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ABSTRACT

The energetic needs of brain cells at rest and during elevated neuronal activation has been the topic
of many investigations where mathematical models have played a significant role providing a context
for the interpretation of experimental findings. A recently proposed mathematical model, comprising
a double feedback between cellular metabolism and electrophysiology, sheds light on the interconnec-
tions between the electrophysiological details associated with changes in the frequency of neuronal firing
and the corresponding metabolic activity. We propose a new extended mathematical model compris-
ing a three-way feedback connecting metabolism, electrophysiology and hemodynamics. Upon specifying
the time intervals of higher neuronal activation, the model generates a potassium based signal leading
to the concomitant increase in cerebral blood flow with associated vasodilation and metabolic changes
needed to sustain the increased energy demand. The predictions of the model are in good qualitative
and quantitative agreement with experimental findings reported in the literature, even predicting a slow

after-hyperpolarization of a duration of approximately 16 s matching experimental observations.

© 2019 Published by Elsevier Ltd.

1. Introduction

Understanding the connections between electrophysiology,
metabolism and hemodynamics in human brain is essential for
shedding light on the mechanisms behind their mutual regulation,
and for elucidating to what extent a disruption in one of these
cerebral functions may, partly or completely, impair the others
(Dienel, 2017; Martin, 2014). A deeper understanding of the deli-
cate interplay between these three systems would help also appro-
priately establish how reliably measurements from brain imaging
modalities following hemodynamic changes can be used to infer
on brain electrophysiology (Raichle and Mintun, 2006; Shibasaki,
2008; Raichle, 1987; Magistretti and Allaman, 2015).

It is well-known that increase in neuronal activity is fol-
lowed by higher cerebral blood flow in the surrounding region
(Logothetis et al., 2001), however a comprehensive explanation for
the phenomenon is still missing (Attwell et al., 2010; ladecola,
2017). Another question waiting for a definitive answer is how
the brain meets the energetic costs of membrane depolarization
and repolarization in connection with excitatory or inhibitory neu-
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ronal activity, a topic that continues to motivate research on
brain energy metabolism (Bélanger et al., 2011; Hirrlinger and
Waagepetersen, 2014). Over the past two decades, astrocytes have
been increasingly recognized as having a much more prominent
role in brain energy metabolism than initially believed, elevating
them to major metabolic players in the energetics of excitation
and inhibition when it comes to the cycling of neurotransmitters,
maintaining redox balance, and clearing potassium following neu-
ronal firing (Hertz et al., 2007; Calvetti and Somersalo, 2012; Bak
et al., 2018; Barros et al., 2018). In computational neuroscience, the
paradigm based on networks of neurons alone has begun to shift
towards a more integrated picture, where astrocytes have a more
pronounced role through their control of ion concentrations in ex-
tracellular space, in turn affecting neuronal firing. Furthermore, it
has been demonstrated that astrocyte end feet enclose brain capil-
laries and may play a role in cerebral blood flow (CBF) regulation,
although the underlying mechanism connecting it to the neuronal
activation is not fully understood yet (Iadecola, 2017; Takano et al.,
2006; Nortley and Attwell, 2017). A predictive mathematical model
that can account for all three cerebral functions and their mutual
interactions is a useful tool for testing possible feedback modes.
In the absence of direct observations, Predictive cell level math-
ematical models have been deemed necessary to advance the
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Fig. 1. A schematic of the integrated hemodynamic-electro-metabolic model. The neuron (blue) and astrocyte (orange) are assigned separate compartments, but there is
no division between pre- and post-synaptic neuron, nor between soma, neuronal dendrites and axons, or astrocyte end feet. A separate compartment is reserved for blood,
accounting for arterial, capillary, and venous components in the hemodynamic module. In line with current understanding, we assume that the extra blood volume rushing to
the activation site in response to the activation is due to vasodilation in the arterioles triggered by the activation induced increased potassium concentration in extracellular
space (ecs). The uniform yellow background in the left panel indicates the higher Na* concentration in extracellular space at rest: in the right panel the lilac cloud illustrates
the temporary increase in extracellular K* concentration during the repolarization phase due to the Na*-K* pump activation, also responsible for the increase in energy
demand, symbolically denoted by yellow stars. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

understanding of the human neurovascular complex. Following the
original contribution of Hodgkin and Huxley (1952), neuronal firing
has been extensively studied by means of mathematical models of
different complexity, including models describing the dynamics of
ion fluxes responsible for transmission of action potentials across
synaptic clefts (Cressman et al., 2009; 2011; Barreto and Cressman,
2011). As computational neuroscience moves towards integrating
more neurophysiology into models of neuronal firing, the ener-
getic costs of operating the sodium potassium pump have started
being accounted for Jolivet et al. (2015). A recent mathematical
model Calvetti et al. (2018), validated by experimental findings in
the literature, has successfully included a two-way feedback pro-
cess between neuronal activation and cerebral metabolism.

