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Genome instability is a characteristic of most cancers, contributing to the acquisition of genetic alter-
ations that drive tumor progression. One important source of genome instability is linked to telomere
dysfunction in cells with critically short telomeres that lack p53-mediated surveillance of genomic in-
tegrity. Here we research the probability that cancer emerges through an evolutionary pathway that
includes a telomere-induced phase of genome instability. To implement our models we use a hybrid
stochastic-deterministic approach, which allows us to perform large numbers of simulations using bi-
ologically realistic population sizes and mutation rates, circumventing the traditional limitations of fully
stochastic algorithms. The hybrid methodology should be easily adaptable to a wide range of evolutionary
problems. In particular, we model telomere shortening and the acquisition of two mutations: Telomerase
activation and p53 inactivation. We find that the death rate of unstable cells, and the number of cell
divisions that p53 mutants can sustain beyond the normal senescence setpoint determine the likelihood
that the first double mutant originates in a cell with telomere-induced instability. The model has applica-
tions to an influential telomerase-null mouse model and p16 silenced human cells. We end by discussing

algorithmic performance and a measure for the accuracy of the hybrid approximation.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Cancer is driven by a process of clonal evolution, which involves
the sequential accumulation of mutations that ultimately allow for
uncontrolled cell proliferation (Frank, 2007; Greaves, 2001). Often,
tumors develop different types of genome instability, which impact
the tumor’s ability to evolve and progress. One important source of
genome instability is telomere dysfunction (Counter et al,, 1992;
Maciejowski and de Lange, 2017). While mathematical modeling
has significantly advanced our understanding of tumor evolution
(Rodriguez-Brenes and Wodarz, 2015), the role of telomere short-
ening in connection to genome instability and carcinogenesis re-
mains poorly understood from a quantitative perspective.

A serious obstacle in modeling tumor evolution in general,
is that traditional fully stochastic algorithms, such as Gillespie’s
method (Gillespie, 1976), are ill-equipped to deal with population
sizes that are biologically relevant to the study of tumorigenesis
at the scale of cell populations. Moreover, the low mutation rates
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of mammalian cells require a very large number of simulations to
obtain statistically meaningful results on mutant dynamics. As a
consequence, too often models are constructed and analyzed with
population sizes that are unrealistically small and mutation rates
that are unrealistically large. This is especially problematic when
trying to compare model results to emerging clinical data. Here
we draw on ideas related to the development of hybrid stochastic-
deterministic methods to circumvent the aforementioned limita-
tions of fully stochastic approaches. In particular, we outline an ef-
ficient hybrid stochastic-deterministic algorithm that allows for the
use of realistic population sizes and mutation rates. This algorithm
should be easily adaptable to a wide range of applications in the
field of evolution.

In this article, we develop a mathematical model that takes into
account the effects of telomere shortening in a clonal cell popula-
tion. It examines the relative likelihood and frequency of the or-
der of acquisition of the two crucial mutations in carcinogenesis,
telomerase activation and p53 inactivation, as a function of key bi-
ological parameters. We also present results on the probability that
the first double mutant originates in a cell with genome instability
caused by telomere dysfunction. This probability is particularly im-
portant because cells that undergo telomere-induced genome in-
stability typically acquire a large number of genome abnormalities
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associated with cancer (Shay and Wright, 2005), which suggests
that an evolutionary pathway that includes transient telomere
deficiency can facilitate malignant progression (Maciejowski and
de Lange, 2017). To implement the model we used the hybrid
stochastic-deterministic algorithm. We also discuss a measure for
the accuracy of the hybrid approximation, and compare algorith-
mic performance to a fully stochastic implementation of the model.

2. Telomeres and telomere crisis

Telomeres are repetitive sequences of DNA found at the ends
of linear chromosomes. They play a protective role by hiding the
chromosome ends from the DNA damage response machinery. In
cells that lack telomere maintenance pathways telomere length
shortens with each cell division. If cell cycle checkpoints are in-
tact, critically short telomeres halt cell proliferation, inducing ei-
ther a terminal state of arrest called cellular senescence, or apopto-
sis (Shay and Wright, 2005). Thus, normal cells that lack telomere
maintenance pathways are only capable of a limited number of di-
visions, a phenomenon known as Hayflick’s limit (Hayflick, 1965).
Telomerase is a ribonucleoprotein enzyme that extends telomere
length. It is composed of a catalytic component that includes the
protein TERT, and the RNA component TERC. Cells that express
telomerase at sufficient levels offset the telomere shortening that
occurs during cell division, which allows them to bypass replicative
limits and divide indefinitely (Maciejowski and de Lange, 2017).
Since most mutations occur during cell division, replicative limits
protect against cancer, by limiting the sequential accumulation of
mutations and the clonal expansion of cells.

