
Journal of Theoretical Biology 478 (2019) 26–39 

Contents lists available at ScienceDirect 

Journal of Theoretical Biology 

journal homepage: www.elsevier.com/locate/jtb 

Brain energetics plays a key role in the coordination of 

electrophysiology, metabolism and hemodynamics: Evidence from an 

integrated computational model 

G. Capo Rangel a , J. Prezioso 
b , L. Gerardo-Giorda a , E. Somersalo 

b , D. Calvetti b , ∗

a Basque Center for Applied Mathematics, Spain 
b Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, USA 

a r t i c l e i n f o 

Article history: 

Received 3 January 2019 

Revised 1 June 2019 

Accepted 4 June 2019 

Available online 5 June 2019 

a b s t r a c t 

The energetic needs of brain cells at rest and during elevated neuronal activation has been the topic 

of many investigations where mathematical models have played a significant role providing a context 

for the interpretation of experimental findings. A recently proposed mathematical model, comprising 

a double feedback between cellular metabolism and electrophysiology, sheds light on the interconnec- 

tions between the electrophysiological details associated with changes in the frequency of neuronal firing 

and the corresponding metabolic activity. We propose a new extended mathematical model compris- 

ing a three-way feedback connecting metabolism, electrophysiology and hemodynamics. Upon specifying 

the time intervals of higher neuronal activation, the model generates a potassium based signal leading 

to the concomitant increase in cerebral blood flow with associated vasodilation and metabolic changes 

needed to sustain the increased energy demand. The predictions of the model are in good qualitative 

and quantitative agreement with experimental findings reported in the literature, even predicting a slow 

after-hyperpolarization of a duration of approximately 16 s matching experimental observations. 

© 2019 Published by Elsevier Ltd. 
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1. Introduction 

Understanding the connections between electrophysiology,

metabolism and hemodynamics in human brain is essential for

shedding light on the mechanisms behind their mutual regulation,

and for elucidating to what extent a disruption in one of these

cerebral functions may, partly or completely, impair the others

( Dienel, 2017; Martin, 2014 ). A deeper understanding of the deli-

cate interplay between these three systems would help also appro-

priately establish how reliably measurements from brain imaging

modalities following hemodynamic changes can be used to infer

on brain electrophysiology ( Raichle and Mintun, 2006; Shibasaki,

2008; Raichle, 1987; Magistretti and Allaman, 2015 ). 

It is well-known that increase in neuronal activity is fol-

lowed by higher cerebral blood flow in the surrounding region

( Logothetis et al., 2001 ), however a comprehensive explanation for

the phenomenon is still missing ( Attwell et al., 2010; Iadecola,

2017 ). Another question waiting for a definitive answer is how

the brain meets the energetic costs of membrane depolarization

and repolarization in connection with excitatory or inhibitory neu-
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onal activity, a topic that continues to motivate research on

rain energy metabolism ( Bélanger et al., 2011; Hirrlinger and

aagepetersen, 2014 ). Over the past two decades, astrocytes have

een increasingly recognized as having a much more prominent

ole in brain energy metabolism than initially believed, elevating

hem to major metabolic players in the energetics of excitation

nd inhibition when it comes to the cycling of neurotransmitters,

aintaining redox balance, and clearing potassium following neu-

onal firing ( Hertz et al., 2007; Calvetti and Somersalo, 2012; Bak

t al., 2018; Barros et al., 2018 ). In computational neuroscience, the

aradigm based on networks of neurons alone has begun to shift

owards a more integrated picture, where astrocytes have a more

ronounced role through their control of ion concentrations in ex-

racellular space, in turn affecting neuronal firing. Furthermore, it

as been demonstrated that astrocyte end feet enclose brain capil-

aries and may play a role in cerebral blood flow (CBF) regulation,

lthough the underlying mechanism connecting it to the neuronal

ctivation is not fully understood yet ( Iadecola, 2017; Takano et al.,

006; Nortley and Attwell, 2017 ). A predictive mathematical model

hat can account for all three cerebral functions and their mutual

nteractions is a useful tool for testing possible feedback modes. 

In the absence of direct observations, Predictive cell level math-

matical models have been deemed necessary to advance the

https://doi.org/10.1016/j.jtbi.2019.06.003
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Fig. 1. A schematic of the integrated hemodynamic-electro-metabolic model. The neuron (blue) and astrocyte (orange) are assigned separate compartments, but there is 

no division between pre- and post-synaptic neuron, nor between soma, neuronal dendrites and axons, or astrocyte end feet. A separate compartment is reserved for blood, 

accounting for arterial, capillary, and venous components in the hemodynamic module. In line with current understanding, we assume that the extra blood volume rushing to 

the activation site in response to the activation is due to vasodilation in the arterioles triggered by the activation induced increased potassium concentration in extracellular 

space (ecs). The uniform yellow background in the left panel indicates the higher Na + concentration in extracellular space at rest: in the right panel the lilac cloud illustrates 
the temporary increase in extracellular K + concentration during the repolarization phase due to the Na + -K + pump activation, also responsible for the increase in energy 

demand, symbolically denoted by yellow stars. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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nderstanding of the human neurovascular complex. Following the

riginal contribution of Hodgkin and Huxley (1952) , neuronal firing

as been extensively studied by means of mathematical models of

ifferent com plexity, including models describing the dynamics of

on fluxes responsible for transmission of action potentials across

ynaptic clefts ( Cressman et al., 2009; 2011; Barreto and Cressman,

011 ). As computational neuroscience moves towards integrating

ore neurophysiology into models of neuronal firing, the ener-

etic costs of operating the sodium potassium pump have started

eing accounted for Jolivet et al. (2015) . A recent mathematical

odel Calvetti et al. (2018) , validated by experimental findings in

he literature, has successfully included a two-way feedback pro-

ess between neuronal activation and cerebral metabolism. 

This paper proposes a new computational predictive integrated

odel of the hemodynamics, metabolism and electrophysiology

f a human neurovascular unit comprising neuron, astrocyte and

rterial-venous vascular compartments, that can be used to in-

estigate in silico the regulation of metabolic and vascular re-

ponse to neuronal activity in human brain. In previous models

ombining energy metabolism and electrophysiology, the delivery

f metabolic substrates through blood flow is defined as an input

ariable and adjusted to meet the energetic needs of the neuronal

ctivity. Conversely, previous models for hemodynamics assume an

xternal input signal controlling the compliance of the blood ves-

els, without a direct coupling to energy consuming activities. The

ovelty of this article is the introduction of a double feedback loop

etween these two modeling regimes: In the proposed model, the

lood vessel compliance is controlled by the extracellular potas-

ium level, which is a function of the neuronal activity, while the

etabolic system must rely on metabolite delivery through the

lood flow, and the state of the electro-metabolic complex depends

n their availability. This coupled model may help understand ob-

erved phenomena that continue to be the topic of active inves-

igation, including the unexplained overshoot of oxygen delivery

uring neuronal activation known as the oxygen paradox, some

iseased states such as migraine and cortical spreading depression,

nd the neuronal damage following prolonged epileptic seizures.

omputed experiments show that the time courses of membrane

otential, metabolite concentrations and blood flow predicted by

he model are in qualitative and quantitative agreement with ex-

erimental results reported in the literature, a remarkable finding

ince the changes in metabolism, hemodynamics and ion fluxes are

etermined internally by the model, not specified as input. Fig. 1

hows a schematic view of the interaction between metabolism,

a  
lectrophysiology, and hemodynamics under two scenarios, at low

ctivity level, referred to as resting state, and during high neuronal

ctivation. 

