Inverse Problems

PAPER

Hierachical Bayesian models and sparsity: ¢ ,-magic

To cite this article: D Calvetti et al 2019 Inverse Problems 35 035003

View the article online for updates and enhancements.

Bringing you innovative digital publishing with leading voices

to create your essential collection of books in STEM research.

This content was downloaded from IP address 151.100.38.248 on 18/01/2019 at 13:04


https://doi.org/10.1088/1361-6420/aaf5ab
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/290804510/Middle/IOPP/IOPs-Mid-IP-pdf/IOPs-Mid-IP-pdf.jpg/1?

I0P Publishing

Inverse Problems

Inverse Problems 35 (2019) 035003 (26pp) https://doi.org/10.1088/1361-6420/aaf5ab

Hierachical Bayesian models and sparsity:
£>-magic

D Calvetti®, E Somersalo and A Strang

Department of Mathematics, Applied Mathematics and Statistics,
Case Western Reserve University, Cleveland, OH, United States of America

E-mail: dxc57@case.edu, ejs49 @case.edu and ags61 @case.edu

Received 27 August 2018, revised 7 November 2018
Accepted for publication 3 December 2018
Published 18 January 2019 @
CrossMark
Abstract
Sparse recovery seeks to estimate the support and the non-zero entries
of a sparse signal x € R” from possibly incomplete noisy observations
y = Axy + ¢, with A € R™" m < n. It has been shown that under various
restrictive conditions on the matrix A, the problem can be reduced to the ¢,
regularized problem

min ||x[|; subject to [|[Ax — y|[» < 4,

where 4 is the size of the error €, and the approximation error is well controlled
by d. A popular method for solving the above minimization problem is the
iteratively reweighted least squares algorithm. Here we reformulate the
question of sparse recovery as an inverse problem in the Bayesian framework,
express the sparsity belief by means of a hierachical prior model and show
that the maximum a posteriori (MAP) solution computed by a recently
proposed iterative alternating sequential (IAS) algorithm, requiring only the
solution of linear systems in the least squares sense, converges linearly to the
unique minimum for any matrix A, and quadratically on the complement of
the support of the minimizer. The values of the parameters of the hierarchical
model are assigned from an estimate of the signal to noise ratio and a priori
belief of the degree of sparsity of the underlying signal, and automatically
take into account the sensitivity of the data to the different components of x.
The approach gives a solid Bayesian interpretation for the commonly used
sensitivity weighting in geophysics and biomedical applications. Moreover,
since for a suitable choice of sequences of parameters of the hyperprior, the
IAS solution converges to the £, regularized solution, the Bayesian framework
for inverse problems makes the ¢;-magic happen in the ¢, framework.
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1. Introduction

Consider a linear discrete inverse problem of the form
Ae=>. ()

where A € R™*", m < n is an ill-conditioned matrix and the right hand side vector is cor-
rupt by noise. The classical approach for addressing the ill-posed problem is to replace it by
a nearby well-posed one by considering the problem of finding a minimizer of a penalized
functional, such as

Fp(x,a) = [lb = Ax|]” + allx]|},

where the second term penalizes solutions of large £,-norm and the regularization parameter
o > 0 determines the severity of the penalty, while the choice of the parameter p affects the
properties of the solution. In particular, it is well known that p < 1 promotes sparsity of the
solution, an observation that lies in the heart of compressive sensing. Several algorithms for
effectively solving the above minimization problem when p < 2 have been proposed and ana-
lyzed in the literature, as well as, when p = 2, various versions of iteratively reweighted least
squares (IRLS) algorithms that are relevant for the present work [9, 13].

An alternative for the regularization approach is to reformulate the inverse problem in the
Bayesian framework by extending (1) to random variables characterized by probability dis-
tributions, and introducing a prior that encodes the available information about the unknown.
The observation equation, defining the likelihood, is then used to update the prior based on
the data, giving rise to the posterior distribution that represents the Bayesian solution to the
inverse problem [2, 14].

In this work, we consider a particular hierarchical Bayesian model, previously introduced
and analyzed in [2—-6], and in particular, an iterative algorithm for computing the maximum
a posteriori (MAP) estimate of the extended hierarchical posterior model. The hierarchical
model postulates a conditionally Gaussian prior model with variable prior variances, and a
hyperprior model from the family of Gamma distributions for the prior variances. The itera-
tive algorithm, referred to as iterative alternating scheme (IAS), solves the MAP estimate
by alternatingly updating the estimate of the unknown and its prior variance, and it can be
interpreted as a Bayesian IRLS algorithm with the a priori belief about the sparsity of the
solution. Indeed, in the previous works, it has been shown that with particular hyperparameter
selections, the IAS algorithm is particularly suitable for estimating sparse signals, akin to the
¢, regularization [2—4], and in the context of solving the magnetoencephalography (MEG)
inverse problem in brain imaging, it was shown to be globally convergent with a unique global
minimum [5]. In this work, we extend the analysis in different ways.

As pointed out, the iterative algorithm based on the hierarchical model has been demon-
strated in practice to be an efficient alternative for the ¢1-penalized optimization for recovering
sparse signals. In this work, we formally show that one of the hyperparameters, the shape
parameter of the underlying Gamma distribution, controls the sparsity in the sense that at the
limit, the solution of the IAS algorithm converges to the minimizer of the ¢-penalized regu-
larized solution. Thus, we can argue that while the convergence of the IAS is independent of
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particular properties of the matrix A, the conditions guaranteeing sparse recovery with the ¢,
penalty can be applied to guarantee that the solution is close to a sparse solution.

In addition, we demonstrate that through the limiting process of the hypermodel, the regu-
larization parameter o in the ¢;-penalized functional can be automatically selected based on
the information about the signal-to-noise ratio (SNR) and a priori belief of the size of the
support of the underlying signal.

Furthermore, it has been experimentally observed that when applied to data arising from
underlying signal with small support, the IAS algorithm converges rapidly. In this work, the
convergence rate is analyzed in detail. We show that regardless of the properties of the underly-
ing signal, the convergence is at least linear, essentially quadratic for sparse or compressible
signals.