Failure of cells with critically short telomeres to undergo senes-
cence can result in telomere crisis. During crisis continued telom-
ere shortening leads to telomere dysfunction increasing the chance
of non-homologous end joining (NHE]) and the fusion of one dys-
functional telomere to another. Cells with fused telomeres be-
come dicentric, which leads to breakage-fusion-bridge cycles, and
high levels of genome instability and cell death (Maciejowski and
de Lange, 2017). Genome instability in cells undergoing crisis can
give rise to chromosome gains and losses, gene amplifications and
deletions, and non-reciprocal translocations amongst other types
of genomic alterations. The rare cells that escapes crisis, usu-
ally through telomerase activation, typically harbor a large num-
ber of genomic abnormalities associated with cancer (Shay and
Wright, 2005). It has thus been suggested that the passage and
emergence from crisis can be an important contributor to tumor
development in some cancers (Chin et al., 2004).

In this article we use mathematical models to study the emer-
gence and population dynamics of cells with two types of muta-
tions: loss of p53 function and telomerase activation. Inactivation
of p53 is a frequent event in tumorigenesis (Petitjean et al., 2007).
And in particular, inactivation of the p53 pathway is necessary to
bypass telomere-induced senescence (Jacobs and de Lange, 2004).
In the paper we focus on the first emergence of a double mutant
and in the order of acquisition of the two mutations. We model
the effects of telomere crisis by assuming an elevated death rate
for unstable (in crisis) cells. The order of mutations is important,
because cells that undergo crisis can acquire a number of impor-
tant genomic changes, which occur during the period of genome
instability caused by telomere dysfunction.

Our model has a direct application to the important TERC—/~
mouse model. Mouse cells have very long telomeres and express
telomerase promiscuously; as a consequence telomere shortening
is not a barrier to tumor progression in mice (Collado et al.,, 2007).
To test the function of telomerase in tissue biology a telomerase-
knockout mouse model was developed, by breeding mice that do
not express TERC (the RNA component of telomerase). Continuous
breeding of TERC—/~ mice over successive generations led to the

progressive shortening of telomeres (Blasco et al.,, 1997). A series
of studies were then conducted in late generation TERC—/~ mice,
in which a gene (Ink4a/Arf) encoding for two distinct tumor
suppressor proteins was deleted. Mice null for this gene develop
sarcomas and lymphomas with short latency; TERC—/— mice
however, had reduced tumor incidence and increased latency,
demonstrating that telomere shortening and lack of telomerase
expression inhibits tumorigenesis in late generation TERC—/~ mice
(Greenberg et al., 1999; Khoo et al., 2007).

Critically short mouse telomeres induce senescence by activat-
ing p53; and the loss of p53 function in mice is sufficient to by-
pass senescence (Smogorzewska and de Lange, 2002). Studies of
TERC—/~ p53*/~ mutant mice also revealed that the p53+/~ phe-
notype is sufficient to abrogate the normal growth arrest that oc-
curs in response to short telomeres (Artandi et al., 2000). Neoplas-
tic lesions in these mice had a large number of genomic aber-
rations consistent with telomere dysfunction and the breakage-
fusion-bridge cycles that occur during crisis.

Our model also has applications to human cells that lack p16
function. In humans, stem cells, germ cells, and the vast major-
ity of cancer cells ( ~90%) express telomerase, whereas other cell
types do not (Kim et al., 1994). The critical component of telom-
erase that is missing in most human cells is the catalytic sub-
unit TERT. Unlike murine cells, human cells can trigger senes-
cence by activating the p53 or the p16/RB pathways (Jacobs and
de Lange, 2004). Although there is also evidence that suggests that
pl6-induced senescence is not the direct consequence of telomere
shortening (Herbig et al., 2004). Regardless, cells lacking p16 func-
tion may not be uncommon in vivo in humans, since epigenetic
silencing of the p16 gene is commonly found in histologically nor-
mal human mammary epithelial cells (HMECs) (Holst et al., 2003).
Moreover, cell culture studies of HMECs repeatedly show that fol-
lowing the spontaneous silencing of p16, the rare cells that are
able to bypass the p53 checkpoint undergo extended proliferation
and eventually enter crisis (Feijoo et al, 2016; Romanov et al,
2001).

