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Abstract
Sparse recovery seeks to estimate the support and the non-zero entries 
of a sparse signal x ∈ Rn from possibly incomplete noisy observations 
y = Ax0 + ε, with A ∈ Rm×n, m � n. It has been shown that under various 
restrictive conditions on the matrix A, the problem can be reduced to the �1 
regularized problem

min ‖x‖1 subject to ‖Ax− y‖2 < δ,

where δ is the size of the error ε, and the approximation error is well controlled 
by δ. A popular method for solving the above minimization problem is the 
iteratively reweighted least squares algorithm. Here we reformulate the 
question of sparse recovery as an inverse problem in the Bayesian framework, 
express the sparsity belief by means of a hierachical prior model and show 
that the maximum a posteriori (MAP) solution computed by a recently 
proposed iterative alternating sequential (IAS) algorithm, requiring only the 
solution of linear systems in the least squares sense, converges linearly to the 
unique minimum for any matrix A, and quadratically on the complement of 
the support of the minimizer. The values of the parameters of the hierarchical 
model are assigned from an estimate of the signal to noise ratio and a priori 
belief of the degree of sparsity of the underlying signal, and automatically 
take into account the sensitivity of the data to the different components of x. 
The approach gives a solid Bayesian interpretation for the commonly used 
sensitivity weighting in geophysics and biomedical applications. Moreover, 
since for a suitable choice of sequences of parameters of the hyperprior, the 
IAS solution converges to the �1 regularized solution, the Bayesian framework 
for inverse problems makes the �1-magic happen in the �2 framework.
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1.  Introduction

Consider a linear discrete inverse problem of the form

Ax = b,� (1)
where A ∈ Rm×n, m � n is an ill-conditioned matrix and the right hand side vector is cor-
rupt by noise. The classical approach for addressing the ill-posed problem is to replace it by 
a nearby well-posed one by considering the problem of finding a minimizer of a penalized 
functional, such as

Fp(x,α) = ‖b− Ax‖2 + α‖x‖ p
p ,

where the second term penalizes solutions of large �p-norm and the regularization parameter 
α > 0 determines the severity of the penalty, while the choice of the parameter p affects the 
properties of the solution. In particular, it is well known that p � 1 promotes sparsity of the 
solution, an observation that lies in the heart of compressive sensing. Several algorithms for 
effectively solving the above minimization problem when p  <  2 have been proposed and ana-
lyzed in the literature, as well as, when p  =  2, various versions of iteratively reweighted least 
squares (IRLS) algorithms that are relevant for the present work [9, 13].

An alternative for the regularization approach is to reformulate the inverse problem in the 
Bayesian framework by extending (1) to random variables characterized by probability dis-
tributions, and introducing a prior that encodes the available information about the unknown. 
The observation equation, defining the likelihood, is then used to update the prior based on 
the data, giving rise to the posterior distribution that represents the Bayesian solution to the 
inverse problem [2, 14].

In this work, we consider a particular hierarchical Bayesian model, previously introduced 
and analyzed in [2–6], and in particular, an iterative algorithm for computing the maximum 
a posteriori (MAP) estimate of the extended hierarchical posterior model. The hierarchical 
model postulates a conditionally Gaussian prior model with variable prior variances, and a 
hyperprior model from the family of Gamma distributions for the prior variances. The itera-
tive algorithm, referred to as iterative alternating scheme (IAS), solves the MAP estimate 
by alternatingly updating the estimate of the unknown and its prior variance, and it can be 
interpreted as a Bayesian IRLS algorithm with the a priori belief about the sparsity of the 
solution. Indeed, in the previous works, it has been shown that with particular hyperparameter 
selections, the IAS algorithm is particularly suitable for estimating sparse signals, akin to the 
�1 regularization [2–4], and in the context of solving the magnetoencephalography (MEG) 
inverse problem in brain imaging, it was shown to be globally convergent with a unique global 
minimum [5]. In this work, we extend the analysis in different ways.

As pointed out, the iterative algorithm based on the hierarchical model has been demon-
strated in practice to be an efficient alternative for the �1-penalized optimization for recovering 
sparse signals. In this work, we formally show that one of the hyperparameters, the shape 
parameter of the underlying Gamma distribution, controls the sparsity in the sense that at the 
limit, the solution of the IAS algorithm converges to the minimizer of the �1-penalized regu-
larized solution. Thus, we can argue that while the convergence of the IAS is independent of 
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particular properties of the matrix A, the conditions guaranteeing sparse recovery with the �1 
penalty can be applied to guarantee that the solution is close to a sparse solution.

In addition, we demonstrate that through the limiting process of the hypermodel, the regu-
larization parameter α in the �1-penalized functional can be automatically selected based on 
the information about the signal-to-noise ratio (SNR) and a priori belief of the size of the 
support of the underlying signal.

Furthermore, it has been experimentally observed that when applied to data arising from 
underlying signal with small support, the IAS algorithm converges rapidly. In this work, the 
convergence rate is analyzed in detail. We show that regardless of the properties of the underly-
ing signal, the convergence is at least linear, essentially quadratic for sparse or compressible 
signals.

Another important extension of the previous work is related to the issue of sensitivity 
weighting and hyperparameter selection. When the forward model represents a field measure-
ment (acoustic, electromagnetic, gravitation potential) and x represents the discretized primary 
or secondary source, the data are much more sensitive to source components near the receivers 
than those far away from it. This is reflected by the fact that the columns of the matrix A scale 
typically as 1/rα, where r is the characteristic distance between the source component and the 
receiver. The varying sensitivity of the data to the source components biases the minimizer 
towards solutions with all the active components close to the receivers: because of the ill-
posedness of the problem, superficial sources explain the noisy data as well as deep sources, 
but since for the former the value of the penalty term is much lower, they are strongly favored. 
The remedy proposed in the literature to address this well-known problem, see, e.g. [16–20], 
is to replace the �p regularized problem with a sensitivity-weighted minimization problem

Fp(x,α,w) = ‖b− Ax‖2 + α
∑
j

wj|xj| p,� (2)

with the weights wj chosen so as to compensate for the differences in sensitivity, defined pre-
cisely later in this article.

The observation model dependent sensitivity scaling has been difficult to justify in the 
Bayesian framework: in a Gibbs type prior

πprior(x) ∝ exp


−α

∑
j

wj|xj| p

 ,

the selection of wj would be tantamount to favoring sources far away from detectors based on the 
forward model rather than on a priori belief about the solution, a position that is hardly defend-
able. In this paper we will show that by combining hierarchical prior models and an exchange-
ability argument asserting that the signal to noise ratio should depend only on the cardinality of 
the support of the signal, independently of the actual locations, it is possible to provide a Bayesian 
interpretation of sensitivity scaling without violating the Bayesian principles of prior design.