Another important extension of the previous work is related to the issue of sensitivity
weighting and hyperparameter selection. When the forward model represents a field measure-
ment (acoustic, electromagnetic, gravitation potential) and x represents the discretized primary
or secondary source, the data are much more sensitive to source components near the receivers
than those far away from it. This is reflected by the fact that the columns of the matrix A scale
typically as 1/r®, where r is the characteristic distance between the source component and the
receiver. The varying sensitivity of the data to the source components biases the minimizer
towards solutions with all the active components close to the receivers: because of the ill-
posedness of the problem, superficial sources explain the noisy data as well as deep sources,
but since for the former the value of the penalty term is much lower, they are strongly favored.
The remedy proposed in the literature to address this well-known problem, see, e.g. [16-20],
is to replace the £, regularized problem with a sensitivity-weighted minimization problem

Fy(x,c,w) = ||b — Ax||* + aij\ij’,
J

2

with the weights w; chosen so as to compensate for the differences in sensitivity, defined pre-
cisely later in this article.

The observation model dependent sensitivity scaling has been difficult to justify in the
Bayesian framework: in a Gibbs type prior

Tprior (X) OC €Xp —aij|xj|p ,
J

the selection of w; would be tantamount to favoring sources far away from detectors based on the
forward model rather than on a priori belief about the solution, a position that is hardly defend-
able. In this paper we will show that by combining hierarchical prior models and an exchange-
ability argument asserting that the signal to noise ratio should depend only on the cardinality of
the support of the signal, independently of the actual locations, it is possible to provide a Bayesian
interpretation of sensitivity scaling without violating the Bayesian principles of prior design.
The paper is organized as follows. In the section 2 we present a brief review of hierachical
Bayesian models for linear observation models with Gaussian noise and the IAS algorithm for
computing the corresponding MAP estimate. Section 3 addresses the sparsity promoting role
of the shape hyperparameter and proposes an automatic way to assign the value of the scale
parameters. After introducing the concept of exchangeability, we show a way to assign the
value of the scale parameters that expresses the belief that the signal to noise ratio is a func-
tion of the cardinality of the support but not of its location. Furthermore, we show that as the
shape parameter goes to zero, the MAP estimates computed with the IAS algorithm converges
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to the minimizer of the ¢, penalized functional. In section 4 we prove that the convergence rate
of the IAS algorithm is at least linear, and at least quadratic on the complement of the support
of the minimizer. Numerical examples in one and two dimensions are presented in section 5.

2. Hierarchical Bayesian model

We start by a brief review of the hierarchical Bayesian model discussed in previous articles
[3-5] and further analyzed in this paper. Consider the linear observation model with additive
Gaussian noise,

b=~Ax+e, e~N(0,Y), 3)
where A € R™*" and ¥ € R™*" is a symmetric positive definite noise covariance matrix.
Here we consider the case m < n, where the problem is underdetermined. Introducing the
Cholesky decomposition of the noise precision matrix ¥ ! = STS, the likelihood density can
be expressed as

(b 1) oxexp 56— A)TE b~ A ) —exp (350~ A9

where ‘o<’ stands for proportional up to a constant scaling factor.
We define a conditionally Gaussian prior model for x, postulating that for a prior variance
vector € R, = {6 = (0y,...,60,) € R" | 6; > 0},

x| 60 ~N(0,Dg), Dy=diag(h),
yielding the prior density

1
Tyo(x | 0) = (27T)”/2—\/9176XP —*Z 0,

We remark that because 6 is itself a random variable, the normalizing factor cannot be ignored,
hence our aim is to estimate both x and 6 based on the observation b. To this end we introduce
a hypermodel for the variances 6;, postulating that they are mutually independent and distrib-
uted according to a Gamma distribution,

g1
* 1 0; 6;
0; ~ Gamma(0;, 8), mg,(0;) = NG (é) exp <_01> .
J J J

Observe that to simplify slightly the model, we set the shape parameter 3 > 0 equal for all
components, while assigning individually the values of the scaling parameters ;. We refer to
[5] for the statistical motivation for choosing this type of hypermodel that, unlike a common
practice in the statistical literature, is not conjugate to the prior model.

We may now combine the likelihood, prior, and hypermodel by Bayes’ formula to obtain
the posterior density for the pair (x, 6),

Ty (x | 0)mo(0)m(b | x,0)
()

0; 0:
xcexp [ 2 1s(b - Axnz;}_jef Z[](ﬁi)logei]

T(w0) (X, 0 | b) =

E>
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In the following we assume that 8 > 3/2 and denote n = 8 — 3/2 > 0. Furthermore, by scal-
ing the forward mapping A and the data b as (A, b) — (SA, Sb), without loss of generality we
can assume that S = |, the identity matrix of size m x m, hence we write the Gibbs energy
functional as

(a)

n

1 N
Ex,0)=~|b— AP+ =5 2
(x,0) 2||19 I +220j +,:1

j=1

0; 0;
L plog -+
o 11708 9}%] ’ “)

(®)
the braces identifying the x-dependent (a) and 6-dependent (b) portions of the functional. For
the time being, we have suppressed the dependency on the hyperparameters.

2.1. The IAS algorithm

The maximum a posteriori (MAP) estimate of the pair (x, §) is, by definition, a minimizer of
the energy functional (4). In the articles [2—4], an iterative alternating sequential (IAS) algo-
rithm was proposed, consisting of two separate minimization steps:

1. Initialize: Set 6 = 6°, k = 0.
2. Iterate until convergence:

(i) Update x setting x**! = argmin{E(x, 6%)}.
(i) Update @ setting 0**! = argmin{E(x**!,0)}.
(iii) Increase k — k + 1.

As pointed out in the cited articles, the algorithm is simple to implement because of the
particular structure of the energy functional. Indeed, since in step (i) only the x-dependent part
(a) in (4) needs to be considered, the corresponding minimization problems can be reduced to
solving the linear system

i)~ ]

in the least squares sense. In step (ii), on the other hand, where only the 8-dependent part (b)
in (4) is minimized and the components are independent, the minimum can be explicitly com-
puted as a critical point of the component functional, yielding

The similarity of the above iterative algorithm and the iteratively reweighted least squares
algorithms (IRLS) is obvious, however, observe that the goal here is not to find a minimizer
with the £, penalty. In IRLS, the idea of penalizing the components of x by weighing them
individually, recomputing the weights iteratively can be traced back to the doctoral work of
Lawson in 1961 [15] for the solution of uniform approximation problems. Extensions of this
work eventually led to the FOCUSS algorithm for the reconstruction of sparse signals [13].
In general, since the new weights are expressed in terms of the corresponding components of
the previous approximate solution, care must be taken to guarantee that the algorithm is well
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defined and converges to the underlying sparse solution, often by requiring that the matrix A
satisfies some limiting conditions. For instance, the convergence analysis of the IRLS algo-
rithm proposed in [9] is restricted for classes of matrices satisfying conditions analogous to
those for the ¢; sparse recovery in compressed sensing [7, 8, 11, 12].

