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Abstract
The electrical impedance tomography (EIT) in its classical formulation 
seeks to estimate the electric conductivity distribution inside the body from 
the knowledge of the Dirichlet-to-Neumann (DtN) map of the conductivity 
equation  at the boundary. Numerical methods for the solution of the EIT 
problem have been developed based on this formulation, most notably the 
d-bar method and the layer stripping algorithm. In practice, however, the EIT 
data (electrode data), collected by using a fixed number of contact electrodes, 
is tantamount to knowledge of the resistance matrix, a mapping between given 
current configuration and the corresponding vector of measured electrode 
voltages. Forward models corresponding to the DtN data and the electrode 
data differ in terms of the boundary values and no direct connection between 
them has been established. In this article, we analyze the relation between 
the two boundary data types, and propose to approximate the DtN data from 
the measured resistance matrix for solving the EIT inverse problem within 
the Bayesian framework, leveraging a sample based prior and a principal 
component model reduction.

Keywords: Dirichlet-to-Neumann, principal component analysis, complete 
electrode model
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1.  Introduction

The goal of electrical impedance tomography (EIT) is to estimate the electrical conductivity 
distribution inside a body from current/voltage measurements at the boundary. Two differ-
ent, but mathematically equivalent boundary measurements can be used as input for the EIT 
problem. The first consists of the measurements of the current density on the boundary caused 
by a voltage distribution applied on it, while in the second a current distribution is applied on 
the boundary and the resulting voltage is measured. In mathematical terms, the first protocol 
correspond to determining the Dirichlet-to-Neumann (DtN) map of the elliptic differential 
operator describing the voltage distribution, while the second is tantamount to determining the 
Neumann-to-Dirichlet (NtD) map of the operator. The tradition of choosing the Dirichlet-to-
Neumann map as the starting point for the mathematical analysis of the EIT inverse problem 
can be traced to the seminal paper of Calderón [2]. The analysis based on the complex geo-
metrical optics (CGO) solutions of the conductivity equation not only answered successfully 
to the question of unique solvability of the mathematically idealized EIT inverse problem, or 
the Calderón problem [21, 29], but also set the foundations for a computational approach to 
the numerical estimate of the conductivity from idealized boundary data [20, 26]. A different 
approach relying on the idealized boundary data is the layer stripping algorithm [27], which 
artificially propagates the boundary operator, either DtN or NtD, concomitantly estimating the 
conductivity inside of the body along layers which are progressively peeled off as in an onion 
as the propagation proceeds. For other analytical approaches relying on continuous boundary 
data, we mention the factorization method [19], the enclosure method [15], and the monoto-
nicity method [10, 30].

In practice, the idealized continuous boundary data are not directly available, as realistic 
EIT data are collected by attaching a number of contact electrodes on the surface of the body, 
and injecting known currents through the electrodes while measuring the voltages, or alterna-
tively applying known voltage potentials on electrodes, and measuring the current densities 
through them. The former protocol, known as applied current tomograph is a discrete counter
part of the Neumann-to-Dirichlet map [7], while the latter, referred to as applied potential 
tomograph, providies a discrete version of the Dirichlet-to-Neumann data [1]. These methods 
lead to either a resistance matrix or a conductance matrix, which do not directly approximate 
accurately the respective continuous boundary maps because the conducting electrodes create 
a shunt effect along the boundary that needs to be taken into account, and current densities and 
voltage distributions cannot be controlled with resolution beyond the electrode size. A practi-
cal approach to overcome these limitations is to approximate the current densities by assum-
ing a constant current density through each electrode, known as the ‘gap model’, and estimate 
the continuous mapping in the Fourier basis corresponding to this approximation [16, 17].

Another alternative, which we investigate in this paper, is to carefully account for the elec-
trodes by means of the complete electrode model (CEM) [8, 28], and use the detailed model 
to estimate the continuous boundary operator from the data.

The approximation of the continuous data based on the electrode data has been addressed 
in the literature [13, 14], by using appropriate non-orthogonal projections, and convergence in 
the limit as the number of electrodes goes to infinity is proved. In [12], the authors considered 
data collected with point-like electrodes, that would reduce the effect of the electrodes, and in 
particular the contact impedance, on the data.

In this paper, using the variational forms of the forward models, we derive an analytic form
ula coupling the resistance matrix of the electrode data and the infinite dimensional matrix of 
the Dirichlet-to-Neumann map in terms of the Fourier basis. The problem of estimating the 
continuous map from this relation is ill-posed, and we propose to solve the problem by means 
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of a Bayesian statistical model reduction technique that augments the measured electrode data 
with prior information about the boundary map. The viability of the proposed approach and 
its computational efficiency are demonstrated by computed numerical examples. An outline 
of the results is given below.

Consider a bounded domain Ω with connected boundary, and a conductivity σ > 0 defined 
in it. The electric voltage potential with prescribed Dirichlet boundary values satisfies

∇ · (σ∇u) = 0 in Ω,� (1)

u
∣∣
∂Ω

= f .� (2)

The Dirichlet-to-Neumann map for this problem is defined as

Λσ : f �→ σ
∂u
∂n

∣∣∣∣
∂Ω

,

the exact regularity assumptions being described later in the discussion. The classical Calderón 
problem is to reconstruct the conductivity σ from the knowledge of Λσ. Assume that a finite 
number of electrodes e� ⊂ ∂Ω, 1 � � � L, are attached to the boundary of the body. Given 
electric currents J� are injected through each electrode, thus generating a voltage potential v 
that satisfies the equation (1) in Ω, and a voltage V� at each electrode e�. Each electrode has 
its characteristic contact impedance z� > 0, and according to the complete electrode model 
(CEM), the voltage potential and electrode voltages satisfy the boundary conditions

∫

e�
σ
∂v
∂n

dS = J�, 1 � � � L,� (3)

σ
∂v
∂n

∣∣∣∣
∂Ω\∪L

�=1e�

= 0,� (4)

(
v+ z� σ

∂v
∂n

) ∣∣∣∣
e�

= V�, 1 � � � L.� (5)

Equation (3) gives the total current through the electrode, (4) expresses the condition that 
there is no current flow between electrodes, and, finally, (5) relates the electrode voltages 
to the interior voltage potential: if z� = 0 the condition simply states that the electrode is a 
perfectly conducting shunt. Finally, the conservation of current requires that Kirchhoff’s law 
is satisfied:

L∑
�=1

J� = 0.� (6)

The resistance matrix is defined as Rσ ∈ RL×L , such that

RσJ = V .

The EIT problem with the complete electrode model is to estimate σ from the knowledge of 
Rσ. The basic problem addressed here is, how to approximate Λσ if Rσ is measured.

In section 2, by using the variational formulations of the continuous model and the elec-
trode model, we derive an integral equation that connects the two operators. This connection, 
which is the main result of that section, is established in theorem 2.2.
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In actual computations, the Dirichlet-to-Neumann map needs to be approximated by a finite 
matrix. Limiting the discussion here to two dimensions, we represent the operator in Fourier 
basis, and establish the matrix formula that connects Rσ with the infinite matrix representation 
of Λσ in theorem 3.3. This formula shows the anticipated result that recovering the matrix Rσ 
from the knowledge of Λσ is a straightforward well-posed problem, while the converse is not.

