute-solvent interaction energies are

plotted in Fig. 6, while Table III reports crucial statis-

tics. For the H2O solute our QM/AMOEBA model

performs well, with a general trend of underbinding

by about 1 kcal/mol, and comparing favorably against

QM/GAFF in all five metrics (rms error, mean signed

error, maximum error, correlation coefficient and slope

of linear fit to the model’s interaction energy vs. refer-

ence). We find this rather remarkable, since QM/MM

models are typically not very good at reproducing in-

teraction energies spanning the interface. The largest

error for our model is 3.7 kcal/mol, which is better than

pure AMOEBA (4.6 kcal/mol), and much better than

pure GAFF (6.2 kcal/mol) or QM/GAFF (7.3 kcal/mol).

The correlation between the model and reference is also

very good (r = 0.95), although pure AMOEBA does

marginally better (r = 0.96).

The Cl− solute exposes the weaknesses of purely MM

treatments. GAFF is particularly inaccurate here, with

rms and mean signed errors in excess of 10 kcal/mol and a

maximum error of over 40 kcal/mol, which is not surpris-

ing, given the likely importance of polarization effects in

this sytem, for both the solute and solvent. AMOEBA’s

predictions are better (rms error of 6.6 kcal/mol), but

it does not avoid occasional embarrassments (max er-

ror of 20.7 kcal/mol). Both QM/MM models perform

significantly better, which highlights the importance of

treating the Cl− ion at the QM level of theory, in or-

der to be consistent with the latter. Our QM/AMOEBA

model correlates better with pure QM (r = 0.98 against

r = 0.92 for QM/GAFF, linear slope of 0.97 against
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Table III. Comparison of accuracy offered by fixed point charge (GAFF) and multipolar polarizable (AMOEBA) force-fields in

MM calculations and QM/MM calculations for the interaction energies between three solutes (H2O, Cl− and Na+) and their

first solvation shells. ∆E are errors in energy (kcal/mol) with respect to DFT (PBE-D) reference calculations, averaged over

all 100 snapshots: ∆Erms – root mean square error, ∆Emse – mean signed error, ∆Emax – maximum error. r is the Pearson

correlation coefficient between Emodel and EQM, a is the slope of linear fit of Emodel vs. EQM. Values in blue denote the most

accurate model in each category, values in red denote the least accurate model.

system MM MM QM/MM QM/MM

GAFF AMOEBA GAFF AMOEBA (this work)

∆Erms 2.1 1.7 3.1 1.4

∆Emse −0.8 1.3 −2.4 0.9

H2O-H2O ∆Emax 6.2 4.6 7.3 3.7

r 0.88 0.96 0.91 0.95

a 1.05 0.91 1.17 0.85

∆Erms 15.8 6.6 3.9 4.1

∆Emse −12.7 −1.1 −1.4 3.9

Cl−-H2O ∆Emax 40.2 20.7 9.4 7.1

r 0.47 0.53 0.92 0.98

a 0.77 0.57 1.23 0.97

∆Erms 10.4 1.0 10.5 13.5

∆Emse −9.2 0.5 −9.3 −13.3

Na+-H2O ∆Emax 19.2 2.9 19.3 19.4

r 0.95 0.99 0.95 0.95

a 1.50 0.96 1.50 0.99

1.23 for QM/GAFF), but it is seen to underbind slightly

across the board (rms error of 4.1 kcal/mol, compared

to 3.9 kcal/mol for QM/GAFF). Its maximum error is

7.1 kcal/mol, which is rather large, but still better than

QM/GAFF (9.4 kcal/mol) and much better than the

double-digit errors of MM models.