The paper is organized as follows. In the section 2 we present a brief review of hierachical 
Bayesian models for linear observation models with Gaussian noise and the IAS algorithm for 
computing the corresponding MAP estimate. Section 3 addresses the sparsity promoting role 
of the shape hyperparameter and proposes an automatic way to assign the value of the scale 
parameters. After introducing the concept of exchangeability, we show a way to assign the 
value of the scale parameters that expresses the belief that the signal to noise ratio is a func-
tion of the cardinality of the support but not of its location. Furthermore, we show that as the 
shape parameter goes to zero, the MAP estimates computed with the IAS algorithm converges 
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to the minimizer of the �1 penalized functional. In section 4 we prove that the convergence rate 
of the IAS algorithm is at least linear, and at least quadratic on the complement of the support 
of the minimizer. Numerical examples in one and two dimensions are presented in section 5.

2.  Hierarchical Bayesian model

We start by a brief review of the hierarchical Bayesian model discussed in previous articles 
[3–5] and further analyzed in this paper. Consider the linear observation model with additive 
Gaussian noise,

b = Ax+ ε, ε ∼ N (0,Σ),� (3)
where A ∈ Rm×n and Σ ∈ Rm×m is a symmetric positive definite noise covariance matrix. 
Here we consider the case m � n, where the problem is underdetermined. Introducing the 
Cholesky decomposition of the noise precision matrix Σ−1 = STS, the likelihood density can 
be expressed as

πb|x(b | x) ∝ exp
(
−1
2
(b− Ax)TΣ−1(b− Ax)

)
= exp

(
−1
2
‖S(b− Ax)‖2

)
,

where ‘∝’ stands for proportional up to a constant scaling factor.
We define a conditionally Gaussian prior model for x, postulating that for a prior variance 

vector θ ∈ Rn
+ = {θ = (θ1, . . . , θn) ∈ Rn | θj > 0},

x | θ ∼ N (0,Dθ), Dθ = diag(θ),

yielding the prior density

πx|θ(x | θ) =
1

(2π)n/2
√
θ1 · · · θn

exp


−1

2

n∑
j=1

x2j
θj


 .

We remark that because θ is itself a random variable, the normalizing factor cannot be ignored, 
hence our aim is to estimate both x and θ based on the observation b. To this end we introduce 
a hypermodel for the variances θj, postulating that they are mutually independent and distrib-
uted according to a Gamma distribution,

θj ∼ Gamma(θ∗j ,β), πθj(θj) =
1

Γ(β)θ∗j

(
θj
θ∗j

)β−1

exp

(
−

θj
θ∗j

)
.

Observe that to simplify slightly the model, we set the shape parameter β > 0 equal for all 
components, while assigning individually the values of the scaling parameters θ∗j . We refer to 
[5] for the statistical motivation for choosing this type of hypermodel that, unlike a common 
practice in the statistical literature, is not conjugate to the prior model.

We may now combine the likelihood, prior, and hypermodel by Bayes’ formula to obtain 
the posterior density for the pair (x, θ),

π(x,θ)|b(x, θ | b) =
πx|θ(x | θ)πθ(θ)π(b | x, θ)

πb(b)

∝ exp


−1

2
‖S(b− Ax)‖2 − 1

2

n∑
j=1

x2j
θj

−
n∑

j=1

[
θj
θ∗j

−
(
β − 3

2

)
log

θj
θ∗j

]
 .
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In the following we assume that β > 3/2 and denote η = β − 3/2 > 0. Furthermore, by scal-
ing the forward mapping A and the data b as (A, b) → (SA,Sb), without loss of generality we 
can assume that S = Im, the identity matrix of size m× m, hence we write the Gibbs energy 
functional as

E(x, θ) =

(a)︷ ︸︸ ︷
1
2
1
2
‖b− Ax‖2 + 1

2

n∑
j=1

x2j
θj

+

n∑
j=1

[
θj
θ∗j

− η log
θj
θ∗j

]

︸ ︷︷ ︸
(b)

,� (4)

the braces identifying the x-dependent (a) and θ-dependent (b) portions of the functional. For 
the time being, we have suppressed the dependency on the hyperparameters.

2.1. The IAS algorithm

The maximum a posteriori (MAP) estimate of the pair (x, θ) is, by definition, a minimizer of 
the energy functional (4). In the articles [2–4], an iterative alternating sequential (IAS) algo-
rithm was proposed, consisting of two separate minimization steps:

	 1.	�Initialize: Set θ = θ0, k  =  0.
	 2.	�Iterate until convergence:

	  (i)	� Update x setting xk+1 = argmin{E(x, θk)}.
	(ii)	�Update θ setting θk+1 = argmin{E(xk+1, θ)}.

	(iii)	�Increase k → k + 1.

As pointed out in the cited articles, the algorithm is simple to implement because of the 
particular structure of the energy functional. Indeed, since in step (i) only the x-dependent part 
(a) in (4) needs to be considered, the corresponding minimization problems can be reduced to 
solving the linear system

[
A

D
−1/2
θk

]
x =

[
b
0

]

in the least squares sense. In step (ii), on the other hand, where only the θ-dependent part (b) 
in (4) is minimized and the components are independent, the minimum can be explicitly com-
puted as a critical point of the component functional, yielding

θk+1
j = θ∗j


η

2
+

√√√√η2

4
+

(xk+1
j )2

2θ∗j


 .

The similarity of the above iterative algorithm and the iteratively reweighted least squares 
algorithms (IRLS) is obvious, however, observe that the goal here is not to find a minimizer 
with the �p penalty. In IRLS, the idea of penalizing the components of x by weighing them 
individually, recomputing the weights iteratively can be traced back to the doctoral work of 
Lawson in 1961 [15] for the solution of uniform approximation problems. Extensions of this 
work eventually led to the FOCUSS algorithm for the reconstruction of sparse signals [13]. 
In general, since the new weights are expressed in terms of the corresponding components of 
the previous approximate solution, care must be taken to guarantee that the algorithm is well 
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defined and converges to the underlying sparse solution, often by requiring that the matrix A 
satisfies some limiting conditions. For instance, the convergence analysis of the IRLS algo-
rithm proposed in [9] is restricted for classes of matrices satisfying conditions analogous to 
those for the �1 sparse recovery in compressed sensing [7, 8, 11, 12].

The extension of the minimization problem from Rn to Rn × Rn allows us to prove the fol-
lowing general convergence result [5].

Theorem 2.1.  For η > 0 and θ∗ ∈ Rn
+, the energy functional (4) defined over Rn × Rn

+ is 

strictly convex, thus having a unique global minimizer ẑ = (x̂, θ̂). The IAS algorithm produces 
a sequence zk = (xk, θk) that converges to the global minimum. Furthermore, the point x̂  is 
the global minimizer of the functional

F(x) = E(x, f (x)), f (x) = ( f1(x1), . . . , fn(xn)),� (5)

where

fj(t) = θ∗j

(
η

2
+

√
η2

4
+

t2

2θ∗j

)
.

One of the main questions that we address in this article, not discussed in the cited work, 
is the convergence rate of the IAS algorithm. However, we start by analyzing further the role 
of the hyperparameters.