The estimation of the Dirichlet-to-Neumann matrix is an ill-posed problem, and to approach 
it computationally, we recast it in the Bayesian setting. Since there is no immediate way to 
define a feasible prior model for Λσ directly, we suggest an indirect approach: we define a 
prior model for the conductivities in Ω, and by sampling from the prior, we compute a sample 
of the corresponding Dirichlet-to-Neumann maps using the finite element method. In line with 
standard principal component analysis (PCA) model reduction techniques, we represent the 
Dirichlet-to-Neumann maps as linear combinations of a limited number of principal feature 
vectors, thus reducing the estimation problem to a least squares problem of low dimensional-
ity, defined in problem 4.1.

The computational details concerning the finite element approximations and sampling are 
presented in section 5, where we also show that both the Dirichlet-to-Neumann matrix and 
the resistance matrix can be written as Schur complements of appropriate partitionings of 
the stiffness matrix of the respective boundary value problem. Finally, the feasibility of the 
approach is tested by few computed examples in section 6.

2.  Complete electrode model and continuous boundary data model

In this section  we review the continuous boundary data model and the discrete electrode 
model, establishing the connection between them through the variational formulations that 
constitute the basis for our computational approach.

Let Ω ⊂ Rn , n = 2, 3, be a bounded domain with connected boundary ∂Ω representing 
the body of interest, and let σ ∈ L∞(Ω) denote the conductivity distribution in Ω. In prac-
tice, however, since the discretization of the variational forms is limited to conductivities 
represented in a mesh basis, we assume that σ is a piecewise smooth function, with constants 
0 < σm � σM < ∞ such that

σm � σ(x) � σM , x ∈ Ω,

and that the voltage potential u in Ω satisfies the continuity equation (1). Below, we review 
briefly some of the basic properties of the solutions with different boundary conditions.

Continuous boundary data: Consider the equation (1) with the Dirichlet boundary condition

u
∣∣
∂Ω

= f ∈ H1/2(∂Ω).� (7)

The standard variational formulation of the Dirichlet problem is obtained by multiplying the 
equation (1) by a test function w ∈ H1(Ω); after an integration by parts, using the boundary 
condition (7), we arrive at the identity

∫

Ω

σ∇w · ∇udx =
∫

∂Ω

wσ
∂u
∂n

dS = 〈w,Λσf 〉,� (8)

where Λσ is the Dirichlet-to-Neumann map:

Λσ : H1/2(∂Ω) → H−1/2(∂Ω), u
∣∣
∂Ω

�→ σ
∂u
∂n

∣∣∣∣
∂Ω

,
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and 〈 · , · 〉 denotes the duality between the Sobolev spaces H1/2(∂Ω) and H−1/2(∂Ω) extend-
ing the integral over the boundary.

The following theorem states some basic properties of the Dirichlet-to-Neumann map that 
will be needed later.

Theorem 2.1.  The Dirichlet-to-Neumann map is self-adjoint and positive, with the null 
space and range

N (Λσ) = span{1}, R(Λσ) = span{1}⊥.

This well-known result is based on the observation that if u f , ug ∈ H1(Ω) are solutions of 
the equation (1) with Dirichlet data, f , g ∈ H1/2(∂Ω), respectively, we have

〈g,Λσf 〉 =
∫

Ω

σ∇u f · ∇ugdx = 〈Λσg, f 〉;

choosing g  =  f , we get

〈 f ,Λσf 〉 =
∫

Ω

σ|∇u f |2dx � 0,

and Λσf = 0 if and only if u f = constant, or f ∈ span{1}.

Electrode data: To set up a model for the realistic discrete EIT data, model the L electrodes 
attached to ∂Ω as intervals of the boundary curve when n  =  2, or as connected patches when 
n  =  3. Denote the electrodes by e� ⊂ ∂Ω and indicate a current pattern applied to them by 
means of a vector J ∈ RL  whose �th component J� is the net current in the body through the 
electrode e�. The boundary conditions of the complete electrode model are given by formulas 
(3), (4) and (5), augmented by the condition (6).

The variational form of the complete electrode model was derived and analyzed in [28], 
where it was shown that, given an input current vector

J ∈ RL
0 = {X ∈ RL |

L∑
�=1

X� = 0},

the potential-voltage pair (v,V) ∈ H = H1(Ω)× RL
0  solves uniquely the variational equation

B((w,W), (v,V)) =
∫

Ω

σ∇w · ∇vdx+
L∑

�=1

1
z�

∫

e�
(w−W�)(v− V�)dS

=
L∑

�=1

W�J�

�

(9)

for all (w,W) ∈ H . The fundamental identity tying together the continuous boundary opera-
tor Λσ and the resistance matrix Rσ is established in the following theorem.

Theorem 2.2.  Given J ∈ RL
0  and f ∈ H1/2(∂Ω), let (v,V) ∈ H  be the solution of the 

CEM problem with applied current pattern J. Then

∫

∂Ω

vΛσfdS+
L∑

�=1

1
z�

∫

e�
( f −W�)(v− V�)dS−

L∑
�=1

J�W� = 0,� (10)

for all W ∈ RL
0 .

D Calvetti et alInverse Problems 35 (2019) 045012
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Proof.  Let u ∈ H1(Ω) satisfy the Dirichlet problem with boundary data f . Choosing w = v 
as a test function in (8), and w  =  u as a test function in (9), we arrive at the pair of equations

∫

Ω

σ∇v · ∇udx =
∫

∂Ω

vΛσfdS,

∫

Ω

σ∇u · ∇vdx = −
L∑

�=1

1
z�

∫

e�
( f −W�)(v− V�)dS+

L∑
�=1

J�W�

from which, upon side by side subtraction, the claim follows.� □ 

The identity (10) allows us to estimate the boundary data (v
∣∣
∂Ω

,V) ∈ H1/2(∂Ω)× RL
0 from 

the Dirichlet-to-Neumann data, as will be shown in the next section. The converse, namely 
estimating Λσ from the boundary data (J,V), where the current vector comprises a complete 
set of current patterns in RL

0 , can be interpreted as the corresponding inverse problem. In the 
next section, we derive a matrix identity formulation of the DtN inverse problem via a discre-
tization of the forward model.

3.  Discretization

In the sequel, we assume for simplicity that Ω is a unit disc. Generalization to more general 
domains requires obvious modifications. For the sake of definiteness, we also assume that L, 
the number of electrodes, is even. To find a computationally feasible approximation of the 
Dirichlet-to-Neumann map, we define the Sobolev norm in H1/2(∂Ω) in terms of the Fourier 
series. Let u ∈ H1/2(∂Ω) ⊂ L2(∂Ω), and

u(θ) = u0 +
∞∑
j=1

(ucj cos jθ + usj sin jθ)

=
1√
2π

(
√
2πu0) +

√
π

∞∑
j=1

(
(
√

jucj )
1√
πj

cos jθ + (
√
jusj )

1√
πj

sin jθ
)

� (11)

be its real Fourier series expansion. Define the H1/2(∂Ω) inner product

(
u, v

)
H1/2(∂Ω)

= 2πu0v0 + π

∞∑
j=1

j
(
ucj v

c
j + usj v

s
j

)

with the associated H1/2(∂Ω) norm, and define an orthonormal basis {ϕj}∞j=0 of H1/2(∂Ω) 
with respect to this inner product as

ϕ0(θ) =
1√
2π

, ϕ2j(θ) =
1√
πj

cos jθ, ϕ2j−1θ =
1√
πj

sin jθ, j = 1, 2, . . . .