For Na+ and its first solvation shell AMOEBA per-

forms very well, while all the remaining models are rather

inaccurate. Since Na+ is a compact, barely polarizable

ion, it is well-described by MM methods. This explains

why GAFF results are almost identical to QM/GAFF

results. What is significantly more important in this

system is the description of the water solvent. GAFF’s

water model cannot capture the polarization of the sol-

vent, which is highly relevant here, due to the charge

on the Na+ solute. Thus GAFF and QM/GAFF both

yield a poor description of the whole system, with rms

errors above 10 kcal/mol and maximum errors of almost

20 kcal/mol. AMOEBA, in contrast, performs very well,

with an rms error of only 1 kcal/mol and good corre-

lation with purely QM results (r = 0.96), highlighting

the importance of a polarizable description of the wa-

ter solvent. Since our QM/AMOEBA model shares its

description of the solvent with AMOEBA, one would ex-

pect it to yield a similarly good description. However,

this is not the case. While the correlation with purely

QM results is good (r = 0.95, slope of 0.99), there is

significant overbinding for all snapshots, leading to large

errors in energy, dominated by a mean signed error of

-13.3 kcal/mol. This almost constant shift points to a

deficiency of our QM/MM interface in handling cationic

solutes, presumably due to the repulsive MM potential

having been parametrized only using H2O-H2O interac-

tions. We attribute the observed overbinding to an in-

sufficient repulsion between the compact Na+ and nearby

MM oxygen atoms.

We will now briefly investigate the effect of using in situ

optimized orbitals on the quality of QM/AMOEBA. We

calculated the interaction energies of the three systems

from Fig. 6 using fixed pseudoatomic orbitals (single-

zeta, double-zeta and polarization, triple-zeta and polar-

ization) and compared them with results obtained using

an in situ optimized minimal basis. We report the results

in Fig. 7 and Table IV. As expected, for a compact Na+

cation a minimal (SZ) basis is sufficient, and increasing

the flexibility of the basis makes very little difference,

with the slope and correlation coefficients practically un-

changed, and an essentially rigid shift of the interaction

energies by 0.5−0.7 kcal/mol compared to an in situ op-

timized basis. Since our model systematically overbinds
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Figure 7. Interaction energies (kcal/mol) between three solutes (H2O, Cl− and Na+) and their first solvation shells – comparison

of QM/AMOEBA using fixed pseudoatomic orbital basis and in situ optimized minimal basis (y axis) with fully QM reference

results (x axis) for 100 snapshots.

Table IV. Comparison of accuracy offered by the QM/AMOEBA model for the interaction energies between three solutes (H2O,

Cl− and Na+) and their first solvation shells depending on the quality of the QM basis set. ∆E are errors in energy (kcal/mol)

with respect to DFT (PBE-D) reference calculations, averaged over all 100 snapshots: ∆Erms – root mean square error, ∆Emse

– mean signed error, ∆Emax – maximum error. r is the Pearson correlation coefficient between Emodel and EQM, a is the slope

of linear fit of Emodel vs. EQM. Nbasis is the number of QM basis functions for the solute. Values in blue denote the most

accurate model in each category, values in red denote the least accurate model.

system QM/MM AMOEBA QM/MM AMOEBA QM/MM AMOEBA QM/MM AMOEBA

SZ DZP TZP in situ optimized minimal

∆Erms 34.1 4.8 4.1 1.4

∆Emse 31.2 4.2 3.6 0.9

H2O-H2O∆Emax 68.4 10.9 10.1 3.7

r −0.07 0.78 0.82 0.95

a −0.26 0.75 0.79 0.85

Nbasis 6 23 29 6

∆Erms 8.6 7.4 6.1 4.1

∆Emse −8.4 −7.2 −5.8 3.9

Cl−-H2O ∆Emax 13.9 12.0 10.0 7.1

r 0.96 0.97 0.97 0.98

a 0.99 1.00 1.00 0.97

Nbasis 9 13 17 9

∆Erms 12.8 12.9 12.9 13.5

∆Emse −12.6 −12.7 −12.8 −13.3

Na+-H2O∆Emax 18.1 18.5 18.5 19.4

r 0.95 0.95 0.95 0.95

a 0.99 0.99 0.99 0.99

Nbasis 8 21 29 8

this system, the resultant shift actually makes the fixed-

basis results marginally better, owing to cancellation of a

small fraction of the error. For a diffuse Cl− anion the ef-

fect of the basis size is more pronounced, with a clear sys-

tematic improvement of about 1.5 kcal/mol in the MSE

for each time the basis set quality is increased, although

the optimized basis “overshoots” by a small amount, un-

derbinding by 3.9 kcal/mol. Nevertheless, QM/MM with

an in situ optimised basis yields the most accurate results

under all metrics, except for the slope (where the differ-

ences between basis set qualities are marginal). For H2O

the effect of using an optimized basis is dramatic, which is

expected, since we anticipate the orbitals in a molecule to

be poorly described with small basis sets. Consequently,
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a minimal fixed basis (SZ) yields entirely wrong results,