3.  Hyperparameters

It has been pointed out in the literature how the hyperparameters β and θ∗ affect on the MAP 
solution: the former controls the sparsity of the solution, while the second one can be related 
to sensitivity scaling, if properly interpreted. One of the aims of this work is to further analyze 
the role of the hyperparameters.

We begin with a simple limiting argument that will be developed further later on. Consider 
the function (5). It was shown in [5] that for fixed x ∈ Rn,

F0(x) = lim
η→0+

E(x, f (x)) =
1
2
‖b− Ax‖2 +

√
2

n∑
j=1

|xj|√
θ∗j

,� (6)

where the sum extends only over the support of x,

S = supp(x) = { j | xj �= 0}.

This preliminary observation serves two purposes. First, it suggests that the parameter η > 0 
controls the sparsity of the solution, and second, it reveals that the parameter θ∗j  represents 
a weight that can be related to the sensitivity of the data. Below, we start by discussing the 
second observation.

3.1.  Scale parameters and sensitivity weighting

As discussed in the Introduction, a common procedure in applied inverse problems is to use 
weighted penalty functions to compensate for the non-uniform sensitivity of the data to comp
onents of the unknown. In this section, we show how the current model provides a Bayesian 
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interpretation of the sensitivity scaling without the need to resort to questionable data-depen-
dent priors.

The sensitivity of the linear forward model x �→ Ax  to the jth component of the vector x 
can be defined as

sj =
∥∥∥∥
∂(Ax)
∂xj

∥∥∥∥ = ‖Aej‖,

where ej is the jth canonical basis vector. Hence, sj equals the norm of the jth column of A. In 
the inverse problems literature, it is common to choose the weights wj in (2) to compensate 
for the variable sensitivity by setting wj ∝ ‖Aej‖ p. Equivalently, this is tantamount to scaling 
the columns of A to have unit Euclidian norm by multiplying it from the right by a diagonal 
matrix D = diag(1/s1, . . . , 1/sn), and concurrently rescaling the variable x with the corre
sponding inverse scaling,

Ax = (AD)(D−1x) = Ãw, Ã = AD, w = D−1x,

amounting to a change of variables and concurrent rescaling the columns of the forward oper-
ator Ã. Here, we show that a similar scaling can be obtained through the hierarchical Bayesian 
model.

The following argument is a modification and extension of the discussion included in [6] 
in the context of interpreting MEG data: the key equation to help elucidate the role of θ∗j  as a 
weight factor is (6), although in the ensuing discussion, η may have any non-negative value.

Consider the observation model (3). We define the signal-to-noise ratio (SNR) by the 
formula

SNR =
E{‖b‖2}
E{‖ε‖2}

,

where both x and ε are interpreted as random variables and the expectation of x is with respect 
to the prior distribution. We start with the following simple calculation in which we assume 
that the noise has not been whitened.

Lemma 3.1.  Assume a priori, that we have supp(x) = S ⊂ {1, 2, . . . , n}. Given the hierar-
chical model

x ∼ N (0,Dθ), θj ∼ Gamma(β, θ∗j ) for j ∈ S,

and θj = 0 for j /∈ S , the signal-to-noise ratio conditional on the support assumption is

SNRS =

∑
j∈S βθ

∗
j ‖Aej‖2

trace(Σ)
+ 1,

where ej ∈ Rn is the jth canonical coordinate vector.

Proof.  We start by observing that

E{‖ε‖2} = trace
(
E{εεT}

)
= trace(Σ)

and, from the independence of x and ε,

E{‖b‖2} = E{‖Ax‖2}+ E{‖ε‖2} = trace
(
E{(Ax)(Ax)T}

)
+ Σ

= trace
(
AE{xxT}AT

)
+ Σ.

D Calvetti et alInverse Problems 35 (2019) 035003
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The hierarchical prior model implies that

E{xxT | θ} =
∑
j∈S

θjejeTj ,

hence

trace(AE{xxT | θ}AT) =
∑
j∈S

θj‖Aej‖2.

The result follows from the observation that, since θj ∼ Gamma(β, θ∗j ), its expectation is 
E{θj} = βθ∗j .� □ 

Let ‖x‖0 = card(supp(x)) denote for the cardinality of the support of the vector x. The 
following definition is useful when trying to recover signals believed to have sparse support.

Definition 3.2.  A problem satisfies the exchangeability condition if whenever 
card(S) = card(S′)

SNRS = SNRS′ .

We are now ready to prove the following theorem, that provides a criterion for setting the 
values of the scale parameters of the Gamma hyperprior.

Theorem 3.3.  Given the probability distribution of the cardinality of the source

P{‖x‖0 = k} = pk, p0 = pn = 0,

and an estimate SNR of the signal-to-noise ratio, if the system satisfies the exchangeability 
condition, the values of the scale hyperparameters θ∗j  should be set to

θ∗j =
C

‖Aej‖2
, C =

(SNR− 1) trace(Σ)
β

n−1∑
k=1

pk
k
.� (7)

Proof.  Assume for the time being that the cardinality of the support of the source is k. Then 
from the previous lemma

k∑
�=1

βθ∗j�‖Aej�‖
2 = trace(Σ)(SNR− 1)

for some index values j1, . . . , jk , and because of the exchangeability condition this equa-
tion must be satisfied for any choice of k indices.

Let Pk be the 
(n
k

)
× n matrix where each row contains zeros in correspondence of the com-

plement of the support, and ones in correspondence of the support. In other words, the rows 
of Pk represent all possible choices for the support of x. Then for the vector γ ∈ Rn such that 
γj = βθ∗j ‖Aej‖2, we have that

Pkγ = trace(Σ)(SNR− 1)1,

where 1 is a 
(n
k

)
-vector of ones. Since Pk has rank n, we must have
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γj = βθ∗j ‖Aej‖2 =
1
k
trace(Σ)(SNR− 1), 1 � j � n,

leading to

θ∗j | (‖x‖0 = k) =
1
k
trace(Σ)(SNR− 1)

1
β‖Aej‖2

.

Finally, marginalizing over the cardinality of the support it follows that

θ∗j =

n−1∑
k=1

pk
(
θ∗j | (‖x‖0 = k)

)
=

C
‖Aej‖2

,

completing the proof.� □ 

Revisiting (6) in the light of the last theorem, the limiting functional can be written as

F0(x) =
1
2
‖b− Ax‖2 +

√
2
C

n∑
j=1

wj|xj|, wj = ‖Aej‖,

which is what would be obtained from sensitivity weighting with the column norms of the 
forward map. Based on this observation, we have the following result on how Tikhonov 
regularization parameter can be selected on the basis of the estimated noise level and prior 
information about the support.

Corollary 3.4.  Given an estimate SNR of the signal to noise ratio and a priori probability 
distribution of ‖x‖0, a judicious choice of the Tikhonov regularization parameter α for

xα = argmin
{
‖b− Ax‖+ α

n∑
j=1

wj|xj|
}

is

α =

√
2
C

=

√
2β

(SNR− 1) trace(Σ)

n−1∑
k=1

pk
k
,

which is always real because SNR is always greater than 1.