3. Model description

We consider four types of cells, which for notation purposes we
call X, Y, Z, and W, see Fig. 1A. At the base of the model we have
X cells, which are telomerase negative (here noted as tmase-).
Telomerase null cells correspond to TERC—/~ cells in the context of
the mouse model previously described, or TERT negative cells in
the context of human somatic cells. X cells have two functioning
p53 alleles (p53*/%). These are proliferating cells at early possibly
pre-neoplastic stages of tumor development. This characteriza-
tion is consistent with the understanding that in certain tumors
telomere crisis is a very early event. In breast cancer for exam-
ple, telomere crisis is believed to occur during progression from
usual ductal hyperplasia (UDH) to ductal carcinoma in situ (DCIS)
(Chin et al., 2004). Being telomerase negative, X cells can divide
only a limited number of times. To model replicative limits we
assume that each cell has a replication capacity p > 0. When a cell
with replication capacity p >0 divides, it produces two daughter
cells with replication capacities p — 1. Cells with replication ca-
pacity o =0 become senescent and stop dividing (Fig. 1B). The
maximum replication capacity in the model is denoted by om.

Y cells are telomerase positive (tmase+) and p53+/*. Telom-
erase expression allows them to escape replicative limits, making
them capable of dividing an unlimited number of times. In the
model, a Y cell arises from a point mutation in an X cell. Recently,
activating somatic point mutations in the core promoter region of
telomerase have been identified in multiple cancer types (Huang
et al,, 2015; 2013; Killela et al., 2013; Nault et al., 2013), with two
mutations, C228T and C250T, accounting for 98% of the alterations
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Fig. 1. (A) Each cell has a replication capacity p >0. When a cell with replication capacity p > 0 divides, it produces two daughter cells with replication capacities p — 1.
Cells with replication capacity p = 0 become senescent and stop dividing. (B) Different pathways by which cells can acquire two cancer associated mutations: Activation of
telomerase (tmase+) and inactivation of one p53 allele (p53+/~). The mutation rate for acquiring the p53+/~ phenotype is set to 1 = 10-7 (loss of one tumor suppressor
allele). The mutation rate to activate telomerase is set to w; = 10~® (point mutation). p53+/~ cells have a defective DNA damage response, which allows them to undergo
extra rounds of cell division beyond the normal replication capacity p. In p53+/- cells telomere length continues to decrease with each cell division, eventually leading to
telomere crisis. Crisis is characterized by critically short telomeres causing chromosome breakage-fusion-bridge cycles and widespread cell death. Cells in crisis are referred
in the diagram as p53+/~ unstable cells. Telomerase activation allows cells to escape replication limits, making them capable of dividing an unlimited number of times.

(Killela et al., 2013). If w is the point mutation rate per base per
generation, the probability of acquiring at least one of n point mu-
tations during cell division is ~nu. Hence, considering the approx-
imate point mutation rate u = 4.6 x 10-10 (Jones et al., 2008), in
the model we set the rate of telomerase activation per generation
to MKy = 10_9.

Z cells are p53*/~ and telomerase negative. In mice, single-
copy loss of p53 is sufficient to affect the cell’s ability to undergo
senescence in response to critically short telomeres (Artandi et al.,
2000). Direct confirmation that these same dynamics occur in hu-
mans is currently missing. However, there is strong evidence that
the human p53 gene is haplo-insufficient in a wide variety of con-
texts (Berger and Pandolfi, 2011). Furthermore, 80% of the most
common p53 mutants have been found to have the capacity to ex-
ert a dominant-negative effect over wild-type p53 (Petitjean et al.,
2007). Hence, in the model we assume that the p53*/~ pheno-
type allows cells to extend their replication capacity by p. cell
divisions beyond the point at which senescence occurs in normal
cells. We call the parameter p. the replication capacity extension.
Early experiments, based on SV40-induced disruption of p53, sug-
gest that the replication capacity extension is in the order of 20
PD (Bryan and Reddel, 1994), with a range of 20 to 30 PD being
suggested (Verdun and Karlseder, 2007). The precise value of pe
however, is likely to vary in vivo; we thus treat it as a variable,
and explore the effects of varying pe on the system. In the model,
Z cells arise from X cells with a rate per cell generation pq = 1077
(a common estimate for the rate per cell division of inactivating
one copy of a tumor suppressor gene Komarova et al., 2003).