consistently predicting large and positive interaction en-

ergies, with an MSE as large as 31.2 kcal/mol. The addi-

tion of polarization functions improves results dramati-

cally, but convergence with the size of the basis set is slow

– DZP yields an MSE of 4.2 kcal/mol, and TZP yields

3.6 kcal/mol, with correlation coefficients of only ∼ 0.8.

Only when in situ optimized orbitals are used do the re-

sults improve markedly – the MSE falls below 1 kcal/mol,

the correlation coefficient exceeds 0.95, and maximum er-

ror diminishes by a factor of 2.7 compared to TZP. The

optimized orbital formulation of QM/AMOEBA is a clear

winner in this case, underscoring the advantages of using

an in situ optimized basis set for the QM subsystem.

E. Dipole moments of solutes with 1st solvation

shell

Having examined the energetics of our model, in the

last step of our analysis we will verify how the QM subsys-

tem (solute) is affected by the presence of the QM/MM

interface. Following the rationale of Sec. IVC, we will

compare solute dipole moments as a proxy for the shape

of the electronic density. As reference we use fully QM

calculations, where we partitioned the dipole moments

into atomic contributions using DMA[95]. We compare

the magnitudes of the total solute dipole between the

two QM/MM approaches (where the solute dipole is sim-

ply the total QM dipole), and the two purely MM ap-

proaches (where the solute dipole is directly obtained

from atomic dipoles (including induced dipoles in the

case of AMOEBA) and charges).

We begin our discussion with the water pentamer sys-

tem. While an isolated water molecule is charge-neutral,

and its dipole moment is position-independent, in fully

QM calculations of a solvated water molecule we ob-

serve moderate charge transfer (below ±0.1 e) between

the central H2O molecule and the solvation shell, which

makes the solute dipole position-dependent, and neces-

sitates choosing a reference point. For consistency with

the rest of this work, we chose the centroid of the so-

lute as the point, where we evaluate the dipole moment.

The total dipole moments, as well as individual atom-

centered dipole moments (for O and H atoms separately)

are plotted in Fig. 8 and summarized in Tab. V.

Qualitatively, the total dipole moment of the central

H2O molecule (solute) is described similarly by both MM

and QM/MM approaches – with substantial scatter and

Table V. Comparison of solute dipole moment accuracy of-

fered by fixed point charge (GAFF) and multipolar po-

larizable (AMOEBA) force-fields in MM calculations and

QM/MM calculations. The values shown are r.m.s. errors

(debye) with respect to DFT (PBE-D) reference calculations,

averaged over 100 snapshots.

solute MM MM QM/MM QM/MM

GAFF AMOEBA GAFF AMOEBA

(this work)

H2O 0.521 0.713 0.612 0.624

H2O (O atom) − − 0.099 0.059

H2O (H atoms) − − 0.229 0.136

Cl− 0.232 1.140 0.584 0.330

Na+ 0.044 0.021 0.013 0.007

overpolarization (of about 0.6 D) relative to the purely

QM results. We attribute this to the differences in the de-

scription of the four surrounding H2O molecules – here

only the reference uses a DFT description, while both

MM and QM/MM approaches use a classical descrip-

tion. Given that standard DFT GGA models are known

to struggle to correctly describe the structure and prop-

erties of water (cf. e.g. Refs. 89–91), and that we ex-

pect the dipole moment to be larger than the gas phase

value (1.85 D) and lower than the value for bulk wa-

ter (≈ 2.7 D)[96], we believe that it is in fact the ref-

erence calculation that underpolarizes the solvated H2O

molecule. Neither of the MM or QM/MM models seems

to have a particular advantage in this case, although

QM/AMOEBA correlates slightly better with the refer-

ence.