Before presenting the details of the model, we discuss briefly

he interpretation of the model, and in particular, how the phe-

omena described in different spatial scales should be understood.

The metabolic and hemodynamic models used in our integrated

odel are spatially homogenized lumped models, and the param-

ter values describing reaction rates and metabolite transports be-

ween compartments are scaled to correspond to a volume equiv-

lent to one gram of gray matter tissue. If | �0 | denotes the refer-

nce volume corresponding to one gram tissue, and | �| is the vol-

me of the brain tissue sample � that we want to model, and [ M ]

s the vector of the metabolite concentrations, the dynamic model,

hose details are discussed in the forthcoming sections, is of the

orm 

d[ M] 

dt 
= F ([ M]) , ρ = 

| �| 
| �0 | , 

here F is a vector whose components represent the parametric

eaction and transport fluxes in the system, with parameters scaled

or the reference volume. This equation reveals that the model can

e rescaled back to the reference volume by scaling the time t by

 factor proportional to the volume. Alternatively, if we want to

djust the metabolic model to correspond to the volume of few

eurons, we could scale the reaction and transport rate parameters

n the dynamic model dividing by the volume ratio ρ . Scaling the

etabolic model down to few neurons’ scale, on the other hand,

ould make the neuron-astrocyte geometry play a role, includ-

ng the position with respect to the metabolite supply by blood

ow, while the lumped model paradigm is an average model as-

uming that fine details are ignored. Likewise, using too large vol-

mes violates the basic assumptions of well-mixed models, since

iffusion starts to play a significant role. Instead of attempting

o perform a geometric scaling of the model with an ill-defined

olume of few neurons and astrocytes, we retain the metabolic

odel as is, and instead adjust the electrophysiology model so that

t corresponds to a neuron population of one gram tissue. This

odel matching is not straightforward, and is discussed at length

n Calvetti et al. (2018) . 

The electrophysiological description is based on extensions of

he classical Hodgkin–Huxley model to comprise the ion trans-

ort between neurons and astrocytes. We therefore interpret that

he electrophysiological neuron-astrocyte model in fact represents

 neuron-astrocyte population through a model of an average
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Table 1 

Biochemical reactions in the metabolic model. 

Name Chemical reaction 

Glycolysis Glc + 2NAD + + 2 ADP −→ 2Pyr + 2NADH + 2 ATP 

Lactate dehydrogenase 1 Pyr + NADH −→ Lac + NAD + 

Lactate dehydrogenase 2 Lac + NAD + −→ Pyr + NADH 

Tricarboxylic acid cycle Pyr + ADP + 5NAD + −→ 3CO 2 + ATP + 5NADH 

Oxidative phosphorylation O 2 + 2NADH + 5ADP −→ 2NAD + + 5ATP + 2H 2 O 

Phosphocreatine dephosphorylation PCr + ADP −→ Cr + ATP 

Creatine phosphorylation Cr + ATP −→ PCr + ADP 
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H  
neuron, surrounded by supporting astrocytes. A characteristic mea-

sure used here for describing the level of neuronal activity is the

neuronal firing rate. In particular, consider a volume containing a

neuron population, each neuron firing at a given time instant with

its own frequency f . Let p ( f ) denote the frequency distribution over

the neuron population at a given time, ∫ ∞ 

0 

p( f ) df = 1 . 

In practice, there is an absolute cut-off maximum frequency f max ,

determined by the duration of the refractory period after depolar-

ization of the membrane, hence p( f ) = 0 for f > f max . The average

firing frequency of the population is defined as 

f = 

∫ ∞ 

0 

f p( f ) df . (1)

To account for the total energy need of the neuron-astrocyte com-

plex included in the volume under consideration, we model the

energy consumption by assuming that the volume contains neu-

rons firing with average frequency f over a time period that cor-

responds to the time scales of the metabolic and hemodynamic

units, that is, in the scale of minutes. Observe that a single neuron

does not have to sustain a fixed activity over the whole period; it

is enough to assume that the distribution p remains unaltered over

the time interval. Therefore, a single neuron in the population may

undergo a series of active bursting periods and longer resting peri-

ods. Our model does not provide detailed information about single

neurons, although we will discuss the model predictions also from

the point of view of single neurons. 

2. Materials and methods 

The novel mathematical model that we are proposing extends a

recent model integrating metabolism and electrophysiological ac-

tivity of neurons and astrocytes ( Calvetti et al., 2018 ), combin-

ing it with one estimating blood vessels’ compliance and blood

flow changes in response to a vasodilatory stimulus ( Calvetti et al.,

2019; Prezioso, 2017; Barrett et al., 2012 ). In the former, the com-

putational challenge of carrying out time integration in view of the

vastly different time scales of metabolism and neuronal firing are

addressed by a fast-slow time integration scheme. The proposed

method respects the fine time scale nature of electrophysiology

by using a refined time discretization to model electrical activity

within each step at the metabolic scale, and integrating the net en-

ergy demand to inform the coarse scale metabolic model. We refer

to the model combining the metabolism and electrophysiological

activity as electro-metabolic model. Tracking the related hemody-

namic changes adds yet another time scale to the model, which

has to be dealt with carefully to avoid numerical instabilities and

keep a handle on the computational costs. 

2.1. Electro-metabolic model (EMM) 

The starting point for the model integrating metabolism and

electrophysiological neuron-astrocyte activity is a spatially lumped
our-compartment metabolic model comprising neuron (n), astro-

yte (a), extracellular space (ecs) and blood (b) compartments,

ach occupying a specified volume fraction ηc , c = { n, a, b, ecs } . As
s customary in the spatially lumped metabolic models, the cellu-

ar compartments represent the net metabolic response of a popu-

ation of cells in a volume unit. In particular, the neuron compart-

ent represents both pre- and postsynaptic neurons. The model

arameters and time scales are adjusted to correspond a volume

f one gram of tissue of gray matter. Following the dynamical

etabolic model ( Calvetti and Somersalo, 2011 ), each cellular com-

artment is characterized by its own metabolic network and all ex-

hanges of metabolites between them occur through the extracel-

ular space, which is the only compartment to exchange metabo-

ites with the blood through the Blood Brain Barrier (BBB). The

odel, written in terms of the concentrations of metabolites in

ach compartment, collected in the time dependent vector 

 M](t) = 

⎡ 

⎢ ⎢ ⎣ 

[ M] b (t) 

[ M] ecs (t) 

[ M] n (t) 

[ M] a (t) 

⎤ 

⎥ ⎥ ⎦ 

, 

racks the dynamics of glucose, lactate and oxygen in all compart-

ents and, in neuron and astrocyte, pyruvate, creatine, phospho-

reatine, ATP, ADP, NADH and NAD 
+ , for a total of 26 species, tak-

ng into account the compartmental multiplicity of each species.

he biochemical reactions included in the model are listed in

able 1 . 