W cells arise from Z cells that keep dividing past their ex-
tended replication capacity. As a consequence their telomeres con-
tinue to shorten, up to the point where they become dysfunctional,
resulting in genome instability. Cells at this stage enter crisis, a
phase characterized by non-homologous end joining, breakage-
fusion-bridge cycles, and widespread cell death (Maciejowski and
de Lange, 2017). These dynamics are considered in the model by
including a separate death rate, D, for W cells.

Breast and colorectal cancer studies suggest that telomere crisis
is an early event (Chin et al,, 2004; Rudolph et al., 2001). In col-
orectal cancer, there is evidence of telomere dysfunction during the
adenoma-early carcinoma transition (Rudolph et al., 2001). More-
over, in a study of colorectal adenomas with average size 2 mm
(range 1-3mm) 55% of adenomas showed evidence of chromoso-
mal instability consistent with telomere dysfunction (Shih et al.,
2001). In breast cancer, crisis is believed to occur during the UDH
to DCIS transition (Chin et al., 2004), and according to a stan-
dard diagnostic criterium, ductal hyperplasias should be less than

2mm in diameter (Tavassoli and Norris, 1990). Avascular tumors
can grow up to 2-3mm in diameter (Folkman, 1971). Hence, these
data suggest that telomere crisis might occur during the avascular
phase of tumor development. Based on these observations we limit
our study to events occurring during avascular growth.

If we use a 2-3mm diameter for avascular tumors
and the volume measurements for tumor cells reported in
Coumans et al. (2013), we find that the maximum cell population
of an avascular tumor ranges from 3.6 x 10° — 5.3 x 107 cells. In
the article we choose the intermediate value, N =107, for the
maximum cell population size. To incorporate this limit in popula-
tion size, we make the cell division rate dependent on cell density,
controlled by the variable f in Eq. (1). In Egs. (1)-5, we define
K =107/(1 —d/r), where r and d are respectively the cell division
and cell death rate parameters. This definition of K ensures that
the maximum population size is equal to 107, irrespective of the
magnitudes of r and d; it is thus consistent with our understand-
ing that maximum population size in avascular tumors is limited
by factors such as nutrient accessibility, and not by the relative
magnitudes of the cell division and cell death rates. Finally, we
note that r, d, and D, have units of 1/time. We can then write the
model in arbitrary units of time by setting r = 1 in the simulations
and expressing the values of d and D in relation to this value of
r (we can think of this as expressing the model in units of the
cell division rate at low densities =r). Clearly the model can be
parametrized for specific tissues by using tissue-specific values for
r, d, and D.

Double mutants can be generated through a p53+/~ mutation
in a Y cell (with rate wq) or through a tmase+4 mutation in a Z or
W cell (with rate ;). In the this article we are interested in the
first emergence of a double mutant, for this reason when the first
double mutation occurs the simulations stop. The ordinary differ-
ential equation representation of the model, including only single
mutations (either tmase+ or p53+/-) is given by Egs. (1)-5:

Pm Pm+pe
f=QQ—tot/K), tot=Y+W+3 X;+ ) Z; (1)
j=0 j=0

):(Pr:\ = —1Xp, f-dXp,

o1 = 21X [ —1Xp 1 f — X1 — (1 + 2)Xp, f

Xow—2 = 2Xp, 1 f—1Xp, 2f—dXp, 2 —1(p1+p2)Xp, 1 f (2)
X = 20X f —dXo — (1 + )Xo f
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Pm
Y=1Yf—dY+pu Y 1Xf (3)
j=1
Z:pmﬂoe = —1Zppf—dZp ip
Zpip-t = 2125 o f=TZy sp1f—dZp p1+ p1TXp, f
] Z:Pe = 2tZpf—1Zp.f—dZp, + parXa f (4)
Zp.—1 = 2rZ, f—r1Z, 1f—dZp 1
| Z, = 22Lif-1Lf —diy
W=1Wf—DW +2rZ,f (5)

In Eqs. 1-5 we assume that both offspring of a dividing cell can-
not mutate simultaneously, since the probability of such an event
occurring is negligible (Komarova et al., 2003).