The extension of the minimization problem from R” to R" x R" allows us to prove the fol-
lowing general convergence result [5].
Theorem 2.1. Forn > 0 and 0* € R",, the energy functional (4) defined over R" x R’} is

strictly convex, thus having a unique global minimizer 7 = (X, @\) The IAS algorithm produces
a sequence z* = (x*,0%) that converges to the global minimum. Furthermore, the point X is
the global minimizer of the functional

Fx) = E(x.f(x), f(x) = (i), o fulxa)), )

where

« [ "o £
=02+ [T .
50 =9 <2 e T 29;)

One of the main questions that we address in this article, not discussed in the cited work,
is the convergence rate of the IAS algorithm. However, we start by analyzing further the role
of the hyperparameters.

3. Hyperparameters

It has been pointed out in the literature how the hyperparameters 3 and 6* affect on the MAP
solution: the former controls the sparsity of the solution, while the second one can be related
to sensitivity scaling, if properly interpreted. One of the aims of this work is to further analyze
the role of the hyperparameters.

We begin with a simple limiting argument that will be developed further later on. Consider
the function (5). It was shown in [5] that for fixed x € R”,

%]

\/@ (6)

n—0+

Folo) = lim E(xf () = 5]1b = Ax? + V2 Y

where the sum extends only over the support of x,

§ = supp(x) = {j | x; # 0}.

This preliminary observation serves two purposes. First, it suggests that the parameter n > 0
controls the sparsity of the solution, and second, it reveals that the parameter 9; represents
a weight that can be related to the sensitivity of the data. Below, we start by discussing the
second observation.

3.1. Scale parameters and sensitivity weighting

As discussed in the Introduction, a common procedure in applied inverse problems is to use
weighted penalty functions to compensate for the non-uniform sensitivity of the data to comp-
onents of the unknown. In this section, we show how the current model provides a Bayesian
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interpretation of the sensitivity scaling without the need to resort to questionable data-depen-
dent priors.

The sensitivity of the linear forward model x — Ax to the jth component of the vector x
can be defined as

(A
5= 22| = 1ag.

where ¢; is the jth canonical basis vector. Hence, s; equals the norm of the jth column of A. In
the inverse problems literature, it is common to choose the weights w; in (2) to compensate
for the variable sensitivity by setting w; o< ||Ae;||”. Equivalently, this is tantamount to scaling
the columns of A to have unit Euclidian norm by multiplying it from the right by a diagonal
matrix D = diag(1/sy,...,1/s,), and concurrently rescaling the variable x with the corre-
sponding inverse scaling,

Ax= (AD)(D"'x) =Aw, A=AD, w=D"'x,

amounting to a change of variables and concurrent rescaling the columns of the forward oper-
ator A. Here, we show that a similar scaling can be obtained through the hierarchical Bayesian
model.

The following argument is a modification and extension of the discussion included in [6]
in the context of interpreting MEG data: the key equation to help elucidate the role of 6} as a
weight factor is (6), although in the ensuing discussion, n may have any non-negative value.

Consider the observation model (3). We define the signal-to-noise ratio (SNR) by the
formula

E{||b|?
g — ELIPI)
E{llell*}
where both x and € are interpreted as random variables and the expectation of x is with respect

to the prior distribution. We start with the following simple calculation in which we assume
that the noise has not been whitened.

Lemma 3.1. Assume a priori, that we have supp(x) = S C {1,2,...,n}. Given the hierar-
chical model

x ~N(0,Dp), 6 ~ Gamma(3,0;) forj € S,

and 0; = 0 for j ¢ S, the signal-to-noise ratio conditional on the support assumption is

Y jes B0 1IAgI?

SNR = 5
s trace(X)

where e; € R" is the jth canonical coordinate vector:
Proof. We start by observing that
E{[|e]|*} = trace(E{ee'}) = trace(X)

and, from the independence of x and ¢,
E{II517} = E{||Ax]*} + E{[lel1*} = trace(E{(Ax)(Ax)T}) + =
= trace(AE{xx"}AT) + L.

7
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The hierarchical prior model implies that

E{xx" | 0} = ZGJ-ejejT,

JES
hence

trace(AE{xx" [ }AT) =~ 0] Ae;*.
JjES

The result follows from the observation that, since 6; ~ Gamma(s, 0;‘), its expectation is
E{0;} = 60;. O

Let ||x||o = card(supp(x)) denote for the cardinality of the support of the vector x. The
following definition is useful when trying to recover signals believed to have sparse support.

Definition 3.2. A problem satisfies the exchangeability condition if whenever
card(S) = card(S")

SNRS == SNRS/.
We are now ready to prove the following theorem, that provides a criterion for setting the
values of the scale parameters of the Gamma hyperprior.
Theorem 3.3. Given the probability distribution of the cardinality of the source
P{llxllo =k} =pe.  po=pn=0,

and an estimate SNR of the signal-to-noise ratio, if the system satisfies the exchangeability
condition, the values of the scale hyperparameters 07 should be set to

YN ) n—1
. Cc (SNR — 1) trace(X) Z Pk o
k=1

[/ -

T [|Ae? B k
Proof. Assume for the time being that the cardinality of the support of the source is k. Then
from the previous lemma

k
> B0} ||A¢;, || = trace(X)(SNR — 1)
=1

for some index values ji,...,jx, and because of the exchangeability condition this equa-
tion must be satisfied for any choice of k indices.