This paper proposes a new computational predictive integrated
model of the hemodynamics, metabolism and electrophysiology
of a human neurovascular unit comprising neuron, astrocyte and
arterial-venous vascular compartments, that can be used to in-
vestigate in silico the regulation of metabolic and vascular re-
sponse to neuronal activity in human brain. In previous models
combining energy metabolism and electrophysiology, the delivery
of metabolic substrates through blood flow is defined as an input
variable and adjusted to meet the energetic needs of the neuronal
activity. Conversely, previous models for hemodynamics assume an
external input signal controlling the compliance of the blood ves-
sels, without a direct coupling to energy consuming activities. The
novelty of this article is the introduction of a double feedback loop
between these two modeling regimes: In the proposed model, the
blood vessel compliance is controlled by the extracellular potas-
sium level, which is a function of the neuronal activity, while the
metabolic system must rely on metabolite delivery through the
blood flow, and the state of the electro-metabolic complex depends
on their availability. This coupled model may help understand ob-
served phenomena that continue to be the topic of active inves-
tigation, including the unexplained overshoot of oxygen delivery
during neuronal activation known as the oxygen paradox, some
diseased states such as migraine and cortical spreading depression,
and the neuronal damage following prolonged epileptic seizures.
Computed experiments show that the time courses of membrane
potential, metabolite concentrations and blood flow predicted by
the model are in qualitative and quantitative agreement with ex-
perimental results reported in the literature, a remarkable finding
since the changes in metabolism, hemodynamics and ion fluxes are
determined internally by the model, not specified as input. Fig. 1
shows a schematic view of the interaction between metabolism,

electrophysiology, and hemodynamics under two scenarios, at low
activity level, referred to as resting state, and during high neuronal
activation.

Before presenting the details of the model, we discuss briefly
the interpretation of the model, and in particular, how the phe-
nomena described in different spatial scales should be understood.

The metabolic and hemodynamic models used in our integrated
model are spatially homogenized lumped models, and the param-
eter values describing reaction rates and metabolite transports be-
tween compartments are scaled to correspond to a volume equiv-
alent to one gram of gray matter tissue. If |2g] denotes the refer-
ence volume corresponding to one gram tissue, and |$2| is the vol-
ume of the brain tissue sample €2 that we want to model, and [M]
is the vector of the metabolite concentrations, the dynamic model,
whose details are discussed in the forthcoming sections, is of the
form

diM] _ el

where F is a vector whose components represent the parametric
reaction and transport fluxes in the system, with parameters scaled
for the reference volume. This equation reveals that the model can
be rescaled back to the reference volume by scaling the time t by
a factor proportional to the volume. Alternatively, if we want to
adjust the metabolic model to correspond to the volume of few
neurons, we could scale the reaction and transport rate parameters
in the dynamic model dividing by the volume ratio p. Scaling the
metabolic model down to few neurons’ scale, on the other hand,
would make the neuron-astrocyte geometry play a role, includ-
ing the position with respect to the metabolite supply by blood
flow, while the lumped model paradigm is an average model as-
suming that fine details are ignored. Likewise, using too large vol-
umes violates the basic assumptions of well-mixed models, since
diffusion starts to play a significant role. Instead of attempting
to perform a geometric scaling of the model with an ill-defined
volume of few neurons and astrocytes, we retain the metabolic
model as is, and instead adjust the electrophysiology model so that
it corresponds to a neuron population of one gram tissue. This
model matching is not straightforward, and is discussed at length
in Calvetti et al. (2018).