4. Hybrid method

Studying evolutionary processes computationally requires the
ability to simulate the dynamics of large and small populations si-
multaneously. Mutations are stochastic and rare, and at least tran-
siently, very small mutant populations can coexist with a large
number of wild type individuals. In such settings, tracking the
stochastic fluctuations of the small mutant populations can be es-
sential to determine the final outcomes of the system. A problem
then arises trying to simulate a multi-scale system stochastically,
given that in classical fully stochastic algorithms, such as Gille-
spie’s method, as the population size increases the average time
step decreases (Gillespie, 1976). Recently, and especially in the field
of Physical Chemistry, novel computational approaches have been
developed (e.g. the Next Reaction Method and Tau-Leaping meth-
ods (Cao et al., 2006; Gibson and Bruck, 2000)), which try to ad-
dress these difficulties. There is also a push in the development
of hybrid stochastic-deterministic approaches, such as in the hy-
brid discrete-continuous model of CML in Lenaerts et al. (2010s).
More generalized stochastic-deterministic algorithms can be found
in Haseltine and Rawlings (2002), Salis and Kaznessis (2005) and
Pahle (2009). These ideas however, have not significantly pene-
trated the studies of population dynamics and evolution, presum-
ably because they can rely on theoretical concepts (e.g. Langevin’s
equation), which are not very common in these fields. Here, we
present an application of these ideas to the field of evolution,
by outlining a hybrid stochastic-deterministic algorithm for our
model.

Intuitively, the implementation of the algorithm relies on two
simple ideas: (i) mutations should be modeled stochastically; and
(ii) if, a cell population is sufficiently large, an ODE representation
can provide a good approximation of most stochastic trajectories of
the population. With this idea in mind we begin with the system
described in Egs. (1)-5, which from now on we call the full system.
We can write this system as a single vector equation dV/dt = F(V),
where V is a vector that contains all the different cell types. Let
M >0 be a given threshold. We can classify the X population as
small if £X; <M, or as large otherwise, and use the same crite-
ria to classify the other cell types (W, Y and Z). At any given time,
let V; and Vs be vectors containing the large and small cell pop-
ulations. We can then define the reduced system dV,/dt = F;(V))
derived from the full system by: (1) Retaining only the equations
for the large cell populations V;; (2) keeping constant the contri-
butions of the small populations Vs; and (3) eliminating the muta-
tion terms from the equations. If the V; are sufficiently large, there
will be a time interval (t,t + t), where the deterministic solution

Table 1

Average execution time. Algorithms written in C. Simulations
performed on a MacBook Pro-with a 2.9 GHz CPU and 16GB
memory running macOS Sierra.

Max population size  Hybrid (s)  Fully stochastic (s)
10000 0.10 0.76

100000 0.11 6.55

1000000 0.12 58.47

10000000 022 503.39

of the reduced ODE will approximate the trajectories of the large
populations in a stochastic implementation of the full system.

The events in the model are cell division, mutation, and death.
In Gillespie’s method, every event v has a given propensity ay(V).
The time at which the next event v will occur is exponentially
distributed with intensity a,(V). In the hybrid approach, cell di-
vision and death of large populations are modeled deterministi-
cally (using the reduced system), while cell division and death
of small populations and all mutations are modeled stochastically,
with propensities a,(Vs, V|(t)) that now vary continuously with
time. Hence, the next occurrence of a stochastic event v is a non-
homogeneous Poisson process, with a time varying intensity a,(Vs,
V(). In this case, if the system is updated up to a time t and r,
is a uniform random number in [0,1), we can set the time for the
next v event as the solution, t,, to the equation (Salis and Kaznes-
sis, 2005):

| T G (Vs Vi(s))ds + log(r,) = 0 (6)
t

It is well known that the stochastic formulation reduces to the de-
terministic formulation in the thermodynamic limit (Kurtz, 1972).
However, one important practical question is how large should the
threshold M be to provide a satisfactory approximation in the im-
plementation of the hybrid algorithm. In this article, we use a nu-
merical criterion to determine this value. First, to simplify the no-
tation let G(t) stand for the total number of cells of any one of
the cell types as a function of time (i.e. let G(t) be one of the fol-
lowing: ZX;(t), Y(t), £Z(t), or W(t)). We can consider the function
E[GM)(£)] equal to the expected number of G type cells using the
hybrid method with the threshold M. The L? norm (here denoted
as ||-|]) is a measure for the distance between two functions. We
can then define the normalized error € (M;, M;) = || E[GM1) (t)] —
E[GM2) ()] ||/]| EIG™M2)(t)] ||, which provides a measure of the dif-
ference in the expected number of G cells using the two thresh-
olds, M; and M,, during a specific time interval I. To determine
an acceptable threshold M, we define a tolerance tol and require
that €(M, 2M) < tol. In the result section we discuss the accuracy
of the approximation for the telomere model and improvements in
the computational efficiency of the hybrid algorithm compared to
a fully stochastic implementation (Fig. 4 and Table 1).