Let Py be the (}) x n matrix where each row contains zeros in correspondence of the com-
plement of the support, and ones in correspondence of the support. In other words, the rows
of Py represent all possible choices for the support of x. Then for the vector v € R” such that
v; = BO;||A¢j||*, we have that

Pry = trace(X)(SNR — 1)1,

n

where 1is a (]

)-vector of ones. Since P has rank n, we must have
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1
i = B0 ||Ag|* = %trace(Z)(SNR —1), 1<j<n,

leading to

1

1
¥ =k)=-— 2)(SNR—1)——.
0] | (HXHO k) ktrace( )(S )BHAeJHZ

Finally, marginalizing over the cardinality of the support it follows that

n—1
C
07 = ) pe(0; | (lixllo = k) = 775,
J ]; (J ) IE

completing the proof. O

Revisiting (6) in the light of the last theorem, the limiting functional can be written as

1 2
Folx) = SIb— Ax|? + 4/ ra D wilgl, wi=|Ag],
=1

which is what would be obtained from sensitivity weighting with the column norms of the
forward map. Based on this observation, we have the following result on how Tikhonov
regularization parameter can be selected on the basis of the estimated noise level and prior
information about the support.

Corollary 3.4. Given an estimate SNR of the signal to noise ratio and a priori probability
distribution of ||x||o, a judicious choice of the Tikhonov regularization parameter « for

xo = argmin {[|b — Ax| + « ij|xj|}
=1

1

_ ]2 _ 28 < Pk
‘- \/z_ \/(SNR—I)trace(Z) Z k’

k=1

which is always real because SNR is always greater than 1.

Remark 3.5. Often, one may have additional restrictive prior information about the size of
the components of x, such as ‘lxjl < M with high probability’, based on, e.g. physical consid-
erations. A natural way to incorporate such information is to define the effective value

Ocgr; = min{0;, (M/2)*}, (8)

where 6 is given by (7), the value M thus representing two times the standard deviation.

To simplify notations, we shall non-dimensionalize the problem by defining

e YA Adiag(Ve¥),

J f

91'—>
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which is tantamount to rescaling each column of the matrix A by the square root of the corre-
sponding element of 8*. Therefore in the following discussion, without loss of generality, we
assume that 67 = 1.

3.2. Shape parameter and sparsity

A significant amount of research continues to be devoted to the conditions for the exact—
or near exact—recovery of sparse signals. The results on the optimality of the ¢; penalized
approximation have motivated the use of different norms to measure fidelity and favor spar-
sity, raising interest in how to approach the problem computationally. Hierarchical Bayesian
models with suitable choice of hyperpriors have been shown to promote sparsity: in [5] it was
shown that with the Gamma hyperprior, for x fixed, if the shape parameter 7 is small enough,
the Gibbs energy converges towards the ¢i-penalized functional. Here we show that, in the
limit as i goes to zero, the IAS solution X = x,, corresponding to the parameter n converges
to ¢1-penalized solution, thus the ¢;-magic can be attained as the limit of an all ¢, procedure.

To simplify the notation, without loss of generality we assume that 67 = 1 and emphasize
the dependence of the functional minimized by the IAS algorithm on 7 by writing

1 IR
Fyx) = 3 1b— AP +3 37 5+ > (6, — nlog#)),
=17 =1

where
0; = fi(xj,m) = f(x;m)
with
o x
f(x’n)_2+ 4+2’
and let

x, = argmin {F, (x)}

be the minimizer of this functional. The following lemma shows that as 7 goes to zero, the
sequence of minimizers computed by the IAS algorithm remains bounded.

Lemma 3.6. There is a constant B > 0 such that

[[xn[| < B,
foralln, 0 < n < %

Proof. The claim is proved by contradiction. Assume that we can find a sequence ', 7%, . ..

such that|[x*|| > k, where x* = x,i. Then ||x*|| s > k/n and from the formula for updating the
components of 6,

k __ k_n_k 2J 9
0f =fld.n) = 5 + > ©

10
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it follows that ||6¥||c > k/(+/2n). This implies that

j=1
n 1 n
k k nk k
>0 =) =5 >0
Jj=1 j=1
1 k
310 >

This is a contradiction since x* is the minimizer of F n+ and therefore, in particular,
1
Fp(d) < Fip(0) = Ellbll2 +n(n* = n*logn*) < oo,

thus completing the proof. O

An immediate consequence of the previous lemma is that, for 0 < n < 1/2, the comp-

onents of # are also bounded, since
PRV E T L/ LBk
4 2 T4 16 2

X0 = argmin{Fy(x)}. (10)

We are now ready to prove the following result.

Onj = f(xngom) =

(SRS

Let us denote

Theorem 3.7. Assume that the matrix A is such that the minimizer (10) is unique. Then,
as 1 — 0+, the minimizers x, converge to the minimizer xo of the {-penalized functional Fy.

Proof. The proof is by contradiction. Assume that there is a sequence of 1’ converging to 0
such that for some § > 0,

l|lx,i — xol| > > 0.

It follows from the boundedness of the x,, established in the lemma 3.6 and the compactness
of the ball {||x|| < B} that there is a convergent subsequence i’ — 0 such that

X = Xpi — X0, ||)C0 —fo” > 4.

We denote 6% = f(xF, ni*) and write

[Fy (24) = Fo(%o)| < |Fy () = Fo(a)[ + [Fo(x") — Fo (o).

By continuity of Fj, the second term on the right tends to zero as k increases and the first term
on the right can be estimated as

1
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+ Zn’k| log0k|

1o | ()
) = ) < 33

k
9}'

|i
V2

v2yo ‘|xf\ - fzaj’f‘ + 3 [ log 6,
j=1 j=1

"
:%Z%lwl—@fhz
j=1 i j=1

+ Zn’ﬂ 10g0}‘|
=1

N

where we used the inequality (9) for xk and 9" Since |x" | = |iXo,| and 9" — [%0,1/V/2, the
first term converges to zero. Furthermore from

nt < 0f <K
it follows that

n
nik Z\log@ﬂ — 0, ask— oo,
=1

proving that

lim F (xk) = F()(?C()).

k— 00

Since x* is the minimizer of F,, we have

Fnk (xk) S Fnk (XO),

and, at the limit,

Fo(%o) < Fo(xo), Xo # Xo.

which contradicts the uniqueness of the minimizer xy, completing the proof. O

The convergence implies, in particular, that if A is a matrix such that the ¢; regularized
solution of the minimization problem (10) is sparse, then the solution of the TAS algorithm
with > 0 small can be made arbitrarily small outside the support of xy. Likewise, if the
minimization problem above is compressible, that is, the components of x, are smaller than a
known threshold outside a set S C {1,2,...,n}, when n > 0 is small enough, the same is true
for the IAS solution x,, with a slightly larger threshold.