The electrophysiological description is based on extensions of
the classical Hodgkin-Huxley model to comprise the ion trans-
port between neurons and astrocytes. We therefore interpret that
the electrophysiological neuron-astrocyte model in fact represents
a neuron-astrocyte population through a model of an average

= F([M)).
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Table 1
Biochemical reactions in the metabolic model.
Name Chemical reaction
Glycolysis Glc + 2NAD* + 2 ADP —> 2Pyr +2NADH + 2 ATP

Lactate dehydrogenase 1

Lactate dehydrogenase 2
Tricarboxylic acid cycle

Oxidative phosphorylation
Phosphocreatine dephosphorylation
Creatine phosphorylation

Pyr + NADH — Lac + NAD*

Lac + NAD* — Pyr + NADH

Pyr + ADP + 5NAD"™ — 3CO, + ATP + 5NADH
0, + 2NADH + 5ADP — 2NAD* + 5ATP + 2H,0
PCr + ADP — Cr + ATP

Cr + ATP — PCr + ADP

neuron, surrounded by supporting astrocytes. A characteristic mea-
sure used here for describing the level of neuronal activity is the
neuronal firing rate. In particular, consider a volume containing a
neuron population, each neuron firing at a given time instant with
its own frequency f. Let p(f) denote the frequency distribution over
the neuron population at a given time,

[ “phdr=1.

In practice, there is an absolute cut-off maximum frequency fmax,
determined by the duration of the refractory period after depolar-
ization of the membrane, hence p(f) =0 for f > fmax. The average
firing frequency of the population is defined as

f= /0 Fp(f)df. (1)

To account for the total energy need of the neuron-astrocyte com-
plex included in the volume under consideration, we model the
energy consumption by assuming that the volume contains neu-
rons firing with average frequency f over a time period that cor-
responds to the time scales of the metabolic and hemodynamic
units, that is, in the scale of minutes. Observe that a single neuron
does not have to sustain a fixed activity over the whole period; it
is enough to assume that the distribution p remains unaltered over
the time interval. Therefore, a single neuron in the population may
undergo a series of active bursting periods and longer resting peri-
ods. Our model does not provide detailed information about single
neurons, although we will discuss the model predictions also from
the point of view of single neurons.

2. Materials and methods

The novel mathematical model that we are proposing extends a
recent model integrating metabolism and electrophysiological ac-
tivity of neurons and astrocytes (Calvetti et al., 2018), combin-
ing it with one estimating blood vessels’ compliance and blood
flow changes in response to a vasodilatory stimulus (Calvetti et al.,
2019; Prezioso, 2017; Barrett et al., 2012). In the former, the com-
putational challenge of carrying out time integration in view of the
vastly different time scales of metabolism and neuronal firing are
addressed by a fast-slow time integration scheme. The proposed
method respects the fine time scale nature of electrophysiology
by using a refined time discretization to model electrical activity
within each step at the metabolic scale, and integrating the net en-
ergy demand to inform the coarse scale metabolic model. We refer
to the model combining the metabolism and electrophysiological
activity as electro-metabolic model. Tracking the related hemody-
namic changes adds yet another time scale to the model, which
has to be dealt with carefully to avoid numerical instabilities and
keep a handle on the computational costs.

2.1. Electro-metabolic model (EMM)

The starting point for the model integrating metabolism and
electrophysiological neuron-astrocyte activity is a spatially lumped

four-compartment metabolic model comprising neuron (n), astro-
cyte (a), extracellular space (ecs) and blood (b) compartments,
each occupying a specified volume fraction 7, ¢ = {n, a, b, ecs}. As
is customary in the spatially lumped metabolic models, the cellu-
lar compartments represent the net metabolic response of a popu-
lation of cells in a volume unit. In particular, the neuron compart-
ment represents both pre- and postsynaptic neurons. The model
parameters and time scales are adjusted to correspond a volume
of one gram of tissue of gray matter. Following the dynamical
metabolic model (Calvetti and Somersalo, 2011), each cellular com-
partment is characterized by its own metabolic network and all ex-
changes of metabolites between them occur through the extracel-
lular space, which is the only compartment to exchange metabo-
lites with the blood through the Blood Brain Barrier (BBB). The
model, written in terms of the concentrations of metabolites in
each compartment, collected in the time dependent vector

[(M], ()
[M]ecs (£)
M](t) |’
[M],(t)

tracks the dynamics of glucose, lactate and oxygen in all compart-
ments and, in neuron and astrocyte, pyruvate, creatine, phospho-
creatine, ATP, ADP, NADH and NAD*, for a total of 26 species, tak-
ing into account the compartmental multiplicity of each species.
The biochemical reactions included in the model are listed in
Table 1.