It is more interesting to examine the individual atom-

centered dipoles. Here we expect MM and QM/MM re-

sults to differ substantially, because both MM approaches

are disadvantaged by the constraint of fixed charge on the

atoms, while in QM/MM the charge density is free to

transfer between atoms. GAFF, being non-polarizable,

additionally yields zero atom-centered dipoles by con-

struction. Thus, it is only meaningful here to bench-

mark the two QM/MM approaches against one another.

For the O atom we find QM/AMOEBA to be superior

to QM/GAFF in terms of correlation with the reference

result and a lower rms error (0.059 D vs 0.099 D). For

the H atom QM/GAFF does not reproduce the change

in the dipole moment between the snapshots at all, while

QM/AMOEBA shows the right trend, although it mostly

overpolarizes.

We finish with an examination of the two ionic so-
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lutes (Fig. 9, Tab. V). We evaluate the dipole at the

position of the ion. For Cl− we find all approaches, ex-

cept for the non-polarizable GAFF, to generally over-

polarize the ion, which is again expected, given the dif-

ferences between classical and DFT treatments of the

water solvent. AMOEBA is the least accurate, possi-

bly because of the large magnitude of charge penetration

error for a diffuse Cl− ion. QM/AMOEBA performs bet-

ter than QM/GAFF (rms error of 0.330 D vs. 0.584 D).

For Na+, which barely polarizes at all (µ < 0.1 D)

QM/AMOEBA turns out the be the most accurate (rms

error of 0.007 D vs. 0.013 D for QM/GAFF), although

all models are qualitatively correct.

We conclude that, at least for small hydrated solutes,

our model is superior to QM/GAFF not only in how the

QM subsystem is affected by the QM/MM interface, but

also in better energetics across the interface.

V. CONCLUSIONS

We presented and benchmarked a new mutually po-

larizable QM/MM model, where the QM subsystem is

described using DFT with in situ optimized, localized

orbitals (non-orthogonal generalized Wannier functions,

NGWFs), and the MM subsystem is described using the

AMOEBA force field. By implementing our model in

the onetep linear-scaling DFT framework, we pave the

way for affordable large-scale QM/MM calculations, with

QM subsystems spanning thousands of atoms. However,

in this work we only studied small QM subsystems (up

to 40 atoms), which are outside the linear-scaling regime.

The rationale for optimizing NGWFs is the near-

complete-basis-set accuracy that they enable even with
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a minimal basis. This high accuracy is comparable or

superior to even very large bases with fixed orbitals[67].

As part of this work we derived and implemented the

necessary gradients of the total QM+MM energy with

respect to the NGWFs, enabling their in situ optimiza-

tion also in the context of QM/MM calculations. We

demonstrated how the additional flexibility of an in situ

optimized basis exacerbates known problems of polariz-

able QM/MM methods – catastrophic overpolarization

of the QM region (particularly in the presence of MM

ions), and unphysical charge transfer (“charge spilling”)

from QM to MM sites (particularly in the presence of

MM cations).

We developed, presented and validated conceptually

straightforward solutions to both of these issues. We

demonstrated that QM overpolarization can be mitigated

by modifying the value of the Thole damping parameter

only for polarization interactions spanning the QM/MM

interface. This suitably attenuates QM/MM polarization

at very short range while having negligible medium-range

and long-range effect. We addressed the charge spilling

by introducing a more refined model of QM/MM Pauli

repulsion interactions. This refinement replaces classical

Halgren vdW repulsion with an electrostatic repulsive po-

tential originating on MM atoms, which is parametrized

to mimic Pauli repulsion. This approach is functionally

equivalent to a density-overlap-based Pauli repulsion en-

ergy model with fixed, species-dependent densities placed

on MM atoms, and, crucially, actual QM densities. This

formulation is sensitive to the electronic degrees of free-

dom, which prevents the electronic density from excessive

spilling.