� (12)

Then the Fourier series representation (11) of any v ∈ H1/2(∂Ω) can be written concisely as

v =
∞∑
j=0

vjϕj, where vj = (ϕj, v)H1/2 .� (13)

D Calvetti et alInverse Problems 35 (2019) 045012
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It follows from the definition of the norm that we have a natural isometry

H1/2(∂Ω) → �2, v �→ v,

where v = (vj)∞j=0. In the sequel, we will use v to represent the function and v to represent the 
coefficients. Likewise, let {Φm}L−1

m=1 be an orthonormal basis of RL
0 , defined as

(Φm)� =

√
(2− δm,L/2)

L
cos

2π
L
m(�− 1), 1 � � � L,

for 1 � m � L/2, and

(
ΦL/2+m

)
�
=

√
2
L
sin

2π
L
m(�− 1), 1 � � � L,

for 1 � m � L/2− 1. We denote by φ ∈ RL×(L−1) the matrix with columns Φm, 1 � m � L− 1.
To derive a computationally feasible formula to estimate the Dirichlet-to-Neumann map 

from the resistance map, rearrange (10) to obtain
∫

∂Ω

(
Λσf +

L∑
�=1

χ�

z�
( f −W�)

)
vdS−

L∑
�=1

(
1
z�

∫

e�
( f −W�)dS

)
V� =

L∑
�=1

W�J�,

� (14)
where χ� is the characteristic function of the �th electrode, and denote by |e�| its length.

Expressing the voltage potential v in the orthonormal basis (13) and the voltage potential as

V =

L−1∑
m=1

αmΦm = Φα,� (15)

in (14), we obtain the identity

∞∑
j=0

vj

∫

∂Ω

(
Λσf +

L∑
�=1

χ�

z�
( f −W�)

)
ϕjdS−

L−1∑
m=1

αm

(
L∑

�=1

Φ�m

z�

∫

e�
( f −W�)dS

)
= WTJ.

It follows from the linearity that this identity holds if and only if it holds for the basis vectors 
for f  and W. Letting ( f ,W) = (ϕk, 0) we get

∞∑
j=0

vj

∫

∂Ω

(
Λσϕk +

L∑
�=1

χ�

z�
ϕk

)
ϕjdS−

L−1∑
m=1

αm

(
L∑

�=1

Φ�m

z�

∫

e�
ϕkdS

)
= 0, 0 � k < ∞,�

(16)
while letting ( f ,W) = (0,Φq) we obtain

−
∞∑
j=0

vj

(
L∑

�=1

Φ�q

z�

∫

e�
ϕjdS

)
+

L−1∑
m=1

αm

L∑
�=1

|e�|
z�

φ�mφ�q = JTΦq, 1 � q � L− 1.� (17)

To express this set of equations  in matrix-vector form, introduce a diagonal matrix 
D ∈ RL×L,

D�� =
|e�|
z�

, 1 � � � L,

a matrix Y with entries

Yj� =
1
|e�|

∫

e�
ϕjdS, 1 � � � L, 0 � j < ∞,

D Calvetti et alInverse Problems 35 (2019) 045012
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and a matrix M with entries

Mjk =

L∑
�=1

1
z�

∫

e�
ϕjϕkdS, 0 � j, k < ∞.

Defining the matrix form of the Dirichlet-to-Neumann map as the the array with entries

(Lσ)jk =

∫

∂Ω

ϕjΛσϕkdS = 〈ϕj,Λσϕk〉, 0 � j, k < ∞,

we can express (16) and (17) compactly as the infinite dimensional symmetric linear system 
of the form

T

[
v
α

]
=

[
0

φTJ

]
, T =

[
Lσ +M −YDφ

−(YDφ)T φTDφ

]
.� (18)

For more insight in the system (18), we prove some technical results. We start with a modifica-
tion of the standard trace theorem.

Lemma 3.1.  For any u ∈ H1(Ω) satisfying the condition
∫

∂Ω

udS = 0,� (19)

there is a constant C  >  0 such that

‖u‖2H1/2(∂Ω) � C
∫

Ω

|∇u|2dx.� (20)

Proof.  The result follows from the standard trace theorem and the L2-norm of the gradient 
defines an equivalent Sobolev norm for functions with zero mean trace on the boundary, see, 
e.g. [22] and references therein. For the sake of completeness, we give a brief proof based on 
standard references in literature.

If the claim does not hold, for every k = 1, 2, . . ., we find a uk ∈ H1(Ω) satisfying (19), 
such that

‖uk‖2H1/2(∂Ω) = 1,
∫

Ω

|∇uk|2dx < 1
k
.� (21)

Denoting the mean value of uk over Ω by

ukΩ =
1
|Ω|

∫

Ω

ukdx,

it follows from the Poincaré–Friedrichs inequality ([9], theorem 5.8.1) that there is a constant 
C1  >  0 such that

‖uk − ukΩ‖2L2(Ω) � C1

∫

Ω

|∇uk|2dx� (22)

for all k. From the standard trace theorem in H1(Ω) [11], there is a constant C2 such that

‖uk − ukΩ‖2H1/2(∂Ω) � C2‖uk − ukΩ‖2H1(Ω) � C2(‖uk − ukΩ‖2L2(Ω) +

∫

Ω

|∇uk|2dx),

D Calvetti et alInverse Problems 35 (2019) 045012
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so from (22):

‖uk − ukΩ‖2H1/2(∂Ω) � C2(1+ C1)

∫

Ω

|∇uk|2dx < C2(1+ C1)

k
,

implying that (uk − ukΩ)
∣∣
∂Ω

→ 0 in H1/2(∂Ω), and therefore in L2(∂Ω). On the other hand, 
since the functions uk satisfy (19), we have by the Cauchy–Schwarz inequlity:

|ukΩ| =
1

|∂Ω|

∣∣∣∣
∫

∂Ω

(uk − ukΩ)dS
∣∣∣∣ �

1
|∂Ω|1/2

‖uk − ukΩ‖L2(∂Ω) → 0.

Finally,

‖uk‖L2(Ω) � ‖uk − ukΩ‖L2(Ω) + |Ω|1/2|ukΩ| → 0,

and hence, by (21), ‖uk‖H1(Ω) → 0. But then, it follows from the trace theorem that

1 = ‖uk‖2H1/2(∂Ω) � C2‖uk‖2H1(Ω) → 0,

which is a contradiction, hence proving the lemma.� □ 

We are now ready to prove that the sum of the matrices M and Lσ defines an isomorphism 
from �2 to �2.