Remark 3.5.  Often, one may have additional restrictive prior information about the size of 
the components of x, such as ‘|xj|  <  M with high probability’, based on, e.g. physical consid-
erations. A natural way to incorporate such information is to define the effective value

θ∗eff,j = min{θ∗j , (M/2)2},� (8)

where θ∗j  is given by (7), the value M thus representing two times the standard deviation.

To simplify notations, we shall non-dimensionalize the problem by defining

θj →
θj
θ∗j

, xj →
xj√
θ∗j

, A → Adiag(
√
θ∗),
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which is tantamount to rescaling each column of the matrix A by the square root of the corre
sponding element of θ∗. Therefore in the following discussion, without loss of generality, we 
assume that θ∗j = 1.

3.2.  Shape parameter and sparsity

A significant amount of research continues to be devoted to the conditions for the exact—
or near exact—recovery of sparse signals. The results on the optimality of the �1 penalized 
approximation have motivated the use of different norms to measure fidelity and favor spar-
sity, raising interest in how to approach the problem computationally. Hierarchical Bayesian 
models with suitable choice of hyperpriors have been shown to promote sparsity: in [5] it was 
shown that with the Gamma hyperprior, for x fixed, if the shape parameter η is small enough, 
the Gibbs energy converges towards the �1-penalized functional. Here we show that, in the 
limit as η goes to zero, the IAS solution x̂ = xη corresponding to the parameter η converges 
to �1-penalized solution, thus the �1-magic can be attained as the limit of an all �2 procedure.

To simplify the notation, without loss of generality we assume that θ∗j = 1 and emphasize 
the dependence of the functional minimized by the IAS algorithm on η by writing

Fη(x) =
1
2
‖b− Ax‖2 + 1

2

n∑
j=1

x2j
θj

+

n∑
j=1

(θj − η log θj),

where

θj = fj(xj, η) = f (xj, η)

with

f (x, η) =
η

2
+

√
η2

4
+

x2

2
,

and let

xη = argmin {Fη(x)}

be the minimizer of this functional. The following lemma shows that as η goes to zero, the 
sequence of minimizers computed by the IAS algorithm remains bounded.

Lemma 3.6.  There is a constant B  >  0 such that

‖xη‖ � B,

for all η, 0 � η � 1
2.

Proof.  The claim is proved by contradiction. Assume that we can find a sequence η1, η2, . . . 
such that ‖xk‖ > k , where xk = xηk. Then ‖xk‖∞ > k/n and from the formula for updating the 
components of θ,

θkj = f (xkj , η
k) =

ηk

2
+

√
(ηk)2

4
+

(xkj )2

2
>

|xkj |√
2

� (9)
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it follows that ‖θk‖∞ > k/(
√
2n). This implies that

Fηk(xk) �
n∑

j=1

(θkj − ηk log θkj )

�
n∑

j=1

(θkj − ηkθkj ) �
1
2

n∑
j=1

θkj

�
1
2
‖θk‖∞ �

k

2
√
2n

→ ∞.

This is a contradiction since xk is the minimizer of Fηk and therefore, in particular,

Fηk(xk) � Fηk(0) =
1
2
‖b‖2 + n(ηk − ηk log ηk) < ∞,

thus completing the proof.� □ 

An immediate consequence of the previous lemma is that, for 0 � η � 1/2, the comp
onents of θ are also bounded, since

θη,j = f (xη,j, η) =
η

2
+

√
η2

4
+

x2η,j
2

�
1
4
+

√
1
16

+
B2

2
= K.

Let us denote

x0 = argmin{F0(x)}.� (10)

We are now ready to prove the following result.

Theorem 3.7.  Assume that the matrix A is such that the minimizer (10) is unique. Then, 
as η → 0+, the minimizers xη converge to the minimizer x0 of the �1-penalized functional F0.

Proof.  The proof is by contradiction. Assume that there is a sequence of ηi converging to 0 
such that for some δ > 0,

‖xηi − x0‖ > δ > 0.

It follows from the boundedness of the xη established in the lemma 3.6 and the compactness 
of the ball {‖x‖ � B} that there is a convergent subsequence ηik → 0 such that

xk = xηik → x0, ‖x0 − x0‖ > δ.

We denote θkj = f (xkj , η
ik) and write

|Fηik (xk)− F0(x0)| � |Fηik (xk)− F0(xk)|+ |F0(xk)− F0(x0)|.

By continuity of F0, the second term on the right tends to zero as k increases and the first term 
on the right can be estimated as
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|Fηik (xk)− F0(xk)| �
1
2

n∑
j=1

∣∣∣∣∣
(xkj )

2

θkj
−
√
2|xkj |

∣∣∣∣∣+
n∑

j=1

∣∣∣∣∣θ
k
j −

|xkj |√
2

∣∣∣∣∣+
n∑

j=1

ηik | log θkj |

=
1
2

n∑
j=1

|xkj |
θkj

∣∣∣|xkj | −
√
2θkj

∣∣∣+
n∑

j=1

∣∣∣∣∣θ
k
j −

|xkj |√
2

∣∣∣∣∣+
n∑

j=1

ηik | log θkj |

�
√
2

n∑
j=1

∣∣∣|xkj | −
√
2θkj

∣∣∣+
n∑

j=1

ηik | log θkj |,

where we used the inequality (9) for xkj  and θkj . Since |xkj | → |i x0,j| and θkj → |x0,j|/
√
2 , the 

first term converges to zero. Furthermore, from

ηik � θki � K,

it follows that

ηik
n∑

j=1

| log θkj | → 0, as k → ∞,

proving that

lim
k→∞

Fηk(xk) = F0(x0).

Since xk is the minimizer of Fηk, we have

Fηk(xk) � Fηk(x0),

and, at the limit,

F0(x0) � F0(x0), x0 �= x0.

which contradicts the uniqueness of the minimizer x0, completing the proof.� □ 

The convergence implies, in particular, that if A is a matrix such that the �1 regularized 
solution of the minimization problem (10) is sparse, then the solution of the IAS algorithm 
with η > 0 small can be made arbitrarily small outside the support of x0. Likewise, if the 
minimization problem above is compressible, that is, the components of x0 are smaller than a 
known threshold outside a set S ⊂ {1, 2, . . . , n}, when η > 0 is small enough, the same is true 
for the IAS solution xη with a slightly larger threshold.

In the following section, we establish some results about the rate of convergence of the IAS 
algorithm and show that if the underlying signal is sparse, the convergence is quadratic on the 
complement of the support.