Each reaction contributes a reaction flux in the system. Reac-
tion fluxes are modeled using a Michaelis-Menten type Kinetics,
equipped with regulation by the phosphorylation and redox state
of the cell,

_ |ATP]. . [NADH],
pC_ [ADP]Ci c — [NAD+]C’

Because all communication between neuron and astrocyte is as-
sumed to occur through the extracellular space, changes in glu-
cose, lactate and oxygen concentrations in the latter depend on
the transfer fluxes of these metabolites between extracellular space
and neuron or astrocyte, as well as on the rate at which metabo-
lites are exchanged with the blood compartment.

In the blood compartment, the changes of metabolite con-
centrations over time depend on blood flow (CBF(t)), mixing ra-
tio between venous and arterial blood, assumed constant, and
the exchange rate of metabolites between blood and extracellu-
lar space, which for glucose and lactate are expressed in a sym-
metric Michaelis-Menten form, while for oxygen it follows a mod-
ified Fick’s law. The arterial concentrations [M]a¢ and the blood
flow are considered as an input for the metabolic system. The
two cellular compartments are equipped with the biochemical re-
actions involved with either the production or the consumption
of ATP: the complete list of biochemical reactions accounted for
in our model, and the mathematical form of the corresponding
fluxes can be found in the literature (Calvetti and Somersalo, 2011).
Here our focus is on the important role of ATP in coupling the

[M](t) =

for ¢ = {n, a}. (2)
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Table 2

Parameters for the Hemo-Electro-Metabolic model.

29

Electrophysiology model

Metabolic model

Hemo-Electro-Metabolic model

Symbol  Value Unit Symbol  Value  Unit Symbol Value  Unit
8Na 46 mS/cm? [Glclar 5 mM o 100 -
8« 1625  mS/cm?2 [Laclaw 11 mM Kbasemax 2995  mM
gal 0.05 mS/cm? [0 1art 9.14 mM
&R teak 0.0175  mS/cm? CBF 0.4 mL/min
% ek 0.02 mS/cm? Nn 0.4 -
y 0.0445 mMcm?/uC 7, 0.3 -
o 103 - Necs 0.3 -
c 1 wEjem? N 004 -
1) 100 msec! H, 430 mM/min
ks 3 mM H, 3.58 mM/min
P 13.83 mM/s
Gaia 2075  mM/s
3 9.33 s7!
Hpump 0.1 -
Haglia 0.1 -

electrophysiological activity and metabolism, in particular on ATP
dephosphorylation, ATP — ADP + P;, releasing E =30.5 kj/mol of
energy that can be used to meet the energetic needs of the
sodium-potassium pump in neuron, the various energetic needs of
astrocyte participating in glutamine-glutamate cycling and potas-
sium cleaning, and general household maintenance in both cells.
Therefore, the reaction rates of ATP dephosphorylation, denoted
by ¥ fipase iN Neuron and ¥4, . in astrocyte, implicitly converted
into energy flux by the factor E, are not modeled in terms of
metabolite concentrations but rather in terms of the energetic
costs of the sodium-potassium pump inducing the ion mass cur-
rent Iyump, glial potassium uptake of the astrocyte resulting in
the ion current Ig;,, the energetic cost incurred by the glutamate-
glutamine cycle induced sodium current Igy,, as well as a variety
of household tasks in neuron and astrocyte, denoted by H, and H,
respectively. More specifically,

Y irpase = Hn + S(Mnlpump + 0.33g1y), (3)
1>h/gTPase =H,+ S(%Iglia + 2~33IGlu)7 (4)

where 71, and 7necs are the volume fractions of the neuronal and ex-
tracellular space compartments, H, and H, account for unspecified
household energy in neuron and astrocyte, and s is a proportion-
ality constant. The parameter values used in our computed exper-
iment are listed in Table 2; for a detailed discussion on how the
values were chosen, we refer to the original article (Calvetti et al.,
2018). Accounting for the volume fractions of each compartment
via the diagonal volume matrix D,

Mpl3 0 0 0
D= 0 Necs!3 0 0
- 0 0 Mnlio 0 ’
0 0 0 Nal1o

where 1, is the identity matrix of size k x k, and the integer k de-
notes the number of metabolites in the compartment, we can write
the governing equations of the metabolism as

diM] _ F(IM]. [Mlart. ¥ tpase ¥ Atpase CBF). (5)