In the following section, we establish some results about the rate of convergence of the IAS
algorithm and show that if the underlying signal is sparse, the convergence is quadratic on the
complement of the support.

4. Convergence rate
For the sake of simplifying the notation, in this section we combine x and € in the new variable

z = (x,0) € R?", and, for given n > 0 fixed, denote the objective function (4) to be minimized
by E(z) = E(x, #). We partition the Hessian of E into four n x n blocks,

12
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Hll H12
H(z) = {Hzlg szgﬂ : (an
where
O°E
11 _ _ AT :
H' (z) = |:8Xjan:| = A" A + diag(1/6), (12)
2
HIe) = (W) = | ;2| = ~diag(a/P), (13)
J
and
O’E
22 _ A 2/n3 2
H(0) = | gy | = dine(16° 4 n/87), (1)

with the powers of vectors, the division by 6, or by its powers, understood in the component-
wise sense. Introducing the matrices Qy, Q, € R2nxn

L, o,
o-[4]. @-[%],

where |, and O,, are, respectively, the unit matrix and the zero matrix of size n X n, the updat-
ing steps in each iteration of the IAS algorithm can be expressed in the following unified form.
Given the current z¢ € R,

minimize E(z° 4+ Qy),y € R", (15)
where Q € {Q1,Q2}.

Before stating the main result about the rate of convergence of the IAS algorithm, we prove
that, in a neighborhood of the minimizer Z of (4), the norm of the error at the next iteration
can be bounded in terms of the norm of the error in the current iteration.

Lemma 4.1. Let Q) be an open connected neighborhood of the minimizer 7 of (4) where the
Hessian H(z) of E is Lipschitz continuous with Lipschitz constant v, the condition number of H
is bounded above by r > 0 and ||H(z) ~!|| < v. Then the error et = z* —Z in approximating
Z, with 75 = z¢ 4+ QyT where y* is the minimizer of (15), can be written as

et =Je+e,
where €¢ = z¢ —7Z and, letting H= H(Z),

=1, -Q(Q"AQ) Q"R (16)
and

lell < 20y (1 + 5)?[|e].

Proof. Given the current iterate z°, consider the function

g(y) = E( +Qy), yeR,

13
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with gradient

Vg(y) = Q"VE( + Qy).
At the minimizer y = y* of g,

Ve(y") = QTVE(X + Q") =Q'VE(E!) =0 (17)

must hold. Denote the local quadratic model of E based at Z by

o~

M) =ER@) + =(z—2)"H(z—72)

and let

be the approximation error. Then, under the mild regularity conditions on E, the following

bound on the approximation error,

v
DR < ¢llz— zl1°,

and on its gradient,

gl
IVD@E)[ < 5

Lz -2,

hold uniformly in €2, see [10]. Substituting
VE(z) = H(z —2) + VD(z)
in (17) yields
QTH(" -2+ QTVD(") =0,
which upon the substitution z+ = z¢ + Qy™* becomes
QTH(* —2+ Q™) + QTVD(z") = 0.
Solving the last equation for y© we obtain
y* = - (Q'AQ) " (@A +QTVDEH)).

therefore, e = zT — 7 satisfies

et =7-7-Q { (Q"Aq) - (QmR=+ QTVD(Z+))}

= {lzn -Q (QTQQ)% QTﬁ} £+ R(zT)

= Je“ + R(z1).

14



Inverse Problems 35 (2019) 035003 D Calvetti et al

To complete the proof, we need to estimate the remainder in term R(z"),
R =-Q(QTRQ) " QTVD(")
in terms of the error £°. From the observation that
QHQ = HY, j=12
it follows that
IQTHQ) ™| < H") < v,
hence
IREDI < IIH[[IIVD(T)]| < g lle* 2.
Furthermore, from the estimate
<1+ QQTHQ) ' QTH| < 1+ +,

it follows that

2

¢ ap o VY
11 < Il + IREDT < (L4 )llell + S-lle™

and, if we are close enough to the minimizer that ||| < 1/v7,

1+k

el < — v
L= /2)lle* ]|

el < 2(1 + m)[°]l-

Combining the above estimates we have
llet — Jecll < 2oy (1 + k)

which completes the proof. O

We remark that when Q = Qg the solution of (15) is the updated x, and in terms of the block
partitioning (11) of the Hessian,

N -1 N Oiny—11312
Q (7R MHzl“(H> H],

0 0

implying that the matrix J in (16) updating the error vector is

B 0, _(ﬁll)—lﬁlz
Ji = lOn L . (18)

Similarly, when Q = Q,, the solution of (15) gives us the updated 6, and the corresponding
error updating matrix is

l, o,
b= _(ﬁzz)qﬁzl o, (19)

15
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Each IAS iteration solves two minimization problems, one with respect to x and the other
with respect to 6. Starting from the current error € and denoting by &’ the error after the first
minimization step, the error €™ at the end of the iteration is obtained in two steps as

e =Jie" +e,
et =D e
= JJie + Jre) + e,
where
Jo =Jdy = {_(/H\Zzl;lﬁzl gj [On —(H') lle}
|:O,l _(ﬁll)—ll’_]m ]
= 0, (H‘zz)flﬁzl(ﬁ“),lﬁlz .