Each reaction contributes a reaction flux in the system. Reac-

ion fluxes are modeled using a Michaelis-Menten type kinetics,

quipped with regulation by the phosphorylation and redox state

f the cell, 

p c = 

[ ATP ] c 

[ ADP ] c 
, r c = 

[ NADH ] c 

[ NAD 

+ ] c 
, for c = { n , a } . (2)

ecause all communication between neuron and astrocyte is as-

umed to occur through the extracellular space, changes in glu-

ose, lactate and oxygen concentrations in the latter depend on

he transfer fluxes of these metabolites between extracellular space

nd neuron or astrocyte, as well as on the rate at which metabo-

ites are exchanged with the blood compartment. 

In the blood compartment, the changes of metabolite con-

entrations over time depend on blood flow (CBF( t )), mixing ra-

io between venous and arterial blood, assumed constant, and

he exchange rate of metabolites between blood and extracellu-

ar space, which for glucose and lactate are expressed in a sym-

etric Michaelis-Menten form, while for oxygen it follows a mod-

fied Fick’s law. The arterial concentrations [ M ] art and the blood

ow are considered as an input for the metabolic system. The

wo cellular compartments are equipped with the biochemical re-

ctions involved with either the production or the consumption

f ATP: the complete list of biochemical reactions accounted for

n our model, and the mathematical form of the corresponding

uxes can be found in the literature ( Calvetti and Somersalo, 2011 ).

ere our focus is on the important role of ATP in coupling the
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Table 2 

Parameters for the Hemo-Electro-Metabolic model. 

Electrophysiology model Metabolic model Hemo-Electro-Metabolic model 

Symbol Value Unit Symbol Value Unit Symbol Value Unit 

g Na 46 mS/cm 
2 [Glc] art 5 mM α 100 –

g K 16.25 mS/cm 
2 [Lac] art 1.1 mM K base,max 2.995 mM 

g Cl 0.05 mS/cm 
2 [O 2 ] art 9.14 mM 

g 0 
Na , leak 

0.0175 mS/cm 
2 CBF 0.4 mL/min 

g 0 
K , leak 

0.02 mS/cm 
2 ηn 0.4 –

γ 0.0445 mMcm 
2 / μC ηa 0.3 –

σ 103 – ηecs 0.3 –

C 1 μF/cm 
2 ηb 0.04 –

ϕ 100 msec −1 H n 4.30 mM/min 

k s 3 mM H a 3.58 mM/min 

ρ 13.83 mM/s 

G glia 20.75 mM/s 

ε 9.33 s −1 

μpump 0.1 –

μglia 0.1 –
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lectrophysiological activity and metabolism, in particular on ATP

ephosphorylation, ATP → ADP + P i , releasing E = 30 . 5 kJ/mol of

nergy that can be used to meet the energetic needs of the

odium-potassium pump in neuron, the various energetic needs of

strocyte participating in glutamine-glutamate cycling and potas-

ium cleaning, and general household maintenance in both cells.

herefore, the reaction rates of ATP dephosphorylation, denoted

y ψ 
n 
ATPase 

in neuron and ψ 
a 
ATPase 

in astrocyte, implicitly converted

nto energy flux by the factor E , are not modeled in terms of

etabolite concentrations but rather in terms of the energetic

osts of the sodium-potassium pump inducing the ion mass cur-

ent I pump , glial potassium uptake of the astrocyte resulting in

he ion current I glia , the energetic cost incurred by the glutamate-

lutamine cycle induced sodium current I Glu , as well as a variety

f household tasks in neuron and astrocyte, denoted by H n and H a 

espectively. More specifically, 

 
n 
ATPase = H n + s ( ηn I pump + 0 . 33 I Glu ) , (3) 

 
a 
ATPase = H a + s 

(
ηecs 

2 
I glia + 2 . 33 I Glu 

)
, (4) 

here ηn and ηecs are the volume fractions of the neuronal and ex-

racellular space compartments, H n and H a account for unspecified

ousehold energy in neuron and astrocyte, and s is a proportion-

lity constant. The parameter values used in our computed exper-

ment are listed in Table 2 ; for a detailed discussion on how the

alues were chosen, we refer to the original article ( Calvetti et al.,

018 ). Accounting for the volume fractions of each compartment

ia the diagonal volume matrix D, 

 = 

⎡ 

⎢ ⎣ 

ηb I 3 0 0 0 

0 ηecs I 3 0 0 

0 0 ηn I 10 0 

0 0 0 ηa I 10 

⎤ 

⎥ ⎦ , 

here I k is the identity matrix of size k × k , and the integer k de-

otes the number of metabolites in the compartment, we can write

he governing equations of the metabolism as 

 

d[ M] 

dt 
= F ([ M ] , [ M ] art , ψ 

n 
ATPase ψ 

a 
ATPase , CBF ) . (5)

n the equations governing neuronal firing, which are a modifica-

ion ( Cressman et al., 2009; 2011; Barreto and Cressman, 2011 ) of

he original formulation by Hodgkin and Huxley (1952) , the rate of

hange of the membrane voltage potential (V) in time is directly

roportional to the currents of sodium I Na , potassium I K and chlo-

ide I Cl , and inversely proportional to the membrane capacitance C ,

dV = −1 (
I Na + I K + I Cl 

)
. (6)
dt C 
The ionic currents are functions of the gating variables ( n , m , h ),

he voltage and their corresponding conductance and equilibrium

otentials ( V Na , V K , V Cl ), 

 Na = g Na 
[
m ∞ (V ) 

]
3 h 

(
V −V Na 

)
+ g Na , leak 

(
V −V Na 

)
, 

I K = g K n 
4 
(
V −V K 

)
+ g K , leak 

(
V −V K 

)
, 

I Cl = g Cl 
(
V −V Cl 

)
, 

here g Na , g K , g Cl are the ion conductances, and the leak conduc-

ances and n and h the activation and inactivation gating func-

ions of potassium and sodium, respectively. The gating variable

 ∞ ( V ) is assumed to be in equilibrium, while the variables h

nd n satisfy the standard Hodgkin–Huxley equations. The rever-

al potentials V i are computed with the Nernst equation. Unlike

n the original Hodgkin–Huxley model, the intracellular and extra-

ellular concentrations are not constants, but change due to the

odium/potassium pump action, astrocytic potassium cleaning, and

iffusion as 

d[K 
+ ] ecs 
dt 

= γ βI K − 2 βI pump − I glia − I diff , (7) 

d[ Na + ] i 
dt 

= −γβI Na − 3 I pump , (8) 

here β denotes the ratio between the volume fraction of the

euron and the volume fraction of the extracellular space, while

converts the electric current into a mass flux ( Cressman et al.,

009; Barreto and Cressman, 2011 ). 