Theorem 3.2.  The infinite matrices M and Lσ define continuous linear mappings �2 → �2. 
Furthermore, the mapping M+ Lσ : �2 → �2 is self-adjoint and bounded from below, there-
fore invertible.

Proof.  We start by proving that Lσ is bounded. Denoting the �2 inner product by ( · , · )�2, 
for v ∈ �2, we have that

‖Lσv‖�2 = sup
‖u‖�2=1

|(u, Lσv)�2 |

= sup
‖u‖�2=1

∣∣∣∣∣∣
∞∑
k=1

∞∑
j=1

ukvj〈ϕk,Λσϕj〉

∣∣∣∣∣∣
= sup

‖u‖
H1/2=1

|〈u,Λσv〉|

= ‖Λσv‖H−1/2 ,

and in light of the isometry between H1/2 and �2:

‖Lσ‖�2→�2 = ‖Λ‖H1/2→H−1/2 ,

showing that Lσ is bounded.
Similarly, to show the boundedness of M, we begin by observing that for v ∈ �2:

(Mv)k =
L∑

�=1

1
z�

∫

e�
ϕkvdS =

∫

∂Ω

ϕkmvdS,

where the function m is given by

D Calvetti et alInverse Problems 35 (2019) 045012
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m =

L∑
�=1

1
z�
χ�,� (23)

χ� being the characteristic function of the �th electrode. Therefore, as above, we have

|(u,Mv)�2 | =
∣∣∣∣
∫

∂Ω

umvdS
∣∣∣∣ � ‖m‖L∞‖u‖L2‖v‖L2

� ‖m‖L∞‖u‖H1/2‖v‖H1/2

= ‖m‖L∞‖u‖�2‖v‖�2 ,

implying that M : �2 → �2, and ‖M‖�2→�2 � ‖m‖L∞ = 1/min(z�).
The self-adjointness of Lσ +M follows from the self-adjointness of M and Lσ. To show that 

the mapping is bounded from below, let v ∈ �2 and write

v =
∞∑
j=0

vjϕj = v0ϕ0 +

∞∑
j=1

vjϕj = v0 + v′,

where v0 is a constant function, hence by theorem 2.1, v0 ∈ N (Λσ) ⊥ R(Λσ). Therefore

Λσv = Λσv′ ⊥ ϕ0,

hence

(v, (Lσ +M)v)�2 = 〈v′,Λσv′〉+
∫

∂Ω

mv2dS

= 〈v′,Λσv′〉+ ‖m1/2v‖2L2 .

Further, denoting by u′ ∈ H1(Ω) the solution of (1) with Dirichlet boundary value u′
∣∣
∂Ω

= v′, 
we have

〈v′,Λσv′〉 =
∫

Ω

σ|∇u′|2dx.

Since the integral of v′ over the boundary vanishes, it follows from lemma 3.1 that

(v, (Lσ +M)v)�2 =
∫

Ω

σ|∇u′|2dx+ ‖m1/2v‖2L2

�
σm

C
‖v′‖2H1/2(∂Ω) + ‖m1/2v‖2L2

= c‖v′‖2�2 + ‖m1/2v‖2L2 ,

where c = σm/C. Next we prove by contradiction that for some constant γ > 0:

c‖v′‖2�2 + ‖m1/2v‖2L2 � γ‖v‖2H1/2 .

If the bound were not true, there is a sequence (vk) of functions such that ‖vk‖H1/2 = 1, and

c‖(vk)′‖2�2 + ‖m1/2vk‖2L2 <
1
k
,
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hence ‖(vk)′‖2�2 → 0. In light of the isometry property

1 = ‖vk‖2H1/2 = (vk0)
2 + ‖(vk)′‖2�2︸ ︷︷ ︸

→0

,

implying that (vk0)
2 → 1 as k → ∞, hence vk → 1 in H1/2(∂Ω) and hence in L2(∂Ω), as 

k → ∞. But since
∫

∂Ω

mdS = lim
k→∞

‖m1/2vk‖2L2

� lim
k→∞

(
c‖(vk)′‖2�2 + ‖m1/2vk‖2L2

)
= 0,

then m  =  0, contradicting the definition (23) and completing the proof.� □ 

It is straightforward to verify that the matrix Y defines a continuous map RL → �2, there-
fore, by theorem 3.2, the matrix T defined in (18) defines a continuous map

T : �2 × RL−1 → �2 × RL−1 where T =

[
Lσ +M −YDφ

−(YDφ)T φTDφ

]
.

We are now ready to prove the main result of this section, establishing the connection 
between the Dirichlet-to-Neumann map and the resistance map.

Theorem 3.3.  The matrices Lσ : �2 → �2 and Rσ ∈ RL×L  satisfy the identity

φTDφ− (YDφ)T (Lσ +M)
−1 YDφ = R̃−1

σ ,� (24)

where R̃σ is the representation of the resistance map in the basis φ:

R̃σ = φTRσφ ∈ R(L−1)×(L−1).

Proof.  If follows from the invertibility of the operator Lσ +M that we can solve the first 
block of (18) for v:

v = (Lσ +M)
−1 YDφα,

and substituting this expression in the second block we obtain the following equation in terms 
of the Schur complement of a block of the matrix T:

(
φTDφ− (YDφ)T (Lσ +M)

−1 YDφ
)
α = φTJ.� (25)

It follows from

V = φα = RσJ,

and the orthonormality of the vectors Φ� that

α = φTφα = φTRσJ.

Letting J = Φm, 1 � m � L− 1 in (25) we have that
(
φTDφ− (YDφ)T (Lσ +M)

−1 YDφ
)
φTRσφ = IL−1,
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where IL−1 is the unit matrix of size (L− 1)× (L− 1). The claim of the theorem follows from 
this identity.� □ 

Using the notation of Schur complements and referring to the blocks of the matrix T in (18) 
by Tij, the result can be written concisely as

T/T11 = R̃−1
σ

where

T/T11 = φTDφ− (YDφ)T (Lσ +M)
−1 YDφ.

In the computed examples we approximate the operator M+ Lσ and its inverse by their 
truncated finite dimensional approximations. Since these operators are invertible, therefore 
not compact, convergent low rank approximations are not guaranteed. However, the even rows 
of the matrix Y are given by

Y2j,� =
1
|e�|

∫

e�
ϕ2jdS =

1√
πj

1
|e�|

∫

e�
cos jθdθ =

1√
j
Ŷ2j,�,

and in the odd rows are

Y2j−1,� =
1
|e�|

∫

e�
ϕ2j−1dS =

1√
πj

1
|e�|

∫

e�
sin jθdθ =

1√
j
Ŷ2j−1,�.

Hence, introducing the diagonal matrix H:

H00 = 1,H2j,2j = H2j−1,2j−1 =
1√
j
,

we have

(YDφ)T (Lσ +M)
−1 YDφ = (ŶDφ)T

[
HT (Lσ +M)

−1 H
]
ŶDφ.

The operator H : �2 → �2 is compact, and therefore, so is HT(Lσ +M)−1H, allowing conv
ergent low rank approximations.

Finally, we point out that since the operator ŶDφ : �2 → RL−1 has rank L  −  1, we do not 
expect to be able to recover reliably much more than Fourier modes of order L/2, as the com-
puted examples confirm.