If we switch the order of the updates inside the IAS iteration, that is, first update 6 then x,
the error propagation matrix becomes
ﬁn 71ﬁ12 ﬁzz 71ﬁ21 0,
=y = (HT) 7 H=(HT) ‘
_(H22)—1H21 On

Consider the error propagation of the leading term in the iteration, ignoring the second
order term,

Ja oo b i Jy Ji

"'—>Ej—>€j—>€j+1 —>€j+1 —2 Ej2 —> 1,

and partitioning the error vectors ¢;, 5]’- € R* as
_lae] L [E

A |:5j,0:| ST [5;,9] ,
we find that the updating formula for the leading term for the x-component of the error term is

E]/'+17x _ (H”>_1H12(H22>_l H21€]/',x-
Substituting the actual expression of the blocks of the Hessian (12)—(14), and writing

ATA + diag(1/6) = diag(1/6"/?) [diag(6"/?)AT Adiag(6'/?) + 1] diag(1/6'/?)
we obtain
(H'")~TH2(H?2)"H? = (ATA + diag(1/0)) ' diag(3/6%) (diag(3*/0° + n/0?)) ' diag(3/6%)

— diag(0'/?) [diag(6"/*)AT Adiag(6'/%) +1,] ' diag(¥/ (&> + nf))diag(1/6'/?),

hence, up to a second order term,

Idiag(1/6"/*)ef,1.]| < plldiag(1/8"/2)e] ], (20)

for some p < 1. Furthermore, in light of the form of J; : Ejl- — €j+1, up to a second order cor-
rection term

A _ ! _
Ejx = Ejtlx Ejpix = Eit2x

16



Inverse Problems 35 (2019) 035003 D Calvetti et al

hence the ordering of the two updates is irrelevant for the error estimate. This proves that the
IAS algorithm converges at least 6 -linearly, that is, linearly with respect to the § -weighted
norm,

Iz = 2"D5 'z (21)

We point out that this is the Mahalanobis norm with respect to the prior distribution at the
MAP value.

Assume now that the global minimizer X has support S C {1,2,...,n}. Without loss of
generality, we may assume that S = {1,2,...k}, where k = ||X||o < n. Consider the updating
matrix Jp;. We observe that up to a second order term,

Eir1o = (gzz)flﬁm(ﬁn)qﬁnajﬂ
= diag(0%/ (2 + 1)) (ATA + diag(1/0))~'diag(x/6%)<;0,
hence
D- %61 = diag(f%/ (¥ + 1)) [diag(9'/*)AT Adiag(6'/?) + ] ' diag(3/6%)D; *ej0.  (22)
In particular, this formula shows that, up to a second order term,
(gj416), = 0for £ >k,

that is, outside the support of X, the convergence is quadratic.
We collect the main results of this section in the following theorem.

Theorem 4.2. In the IAS algorithm, the updates of x converge at least 0 -linearly, that
is, linearly in the Mahalanobis norm (21) evaluated at the MAP estimate. Moreover, if
supp(x) & {1,2,...,n}, the convergence of 8 in the complement of the support is quadratic.

The *¢;-magic’ results state that for matrices A satisfying certain conditions the ¢;-penal-
ized solution is the exact solution of the ¢y-penalized problem when the support of the signal
is appropriately smaller than the number of observations. The exact recovery is based on the
assumption that there is no noise in the data. With noisy data, the reconstruction is not nec-
essarily exact, however, the discrepancy between the exact and recovered signal is bounded
by a small multiple of the norm of the noise. In the compressed sensing literature, a signal
in R"” whose components outside a set S & {1,2,...,n} are below a given small threshold is
referred to as compressible. The Bayesian framework at the foundation of the IAS algorithm is
based on the assumption that the data is corrupt by additive Gaussian noise, hence even in the
limit as the shape parameter 7 tends to zero, the best that we can expect is to recover a signal
whose distance from the underlying sparse source is bounded above by a small multiple of the
norm of the error in the data. Observe that since 6; > 7, the prior assumption for 7 > 0 small
is that the signal is not necessarily sparse but compressible.

If X is compressible, and for some threshold value ¢ > 0,

| < 8232, j¢s, (23)
for j ¢ S,
0;%;

2 + o,

Xj

Ui

< < \/0m,

and since 6; > 7, we have
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x| s
/\2 .
7 0

Therefore, if we denote by P¢ the orthogonal projection on the complement of S, we find that
||Pediag (0% /(3% + nf))[diag(8"/2)AT Adiag(0'/%) + 1]~ diag(¥/6%)P°|| < 6.

This estimate proves the following theorem.

Theorem 4.3. Assuming that the MAP estimate X is compressible and satisfies (23), the
update of 6 outside the support S is essentially quadratic,

IPcjr1.6ll5 < d|IP°cjpll5 + second order correction.

We will illustrate the results of convergence and the effect of the scaling in the following
section through computed examples.

5. Computed examples

In this section we elucidate some of the results with computed examples. In particular, exam-
ples 5.1 and 5.2 demonstrate the convergence rate of the IAS algorithm, while example 5.3
highlights the effect of the sensitivity weighting through the hyperparameter 8*. Finally, exam-
ple 5.4 elucidates the properties of the algorithm vis-a-vis sparsity properties of the recovered
signal in the context of sparse recovery theory.

5.1 Example 1

We consider a one-dimensional deconvolution problem of the form

1
1 2 2
_ . . _ —(t—s)" /2w _
g(1) 7/0 ay(t—8)f(s)ds, a,(t—s)= 727”4)26 , w=0.01,

and its discretized version obtained by approximating the values of the integral at points
ti=(j — 1)/n,n = 128, using a quadrature rule withn = 128 nodes s; = (j — D/n,1 <j < n,
and assuming that the data are contaminated by additive scaled white noise. The resulting
n X n linear system is

1 1 2 2
b=Ax+e, Ap=— e~ =)/ <k <,
* n+\/2aw? J

where € ~ N (0, 0%1,,). Our main aim here is to show the performance of the IAS for the recov-
ery of a sparse signal and to verify the convergence rate. In line with the standard practice
in compressive sensing literature, we ignore the fact that in actual applications the data may
not arise from a model used to solve the inverse problem. The signal x* used to generate the
blurred noisy data shown in figure 1 is sparsely supported, with || x| = 6.

To compute 6%, we assume that the estimated signal-to-noise ratio is SNR = 255, which
would correspond to noise variance

2 lbol?

R L — — A
ASNR—T1)7 0 TA @4
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Figure 1. The one-dimensional deconvolution problem: top row, leftmost figure shows
the true signal and the computed noisy data in red. The subsequent panels, in
lexicographical order, show the progress of the iteration. After the sixth iteration, the
changes in the approximate solution are visually indiscernible.

or o ~ 0.0053, or a noise level of approximately 1.8% of the maximum of the noiseless signal.
However, we run this example with data in which no artificial noise is added.