Two additional algebraic conditions connect the intra- and ex-

racellular concentrations, 

[K 
+ ] i = 140 mM + (10 . 5 mM − [ Na + ] i ) , 

 Na + ] ecs = 144 mM − β
(
[ Na + ] i − 10 . 5 mM 

)
. 

n accordance with what was proposed in the literature

 Calvetti et al., 2018 ), the expression for the sodium-potassium

ump in terms of the concentrations of sodium and potassium and

he strength of the sodium potassium pump ( ρpump ), ( Cressman

t al., 2009; 2011; Barreto and Cressman, 2011 ), is modified to ac-

ount for ATP availability by adding a dependency on the phospho-

ylation state p n , defined in (2) as the ratio between the concen-

ration of adenosine triphosphate and adenosine diphosphate, 

 pump = 

p n 

μpump + p n 

(
ρpump 

1 + exp (25 − [ Na + ] i ) / 3) 

)

×
(

1 

1 + exp (2 . 2 − [K 
+ ] ecs 

)
, (9) 
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where μpump is an affinity constant. Similarly, the expression for

the glial potassium clearing is 

I glia = 

p a 

μglia + p a 

(
G glia 

1 + exp (14 . 7 − [K 
+ ] ecs ) / 2 . 5) 

)
, (10)

where G glia is the uptake strength of the glia, μglia is an affinity

constant and p a denotes phosphorylation state in astrocyte. We re-

mark that the formulas (9) and (10) are as in Calvetti et al. (2018) ,

but the parameters, listed in Table 2 , have been modified so that

the potassium levels predicted by the model are in line with the

physiological values reported in literature ( Larsen et al., 2016 ). In

line with models proposed in the literature ( Barreto and Cressman,

2011; Cressman et al., 2009 ), potassium diffusion is governed by

extracellular potassium concentration, a diffusion coefficient ε and

the surrounding potassium concentration k s , 

I diff = ε
(
[K 

+ ] ecs − k s 
)
. 

The units and values of all parameters appearing in the expressions

above for the baseline frequency of 4 Hz characteristic for the neu-

ron at rest are listed in Table 2 . The details concerning the choice

of parameters can be found in the literature ( Calvetti et al., 2018 ).

Higher neuronal frequencies are triggered by a stimulus parameter

ξ which causes the leak conductances of both sodium and potas-

sium to temporarily increase, 

g Na , leak = (1 + ξ (t)) g 0 Na , leak , (11)

g K , leak = (1 + ξ (t)) g 0 K , leak . (12)

This way of inducing neuronal activation, proposed by several au-

thors ( Calvetti et al., 2018; Carter and Bean, 2009; Lajtha et al.,

2007 ), is motivated by the large influx of sodium and potassium

accompanying the increase in glutamate during activation. In our

computed experiments, we model an awake resting state as corre-

sponding to a frequency of 8 Hz, attained by setting the stimulus

parameter to ξ = 0 . 05 . 

The sodium leak current induced by the increase of the mem-

brane permeability through the function is given by 

I Na , leak = g Na , leak (V −V Na ) , 

while the average sodium leak current during resting state is de-

noted by I 0 
Na , leak 

. 

The glutamate-glutamine flux is accounted for through 

I Glu = 

{ 

γ

σ

(
I Na , leak − I 0 Na , leak 

)
if ξ (t) > 0 

0 if ξ (t) = 0 
, (13)

which relates it to the energetic cost of glutamate-glutamine cy-

cling during synaptic activity ( Calvetti et al., 2018 ). 

We collect the five unknowns of the electrophysiological model

in the vector 

u (t) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

V (t) 

[ Na + ] i (t) 

[K 
+ ] ecs (t) 

n (t) 

h (t) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

∈ R 
5 , 

and express the governing equations as the nonlinear system of

ordinary differential equations 

du 

dt 
= f (u, p n , p a , ξ ) , (14)

where the input phosphorylation states are determined by the

metabolic model described above. 
The Hodgkin–Huxley model and generalizations thereof were

riginally thought for a single cell, while the metabolic spa-

ially lumped model represents a volume containing an unspeci-

ed size of cell population. When integrating neuronal firing with

etabolism and hemodynamics, we implicitly assume the electro-

hysiological model to represent the activity of an average neuron-

strocyte pair. Therefore the energetic needs of the complex are

he integrated needs of the cell population, with the electrophys-

ological single cell model providing the justification for the cou-

ling between the energetics of neuron and astrocyte populations.

ummarizing, the input for the EMM consists of 

• Arterial concentrations of glucose, oxygen and lactate [ M ] art ,

M = { glucose , oxygen , lactate } ; 
• Cerebral Blood Flow CBF( t ); 
• Activation function ξ ( t ). 

The metabolic and electrophysiological modules are connected

hrough a double feedback loop where 

• The metabolic model defines p n ( t ) and p a ( t ), the inputs for the

electrophysiological model; 
• The electrophysiological model determines the ATP demand

used to compute ψ 
n 
ATPase 

in neuron and ψ 
a 
ATPase 

in astrocyte,

comprising the input for the metabolic model. 

The difference of several orders of magnitude in the character-

stic time scales of metabolism and electrophysiology poses a real

hallenge for computing model predictions with a numerical time

ntegrator, the millisecond range of electrophysiology time scale

equiring a much finer time discretization than what would suf-

ce for the metabolism, whose time scale is in the order of sec-

nds or minutes. A numerical scheme designed specifically to ac-

ommodate the different time scales has been recently proposed

 Calvetti et al., 2018 ). 

. Blood flow model 

Neuronal activation is followed by a rapid focal increase of CBF

nd cerebral blood volume (CBV), supplying the activated region

f the brain with the nutrients necessary to support the increased

etabolic activity, most importantly oxygen. While experiments

onfirm the basic mechanism ( Logothetis et al., 2001 ), details con-

erning the underlying signaling are not fully known. Experimental

vidence for potential causes of the vasodilation supports different

ossible mechanisms, including increased concentration of lactate

 Mintun et al., 2004 ), extracellular potassium ( Filosa et al., 2006 ),

r nitric oxides originating from the neurotransmission related glu-

aminase ( Lourenço et al., 2016 ). Evidence points to a central role

f astrocytic regulation through the end feet in the signal transmis-

ion to the hemodynamic complex ( Iadecola, 2017; Takano et al.,

006; Nortley and Attwell, 2017 ). 

The increase in CBF and CBV can be understood in terms of

ctivity-induced relaxation of the smooth muscles in the walls

f arterial and venous blood vessels and/or pericytes in capillary

alls, physically leading to an increased vessel compliance, al-

hough it has not been settled definitely which segment of the

erebrovascular network is responsible for the increase of the

lood flow; a comprehensive discussion of the topic has been re-

ently published ( Iadecola, 2017 ). Recent evidence from optical

maging that the increase in CBF is mainly due to arterial rather

han venous blood vessels, made obsolete the hypothesis of a

ainly venous contribution of the original balloon ( Buxton et al.,

998 ) and windkessel models ( Mandeville et al., 1999; Kong et al.,

004 ). The hemodynamic portion of our integrated model does not

xclude some venous and capillary contribution, but implicitly as-

umes a much more prominent arterial contribution, in agreement

ith recent findings. 
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Fig. 2. Schematic of the hemodynamic model, and the corresponding analog RC circuit, in which the volumes ( v j ) correspond to electric charges, pressures ( p j ) to voltages, 
and blood flows ( f j ) to electric currents. The flow resistances ( r j ) correspond to electric resistances, and compliances ( c j ) to capacitances. The pressures are normalized to 