Our modified approach requires parametrizing the re-

pulsive potential with two values per MM species. We

demonstrated how suitable values could be determined

for K+ and Cl− ions and for the atomic components of

water, giving us confidence that this can be done in prin-

ciple. We did not identify a simple relation that would

enable us to easily derive the sought parameters from

classical vdW parameters, but we plan to investigate this

further in future work.

We performed extensive tests to evaluate the trans-

ferability and reliability of our model with focus on the

MM treatment of water. Using a variety of molecules,

from small ions and neutral systems, to larger molecules

(up to 40 atoms), we showed that our model is in gen-

eral, although not universally, superior to nonpolarizable

QM/MM and to purely MM approaches. This was re-

flected in lower disruptive effect of the QM/MM inter-

face on the QM subsystem (which we assessed by com-

paring the dipole moments against a fully QM reference),

but also by better energetics, when calculating interac-

tion energies between the QM and MM subsystems. We

find the latter particularly promising, as QM/MM mod-

els are typically very poor at describing interaction ener-

gies across the QM/MM boundary.
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Appendix A: QM/MM polarization catastrophe:

diagnosis and prevention

In this section we elaborate on the QM/MM polar-

ization catastrophe (cf. Sec. III B) that can arise when

NGWFs in the QM subsystem are optimized in situ. We

use an H2O:Cl− system as an example. Fig. 10 shows the

magnitudes of atom-centered dipoles computed from the

DMA procedure for QM atoms, and the induced dipole

of the MM Cl− ion (whose permanent dipole is of course

zero) in the course of SCF optimization. A mutual posi-

tive feedback can be observed to intensify at about step

80, quickly leading to absurdly large dipole moments (in

excess of 1000 D). The sharp, step-like changes to the

dipole values correspond to NGWF optimization steps

and the relatively flatter parts of the graph – to the den-

sity kernel optimization steps. The classical degrees of

freedom (MM induced dipoles) are fully optimized for

each energy evaluation. The expected dipole moments

on all atoms (as calculated from a fully QM reference cal-
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Figure 10. Atom-centered dipoles (magnitudes) on atoms in

the QM subsystem (red, blue) and in the MM subsystem

(green) in the course of SCF optimization for a H2O-Cl− sys-

tem (shown in inset). In the point-dipole model under stan-

dard Thole damping the two subsystems polarize one another

to infinity. Dashed lines denote reference values obtained from

a fully QM calculation.

culation), shown with dashed lines, are well below 1 D.

It is clear that the MM site in particular is overpolarized

from the very first step of the optimization.

The main underlying reason for this is the inaccuracy

of the multipolar approximation of QM density at short

range, i.e. charge penetration error (in this system the

Cl− ion is 1.8 Å away from the H atom, while localized

NGWFs extend for 3.7 Å). This can be appreciated in

Fig. 11, where we plot the relevant component of the

electric field due to the QM subsystem along the line

joining the MM Cl− ion and the leftmost H atom in the

QM subsystem.

At first glance the field from the full electronic density

(solid red line) seems to agree rather well with the field

from the multipole approximation (dashed red line), up

to ≈ 1.5 Å, where the multipole expansion starts to di-

verge. However, this field is to a large degree cancelled

out by the field of the QM core, making the relative error

in the total (blue) much more pronounced. Additionally,

the shoulder to the left of the Cl− ion (a result of a small

fraction of the electronic density being attracted there by

the electrostatic potential dip from Cl−’s induced dipole)

cannot be well-represented by the multipole expansion

and contributes to the charge penetration error. The is-

sue is compounded by the fact that NGWF optimisation

is driven by a gradient expression (cf. (22)) that, for con-
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Figure 11. Electric field due to the QM subsystem along the

Cl−-H line in a H2O-Cl− system (cf. Fig. 10). The field due

to electrons alone is shown in red (solid line – full electronic

density, dashed line – point-multipole approximation). The

total field is shown in blue (solid line – full electronic density

+ core pseudopotential, dashed line – point-multipole approx-

imation). The multipole approximation breaks down at short

range (here: ≈ 2 Å), leading to unphysical charge transfer and

lack of SCF convergence due to a polarization catastrophe.