We compute the MAP estimate via the IAS algorithm with shape hyperparameter = 1079,
calculating the values of the scale hyperparameters ¢ from the formula (7) of theorem 3.3,
assuming that, a priori, we expect to have at most ny,x = 20 non-zero entries, with uniform
probability for the cardinality of the support,

0 j=0
P = l/nmax 1 g] < Nimax-
0 J > Nmax

Not surprisingly, the components of 6* are almost constants, 6 ~ 0.493, except near the end-
points of the interval, where part of the Gaussian kernel leaks out of the interval. This is
reflected in the fact that 07 = 0, ~ 0.685, 03 = 6* | ~ 0.514.

Figure 1 shows how the IAS iterates approximate the underlying sparse signal, progressively
flattening the signal in the complement of the support. After six IAS iterations, the solution
stabilizes, correctly identifying six significant components in an almost vanishing background.
The background level is not exactly zero, but of the order ~10°.

The leftmost panel of figure 2 shows the relative change in the norm of the variance param-
eter vector A} = ||¢7 — 6/~ /||67|| from one iteration to the next, a quantity that can be used
to design a stopping rule for the IAS iteration. The plot shows that after seven iterations, the
relative change in 6 has dropped below 1072, and after sixteen iterations, below 10~*. The
center left panel in figure 2 shows the logarithmic plot of the error ||eg,|| = ||/ — §|| versus
legj+11l, using the final value of the iterations as an approximation of the minimizer 6 . The
dashed lines in the plot can be used to identify linear (red) and quadratic (blue) convergence
rates, For comparison, the center right panel shows the same convergence analysis, but using
the 6 -weighted norm, where 6 is approximated by the last iterate of €. The convergence

19



Inverse Problems 35 (2019) 035003 D Calvetti et al

3

o7 — 674 /07|

3

5 .
10 - -
0 5 10 20 25 30 104 10° 10" w0t 100 102 107 00 10" o

15 102
teration leosl ol (c04)e

Figure 2. Left: the relative change A} = ||0/ — 07| /||0/| of the norm of the variance
parameter vector as a function of iteration. Left middle: logarithmic plot of the norm

of consecutive errors ||gg,|| = [0/ — 0]| in the variance parameter. The red dashed line
indicates the linear rate of decrease, the blue one the quadratic rate. Right middle: the

convergence rate measured by using the Mahalanobis norm at the MAP estimate, with €
approximated by the last iterate of 6. Right: convergence of 8, at a point corresponding
to minimum value of the final estimate of 6.

rate of the norm of the error is at least linear, and at the beginning of the iterations close to
quadratic. Also, the convergence rate with the weighted and non-weighted norm are identical,
indicating that the latter can be used to estimate the convergence rate. The convergence of
individual error components are qualitatively similar; exact quadratic convergence cannot be
expected in practice since the minimizer X has a small non-zero background value outside the
outstanding peak values. The right panel in figure 2 shows the individual convergence history
at the point where the estimated 6 attains its minimum.

5.2. Example 2

The second example, similar to the previous one but in two dimensions, confirms the results
and shows that the algorithm retains its efficiency in larger scale problems. We want to recover
a 'nearly black object’, consisting of an image over the square [0, 1] x [0, 1] with only few
non-zero pixels. The source image x* of size n x n, for n = 128, with ||x*||o = 50 is shown in
top left panel of figure 3. The data arises from the nearly black object blurred with a Gaussian
kernel of width w = 0.01 to which Gaussian scaled white noise is added, using an estimated
a signal-to-noise ratio SNR = 25, and standard deviation o ~ 4.4 x 1073, corresponding to
2.3% of the maximum of the noiseless signal. The data are shown in the top center panel of
figure 3. The computation of the hyperparameter vector 6* assumes that the cardinality of the
support is at most 100 pixels, with uniform probability for cardinality support between 1 and
100, that is p; = 1/100 for 1 < j < 100.

As in the previous example, we are interested in the convergence rate of the IAS algorithm.
The quality of the approximation of the IAS iterates can be assessed visually by looking at
the reconstructions shown in figure 3. Although after the tenth iteration the restored image
remains visually unchanged, we carry out 50 iterations. The left panel of figure 4 shows the
relative change in the norm of the variance parameter 6 from one iteration to the next, while
the right panel illustrates how the decrease in the norm of the error is in agreement with the
theoretical results.

5.3. Example 3

The third example elucidates the importance of the sensitivity weights through an appropriate
choice of the scale parameter vector 6*. In this example, we consider an inverse source prob-
lem with an observation model
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Figure 3. The underlying sparse image (top left) and the observed blurred and
noisy version (top center). The remaining panels show, in lexicographical order, the
reconstruction computed in the IAS iterates. After ten iterations, the results are visually
unaltered.

10 20 30 40 50 1072 107 10°
Iteration H59 H
2

Figure 4. The relative change in the norm of the variance vector ¢ as a function of
iterations for the two-dimensional deconvolution problem (left), and the plot of the
error in @ versus the error in the previous iteration round. The dashed red line indicates
the linear rate, the dashed blue line the quadratic rate.

b(R) = / g,

olr—RP

where Q C R? is the source domain, and the observation points R are located outside the
domain. We choose €2 to be the unit square, = [0, 1] x [0, 1], and a discrete set of observa-
tion points R;, 1 < j < m chosen outside €2 but near three of the sides of it, see figure 5. To
generate the data, we pick three points in €2 and place a point source at them.
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Figure 5. Left: the measurement configuration. The red dots are the observation points,
m = 120, and the black dots denote the discretization points corresponding the forward
model, n = 2500. The data are generated by placing three point sources, not in the grid
points, with amplitudes g; = g» = 5 (blue and red), and g3 = 0.5 (yellow). On the left,
the computed 6* is shown as a surface plot.

We discretize the forward model by assuming the source to be a sum of discrete point
sources at fixed grid points, leading to a forward model

n
gi
by=) 55, I<k<m,
‘ j_zlm—Rkv "

and we set m = 120, n = 2500 as indicated in figure 5. In the same figure, the computed 6*
vector is shown as a surface plot, indicating that the data are highly sensitive to points near
the three edges and much less sensitive to sources near the fourth edge. We generate the data,
adding scaled white noise of standard deviation o approximately 0.4% of the maximum of
the noiseless signal, or SNR = 20000. We run the algorithm using the focality parameter
n = 1075, For comparison, we then run the same algorithm by choosing 6* to be constant. We
choose the constant value equal to the boundary values of 6* in the previous case. Figure 6
shows the solutions after 100 IAS iterations. As expected, the solution without sensitivity
weighting is completely concentrated on boundary pixels, while with the sensitivity weight-
ing, one can reasonably identify the three sources.