4.  Inverse problem of estimating Lσ

In this section, we propose a computational approach based on the Bayesian paradigm to 
estimate in a stable way the matrix of the Dirichlet-to-Neumann map from the measured 
resistance map. To design a meaningful prior for the unknown matrix that we want to estimate, 
we generate a representative sample of plausible Dirichlet-to-Neumann matrices, extract the 
principal feature vectors of the sample and reduce the complexity of the problem by a pro-
cedure analogous to that applied for principal component analysis (PCA) [18]. Similar ideas 
were previously used in [5, 6] where part of the inverse problem was to estimate the Dirichlet-
to-Neumann map, or the Poincaré-Steklov operator, on an inaccessible fictitious domain 
boundary.
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4.1.  Sample-based prior and model reduction

Using the trigonometric basis (12), we approximate the exact Dirichlet-to-Neumann matrix by 
an (n+ 1)× (n+ 1) truncated matrix: assuming that n is even so that we have equal number 
of sines and cosines, we partition the finite matrix approximation Lnσ of Lσ as

Lnσ =

[
0 0n×1

0n×1 L̃nσ

]
,� (26)

where L̃nσ ∈ Rn×n is symmetric positive definite. The choice of the truncation index n will be 
discussed in the section where we describe the computed experiments.

To estimate Lnσ from Rσ in the Bayesian framework, we assume an a priori probability 
distribution πσ for the conductivity σ and generate a representative sample of independently 
drawn conductivities {σj}Kj=1. For each σj, we compute a numerical approximation of the 
Dirichlet-to-Neumann map:

σj �→ Lnσj
∈ R(n+1)×(n+1), 1 � j � K

and the corresponding perturbed Neumann-to-Dirichlet matrix:

Xσj =
(
Mn + Lnσj

)−1
, 1 � j � K,� (27)

where Mn  is the (n+ 1)× (n+ 1) truncated approximation of the infinite matrix M. For nota-
tional convenience, we suppress the n-dependence of the matrix X. We can extract the most 
significant feature matrices either from the generated data sample, or from a centralized ver-
sion of it obtained by removing from each sample matrix the sample mean. In the latter case, 
we denote the mean of the associated sample of matrices by

X =
1
K

K∑
j=1

Xσj ,

and denote the centered matrices by

Xσj,c = Xσj − X.

In the following, we assume that the feature matrices are extracted from a centralized sample. 
The non-centralized case is obtained by simply setting X = 0. Each centered Dirichlet-to-
Neumann matrix in the centralized sample can be represented in vector form via the natural 
isometry

vec : (R(n+1)×(n+1), || · ||F) → (R(n+1)2 , || · ||),
[
u0 u1 · · · un

]
�→




u0
u1
...
un


 ,

where ‖ · ‖F denotes the Frobenius norm of a matrix; we store the corresponding vectors as 
the columns of the matrix X :

X =
[
vec(Xσ1,c) vec(Xσ2,c) · · · vec(XσK ,c)

]
∈ R(n+1)2×K ,

and compute its dominant left singular vectors. Let

X = U DV T
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be the singular value decomposition of X , with the convention that the singular values λj, 
which are the diagonal entries of the diagonal matrix D  appear in non-increasing order. We 
denote by Uj ∈ R(n+1)×(n+1) the matrices corresponding to the columns of the matrix U , that 
is

U =
[
vec(U1) vec(U2) · · · vec(U(n+1)2)

]
.

We select a threshold value τ > 0, and find the index k such that

λk > τ � λk+1.

The matrices corresponding to singular values above the threshold τ  are the principal feature 
matrices, and for any conductivity σ, we approximate the matrix Xσ in terms of the reduced 
PCA basis {Uj}kj=1 by writing

Xσ ≈ X+

k∑
j=1

βjUj,� (28)

where the coefficients βj are the principal components of Xσ. Replacing Xσ in (24) by its 
reduced basis approximation (28) and denoting

B = YDφ, C = φTDφ,

we arrive at the following linear formulation of the problem.

Problem 4.1.  Given the reduced basis {X,Uj}kj=1, and the observed noisy approximation 
of the resistance map R̃σ in the basis φ, estimate the principal components {βj}kj=1 of Xσ by 
solving the equation

C− BTXB−
k∑

j=1

βjB
TUjB = R̃−1

σ� (29)

in the least squares sense.

While the computation of the least squares solution is, in principle, straightforward and 
provides a way to estimate the matrix Lnσ, a number of algorithmic details need to be carefully 
addressed in order to attain sufficient accuracy and computational efficiency.

5.  Computational details

The forward solution to generate the prior sample of Dirichlet-to-Neumann maps as well as 
the generation of test data based on the complete electrode model are done using a standard 
finite element method. Since the selection of parameters in the model depend on the computa-
tional details, we briefly summarize the numerical methods in the following subsection.

5.1.  Finite element approximation of the DtN matrix

To collect the sample of Dirichlet-to-Neumann matrices from a given conductivity distribution 

in Ω, we first generate a first order triangular finite element mesh over Ω, with vertices {zj}Nj=1. 

The nodes are arranged so that the first m are boundary nodes, and the remaining N  −  m are 
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interior nodes. In the numerical simulations, we use a first order finite element model, denot-

ing by {ψj}Nj=1 the first order piecewise polynomial nodal basis, that is, ψj(zk) = δjk .
To calculate the finite element approximation of the solution u of the Dirichlet problem (1) 

and (2), we partition the stiffness matrix S ∈ RN×N :

Sjk =

∫

Ω

σ∇ψj · ∇ψkdz, 1 � j, k � N,� (30)

according to whether the index corresponds to a boundary or interior node:

S = Sσ =

[
S11 S12

S21 S22

]
, S11 ∈ Rm×m, S22 ∈ R(N−m)×(N−m),

and denote by γ ∈ Rm  the vector containing the boundary values:

γ =



f (z1)
...

f (zm)


 .

The approximation of the solution u in the nodal basis can be written as

u =

N∑
j=1

ujψj =

m∑
j=1

γjψj +

N∑
j=m+1

ujψj.� (31)

The standard variational formulation corresponding to the Dirichlet problem given by (8) 
leads to the well-posed matrix equation

S22uint = −S21γ,� (32)

where

uint =



um+1
...
uN


 ∈ RN−m,

is the vector containing the nodal values at the interior points.
Let g be a function defined on the boundary ∂Ω, with nodal values

ρ =



g(z1)
...

g(zm)


 ∈ Rm.

We can continue g into the domain Ω by defining w to be the lifting of the boundary function:

w =

N∑
j=1

wjψj =

m∑
j=1

ρjψj,� (33)

satisfying w(zj) = g(zj), 1 � j � m.
Replacing w and u with their approximate expressions (31) and (33) in terms of {ψj} in the 

right hand side of
∫

∂Ω

gΛσfdS =

∫

Ω

σ∇w · ∇udz,
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using (32) we obtain the numerical approximation
∫

∂Ω

gΛσfdS = ρTS11γ + ρTS12uint = ρT
(
S11 − S12

(
S22

)−1
S21

)
γ = ρT(S/S22)γ.