5. Results

To study the effects of replicative limits and the emergence of
double mutants (p53*/~ and tmase+), we implement the model
using a hybrid stochastic-deterministic algorithm detailed in the
previous section of the paper.

Fig. 2A-C plot simulations showing the three possible out-
comes of the model. All simulations start with a single X type cell
(tmase-, p531/*+) with replication capacity pm = 50 (a commonly
used value for human somatic cells Hayflick, 1965). Fig. 2A depicts
a simulation where a double mutation did not occur. In this panel
the X population first rises to a value close the maximum popu-
lation (N = 107), as the replication capacity of X cells is gradually
exhausted X cells stop dividing, but continue to die, which leads to
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Fig. 2. Times series of a simulation when: (A) a double mutation never occurs; (B) the first mutation emerges from Y cell population (tmase+ first); and (C), the first
mutation emerges from the W cell population (p53+/~ first). In each panel, the first emergence of a double mutation is indicated by s solid dot. In panels A-C, p. =
20,d = 0.1, and, D = 1.05. (D) Probability that the first double mutant emerges through the pathway tmase+ first followed by p53+/~. Error bars indicate 95% confidence
intervals. Blue and red colors correspond to different values of the replication capacity extension p., defined as the number of extra division that p53+/~ cells can undergo
before entering crisis. Solid and dashed lines indicate different values D for the cell death of unstable cells (compared to a dimensionless division rate parameter r = 1). The
maximum replication capacity of X cells (tmase- and p53+/+) is set to py, = 50. (E) Probability of the emergence of a double mutant. (F) Expected time of the first emergence
of a double mutant. Results based on 105 — 10% simulations per data point. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

their eventual extinction. During the simulation p53*/~ mutations
take place, this allows Z cells to extend their replication capacity
by pe divisions. When Z cells exhaust their extended replication
capacity, they become unstable and acquire the W cell phenotype,
which is characterized by a high death rate D. Without the acqui-
sition of a tmase4 mutation both the Z and W cell populations
eventually go extinct. During this simulation tmase+ mutants
do emerge (red line); however, because they do so at a time
when most X cells have not exhausted their replication capacity
they initially have no fitness advantage and in this simulation go
stochastically extinct. Fig. 2B depicts a simulation where a double
mutant emerges from the Y cell population (tmase+ followed by
p53*/-). The emergence of the double mutant is indicated by the

red dot. Fig. 2C plots a simulation where a double mutant emerges
from the W cell population (p53*/~ unstable followed by tmase+;
purple dot).

Fig. 2D plots the probability that the first double mutant
emerges from the Y cell population (tmase+ first), calculated from
those simulations where a double mutation occurred. The figure
includes plots for two different values of the death rate, D, of W
cells (p53*/~ unstable), and two different values for the replication
capacity extension, pe, of Z cells. In the model the death rate for
cells in crisis (W) must be greater than one, otherwise cells in cri-
sis can go on dividing indefinitely, with ever shortening telomeres
and increasing levels of chromosome instability (a scenario which
is not biologically feasible). For this reason, we simulated two val-
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ues for the death rate of W cells: D = 1.05, which represents a
case where the death and birth rate are nearly balanced; and D = 2
(twice the size of the birth rate parameter r). Fig. 2D also demon-
strates that the size of the replication capacity extension, pe, is
crucial in determining the likelihood of the sequence of mutations
(tmase+ followed by p53+/~ vs. p53*/~ followed by tmase+). In-
deed, as shown in the simulations, a difference of only 10 cell divi-
sion (e = 20 vs. pe = 30) can dramatically alter the likelihood of
the sequence of mutations. There is limited data for the value of
Pe, although a range of 20-30 PD has been suggested (Bryan and
Reddel, 1994; Verdun and Karlseder, 2007). The actual value of pe
however, is in an all likelihood cell type dependent, and influenced
by multiple factors, such as the level of telomere restriction fac-
tor two (TRF2) expression (Maciejowski and de Lange, 2017). Note
that for D = 1.05 (red lines), as d increases, there is a switch from
p53*/~ followed by tmase+ as the most likely sequence of muta-
tions giving origin to the first double mutant, to tmase+ followed
by p53*/-. This behavior is explained by the fact that lower values
of d allow for more Z cell divisions, which also result in higher W
cell populations. The higher the number of Z and W cells, the more
likely that the first double mutant originates in a p53+/— cell.