intracranial pressure, representing the ground. The given input pressure p 1 corresponds to the total pressure drop across the complex. 
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Although the blood flow has been incorporated in some

etabolic models to explain the BOLD signal as a causal re-

ponse to increased metabolic activity ( Aubert and Costalat, 2002 ),

nd to connect it to oxygen dynamics in tissue ( Huppert et al.,

0 07; Kocsis et al., 20 06; Zheng et al., 20 05 ), an integrated model

ncluding a feedback loop between metabolism and blood flow

eems to be missing. In this work, we propose a model interfac-

ng the EMM with a multi-compartment cerebral blood flow model

 Barrett et al., 2012 ) that divides the vascular complex in arterial

 j = 1 ), capillary ( j = 2 ) and venous ( j = 3 ) compartments, each

haracterized by time dependent volume v j , resistance r j and com-

liance c j . Denoting by f j−1 and f j the blood flows in and out of the

 th compartment, it follows from the conservation of mass that 

dv j 
dt 

= f j−1 − f j , 1 ≤ j ≤ 3 . (15) 

he compliance relates the pressure P j in the compartment relative

o the intracranial pressure with the compartment volume, 

 j = c j P j , 1 ≤ j ≤ 3 , (16) 

nd by dividing the resistance of each compartment symmetrically

etween inflow and outflow, the pressure drop between the entry

oint and exit point is related to the blood flow and resistance, 

p j − P j = 

1 

2 

r j 

f j−1 

, P j − p j+1 = 

1 

2 

r j 

f j 
, (17) 

here p j is the entry pressure, p j+1 the exit pressure. 

The resistance of the compartment depends on the dilation of

he vascularization, which in turn depends on the volume. Assum-

ng a Poisseuille flow model in a fictitious cylindrical tube, resis-

ance can be expressed in terms of volume, 

 j ∝ 

1 

v 2 
j 

, (18) 

where ∝ means proportionality with a proper scaling. Finally,

ollowing Barrett et al. (2012) , in order for the compliance to take

nto account the viscoelastic and stiffness properties of the veins,

e write 

 j = c ∗j 

( 

k j − v j 
v ∗
j 

k j − 1 
− E j 

dv j 
dt 

+ s j (t) 

) 

, 1 ≤ j ≤ 3 (19) 
here c ∗
j 
and v ∗

j 
are the baseline compliance and volume, re-

pectively, k j is the stiffness, E j is the viscoelastic constant and

 j = s j (t) is the vasodilatory stimulus associated with the compart-

ent. The system can be interpreted in terms of an analog RC cir-

uit with known electromotive force corresponding to the known

ressure drop over the full circuit, see Fig. 2 . 

The presence of the derivative of the volume in (19) makes the

ystem a non-standard differential model, and an efficient solu-

ion requires careful handling ( Calvetti et al., 2019 ): the cerebral

lood flow can be computed as a weighted average over the inter-

ompartmental flows, 

BF (t) = 

3 ∑ 

j=1 

v j (t) 
[
f j−1 (t) + f j (t) 

]
2 

3 ∑ 

j=1 

v j ( t) 
. (20) 

To couple the hemodynamic model with the EMM

 Calvetti et al., 2018 ), we postulate the following feedback

onnection mechanisms: 

• The blood flow input function of the EMM is computed accord-

ing to (20) from the output of the hemodynamics model; 
• The extracellular potassium concentration [K + ] ecs (t) is com-

puted by the EMM and determines the arterial stimulus func-

tion S(t) = s 1 (t) in (19) , while s 2 = s 3 = 0 . In light of experi-

mental findings ( Filosa et al., 2006 ), we assume that the el-

evated extracellular potassium concentration triggers a calcium

wave in the surrounding astrocytes, which travels along the end

feet to the penetrating arterioles, causing an increase in the ar-

terial compliances as described by Eq. (19) . The increased com-

pliance induces an increase in arterial volume (16) and a de-

crease in resistance (18) , in turn increasing the downstream

pressure leading to an increase of both capillary and venous

volumes. The details of the interface are given in the following

section. 

. Coupling metabolism, electrophysiology and blood flow 

The inputs to the EMM are the arterial metabolite concentra-

ions, blood flow, and the activation function ξ ( t ) which triggers

he neuronal firing. The only input to the hemodynamic model
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Fig. 3. Schematic representation of the three-way feedback loop. The time marching uses three nested time steps, �T for the hemodynamics, �t for metabolism, and �τ

for electrodynamics. The output of the Electro-Metabolic Model over the time interval [ t j , t j + �t] comprises the extracellular potassium profile K j , leading to the integrated 

potassium signal σ j and, through integration over the interval [ T i , T i + �T ] , to the hemodynamic stimulus s i that serves as an input for the hemodynamic model. The 

hemodynamic model determines the CBF profile that regulates the metabolic model through nutrient supply. The only external inputs are the arterial concentrations of 

glucose, oxygen and lactate, and the neuronal activation function describing an electrophysiological signal arriving from outside the unit through the presynaptic axon. 
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is the vasodilatory stimulus function that we postulate to depend

on the extracellular potassium concentration, computed as an out-

put by the EMM, while the CBF is an output of the hemodynamic

module. This suggests a double feedback between EMM and hemo-

dynamic model based on the potassium signal and CBF. The only

external inputs remaining to be specified are the arterial concen-

trations and the activation function. A schematic of the complete

three-way feedback loop is shown in Fig. 3 . The dependency of the

vasodilatory stimulus on extracellular potassium concentration is

modeled as 

s (t) = α
(
[K 

+ ] ecs − K base , max 
)

∗ w (t) 

= α

t ∫ 
0 

(
[K 

+ ] ecs (t ′ ) − K base , max 
)
w (t − t ′ ) dt ′ (21)

where K base,max is the maximum extracellular potassium concen-

tration for awake resting state and w (t) is a weight function such

that 

w (t) = exp 

(
− t 

χ

)
, χ = 0 . 6514 s , (22)

and α is a volume-dependent scaling constant. Observe that the

kernel w describes the fading off of the vasodilatory stimulus after

the excess potassium in extracellular space has been removed by

astrocyte clearing and diffusion. The time constant χ is chosen so

that after 3 s the kernel has decreased to 1% of its peak value,

therefore the length of the interval of integration in (21) can be

limited effectively to 3 s. 

The different characteristic time scales must be handled care-

fully when designing a numerical scheme to compute model pre-

dictions. The time step �τ of electrophysiology, in the millisecond
ange, is adaptively chosen by the built-in MATLAB function

de15s; the time step of the metabolic processes is set to �t =
 . 05 sec, while a time step �T = 1 sec is used for the compu-

ation of the much slower changes in blood flow ( Calvetti et al.,

018 ). Denoting by T c the current value in the coarse time step, let

 j = T c + j�t, 0 ≤ j ≤ m = 20 with t m = T c + �T . Denoting by K j ( t 
′ )

he potassium concentration profile over the interval over [ t j , t j+1 ] ,

e define 

j = 

∫ t j +�t 

t j 

(K j (t 
′ ) − K base , max ) dt ′ . (23)

he stimulus function (21) at time t j can now be approximated as 

 j = s (t j ) = 

L ∑ 

� =1 

α

∫ t j −(� −1)�t 

t j −� �t 

(
[K 

+ ] ecs (t ′ ) − K base , max 
)
w (t − t ′ ) dt ′ 

≈ α
L ∑ 

� =1 

w (� �t) σ j−� , 

here the entries σ j−� with negative index refer to entries com-

uted during the previous hemodynamic time steps, and the index

 is determined by the condition w (� �t ) ≈ 0 if � > L . 