In particular, choosing f  and g from the Fourier basis on the boundary, we have

(Lnσ)jk = γT
j

(
S11 − S12

(
S22

)−1
S21

)
γk,

where

γj =



ϕj(z1)

...
ϕj(zm)


 , 1 � j � n.

Finally, after assembling the trigonometric boundary values into the matrix

G =
[
γ1 · · · γn

]
∈ Rm×n,

we obtain a computable approximation for the positive definite part of the Dirichlet-to-
Neumann matrix as a Schur complement of the block S22 of the stiffness matrix,

L̃nσ = GT
(
S11 − S12

(
S22

)−1
S21

)
G = GT(S/S22)G.

Several versions of the FEM implementation of the complete electrode model can be found 
in the literature, see, e.g. [31–33]. Here, we follow the formalism in [3, 4] using tensor product 
bases, as outlined below.

Assuming, for simplicity, that the domain Ω is discretized into triangular elements corre
sponding to N nodes, we define the finite element basis for pairs (v,V) as

ψk = (ψk, 0), 1 � k � N, ψN+� = (0,Φ�), 1 � � � L− 1

and write the Galerkin approximation of the CEM model as

(v,V) ≈
N+L−1∑
j=1

αjψk,

leading to the FEM matrix approximation of the variational form:

N+L−1∑
j=1

B(ψk,ψj)αj =

{
0, 1 � k � N
ΦT

� J, k = N + �, 1 � � � L− 1.

Partitioning the matrix K =
[
B(ψk,ψj)

]
∈ R(N+L−1)×(N+L−1) according to whether the coef-

ficients refer to the mesh nodes or the electrodes, we can write the equation as

K =

[
K11 K12

K21 K22

] [
α1

α2

]
=

[
0

φTJ

]
,

where the entries of α1 ∈ RN are the coefficients defining the voltage potential, while α2 con-
tains the coefficients of the electrode voltages in the basis {Φ�}. After one step of Gaussian 
elimination to find an expression for α1 in terms of α2, we arrive at the following equation for 
α2:

(
K22 − K21 (K11)−1

K12
)
α2 = ΦTJ
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from which it follows that the voltage can be expressed as

V = φα2 = φ
(
K22 − K21 (K11)−1

K12
)−1

ΦTJ = RσJ.

In turn, recalling that φTφ = IL−1, the reduced resistance matrix R̃σ can be written as

R̃σ =
(
K22 − K21 (K11)−1

K12
)−1

,

the inverse of the Schur complement K/K11.

5.2.  Prior model and sampling the conductivities

The computation of the basis vectors for the principal components reduced order approx
imation of the Dirichlet-to-Neumann matrix requires a sample of conductivities, assumed to 
be independent realizations of an underlying random variable.

To have a finite dimensional parametrization of the conductivity, we define a triangular 
mesh independent of the finite element meshes used for solving the forward problems. We 
denote the vertices of the conductivity mesh by ζj, 1 � j � M , and denote by {χj}Mj=1 the first 
order , or piecewise linear nodal basis associated to this mesh, χj(ζk) = δjk. The prior model 
used to generate the conductivities is assumed to be of the form

σ(z) = σ0 exp


W(z)

M∑
j=1

ξjχj(z)


 ,

where σ0  is the background conductivity, W(z) is a quadratic weight damping the conductiv-
ity near the boundary, W(z)  =  1.1  −  |z|2, and the coefficient vector ξ ∈ RM  is drawn from a 
Whittle–Mátern type correlation prior model [24, 25] described as follows: if A ∈ {0, 1}M×M  
denotes the adjacency matrix of the graph defined by the nodes and edges of the conductivity 
mesh, we define the graph Laplacian ∆g ∈ RM×M  as

∆g =
1
h2

(A− diag (AEM)) ,

where EM ∈ RM  is a vector of ones, and h  >  0 is a parameter approximating the mean dis-
tance between the nodes. The vectors ξ are obtained by solving the system

βλ
(
∆g − λ−2IM

)
ξ = w, w ∼ N (0, IM),� (34)

where β > 0 is a scaling factor, λ > 0 is the correlation length and IM is the M ×M  identity 
matrix, and the vectors w are drawn independently for each realization. We point out that the 
damping term W reduces the a priori variance of the conductivity at the boundary. Since the 
Dirichlet-to-Neumann map is most sensitive to conductivity near the boundary, the variance 
reduction has a regularizing effect on the inverse problem of estimating the map, as discussed 
later.

6.  Computed examples

In our numerical experiments, we assume that the domain Ω is the unit disc with L  =  16 
identical equally spaced electrodes attached to the boundary with space filling ratio 0.7. The 
contact impedance is assumed to be the same at each electrode, z� = 0.1. The finite element 
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computations are done using a first order basis on triangular meshes generated with the 
DistMesh generator, [23]. To avoid the inverse crime, the resistance matrices Rσ simulat-
ing the measured data are computed using a mesh with nv = 3678 vertices and ne  =  7018 
elements, with 336 boundary nodes, while the Dirichlet-to-Neumann maps constituting the 
sample used to extract the principal feature matrices are computed in a slightly coarser mesh 
with nv = 3225 vertices and ne  =  6128 elements, corresponding to 320 boundary nodes.

We start by considering the error in the matrix equation (24) due to the truncation of the 
Fourier basis with two conductivity distributions, a constant conductivity σ = σ0 = 1.5, and 
a smooth conductivity σ = σsmooth with three Gaussian perturbations on constant background, 
shown on the left in figure  1. Observe that for the constant conductivity, the Dirichlet-to-
Neumann matrix in the Fourier basis is analytically known:

Lnσ0
= σ0 diag(0, 1, 1, . . . , 1) ∈ R(n+1)×(n+1).� (35)

For the non-constant conductivity matrix, we need to resort to a numerical approximation. We 
address the following question: given the FEM grid, in this case the coarser grid, how should 
n be chosen? Clearly, the density of the computational mesh sets an upper bound for n: if nb 
is the number of boundary nodes, the Nyquist sampling theorem suggests that the highest 
frequency n/2 of the Fourier modes on the boundary should not exceed nb/2, that is, n � nb. 
On the other hand, if n is too small, the truncation error may render the matrix equation (24) 
inaccurate, and the modeling error starts to dominate over noise in the data.

In the first numerical test, for each n = 1, 2, . . ., we compute the matrices Y = Yn and 
M = Mn  analytically, and consider the relative error

En =
‖φTDφ− (YnDφ)T (Lnσ +Mn)

−1 YnDφ− R̃−1
σ ‖F

‖R̃−1
σ ‖F

,� (36)

where Lnσ is either the analytically known or numerically computed truncated Dirichlet-to-
Neumann matrix, and R̃σ is computed using the finer mesh; this would correspond to mea-
sured noiseless quantities. Figure 2 shows the approximation errors for constant conductivity 
σ0  (left panel) and non-constant smooth conductivity σsmooth (right panel). Interestingly, the 
modeling error curves with the constant conductivity and the variable one have a similar shape 
when the Dirichlet-to-Neumann matrices Lnσ are computed numerically. In the case where the 
analytic expression for the matrix is available, the accuracy is a little higher around n  =  80. 
Observe, that in both cases the modeling error is not monotonically decreasing with n, but it 

Figure 1.  Two conductivity distributions used in the computed examples. The 
conductivity on the left comprises three Gaussian inclusions, corresponding to the prior 
model that assumes smoothness, while the one on the left is not in line with the prior 
assumptions.
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starts to grow around n  =  110 or earlier around n  =  100 in the case of the analytically com-
puted solution (red curve in the left panel of figure 2). This phenomenon may be due to the fact 
that in our computations the resistance matrix is not analytically known, and we have to use a 
numerical approximation. In light of this observations, we set n  =  110.