sistency with a multipolar energy expression, has itself

been derived via an intermediate step of a multipolar

expansion. In consequence, the NGWF gradient is only

sensitive to the MM potential, field and field derivative

at the QM atom centres, rather than in the entire local-

ization sphere (cf. comment directly below (22)).
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One way to avoid the QM/MM polarization catastro-
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Figure 13. Electric field due to the QM subsystem along the

Cl−-H line in a H2O-Cl− system (cf. Fig. 10). The field due to

electrons alone is shown in red (solid line – full electronic den-

sity, dashed line – point-multipole approximation). The total

field is shown in blue (solid line – full electronic density +

core pseudopotential, dashed line – point-multipole approx-

imation). Once the polarization catastrophe is avoided by

increased polarization damping, the multipole approximation

remains accurate up to 1 Å and SCF convergence is achieved.

phe is to simply reduce the NGWF localization region

(e.g. we found 3 Å to be sufficient) – this makes the or-

bitals less diffuse and the point-multipole approximation

more accurate. However, this would sacrifice some accu-

racy in the QM calculation – onetep calculations typi-

cally use localization radii of 3.5− 5 Å.

What we propose instead is to slightly attenuate

QM/MM polarization interactions, leaving permanent

QM/MM interactions and MM/MM polarization un-

changed. We retain the Thole functional form of the

damping but we reduce Thole’s a parameter by a factor

of 2.45, which has the effect of attenuating the interac-

tions at very short range, having negligible effect else-

where. This modification can be effected without any

changes to onetep or tinker simply by rescaling the

apparent polarizabilities of QM atoms as seen by tinker

by a square of the above factor. The value of 2.45 has

been found by numerical experiments on several small

QM/MM systems and we do not claim it to be optimal

(indeed for the system studied here it leads to slight un-

derpolarization, as seen in Fig. 12).

The practicability of the proposed solution is demon-

strated in Fig. 12, which shows that all dipoles now con-

verge to reasonable, finite values, and in Fig. 13 which

shows how the total QM (electronic + core) electric field

is now much better approximated by point multipoles, up

to well below 1 Å. The unexpected charge transfer from

QM to the left of the Cl− ion seen in Fig. 11 disappears,

owing to the dipole on Cl− now being well-behaved.

Appendix B: Unphysical charge transfer from QM

to MM: diagnosis and prevention

In this section we elaborate on the unphysical charge

transfer from QM to MM that can manifest when

QM/MM Pauli repulsion is not adequately taken into

account. We will demonstrate that our improved model

(cf. Sec. III C) addresses this issue satisfactorily. We use

an H2O:K+ system as an example.

Figure 14. Electronic density isosurface (0.1e/Å
3
) for a

water-K+ system. Panel a): unphysical charge transfer from

the QM subsystem to the MM subsystem. Panel b): Repul-

sive potential centered on the MM atom mimics Pauli repul-

sion, preventing the unphysical charge transfer.

Fig. 14, panel a) shows an isosurface of the electronic

density at one point in the SCF optimization, where

the unphysical charge transfer is apparent. The density

shown is not the converged density, as the calculation

fails to converge. This is because the spilled electrons ac-

cumulate near the peripheries of the orbital localization
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regions, and a localized-orbital formulation of DFT that

assumes the orbitals to be well-decayed by the time they

can be truncated cannot cope well with this situation.

This is illustrated in Fig. 15, where a radial cross-section

of one of the NGWFs on the QM oxygen atom (red curve)

is seen to differ markedly from its counterpart in a fully

QM calculation (black curve).

Once a more physically sound model is used for

QM/MM Pauli repulsion interactions (what we pro-

pose in Sec. III C), the charge transfer is prevented

(Fig. 14, panel b)) and the orbitals reacquire the cor-

rect shape (Fig. 15, green curve). The parameters

used in this demonstration were AK+ = 230Ha/e and

ζK+ = 1.379 a−1
0 .
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