The numerical procedure for computing the predictions of the

urrent three-way feedback integrated model of hemodynamics,

lectrophysiology and metabolism is summarized below. Since the

lgorithm comprises three different time scales and requires model

atching on two time scale interfaces, we divide the algorithm de-

cription in two parts, the coarse and the fine time scale marching

chemes. Both interfaces use the same algorithmic structure. 
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Coarse time scale marching 

Given: Time steps �t , �T = m �t ; 

Initialize: T c = 0 , CBF c = baseline value; 

while T c < T max do 

Extrapolate CBF as constant over [ T c , T c + �T ] . Call it CBF

Propagate EEM over [ T c , T c + �T ] using CBF ∗ as input; 

Compute σ j , 1 ≤ j ≤ m defined by formula (23), and the

0 ≤ j ≤ m ; 

Propagate the hemodynamic model using S j as input to 

Define CBF over [ T c , T c + �T ] by interpolating linearly be

Repropagate EEM over [ T c , T c + �T ] using the interpolate

Update CBF c = CBF + ; 
Update T c = T c + �T . 

end do 

Above, we propagate twice the EEM model over a time inter-

al of length �T , which is accomplished by running the algorithm

elow. 

Fine time-scale marching 

Given: Time steps �τ , �t = k �τ ; 
Initialize: t c = T c , p c = (p n , p a ) c = values at T c ; 

while t c < T c + �T do 

Extrapolate p = (p n , p a ) as constant over [ t c , t c + �t] . Ca

Propagate electrophysiology model over [ t c , t c + �t] usin

Compute ψ = [(ψ 
n 
ATPase 

, ψ 
a 
ATPase 

) 1 , . . . , (ψ 
n 
ATPase 

, ψ 
a 
ATPase 

) k
Propagate the metabolic model using ψ as input to get u

Define p over [ t c , t c + �t] by interpolating linearly betwe

Repropagate electrophysiology model over [ t c , t c + �t] us

Update p c = p + ; 
Update t c = t c + �t . 

end do 

. Results 

To demonstrate the predicting power of our computational

odel, we consider two computer experiments. In the first exam-

le we track changes in brain metabolism and hemodynamics over

n interval of 10 min as the system undergoes transitions from an

wake resting state, characterized by neuronal mean firing at 8 Hz

requency to a period of neuronal activation of the duration of 45

, at a mean firing frequency of 90 Hz. In the second one, the du-

ation of the 90 Hz activation period is increased to 3 min, and the

otal simulation time interval is increased to 30 min. The rationale

nd physiological interpretation of the simulations are discussed

n the next section, where we analyze the results in the context of

xperimental findings reported in the literature. The frequency in-

rease from 8 Hz to 90 Hz is induced by a rise of the value of the

ctivation input from ξ = 0 . 05 during rest awake to ξ = 2 . 5 during

euronal activation. The activation periods are indicated in Figs. 4

nd 5 by gray shading. 

Row A of Figs. 4 and 5 shows the time course of metabolite

oncentrations in blood and the relative increase in CBF during the

espective activation protocols, and row B the time course of prin-

ipal metabolite concentrations in the tissue compartments dur-

ng the simulation period. Row C summarizes the cross-membrane

ransport rates, while row D and panels (i) and (ii) of row E the

eaction fluxes in neuron and astrocyte. Panels (iii) and (iv) of row

 show the time course of the oxygen glucose index (OGI) and the

erebral metabolic rate of glucose. Panels (i) and (iii) of row F show

ow action potential and frequency, as well as intracellular sodium
ulus S j = s (T c + j�t) , 

pdated CBF + at T c + �T ; 

n CBF c and CBF 
+ ; 

F as input; 

 
∗ = (p ∗n , p ∗a ) ; 
as input; 

ted p + at t c + �t; 

 c and p 
+ ; 

nterpolated p as input; 

nd extracellular potassium concentrations, change as the system

ransitions from resting state to activation, and back. Panels (ii) and

iv) of row F show details of the slow after-hyperpolarization. 

. Discussion 

A typical neuron population in human cortex consists roughly

f principal pyramidal neurons and interneurons, the former ones

eing more abundant, the interneurons comprising about 10% of

he population, depending on the cortical region ( Freund and

uzsáki, 1996; Viskontas et al., 2007 ). The firing rate of human cor-

ical neurons vary from one neuron type to another. The fast spik-

ng (FS) neurons generate high frequency action potential trains

ith little frequency modulation, the maximal mean frequency be-

ng about 340 Hz, with momentary instantaneous frequency reach-

ng up to 450 Hz ( Wang et al., 2016 ). Among the interneurons, the

S neurons are abundant, mostly GABAergic neurons, constituting

p to 40% of the neocortical interneuron population. The frequency

istribution in an active region of the human brain is location de-

endent, and difficult to determine. Non-invasive methods, such as

EG and MEG, are mostly believed to observe oscillations of the

ost-synaptic dipole field ( Hämäläinen et al., 1993 ), which is not

irectly related to the neuron firing rate. Likewise, clinical depth-

lectrodes, implanted in the brain of epilepsy surgery patients

ecord local field potentials, which do not translate directly into ac-

ion potentials. However, it is believed that the high γ -band (HG)

scillations (60–200 Hz) are related to inhibitory post-synaptic
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Fig. 4. Model predictions of the changes in metabolism, electrophysiology and CBF as the system switches from resting state to high frequency firing for a period of 45 s: In 

each panel, the high activity period is indicated by a gray shadow. Row A. Blood compartment: (i) glucose, (ii) lactate, (iii) oxygen concentrations and (iv) relative CBF. Row 

B: neuron (red), astrocyte (blue) and extracellular space (black) time courses for the concentrations of (i) glucose, (ii) lactate, (iii) oxygen and (iv) pyruvate concentrations. 