4.  Convergence rate

For the sake of simplifying the notation, in this section we combine x and θ in the new variable 
z = (x, θ) ∈ R2n, and, for given η > 0 fixed, denote the objective function (4) to be minimized 
by E(z) = E(x, θ). We partition the Hessian of E into four n× n blocks,
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H(z) =
[
H11(z) H12(z)
H21(z) H22(z)

]
,� (11)

where

H11(z) =
[

∂2E
∂xj∂xk

]
= ATA+ diag(1/θ),� (12)

H12(z) = (H21(z))T =

[
∂2E

∂xj∂θk

]
= −diag(x/θ2),� (13)

and

H22(z) =
[

∂2E
∂θj∂θk

]
= diag(x2/θ3 + η/θ2),� (14)

with the powers of vectors, the division by θ, or by its powers, understood in the component-
wise sense. Introducing the matrices Q1, Q2 ∈ R2n×n,

Q1 =

[
In
On

]
, Q2 =

[
On

In

]
,

where In and On are, respectively, the unit matrix and the zero matrix of size n× n, the updat-
ing steps in each iteration of the IAS algorithm can be expressed in the following unified form.

Given the current zc ∈ R2n,

minimize E(zc + Qy), y ∈ Rn,� (15)

where Q ∈ {Q1,Q2}.
Before stating the main result about the rate of convergence of the IAS algorithm, we prove 

that, in a neighborhood of the minimizer ẑ  of (4), the norm of the error at the next iteration 
can be bounded in terms of the norm of the error in the current iteration.

Lemma 4.1.  Let Ω be an open connected neighborhood of the minimizer ẑ  of (4) where the 
Hessian H(z) of E is Lipschitz continuous with Lipschitz constant γ , the condition number of H 
is bounded above by κ > 0 and ‖H(z)−1‖ � ν . Then the error ε+ = z+ − ẑ  in approximating 
ẑ , with z+ = zc + Qy+ where y+ is the minimizer of (15), can be written as

ε+ = Jεc + e,

where εc = zc − ẑ  and, letting Ĥ = H(̂z),

J = I2n − Q
(
QTĤQ

)−1
QTĤ,� (16)

and

‖e‖ � 2νγ(1+ κ)2‖εc‖2.

Proof.  Given the current iterate zc, consider the function

g(y) = E(zc + Qy), y ∈ Rn,
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with gradient

∇g(y) = QT∇E(zc + Qy).

At the minimizer y  =  y+ of g,

∇g(y+) = QT∇E(zc + Qy+) = QT∇E(z+) = 0� (17)

must hold. Denote the local quadratic model of E based at ẑ  by

M(z) = E(̂z) +
1
2
(z− ẑ)TĤ(z− ẑ)

and let

D(z) = E(z)−M(z)

be the approximation error. Then, under the mild regularity conditions on E, the following 
bound on the approximation error,

|D(z)| � γ

6
‖z− ẑ‖3,

and on its gradient,

‖∇D(z)‖ �
γ

2
‖z− ẑ‖2,

hold uniformly in Ω, see [10]. Substituting

∇E(z) = Ĥ(z− ẑ) +∇D(z)

in (17) yields

QTĤ(z+ − ẑ) + QT∇D(z+) = 0,

which upon the substitution z+ = zc + Qy+ becomes

QTĤ(zc − ẑ+ Qy+) + QT∇D(z+) = 0.

Solving the last equation for y+ we obtain

y+ = −
(
QTĤQ

)−1 (
QTĤεc + QT∇D(z+)

)
,

therefore, ε+ = z+ − ẑ  satisfies

ε+ = zc − ẑ− Q

{(
QTĤQ

)−1 (
QTĤεc + QT∇D(z+)

)}

=

{
I2n − Q

(
QTĤQ

)−1
QTĤ

}
εc + R(z+)

= Jεc + R(z+).
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To complete the proof, we need to estimate the remainder in term R(z+ ),

R(z+) = −Q
(
QTĤQ

)−1
QT∇D(z+)

in terms of the error εc. From the observation that

QT
j ĤQj = Ĥ jj, j = 1, 2

it follows that

‖(QTĤQ)−1‖ � ‖Ĥ−1‖ � ν,

hence

‖R(z+)‖ � ‖Ĥ−1‖‖∇D(z+)‖ �
νγ

2
‖ε+‖2.

Furthermore, from the estimate

‖J‖ � 1+ ‖Q(QTĤQ)−1QTĤ‖ � 1+ κ,

it follows that

‖ε+‖ � ‖Jεc‖+ ‖R(z+)‖ � (1+ κ)‖εc‖+ νγ

2
‖ε+‖2,

and, if we are close enough to the minimizer that ‖ε+‖ < 1/νγ ,

‖ε+‖ �
1+ κ

1− (νγ/2)‖ε+‖
‖εc‖ � 2(1+ κ)‖εc‖.

Combining the above estimates we have

‖ε+ − Jεc‖ � 2νγ(1+ κ)2‖εc‖2

which completes the proof.� □ 

We remark that when Q = Q1 the solution of (15) is the updated x, and in terms of the block 
partitioning (11) of the Hessian,

Q1

(
QT

1 ĤQ1

)−1
QT

1 Ĥ =

[
In (Ĥ11)−1Ĥ12

0 0

]
,

implying that the matrix J in (16) updating the error vector is

J1 =

[
On −(Ĥ11)−1Ĥ12

On In

]
.� (18)

Similarly, when Q = Q2, the solution of (15) gives us the updated θ, and the corresponding 
error updating matrix is

J2 =

[
In On

−(Ĥ22)−1Ĥ21 On

]
.� (19)
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Each IAS iteration solves two minimization problems, one with respect to x and the other 
with respect to θ. Starting from the current error εc and denoting by ε′ the error after the first 
minimization step, the error ε+ at the end of the iteration is obtained in two steps as

ε′ = J1ε
c + e1,

ε+ = J2ε
′ + e2

= J2J1ε
c + J2e1 + e2,

where

J21 = J2J1 =

[
In On

−(Ĥ22)−1Ĥ21 On

][
On −(Ĥ11)−1Ĥ12

On In

]

=

[
On −(Ĥ11)−1Ĥ12

On (Ĥ22)−1Ĥ21(Ĥ11)−1Ĥ12

]
.

If we switch the order of the updates inside the IAS iteration, that is, first update θ then x, 
the error propagation matrix becomes

J12 = J1J2 =

[
(Ĥ11)−1Ĥ12(Ĥ22)−1Ĥ21 On

−(Ĥ22)−1Ĥ21 On

]
.

Consider the error propagation of the leading term in the iteration, ignoring the second 
order term,

· · · J2−→ εj
J1−→ ε′j

J2−→ εj+1
J1−→ ε′j+1

J2−→ εj+2
J1−→ · · · ,

and partitioning the error vectors εj, ε′j ∈ R2n as

εj =

[
εj,x
εj,θ

]
, ε′j =

[
ε′j,x
ε′j,θ

]
,

we find that the updating formula for the leading term for the x-component of the error term is

ε′j+1,x = (Ĥ11)−1Ĥ12(Ĥ22)−1Ĥ21ε′j,x.