Fig. 2E plots the probability of a double mutation occurring for
different values of p. and D. We note that the outcomes are sensi-
tive to the value of p (red vs. blue lines). One interesting result is
that when there is no cell death of stable cells (d = 0), the proba-
bility of a double mutation occurring is basically zero. The reason
why this occurs is that tmase+ mutations are only advantageous
against a background of cells that senesce and die. Otherwise Y
cells have a neutral fitness and are thus likely to go stochastically
extinct, In a setting where X cells die, ¥ mutants might emerge
and linger on until the time when they become advantageous, but
without X cell death, Y cells never gain an advantage. Here and
in all figures, we performed simulations up to a maximum time
T = 1000 (relative to a division rate parameter r = 1). This value of
T was sufficient for every simulation with d > 0 to result in either
complete population extinction, or the emergence of a double mu-
tant. This would not have been the case however, if we simulated
very small positive values of d. To understand why, we note that
if the simulated time was unbounded (T = oc), the probability of
a second mutation occurring would be monotonically decreasing
for d> 0. Indeed, as d gets smaller, the average number of X cell
divisions increases, and thus so does the probability of a double
mutant emerging. However, as d decreases, the expected time of
arrival of the first double mutant goes up (Fig. 2F). In fact, by the
arguments in the discussion of Fig. 2F, it is straightforward to see
that as d goes to zero, the expected arrival time of the first double
mutant goes to infinity. Hence, for any finite time interval [0, T],
the probability of a second mutation emerging will not be mono-
tonic for positive d, but instead will have the same basic shape as
the plot in Fig. 2E.

Fig. 2F plots the time when a double mutation first emerges. In
the simulations the mean arrival time of the first double mutant is
not very sensitive to either the replication capacity extension, pe,
or the death rate of unstable cells, D. The reason why is that mu-
tants are not selected for until X cells start becoming senescent. As
soon as the number of X cells starts declining (the time of which
is unaffected by pe and D), pre-existing mutant clones gain an ad-
vantage, which can lead to the arrival of the first double mutant. In
the simulations as d >0 increases, there are on average fewer cell
divisions, which means that the probability of a double mutation
occurring goes down (Fig. 2E). Higher d values also cause X cells to
become senescent sooner, which on average decreases the time at
which mutants start to become advantageous. For this reason, even
if higher values of d decrease the probability of a double mutation
occurring, in those instances where a double mutation does hap-

pen, larger d values reduce the expected arrival time of the first
double mutant (Fig. 2F).

Fig. 3A and 3 B plot the probability that the first double mutant
emerges from the unstable cell population (W), calculated from
those instances where a double mutation occurred. As expected,
decreasing the death rate of unstable cells increases the probabil-
ity that the first double mutation originates in a W cell (dashed
vs. solid lines). Also, increasing pe by just 10 PD, from pe = 20 to
pe = 30, significantly raises the likelihood that the first double mu-
tant originates from an unstable cell. The dependence on d can be
more nuanced. This is best exemplified by the curve corresponding
to pe =30 and D = 1.05 (Fig. 3B, solid line). While Fig. 2D shows
that the probability that the first double mutant originates in a
p53*/= cell goes down as d increases, it is clear from Fig. 3 that
the likelihood that the first double mutant emerges from the W
cell population can be a non-monotonic function of d. The reason
behind this behavior is that smaller values of d result in more Z
and W cell divisions, making the emergence of the first double mu-
tant from a p53*/~ cell more likely; however, when the value of d
is sufficiently small, the number of Z cells divisions can be large
enough, so that the first double mutant can more often originate
in Z cells directly, i.e., before p53+/~ cells enter crisis.

Fig. 3C and D present histograms depicting the distribution
for the time of the first emergence of a double mutant, originat-
ing from two different sequence of events: tmase+ followed by
p53*/=, or p53*/~ followed tmase+. The figure underscores the
importance of the parameter p. in determining the likelihood of
the sequence of events. One interesting result is that, independent
of the value of pe, the expected time for the emergence of the first
double mutant is smaller when the second mutation originates in
the Y cell population. In other words, the average time of emer-
gence of the first double mutation is faster when the first mutation
is tmase+.

Fig. 4A plots the expected number of cells using the stochastic-
deterministic thresholds M = 2000 (circles) and M = 4000 (solid
lines), for simulations where double mutations did not occur -
for all cell types depicted the normalized error €(M, 2M) < 0.05
over the time interval I= [0, 1000]. Fig. 4B plots the distribu-
tion of the times when the first double mutant emerges, using
a parameter set that makes the generation of a large number
of fully stochastic independent trials computationally reasonable.
This figure compares the results from a fully stochastic simula-
tion algorithm with the results from an implementation of the
hybrid method. Table 1 shows the average computational run
time per trial for different max population sizes using the fully
stochastic and the hybrid algorithm. For a maximum population
size of N =107 the hybrid algorithm is more than 2200 times
faster.