Row C: Transport rates between (i) extracellular space and neuron, (ii) extracellular space and astrocyte, and (iii) blood and extracellular space for glucose (blue), lactate 

(red) and oxygen (black). Panel (iv) shows lactate dehydrogenase balance flux for neuron. Row D: Reaction fluxes for (i) glycolysis, (ii) tricarboxylic acid cycle, (iii) oxidative 

phosphorylation and (iv) Creatine phosphorylation net flux. Row E: (i) phosphorylation state in neuron (red) and astrocyte (blue), (ii) redox state in neuron (red) and 

astrocyte (blue), (iii) oxygen glucose index (OGI), (iv) cerebral metabolic rate of glucose oxidation. Row F: (i) Action potential and its associated frequency, (ii) A detail of 

the slow after-hyperpolarization, (iii) time course of intracellular sodium (black) and extracellular potassium (red), (iv) sodium and potassium concentrations in the slow 

after-hyperpolarization phase. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 5. Model predictions of the changes in metabolism, electrophysiology and CBF as the system switches from resting state to high frequency firing for a three-minute 

period: In each panel, the high activity period is indicated by a gray shadow. Row A. Blood compartment: (i) glucose, (ii) lactate, (iii) oxygen concentrations and (iv) 

relative CBF. Row B: neuron (red), astrocyte (blue) and extracellular space (black) time courses for the concentrations of (i) glucose, (ii) lactate, (iii) oxygen and (iv) pyruvate 

concentrations. Row C: Transport rates between (i) extracellular space and neuron, (ii) extracellular space and astrocyte, and (iii) blood and extracellular space for glucose 

(blue), lactate (red) and oxygen (black). Panel (iv) shows lactate dehydrogenase balance flux for neuron. Row D: Reaction fluxes for (i) glycolysis, (ii) tricarboxylic acid cycle, 

(iii) oxidative phosphorylation and (iv) Creatine phosphorylation net flux. Row E: (i) phosphorylation state in neuron (red) and astrocyte (blue), (ii) redox state in neuron 

(red) and astrocyte (blue), (iii) oxygen glucose index (OGI), (iv) cerebral metabolic rate of glucose oxidation. Row F: (i) Action potential and its associated frequency, (ii) A 

detail of the slow after-hyperpolarization, (iii) time course of intracellular sodium (black) and extracellular potassium (red), (iv) sodium and potassium concentrations in the 

slow after-hyperpolarization phase. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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polarization ( Bragin et al., 1999 ), and therefore possibly to FS activ-

ity. Further, the HG oscillations are believed to be related to func-

tional activation of the human cortex ( Ray et al., 2008; Smith et al.,

2014 ), and to be the representative signature of activated neu-

ronal populations as they describe wide-scale neuronal processes

that are associated with cognition and perception ( Cheyne and

Ferrari, 2013 ). In the simulations of the previous section, we have

selected the mean frequency representing high neuronal activity

to be 90 Hz; such mean activity could be obtained, e.g., by as-

suming roughly 90% of pyramidal cells with firing frequency of

60 Hz, and 10% of FS interneurons with frequency of 340 Hz. This

hypothetical partitioning serves only to justify the parameter se-

lection in our computational model simulation. The durations of

the high neuronal activities are chosen to represent an intense

task of 45 s in the first protocol, while the second protocol, with

high intensity firing lasting three minutes, is intended to simulate

an extreme event, e.g., a tonic-clonic epileptic episode, that typi-

cally continues for 1–3 min. Interestingly, the GABAergic interneu-

rons are identified to be susceptible for neuron loss during pro-

longed epileptic episodes (status epilepticus) of more than 5 min

( Sutula et al., 2003 ), supporting the assumption that the high fre-

quency activity using up the energy resources can be attributed to

these neurons. Furthermore, while our current metabolic model is

too simplified to distinguish between glutamatergic and GABAer-

gic neurons, the significant role of the latter ones during inten-

sive neuronal activation has been recognized both in experiments

( Hertz et al., 1988; Patel et al., 2005 ), as well as in simulation stud-

ies ( Occhipinti et al., 2010; Calvetti and Somersalo, 2012 ). Recall

that, according to the volume scaling argument, more focal activ-

ity can be simulated by scaling the time by the volume fraction,

as pointed out in the introduction. However, the combined model

proposed here is not directly scalable, as the electrophysiology and

metabolism still need to be appropriately coupled ( Calvetti et al.,

2018 ). 

In both computed experiments, the model predicts that within

the first second of neuronal activation, CBF increases 77% above

baseline value and 16 s after it stabilizes around 26% above base-

line for the duration of the activation period, in agreement with

recent literature ( Moses et al., 2014 ). 

We observe a similar spike in the neuronal frequency, which

initially reaches 107 Hz and then rapidly stabilizes at 90 Hz for the

duration of the neuronal activation. In line with what we would

expect from electrophysiology alone, there is a reduction in ampli-

tude of the action potential during activation, accompanied by an

increase of intracellular sodium and extracellular potassium con-

centrations. 

Remarkably, the model accurately predicts the slow after-

hyperpolarization (sAHP) effect, ( Gulledge et al., 2013; King et al.,

2015 ) a brief neuronal silencing at the end of the activation period

lasting approximatively 16 s regardless of the duration of the pre-

ceding activation. Panel (ii) of row (F) of Figs. 4 and 5 shows how

the activity stops and the membrane is hyperpolarized during the

slow AHP period, while panel (iv) in the same row shows the time

course of extracellular potassium concentration and intraneuronal

sodium concentration during the slow AHP period. The sAHP phe-

nomenon can be interpreted in two ways. As the electrophysiology

model is still a single neuron model, the silent period represents

a silencing of single neurons after prolonged high activity, how-

ever, the time scale for a single neuron may not be realistic. On

the other hand, in the context of mean activity of a neuron pop-

ulation, the sAHP represents an average slow-down of the firing

activity. 

In conjunction with the increase in firing frequency, there is an

increase in the consumption of glucose, whose concentration dur-

ing the activation of three minutes falls to 35% of its baseline value

in neuron and extracellular space, and to 13% of its initial value
n astrocyte, while in the shorter activation simulation, the corre-

ponding lows are 75% and 50% of the baseline, respectively. In the

lood compartment, following the initial spike in CBF at the be-

inning of the activation, the glucose concentration experiences an

nitial increase due to increased availability. This is followed by a

low steady decrease during the activation due to the increased

ptake, accompanied by a sharp increase in production of lactate.

he lactate concentration in blood increases 40% over its baseline

alue during the 45 seconds’ activation and 60% for the activation

f 3 min; similar increases are observed in lactate levels in the

issue. After the activation ends, the glucose values in blood have

unk below the baseline, more pronouncedly after the longer acti-

ation protocol. 

There is a significant consumption of pyruvate during neuronal

ctivation, as indicated by the increase in the rate of TCA cycle

f 83% in neuron and 59% in astrocyte. At baseline, the prevail-

ng direction of lactate dehydrogenase in neuron is slightly towards

yruvate production, but during activation it shifts towards lactate

roduction. In astrocyte, on the other hand, the prevailing direc-

ion is slightly towards lactate production at baseline, switching

riefly to pyruvate production during the first seconds of activa-

ion, followed by a return to lactate production. Thus, the model

oes not support a strong switch to a lactate supply from astro-

yte to neuron during the activation, which has been a topic of

ctive debate in the literature ( Chih and Roberts Jr, 2003; Pellerin

nd Magistretti, 2003 ). To address the question properly, a more

omprehensive model would be necessary. 

The difference in glucose concentration drops in neuron and in

strocyte is a consequence of the different glucose transporter iso-

orms in neuron (GLUT3) and astrocyte (GLUT1) which are mod-

led by different transport rates: The neuronal glucose concentra-

ion follows closely to the concentration in the ECS, while a larger

oncentration gradient is necessary for the glucose transport to as-

rocyte. The resulting imbalance in glucose partitioning has been

dentified as one of the key factors for deciding the direction of

actate traffic between the cells ( Calvetti and Somersalo, 2012; DiN-

zzo et al., 2010 ). Not surprisingly, during neuronal activation oxy-

en demand is much higher, and translates into a big decrease in

he oxygen levels in tissue: In both activation protocols, the oxy-

en level in ECS drops by about 40%, by almost 90% in neuron, and

y 75% in astrocyte. In the blood compartment we report the to-

al concentration of oxygen, i.e., the sum of the amount of oxygen

reely dissolved in plasma and oxygen bound to hemoglobin. An

nitial spike in oxygen concentration in blood at the beginning of

he activation is followed by a modest increase of 3% over awake

esting state value. Once the activation ends, a dip of approxima-

ively 5% in oxygen blood level occurs, followed by a fast recovery

o baseline value. 