Substituting the actual expression of the blocks of the Hessian (12)–(14), and writing

ATA+ diag(1/θ̂) = diag(1/θ̂1/2)
[
diag(θ̂1/2)ATAdiag(θ̂1/2) + I

]
diag(1/θ̂1/2)

we obtain

(Ĥ11)−1Ĥ12(Ĥ22)−1Ĥ21 = (ATA+ diag(1/θ̂))−1diag(x̂/θ̂2)(diag(x̂2/θ̂3 + η/θ̂2))−1diag(x̂/θ̂2)

= diag(θ̂1/2)
[
diag(θ̂1/2)ATAdiag(θ̂1/2) + In

]−1
diag(x̂2/(x̂2 + ηθ̂))diag(1/θ̂1/2),

hence, up to a second order term,

‖diag(1/θ̂1/2)ε′j+1,x‖ � µ‖diag(1/θ̂1/2)ε′j,x‖,� (20)

for some µ < 1. Furthermore, in light of the form of J2 : ε′j → εj+1, up to a second order cor-
rection term

ε′j,x = εj+1,x, ε′j+1,x = εj+2,x,
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hence the ordering of the two updates is irrelevant for the error estimate. This proves that the 
IAS algorithm converges at least θ̂ -linearly, that is, linearly with respect to the θ̂ -weighted 
norm,

‖z‖2
θ̂
= zTD−1

θ̂
z.� (21)

We point out that this is the Mahalanobis norm with respect to the prior distribution at the 
MAP value.

Assume now that the global minimizer x̂  has support S ⊂ {1, 2, . . . , n}. Without loss of 
generality, we may assume that S = {1, 2, . . . k}, where k = ‖x̂‖0 < n. Consider the updating 
matrix J21. We observe that up to a second order term,

εj+1,θ = (Ĥ22)−1Ĥ21(Ĥ11)−1Ĥ12εj,θ

= diag(θ̂x̂/(x̂2 + ηθ̂))(ATA+ diag(1/θ̂))−1diag(x̂/θ̂2)εj,θ,

hence

D
−1/2
θ̂

εj+1,θ = diag(θ̂x̂/(x̂2 + ηθ̂))[diag(θ̂1/2)ATAdiag(θ̂1/2) + I]−1diag(x̂/θ̂2)D−1/2
θ̂

εj,θ.� (22)

In particular, this formula shows that, up to a second order term,
(
εj+1,θ

)
�
= 0 for � > k,

that is, outside the support of x̂ , the convergence is quadratic.
We collect the main results of this section in the following theorem.

Theorem 4.2.  In the IAS algorithm, the updates of x converge at least θ̂ -linearly, that 
is, linearly in the Mahalanobis norm (21) evaluated at the MAP estimate. Moreover, if 
supp(x̂) � {1, 2, . . . , n}, the convergence of θ in the complement of the support is quadratic.

The ’�1-magic’ results state that for matrices A satisfying certain conditions the �1-penal-
ized solution is the exact solution of the �0-penalized problem when the support of the signal 
is appropriately smaller than the number of observations. The exact recovery is based on the 
assumption that there is no noise in the data. With noisy data, the reconstruction is not nec-
essarily exact, however, the discrepancy between the exact and recovered signal is bounded 
by a small multiple of the norm of the noise. In the compressed sensing literature, a signal 
in Rn whose components outside a set S � {1, 2, . . . , n} are below a given small threshold is 
referred to as compressible. The Bayesian framework at the foundation of the IAS algorithm is 
based on the assumption that the data is corrupt by additive Gaussian noise, hence even in the 
limit as the shape parameter η tends to zero, the best that we can expect is to recover a signal 
whose distance from the underlying sparse source is bounded above by a small multiple of the 
norm of the error in the data. Observe that since θj � η, the prior assumption for η > 0 small 
is that the signal is not necessarily sparse but compressible.

If x̂  is compressible, and for some threshold value δ > 0,

|̂xj| < δ1/2η3/2, j /∈ S,� (23)

for j /∈ S ,
∣∣∣∣∣

θ̂jx̂j
x̂2j + ηθ̂j

∣∣∣∣∣ <
∣∣∣∣
x̂j
η

∣∣∣∣ <
√
δη,

and since θ̂j > η, we have

D Calvetti et alInverse Problems 35 (2019) 035003



18

∣∣∣∣∣
x̂j
θ̂2j

∣∣∣∣∣ �
√

δ

η
.

Therefore, if we denote by Pc the orthogonal projection on the complement of S, we find that

‖Pcdiag(θ̂x̂/(x̂2 + ηθ̂))[diag(θ̂1/2)ATAdiag(θ̂1/2) + I]−1diag(x̂/θ̂2)Pc‖ < δ.

This estimate proves the following theorem.

Theorem 4.3.  Assuming that the MAP estimate x̂  is compressible and satisfies (23), the 
update of θ outside the support S is essentially quadratic,

‖Pcεj+1,θ‖θ̂ < δ‖Pcεj,θ‖θ̂ + second order correction.

We will illustrate the results of convergence and the effect of the scaling in the following 
section through computed examples.

5.  Computed examples

In this section we elucidate some of the results with computed examples. In particular, exam-
ples 5.1 and 5.2 demonstrate the convergence rate of the IAS algorithm, while example 5.3 
highlights the effect of the sensitivity weighting through the hyperparameter θ∗. Finally, exam-
ple 5.4 elucidates the properties of the algorithm vis-à-vis sparsity properties of the recovered 
signal in the context of sparse recovery theory.

5.1.  Example 1

We consider a one-dimensional deconvolution problem of the form

g(t) =
∫ 1

0
aw(t − s) f (s)ds, aw(t − s) =

1√
2πw2

e−(t−s)2/2w2
, w = 0.01,

and its discretized version obtained by approximating the values of the integral at points 
tj  =  (  j  −  1)/n, n  =  128, using a quadrature rule with n  =  128 nodes sj  =  (  j  −  1)/n, 1 � j � n, 
and assuming that the data are contaminated by additive scaled white noise. The resulting 
n× n linear system is

b = Ax+ ε, Ajk =
1
n

1√
2πw2

e−(tj−sk)2/2w2
, 1 � j, k � n,

where ε ∼ N (0,σ2In). Our main aim here is to show the performance of the IAS for the recov-
ery of a sparse signal and to verify the convergence rate. In line with the standard practice 
in compressive sensing literature, we ignore the fact that in actual applications the data may 
not arise from a model used to solve the inverse problem. The signal x� used to generate the 
blurred noisy data shown in figure 1 is sparsely supported, with ‖x�‖0 = 6.

To compute θ∗, we assume that the estimated signal-to-noise ratio is SNR = 255, which 
would correspond to noise variance

σ2 =
‖b0‖2

n(SNR− 1)
, b0 = Ax�,� (24)
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or σ ≈ 0.0053, or a noise level of approximately 1.8% of the maximum of the noiseless signal. 
However, we run this example with data in which no artificial noise is added.