Keeping n  =  110 fixed, we generate a sample of random conductivities according to the 
procedure described in the previous section. The conductivities drawn from the prior are com-
puted in a homogeneous mesh. For the FEM computations, the nodal values of the vector 
ξ = log(σ/σ0) are interpolated linearly to Gauss quadrature points of the FEM mesh for the 
computation of the stiffness matrices. The coarser FEM mesh as well as the mesh used for 
representing the conductivities are shown in figure 3.

Figure 4 shows some of the randomly generated conductivities. Because our sample size 
K  =  5000 is rather small, we do not expect this sample to be representative of the conductivi-
ties, however since the Dirichlet-to-Neumann map is not sensitive to details in the conductiv-
ity, in itself a source of the ill-posedness of the EIT inverse problem, we may have a good 
chances to capture the main features of the boundary matrices with a relatively small sample.

Once the sample has been produced, we compute the singular value decomposition for the 
data set. Figure 5 shows the singular values of the non-centered sample matrix X , normalized 
to have the largest singular value equal to one. We observe that the singular values decrease 
rapidly by several orders of magnitude, however, there is no clear spectral gap suggesting an 
obvious value where to truncate.

To better understand the resolution power of the singular vectors, we consider how much 
the matrices Xσ corresponding to different conductivities differ from their orthogonal projec-
tions to the affine subspaces Qk = X+ span{U1, . . . ,Uk} where we search for the approximate 
solution. More precisely, if Lnσ ∈ R(n+1)×(n+1) is a numerical approximation of the Dirichlet-
to-Neumann matrix of a known conductivity, we compute the orthogonal projections

β̂ = U Tvec(Xσ − X), Xσ = (Mn + Lnσ)
−1,

50 100 150 200
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10-2

10-1

50 100 150 200

10-3

10-2

10-1

Figure 2.  The error (36) in the matrix identity (24) relative to the presumably known 
conductance matrix R̃−1

σ  that is approximated numerically using a finer FEM mesh 
than that used to compute the Dirichlet-to-Neumann matrix. The abscissa indicates 
the truncation level of the Fourier series approximation of the boundary voltages. 
Left: constant conductivity σ = 1.5, the black curve corresponding to the numerically 
computed approximation of the Dirichlet-to-Neumann matrix, the red one to the analytic 
expression. Right: smooth conductivity σsmooth shown in figure  1. The Dirichlet-to-
Neumann map is computed using the coarser mesh shown in figure 3.
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and the corresponding approximation error

ek =
‖Xσ − X−

∑k
j=1 β̂jUj‖F

‖Xσ‖F
� (37)

for different truncation levels k. This is a lower bound for the actual error when computing the 
approximation using the resistance map.

Figure 6 shows the approximation errors as a function of the truncation index k for the 
constant conductivity σ0 = 1.5 and the smooth non-homogeneous conductivity σsmooth shown 
in figure 1 (left). In our test, we used the non-centered sample, that is, X = 0. The relative trun-
cation error depends on how the Dirichlet-to-Neumann matrix is computed. In the constant 
conductivity case, we use either the analytical formula (35), or the FEM-based approximation 
using either the mesh used to generate the sample (labeled ‘coarse mesh’), or the dense mesh 

Figure 3.  Left: The FEM coarse mesh used for solving the forward problem to generate 
the Dirichlet-to-Neumann sample. Right: The regular mesh in which the conductivities 
are generated. The nodal values of the logarithmic conductivities are linearly interpolated 
to the Gauss quadrature points in each element of the FEM mesh.

Figure 4.  Eight random conductivities: the nodal values of the piecewise linear quantity 
ξ = log σ/σ0 are drawn from the to a Whittle–Mátern correlation prior with correlation 
length λ = 0.2 and scaling factor β = 1/15.
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used to generate the data (labeled ’dense mesh’). We observe, as to be expected, that if the 
Dirichlet-to-Neumann matrix is approximated using the same mesh used for the generation 
of the sample, the approximation error is smaller than for the dense mesh approximation or 
when the matrix is analytically available. The results for the smooth conductivity example are 
similar, although in that case the analytic formula is not available.

Finally, we test how well the Dirichlet-to-Neumann matrix can be approximated based on 
the given conductance matrix by solving the least squares problem (29) for the coefficients βj 
and further estimating Lnσ from the approximation of the matrix Xσ. We consider three cases, 
the constant conductivity, the smooth conductivity, and a discontinuous conductivity, shown 
in figure 1 (right), for which the sample of smooth conductivities is not representative.

Given a truncation index k, we solve equation (29) in the least squares sense to find the 
coefficients β1, . . . ,βk  and write the corresponding approximation:

X̂k = X+

k∑
j=1

βkUk,

and further compute

L̂n,kσ = (X̂k)−1 −Mn.� (38)

Observe that here the truncation index k acts as a regularization, similarly as in the trun-
cated SVD regularization for linear ill-posed problems, therefore the choice of k is a trade-off 
between how small we want the residual to be versus how much error the solution tolerates. 
The error in the model (29) consists of the numerical error in the data and the modeling 
error due to the finite approximation, including the errors due to the FEM computations. As 
pointed out earlier, the modeling error at the truncation level n  =  110 is of the order of mag-
nitude  ∼10−3 of the data, measured in the Frobenius norm.

In our numerical test, we solve the least squares problem (29) for increasing values of k 
and plot on a logarithmic scale the norm of the vector βk = (β1, . . . ,βk) versus the norm of 
the residual of the equation (29). In a separate panel, we also plot the relative error in the 
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Figure 5.  The singular values of the sample matrix, scaled by the largest singular 
values.
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estimated Dirichlet-to-Neumann matrix (38) comparing it to the matrix computed with the 
fine FEM mesh:

Ek =
‖L̂n,kσ − Lnσ‖F

‖Lnσ‖F
.

To further our understanding, we investigate which of the spectral components of the matrix 
are estimated most reliably by defining the truncation operator

Tp : R(n+1)×(n+1) → R(2p+1)×(2p+1), [Aij]0�i,j�n �→ [Aij]0�i,j�p,

where p � n/2, i.e. Tp(A) is the (2p+ 1)× (2p+ 1) upper left block of the original matrix, 
and the restricted error is defined as

E p
k =

‖Tp(L̂
n,k
σ − Lnσ)‖F

‖Tp(Lnσ)‖F
.� (39)

The index p  indicates the spectral band in which the reconstruction is assessed. We run the test 
both with no artificial noise added to data, the error being the model discrepancy, and a low 
level Gaussian uncorrelated noise with standard deviation 0.1% of the maximum entry of the 
conductance matrix is added to it. As pointed out earlier, we cannot expect good performance 
for reconstructing high frequency components of the Dirichlet-to-Neumann map based on the 
low frequency electrode data.