Similarly, glycolysis in neuron shows a significant increase dur-

ng neuronal activation, while in astrocyte an initial peak is fol-

owed by a decrease below baseline value. During the long acti-

ation, this decrease takes place already during the activation, in

arallel to the decrease of lactate production by astrocyte. 

In neuron, the rates of the TCA cycle and oxidative phospho-

ylation reactions show an initial spike after which they settle for

he duration of the activation at approximatively 30% above base-

ine. In astrocyte these reaction fluxes exhibit a very small decay

uring activation, followed by a peak at the end of it. 

As shown in row C of Figs. 4 and 5 , the transport rates be-

ween extracellular space and neuron show a significant 4 fold

ate increase for glucose and a 30% increase in oxygen over rest-

ng state values. Conversely, there is a big decay in the trans-

er rate of lactate from extracellular space to neuron during the

ctivation period. In fact, while lactate is transported from ex-

racellular space to neuron at awake resting state, during activa-

ion lactate is transported from neuron to extracellular space. The
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Fig. 6. Recovery times required by glucose (first row, left panel), oxygen (first row, center panel), phosphorylation states (first row, right panel), lactate (second row, left 

panel) and pyruvate (second row, center panel) for the experiment in which the duration of the neuronal activation was 45 s. The x -axis shows the time after the activation 

ended in minutes and the y -axis shows the recovery of each metabolite, expressed in percentages. 
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ransfer rates of glucose and oxygen from extracellular space to as-

rocyte exhibit a small decay during activation, matched by a small

ncrease in the rate of lactate efflux from astrocyte to extracellu-

ar space. The transport rate of oxygen across BBB shows an in-

rease of 15%, from 1.49 mM/min during baseline to 1.71 mM/min

uring activation. The rate at which glucose crosses the BBB in-

reases about 40% during activation, while there is a 6 fold increase

n the rate at which lactate escapes from ECS to blood. The values

redicted by the model at awake resting state and during activa-

ion are well within the ranges reported in experimental literature

 Madsen et al., 1998; Wehrli et al., 2014 ). 

The phosphorylation state in both neuron and astrocyte drops

lmost to zero by the end of the 3 minutes’ neuronal activation pe-

iod, suggesting that all ATP produced goes towards satisfying the

ncreased energetic demand. Redox state, measured as the ratio be-

ween the concentrations of NADH and NAD 
+ 
, exhibits a large in-

rease over resting state value during activation: In the 3 minutes’

ctivation protocol, the increases are up to 8 fold in neuron and

 fold in astrocyte. Panel (iii) in row E of Figs. 4 and 5 show the

ime course of the oxygen glucose index (OGI), defined as the ra-

io between the cerebral metabolic rate of oxygen and the cerebral

etabolic rate of glucose. The resting value 5.2 is in line with the

ecent studies of OGI in gray matter: Hyder et al. ( Hyder et al.,

016 ) report resting OGI value around 5.3 consistently over the

hole brain. During the first 20 s of the activation, the OGI in-

ex increases about 10% over baseline, after which it starts to de-

rease, decreasing to 8% below the baseline value in the short acti-

ation, and 18% of the baseline value in the long activation, slowly

ecovering to the resting value after the activation ceases. The de-

rease during the long activation protocol is well in line with ex-

erimental findings ( Vafaee et al., 2012 ) for human left primary

otor cortex and left supplementary motor cortex when the acti-

ation corresponds to several minutes’ finger-to-thumb apposition

f the right and dominant hand. In the literature, smaller decreases

n OGI during moderate activation have been reported, from 8%
 Shulman et al., 2014 ) to 6% ( Wehrli et al., 2014; Shulman et al.,

001 ), which are perfectly in line with our findings in the short

ctivation protocol. 

A question of interest from the point of view of, e.g., studying

ecovery after seizures, is the return times of the metabolite lev-

ls to baseline after the activity has ended. In Fig. 6 , we show the

ercentage of recovery of the principal metabolites at various time

nstances for the experiment with an activation period of 45 s. No-

ice that just 1 min after the neuronal activation has stopped, most

f the metabolites have already recovered to 90% of their base-

ine values. The astrocytic compartment is significantly slower in

erms of recovery compared to the other compartments for most of

he metabolites, due to the cleansing role of these cells: Energy is

eeded for recovering the ion homeostasis after the activation. In

strocyte, one minute after the end of the activation period, glu-

ose has recovered only 75% of its initial value, oxygen 91%, and

he phosphorylation state is at 89% of its baseline value. 

. Conclusions 

This paper develops a unified model combining brain en-

rgy metabolism with the underlying electrophysiology describ-

ng neuron firing and astrocytic ion cleansing, as well as with the

etabolite supply system through hemodynamics. The model is

ased on the idea of two-way mechanisms by which the different

onstituents communicate with each other: the electrophysiology

odel and metabolic components exchange information about en-

rgy needs and energy availability, the hemodynamic model pro-

ides the supply of metabolites and thus controls the energy pro-

uction, while itself being controlled by the potassium signal orig-

nating from neuron firing activity, affecting the vessel complian-

ies and thus the cerebral blood flow. The numerical simulations

emonstrate that even while the metabolic network is rather re-

uced, we are able to produce model predictions that qualitatively

nd quantitatively correspond to experimental results. 
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The integrated model has the potential for interpreting indi-

rect measurements of brain functions. Our understanding of work-

ing human brain is largely based on indirect observations of

one of the three main components of the model, hemodynamics

through BOLD fMRI, metabolism through PET, and electrophysiol-

ogy through EEG/MEG. While there are good reasons to use one

of the modalities as a proxy for another, the proposed integrated

model is a step towards putting the implicit assumptions on a

well-established basis. Moreover, the model may serve to better

understand the mechanisms behind some diseased states that in-

volve more than one of the three aspects of the brain functions.

The best candidates are migraine and cortical spreading depres-

sion that involve all three aspects of the brain, as well as epilep-

tic seizures, which are electrophysiological in nature, but the cell

damage is due to energy insufficiency. The connection between

epilepsy and metabolism is confirmed by the use of ketogenic diet

as seizure control in refractory epilepsy, however, the details re-

main elusive. In our simulation with a longer activation period, the

phosphorylation state going almost to zero causes a quenching of

the sodium-potassium pump action which could explain the cell

damage and neuronal loss reported following continued seizure-

like conditions. While the current model does not contain the ele-

ments of describing the damage process, it may serve as a base to

study seizure-related cell damage. Observe that in the shorter sim-

ulation, while the phosphorylation levels drop, they do not reach

as low levels as in the long activation, as one expects. 
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