We compute the MAP estimate via the IAS algorithm with shape hyperparameter η = 10−6, 
calculating the values of the scale hyperparameters θ∗j  from the formula (7) of theorem 3.3, 
assuming that, a priori, we expect to have at most nmax = 20 non-zero entries, with uniform 
probability for the cardinality of the support,

pj =




0 j = 0
1/nmax 1 � j � nmax.

0 j > nmax

Not surprisingly, the components of θ∗ are almost constants, θ∗j ≈ 0.493, except near the end-
points of the interval, where part of the Gaussian kernel leaks out of the interval. This is 
reflected in the fact that θ∗1 = θ∗n ≈ 0.685, θ∗2 = θ∗n−1 ≈ 0.514.

Figure 1 shows how the IAS iterates approximate the underlying sparse signal, progressively 
flattening the signal in the complement of the support. After six IAS iterations, the solution 
stabilizes, correctly identifying six significant components in an almost vanishing background. 
The background level is not exactly zero, but of the order  ∼10−6.

The leftmost panel of figure 2 shows the relative change in the norm of the variance param
eter vector ∆ j

θ = ‖θ j − θ j−1‖/‖θ j‖ from one iteration to the next, a quantity that can be used 
to design a stopping rule for the IAS iteration. The plot shows that after seven iterations, the 
relative change in θ has dropped below 10−2, and after sixteen iterations, below 10−4. The 

center left panel in figure 2 shows the logarithmic plot of the error ‖εθ,j‖ = ‖θ j − θ̂‖ versus 
‖εθ,j+1‖, using the final value of the iterations as an approximation of the minimizer θ̂ . The 
dashed lines in the plot can be used to identify linear (red) and quadratic (blue) convergence 
rates. For comparison, the center right panel shows the same convergence analysis, but using 
the θ̂ -weighted norm, where θ̂  is approximated by the last iterate of θ. The convergence 
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Figure 1.  The one-dimensional deconvolution problem: top row, leftmost figure shows 
the true signal and the computed noisy data in red. The subsequent panels, in 
lexicographical order, show the progress of the iteration. After the sixth iteration, the 
changes in the approximate solution are visually indiscernible.
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rate of the norm of the error is at least linear, and at the beginning of the iterations close to 
quadratic. Also, the convergence rate with the weighted and non-weighted norm are identical, 
indicating that the latter can be used to estimate the convergence rate. The convergence of 
individual error components are qualitatively similar; exact quadratic convergence cannot be 
expected in practice since the minimizer x̂  has a small non-zero background value outside the 
outstanding peak values. The right panel in figure 2 shows the individual convergence history 
at the point where the estimated θ attains its minimum.

5.2.  Example 2

The second example, similar to the previous one but in two dimensions, confirms the results 
and shows that the algorithm retains its efficiency in larger scale problems. We want to recover 
a ’nearly black object’, consisting of an image over the square [0, 1]× [0, 1] with only few 
non-zero pixels. The source image x� of size n× n, for n  =  128, with ‖x�‖0 = 50 is shown in 
top left panel of figure 3. The data arises from the nearly black object blurred with a Gaussian 
kernel of width w  =  0.01 to which Gaussian scaled white noise is added, using an estimated 
a signal-to-noise ratio SNR = 25, and standard deviation σ ≈ 4.4× 10−3, corresponding to 
2.3% of the maximum of the noiseless signal. The data are shown in the top center panel of 
figure 3. The computation of the hyperparameter vector θ∗ assumes that the cardinality of the 
support is at most 100 pixels, with uniform probability for cardinality support between 1 and 
100, that is pj  =  1/100 for 1 � j � 100.

As in the previous example, we are interested in the convergence rate of the IAS algorithm. 
The quality of the approximation of the IAS iterates can be assessed visually by looking at 
the reconstructions shown in figure 3. Although after the tenth iteration the restored image 
remains visually unchanged, we carry out 50 iterations. The left panel of figure 4 shows the 
relative change in the norm of the variance parameter θ from one iteration to the next, while 
the right panel illustrates how the decrease in the norm of the error is in agreement with the 
theoretical results.

5.3.  Example 3

The third example elucidates the importance of the sensitivity weights through an appropriate 
choice of the scale parameter vector θ∗. In this example, we consider an inverse source prob-
lem with an observation model
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Figure 2.  Left: the relative change ∆ j
θ = ‖θ j − θ j−1‖/‖θ j‖ of the norm of the variance 

parameter vector as a function of iteration. Left middle: logarithmic plot of the norm 
of consecutive errors ‖εθ,j‖ = ‖θ j − θ̂‖ in the variance parameter. The red dashed line 
indicates the linear rate of decrease, the blue one the quadratic rate. Right middle: the 
convergence rate measured by using the Mahalanobis norm at the MAP estimate, with θ̂  
approximated by the last iterate of θ. Right: convergence of θ� at a point corresponding 
to minimum value of the final estimate of θ.
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b(R) =
∫

Ω

ρ(r)
|r − R|2

dr,

where Ω ⊂ R2  is the source domain, and the observation points R are located outside the 
domain. We choose Ω to be the unit square, Ω = [0, 1]× [0, 1], and a discrete set of observa-
tion points Rj, 1 � j � m chosen outside Ω but near three of the sides of it, see figure 5. To 
generate the data, we pick three points in Ω and place a point source at them.
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Figure 3.  The underlying sparse image (top left) and the observed blurred and 
noisy version (top center). The remaining panels show, in lexicographical order, the 
reconstruction computed in the IAS iterates. After ten iterations, the results are visually 
unaltered.
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Figure 4.  The relative change in the norm of the variance vector θ as a function of 
iterations for the two-dimensional deconvolution problem (left), and the plot of the 
error in θ versus the error in the previous iteration round. The dashed red line indicates 
the linear rate, the dashed blue line the quadratic rate.
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We discretize the forward model by assuming the source to be a sum of discrete point 
sources at fixed grid points, leading to a forward model

bk =
n∑

j=1

qj
|rj − Rk|2

, 1 � k � m,

and we set m  =  120, n  =  2500 as indicated in figure 5. In the same figure, the computed θ∗ 
vector is shown as a surface plot, indicating that the data are highly sensitive to points near 
the three edges and much less sensitive to sources near the fourth edge. We generate the data, 
adding scaled white noise of standard deviation σ approximately 0.4% of the maximum of 
the noiseless signal, or SNR = 20 000. We run the algorithm using the focality parameter 
η = 10−6. For comparison, we then run the same algorithm by choosing θ∗ to be constant. We 
choose the constant value equal to the boundary values of θ∗ in the previous case. Figure 6 
shows the solutions after 100 IAS iterations. As expected, the solution without sensitivity 
weighting is completely concentrated on boundary pixels, while with the sensitivity weight-
ing, one can reasonably identify the three sources.