Figure 7 shows the results when the data comes from a smooth conductivity distribution. 
The relative error displays the characteristic semiconvergence property, decreasing at first, 
then increasing when the addition of new feature vectors starts to deteriorate the results. As 
expected, the relative reconstruction error is smaller in the lower spectral band, in agree-
ment with the understanding that the 16-electrode resistance data cannot contain much infor-
mation outside the low frequency band. Interestingly, the semiconvergence behavior for few 
feature vectors is similar whether artificial noise is added or not, the difference being mostly 
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Figure 6.  The discrepancy between the matrix Xσ and its projection onto the affine 
subspace corresponding to the feature matrices extracted from the non-centered sample, 
Qk = span{U1, . . . ,Uk}, measured in the relative Frobenius norm (37). The left panel 
corresponds to the constant conductivity, and the right one to the smooth conductivity 
of figure 1. The different curves correspond to how the Dirichlet-to-Neumann matrix 
was approximated. The coarse mesh is that used to generate the sample, leading to 
lowest error. The dense mesh is that used to generate the resistance data, and is denser 
than the mesh used to generate the sample.
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marked for larger values of k where the estimate is highly unreliable anyway. Unfortunately, 
the L-curve cannot be used as a reliable stopping criterion, because the residual continues to 
decrease without the norm of the solution increasing significantly way after the minimum 
relative error is reached.

We ran the same test with data coming from a discontinuous conductivity distribution. 
While the prior distribution that was used to generate the sample is not representative for 
this conductivity, the ill-posedness of the EIT inverse problem suggests that the performance 
should be similar to the smooth conductivity. The results shown in figure 8 are qualitatively 
very similar to the ones with the smooth conductivity, confirming the intuition that since the 
Dirichlet-to-Neumann map is not sensitive to fine details in the conductivity such as smooth-
ness, as the ill-posedness of the EIT problem suggests, only the large scale features matter.
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Figure 7.  Results corresponding to the smooth conductivity distribution. Left column, 
top: The L-curve, displaying the norm of the solution (horizontal axis) versus the norm 
of the residual (vertical axis), both in logarithmic scale. The curve is parametrized by the 
number of PCA feature vectors included in the model No artificial noise is added to the 
numerically computed conductance matrix used as data. Bottom: The semiconvergence 
behavior of the relative error in the Dirichlet-to-Neumann matrix, the different curves 
corresponding to different numbers of Fourier components included in the analysis, 
as indicated by the legend. The horizontal dashed lines indicate the number of PCA 
basis vectors that correspond to the minimum. The numbers yielding the minimum 
are indicated in the top figure by horizontal lines. Observe that the black and the red 
horizontal lines are indistinguishable. Right column: The same computations with 
Gaussian uncorrelated noise of standard deviation 0.1% of the maximum entry of the 
conductance matrix is added to the conductance matrix entries.
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7.  Discussion

This article discusses the analytical and numerical relation of the idealized boundary data 
of the EIT problem formulated in terms of the Dirichlet-to-Neumann map and the realistic 
resistance map corresponding to the real measurement protocol using contact electrodes. It is 
shown that the problem of estimating the former from the latter can itself be recast as an ill-
posed inverse problem. The analysis provides a formula for computing of the resistance map 
from the matrix approximation of the Dirichlet-to-Neumann map. The difficulties in approxi-
mating the latter from electrode measurements are manifold. First, in order to not introduce 
significant modeling errors in the matrix equation by truncation, it is necessary to include high 
frequencies. However, the electrode data may have only limited sensitivity to high frequen-
cies of the conductivity, further affecting the high frequency components of the Dirichlet-to-
Neumann map, and moreover, the sensitivity to high frequency details may depend on the 
position of the electrodes. To understand the latter statement, consider a conductivity with 
a high frequency detail such as a crack near the boundary, as illustrated by the two cartoons 
in figure 9. Assuming that the crack is modeled as a sharp decrease in conductivity, if a sin-
gularity is located between two electrodes, as in the cartoon on the left, in order to maintain 
the current between the adjacent electrodes, a significant increase in voltage difference is 
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Figure 8.  The results as in figure  7, with the difference that the data arise from an 
underlying non-smooth conductivity shown in figure 1 (right) for which the random 
conductivity model used for the generation of the PCA basis is not representative. Here, 
no artificial noise to the data was added.

Figure 9.  Two cartoons illustrating the effect of electrode positions on sensitivity. 
On the left, a high frequency detail of the conductivity, such as a crack, is located 
between two adjacent electrodes, causing a significant effect on the voltage difference 
maintaining a prescribed current flow between the electrodes, while on the right, the 
crack is under a contact electrode, having little effect on the voltage difference.
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observed. However, if the same singularity is under an electrode, as in the cartoon on the right, 
since the current density is strongly concentrated at the edges of the electrodes [28] the effect 
on voltages is less pronounced. In this article, the high frequency effects due to the bound-
ary behavior of the conductivity are to some extent mitigated by assuming a priori that the 
conductivities are smooth and have low variance near the boundary. Nevertheless, as shown 
by numerical examples, selection of the truncation level in the computations is not a simple 
issue. To decide how much details in the Dirichlet-to-Neumann map are estimated from the 
resistance map, we used the PCA basis, where the idea is to let the simulated data to decide 
the level of details included. The numerical experiments demonstrate that the resistance map 
does not allow reliable reconstruction of the high frequency Fourier modes of the Dirichlet-
to-Neumann map: if L is the number of the electrodes, one cannot hope to recover effectively 
much more than L/2 sine and cosine coefficients, in line with the classical Nyquist sampling 
limit. Finally, as shown by the numerical experiments, the results depend on the finite element 
discretization level.

The numerical tests in this article were performed with a low resolution 16 electrode model. 
A future work includes the increase of the resolution by adding more electrodes, and using 
a higher order FEM computations to better take into account the voltage singularities at the 
electrode boundaries, thus diminishing the modeling error that even in the absence of additive 
noise is enough to produce significant reconstruction error in the Dirichlet-to-Neumann map. 
The principal component approach suggested in this paper, while computationally conveni-
ent as it linearizes the inverse problem, may not be the optimal, as it does not use analytical 
properties of the Dirichlet-to-Neumann map that could be implemented as a prior. Another 
important question requiring further investigation is to find a robust and reliable criterion for 
choosing the number of PCA components, corresponding to choosing the regularization level. 
As pointed out, the analog of an L-curve method does not work here, possibly because a sig-
nificant part of the noise is strongly correlated modeling error. The viability of the suggested 
method as an initial preprocessing step for the EIT problem should be tested in connection 
with an EIT inverse solver based on the Dirichlet-to-Neumann map, such as the d-bar method 
or layer stripping. However, the quality of the results depends on the selection of the particular 
reconstruction method as well as on its implementation. This question will be addressed in 
later work.
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