6. Discussion

Recently we presented a mathematical model with the aim
of quantifying the effectiveness of replicative limits as a tumor
suppressor pathway (Rodriguez-Brenes et al., 2015). We also de-
veloped a Luria-Delbruck mutational framework to estimate the
probability of escaping replicative limits through a mutation that
activates telomerase (Rodriguez-Brenes et al., 2016). These mod-
els assumed that the only constraint to cell proliferation was set
by replicative limits. Here, we extend these results by studying
the population dynamics in a setting where population size is
also constrained by a fixed carrying capacity. We also consider
the emergence of two of the most frequent events in tumorige-
nesis: Loss of p53 function and telomerase activation. The model
has direct applications to an important telomerase negative mouse
model and to p16 deficient human cells. Our work adds to growing
body of literature that investigates mathematically the effects of
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replicative limits in cancer at the scale of cell populations (see e.g.,
Enderling et al., 2009; Rodriguez-Brenes et al., 2014; Rodriguez-
Brenes et al., 2013).

To implement our model we used a hybrid stochastic-
deterministic algorithm. The algorithm simultaneously models
large populations deterministically, and small populations and
mutations stochastically. It provides good agreement with fully
stochastic implementations of the model, and very significant im-
provements in terms of speed (up to several orders of magnitude
faster). These improvements in performance allows us to use bio-
logically relevant population sizes and mutation rates, circumvent-
ing some of the traditional limitations of fully stochastic meth-
ods. The development of hybrid algorithms has received consider-
able attention in physical chemistry applications and related fields.
These ideas however, have yet to find widespread use in the field
of evolution. The hybrid methodology outlined in this paper could
be easily adapted to model many aspects of tumor evolution, and
more broadly, it can also be applied to a wide range of evolution-
ary models.

In this article we examined the relative frequency of the order
of acquisition of the two mutations as a function of key biological
parameters. We found that for any finite time interval, the proba-
bility of a double mutation occurring is a non-monotonic function
of the death rate of stable cells (d). However, if we exclude very
small values of d, then increasing the death rate of stable cells de-
creases the probability that a double mutation occurs. Our simula-
tions also revealed that higher death rates of stable cells increase
the likelihood that the first double mutant originates in a telom-
erase positive cell. The probability that the first double mutant
emerges from an unstable cell has a more complex dependence on
d. Indeed, depending on the sizes of the replication capacity ex-
tension of p53 mutants and the death rate of unstable cells, the
probability that the first double mutation originates in an unsta-
ble cell can peak at intermediate values of d. We also found that
the size of the replication capacity extension of p53 mutants is
crucial in determining the probability of a double mutant occur-
ring and the likelihood of the sequence of mutations. In particular,
we found that a difference of just ten population doublings in the
replication capacity extension can significantly impact the behav-
ior of the system. Interestingly, the expected arrival time of the
first double mutant is only weakly dependent on the replication
capacity extension and the death rate of unstable cells. Instead it
is most influenced by the time at which the telomerase negative
p53 wild-type cell population starts to senesce, since only then do
pre-existing mutants become advantageous.

Compared to sarcomas and hematopoietic malignancies, ep-
ithelial cancers require a large number of mutations and genome
rearrangements to achieve a malignant state (Artandi and De-
Pinho, 2010). It has thus been suggested that a mutator pheno-
type must take place to account for the constellation of genome
abnormalities found in many malignant carcinomas. In this respect,
telomere-based crisis has been identified as a key mutator mech-
anism driving epithelial carcinogenesis in cells that initially lack
telomerase (Maciejowski and de Lange, 2017). Here we presented a
mathematical model that takes into account replicative limits and
examines the dynamics of two mutations central to the entrance
and escape from crisis. One important extension to the model will
be the inclusion of mutational events, such as translocations and
loss of heterozygosity (LOH), which occur at increased rates dur-
ing crisis. In particular, this will require modeling the population
dynamics and possible fitness differences between different types
of double mutants. This analysis will be fundamental to under-
stand quantitatively under which conditions telomere shortening
shifts from being a powerful tumor suppressor pathway to a driv-
ing force behind carcinogenesis.
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