5.4.  Example 4

In his example, the underlying signal itself is not sparse, but it admits a sparse representation. 
More precisely, we consider the discrete linear observation model

b = Ax+ ε, A ∈ Rn×n, ε ∼ N (0,σ2In),

and assume a priori that there is an invertible matrix L ∈ Rn×n such that we can express the 
signal as

x = Lz,

in terms of a sparse vector z ∈ Rn that we model as a random variable with a hierarchical 
conditionally Gaussian distribution. In this example, we assume that the blurring kernel is an 
Airy kernel,

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

20

40

0.8

60

0.6 0.8

80

0.6

100

0.4 0.40.2 0.2

Figure 5.  Left: the measurement configuration. The red dots are the observation points, 
m  =  120, and the black dots denote the discretization points corresponding the forward 
model, n  =  2500. The data are generated by placing three point sources, not in the grid 
points, with amplitudes q1 = q2 = 5 (blue and red), and q3  =  0.5 (yellow). On the left, 
the computed θ∗ is shown as a surface plot.
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Ajk = C
(
J1(λ(tj − sk))
λ(tj − sk)

)2

,

where J1 is the Bessel function of the first kind of order 1, λ = 40 is a width parameter, the 
points sk, 1 � k � 128 = n are uniform grid points in the interval [0, 1], while the observations 
are limited to every sixth grid point tj, 1 � j � 22 = m, and, finally, C  >  0 is a scaling factor. 
Let L be the backward differencing matrix,

L =




1
−1 1

. . . . . .
−1 1


 ,

and reformulate the problem in terms of z, whose posterior distribution is

πz,θ|b(z, θ | b) ∝ exp


− 1

2σ2 ‖b− AL−1z‖2 − 1
2

n∑
æ=1

z2j
θj

−
n∑

j=1

(
θj
θ∗j

− η log
θj
θ∗j

)
 .

The believed sparsity of zj is tantamount to assuming that x has sparse increments, since it is 
a straightforward matter to check that

xj =
j∑

i=1

zi, 1 � j � n.� (25)

Moreover, we assume a priori that the absolute values of the jumps zj are expected to be below 
a value M  =  1 with high probability.

An interesting observation is that, while the norms of the columns of A are essentially 
constant, except near the endpoints of the intervals, as pointed out in example 5.1, this is no 

Figure 6.  Reconstructions of the sources after 100 iterations using the automatic 
sensitivity weighting scheme (left), and a constant value (right) for the scaling vector 
θ∗. In the latter, the solution is entirely concentrated on the domain boundary near the 
observation points.
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longer the case for AL−1, due to the asymmetric roles of the endpoints j  =  1 and j  =  n for 
backwards finite differencing.

It follows from formula (25) that, since the observation bj depends on all zi, i � j, the data 
are more sensitive to the components of z near the left endpoint of the interval than to those 
near the right endpoint. In other words, even if A is symmetric and the convolution kernel is 
translation invariant, the sensitivity is not, and this fact is accounted for when the hyperparam
eter θ∗ is set according to (7) with A replaced by AL−1.

Let the underlying signal x� be the piecewise constant function with five discontinuities shown 
in black in the left panel of figure 7, so that ‖z�‖0 = 5, we generate the noisy data by multiplying 
the discretized signal by the matrix A, and adding white Gaussian noise scaled so that the signal-
to-noise ratio is approximately SNR = 15. It follows from (24) that the noise level in this case 
is σ ≈ 0.22, which is approximately 15% of the maximum of the noiseless signal. One random 
realization of the blurred noisy signal is shown in red in the left plot of figure 7. The right panel 
of figure 7 shows a plot of the sensitivity vector θ∗j  for z based on formula (7), increasing several 
orders of magnitude towards the end of the interval. To implement the prior belief that the jumps 
are not likely exceeding the value M  =  1, we define the effective hyperparameter θ∗eff,j using form
ula (8) of remark 3.5. The cut-off level is indicated in figure 7 by a red dashed line.

To put the algorithm in the context of sparse recovery, we compute the mutual coherence 
of the matrix, defined as

µ(Ã) = maxj�=k
|(a( j))Ta(k)|
‖a( j)‖‖a(k)‖

,

where a( j ) is the jth column of Ã, see [1, 12]. In the cited articles, it has been shown that the 
mutual coherence provides a lower bound of the spark of the matrix Ã = AL−1,

spark(Ã) � 1+
1

µ(Ã)
,

defined as the smallest number of columns of the matrix that are linearly dependent. Vectors 

in the null space of Ã must therefore satisfy ‖z‖0 � spark(Ã). Mutual coherence is impor-

tant in sparse recovery theory, as it can be shown that algorithms such as orthogonal greedy 
algorithm are guaranteed to find a sparse solution of the linear system provided that there is a 
solution satisfying

‖z‖0 <
1
2

(
1+

1

µ(Ã)

)
.� (26)
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Figure 7.  On the left, the plot of the scaling vector θ∗. In the middle, the original signal 
and the subsampled noisy observation of it using the Airy kernel. On the right, the IAS 
reconstruction with stopping criterion ∆ j

θ < 10−3.

D Calvetti et alInverse Problems 35 (2019) 035003



25

Consequently, the smaller the mutual coherence, the wider the class of sparse signals for 
which the success is guaranteed. In the present example, we have µ(Ã) ≈ 1− 1.5× 10−5, 
that is, guarantees of sparse recovery exist only for signals with a single discontinuity.

The left panel of figure 7 shows a reconstruction from data corresponding to a true signal 
that does not satisfy the support condition (26) with noise level SNR = 25; the blurred noisy 
data are plotted over the underlying true signal. The right panel in the same figure displays the 
IAS reconstruction, where the locations of all discontinuities are correctly identified, and the 
amplitudes are found with reasonable precision, even when the columns of the matrix defining 
the forward map are highly coherent.

6.  Conclusions

This article proposes an alternative approach to the sparse recovery problem based on 
Bayesian analysis of the inverse problem. Although the focus of this work is on an algorithm 
for computing the MAP estimate, and therefore does not take full advantage of properties 
of the posterior distribution, the analysis shows the usefulness of the probabilistic exten-
sion. The MAP estimation algorithm has a unique global minimum, the alternating algo-
rithm is easy to implement, and as shown in this article, rapidly converging. Moreover, the 
Bayesian analysis of the signal-to-noise ratio combined with the statistically well-motivated 
exchangeability condition leads to a versatile sensitivity scaling that helps understanding, 
e.g. the depth weighting schemes used in geophysics and biomedical applications, put-
ting them on a solid basis in terms of the assumptions about the noise and support of the 
source. The algorithm contains few user-supplied parameters, and the parameters have a 
clear interpretation. Numerical tests indicate that the algorithm is not very sensitive to the 
choice of the signal-to-noise ratio or the estimated support of the presumably sparse signal, 
however, the tests suggest that grossly underestimating or overestimating the support may 
lead the algorithm astray. Although the emphasis in this article is on sparse recovery, the 
IAS algorithm is not restricted to cases in which the source is sparse. In fact, using larger 
shape parameter values, numerical evidence points towards good recovery of distributed 
targets also. Such analysis is left for future work.
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