5.4. Example 4

In his example, the underlying signal itself is not sparse, but it admits a sparse representation.
More precisely, we consider the discrete linear observation model

b=Ax+e, AcR™ e~ N(0,0%,),

and assume a priori that there is an invertible matrix L € R"*” such that we can express the
signal as

x =Lz,

in terms of a sparse vector z € R” that we model as a random variable with a hierarchical
conditionally Gaussian distribution. In this example, we assume that the blurring kernel is an
Airy kernel,
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Figure 6. Reconstructions of the sources after 100 iterations using the automatic
sensitivity weighting scheme (left), and a constant value (right) for the scaling vector
0*. In the latter, the solution is entirely concentrated on the domain boundary near the
observation points.

(RO s)
Ajk_c( 1>\(tj—skl)€ )

where J; is the Bessel function of the first kind of order 1, A = 40 is a width parameter, the
points s;, 1 < k < 128 = n are uniform grid points in the interval [0, 1], while the observations
are limited to every sixth grid point #;, 1 < j < 22 = m, and, finally, C > 0 is a scaling factor.
Let L be the backward differencing matrix,
1
-1 1

L: . . ’
~1 1

and reformulate the problem in terms of z, whose posterior distribution is

1 _ 1 &7 (9 0
T.05(2.0 | b) o< exp —ﬁﬂb — AL g|)? - > Z gi — Z (01 —nlog Oi>
o=l 7 j=1 \J 7

The believed sparsity of z; is tantamount to assuming that x has sparse increments, since it is
a straightforward matter to check that

J
x=z l<j<n (25)
i=1

Moreover, we assume a priori that the absolute values of the jumps z; are expected to be below
a value M = 1 with high probability.

An interesting observation is that, while the norms of the columns of A are essentially
constant, except near the endpoints of the intervals, as pointed out in example 5.1, this is no
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Figure 7. On the left, the plot of the scaling vector 8*. In the middle, the original signal
and the subsampled noisy observation of it using the Airy kernel. On the right, the IAS

reconstruction with stopping criterion Ag <1073,

longer the case for AL™!, due to the asymmetric roles of the endpoints j = 1 and j = n for
backwards finite differencing.

It follows from formula (25) that, since the observation b; depends on all z;, i < j, the data
are more sensitive to the components of z near the left endpoint of the interval than to those
near the right endpoint. In other words, even if A is symmetric and the convolution kernel is
translation invariant, the sensitivity is not, and this fact is accounted for when the hyperparam-
eter 0% is set according to (7) with A replaced by AL~

Let the underlying signal x be the piecewise constant function with five discontinuities shown
in black in the left panel of figure 7, so that ||z*||o = 5, we generate the noisy data by multiplying
the discretized signal by the matrix A, and adding white Gaussian noise scaled so that the signal-
to-noise ratio is approximately SNR = 15. It follows from (24) that the noise level in this case
is 0 & 0.22, which is approximately 15% of the maximum of the noiseless signal. One random
realization of the blurred noisy signal is shown in red in the left plot of figure 7. The right panel
of figure 7 shows a plot of the sensitivity vector 6 for z based on formula (7), increasing several
orders of magnitude towards the end of the interval. To implement the prior belief that the jumps
are not likely exceeding the value M = 1, we define the effective hyperparameter 0%;  using form-
ula (8) of remark 3.5. The cut-off level is indicated in figure 7 by a red dashed line.

To put the algorithm in the context of sparse recovery, we compute the mutual coherence
of the matrix, defined as

~ |(a(1'))Ta(k)|
u(A) = M4k 1 [

where a“) is the Jjth column of 7&, see [1, 12]. In the cited articles, it has been shown that the
mutual coherence provides a lower bound of the spark of the matrix A = AL~

~ 1
spark(A) > 1 + —

(A
defined as the smallest number of columns of the matrix that are linearly dependent. Vectors
in the null space of A must therefore satisfy ||z[jo > spark(;&). Mutual coherence is impor-
tant in sparse recovery theory, as it can be shown that algorithms such as orthogonal greedy
algorithm are guaranteed to find a sparse solution of the linear system provided that there is a
solution satisfying

lello < = 14 —— 26
@) @9)
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Consequently, the smaller the mutual coherence, the wider the class of sparse signals for
which the success is guaranteed. In the present example, we have /L(Z) ~1-15x%x1077,
that is, guarantees of sparse recovery exist only for signals with a single discontinuity.

The left panel of figure 7 shows a reconstruction from data corresponding to a true signal
that does not satisfy the support condition (26) with noise level SNR = 25; the blurred noisy
data are plotted over the underlying true signal. The right panel in the same figure displays the
IAS reconstruction, where the locations of all discontinuities are correctly identified, and the
amplitudes are found with reasonable precision, even when the columns of the matrix defining
the forward map are highly coherent.

6. Conclusions

This article proposes an alternative approach to the sparse recovery problem based on
Bayesian analysis of the inverse problem. Although the focus of this work is on an algorithm
for computing the MAP estimate, and therefore does not take full advantage of properties
of the posterior distribution, the analysis shows the usefulness of the probabilistic exten-
sion. The MAP estimation algorithm has a unique global minimum, the alternating algo-
rithm is easy to implement, and as shown in this article, rapidly converging. Moreover, the
Bayesian analysis of the signal-to-noise ratio combined with the statistically well-motivated
exchangeability condition leads to a versatile sensitivity scaling that helps understanding,
e.g. the depth weighting schemes used in geophysics and biomedical applications, put-
ting them on a solid basis in terms of the assumptions about the noise and support of the
source. The algorithm contains few user-supplied parameters, and the parameters have a
clear interpretation. Numerical tests indicate that the algorithm is not very sensitive to the
choice of the signal-to-noise ratio or the estimated support of the presumably sparse signal,
however, the tests suggest that grossly underestimating or overestimating the support may
lead the algorithm astray. Although the emphasis in this article is on sparse recovery, the
IAS algorithm is not restricted to cases in which the source is sparse. In fact, using larger
shape parameter values, numerical evidence points towards good recovery of distributed
targets also. Such analysis is left for future work.
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