°~dr

In the equations governing neuronal firing, which are a modifica-
tion (Cressman et al., 2009; 2011; Barreto and Cressman, 2011) of
the original formulation by Hodgkin and Huxley (1952), the rate of
change of the membrane voltage potential (V) in time is directly
proportional to the currents of sodium Iy, potassium Ig and chlo-
ride I, and inversely proportional to the membrane capacitance C,

v _
dt —

! (Ina + Ik + Icr).-

- (6)

The ionic currents are functions of the gating variables (n, m, h),
the voltage and their corresponding conductance and equilibrium
potentials (Vya, Vi, Vqp),

Iva = &na [m°° (V)]3h(v - VNa) + 8Na.leak (V - VNa)7
Ik = gen* (V = Vi) + & tear (V — Vk)
Ioo = ga(V —Va),

where gna, gk, &c are the ion conductances, and the leak conduc-
tances and n and h the activation and inactivation gating func-
tions of potassium and sodium, respectively. The gating variable
Mx(V) is assumed to be in equilibrium, while the variables h
and n satisfy the standard Hodgkin-Huxley equations. The rever-
sal potentials V; are computed with the Nernst equation. Unlike
in the original Hodgkin-Huxley model, the intracellular and extra-
cellular concentrations are not constants, but change due to the
sodium/potassium pump action, astrocytic potassium cleaning, and
diffusion as

d[K* Jecs

i - ¥ Bl — 2Blpump — Igiia — Laifr. (7)
d[Na™];
% = —¥ Blna — 3lpump, (8)

where S denotes the ratio between the volume fraction of the
neuron and the volume fraction of the extracellular space, while
y converts the electric current into a mass flux (Cressman et al.,
2009; Barreto and Cressman, 2011).

Two additional algebraic conditions connect the intra- and ex-
tracellular concentrations,

[K™]i = 140mM + (10.5mM — [Na*];),
[Na'Jecs = 144mM — B([Na"]; — 10.5 mM).

In accordance with what was proposed in the literature
(Calvetti et al, 2018), the expression for the sodium-potassium
pump in terms of the concentrations of sodium and potassium and
the strength of the sodium potassium pump (opump), (Cressman
et al., 2009; 2011; Barreto and Cressman, 2011), is modified to ac-
count for ATP availability by adding a dependency on the phospho-
rylation state py, defined in (2) as the ratio between the concen-
tration of adenosine triphosphate and adenosine diphosphate,
Ppump
1+ exp(25 —[Na*];)/3)

( )
o

1+exp(2.2 — [K+Jecs

Dn
Mpump + Pn

g

Ipump =
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where ppump is an affinity constant. Similarly, the expression for
the glial potassium clearing is

Il' — Da Gglia (10)
gla /nglia + Pa 1+ exp(14~7 - [K+]ecs)/2~5) ’

where Gy, is the uptake strength of the glia, g, is an affinity
constant and p, denotes phosphorylation state in astrocyte. We re-
mark that the formulas (9) and (10) are as in Calvetti et al. (2018),
but the parameters, listed in Table 2, have been modified so that
the potassium levels predicted by the model are in line with the
physiological values reported in literature (Larsen et al., 2016). In
line with models proposed in the literature (Barreto and Cressman,
2011; Cressman et al.,, 2009), potassium diffusion is governed by
extracellular potassium concentration, a diffusion coefficient € and
the surrounding potassium concentration ks,

Litr = € ([K* Jecs — ks)-

The units and values of all parameters appearing in the expressions
above for the baseline frequency of 4 Hz characteristic for the neu-
ron at rest are listed in Table 2. The details concerning the choice
of parameters can be found in the literature (Calvetti et al., 2018).
Higher neuronal frequencies are triggered by a stimulus parameter
& which causes the leak conductances of both sodium and potas-
sium to temporarily increase,

8Na,leak = (1 + s(t))gﬁla,leak’ (11)

8K leak = (1 + "E(t))gﬂvleak (]2)

This way of inducing neuronal activation, proposed by several au-
thors (Calvetti et al., 2018; Carter and Bean, 2009; Lajtha et al.,
2007), is motivated by the large influx of sodium and potassium
accompanying the increase in glutamate during activation. In our
computed experiments, we model an awake resting state as corre-
sponding to a frequency of 8 Hz, attained by setting the stimulus
parameter to & = 0.05.

The sodium leak current induced by the increase of the mem-
brane permeability through the function is given by

INa.leal( = gNa,leak(V - VNa),

while the average sodium leak current during resting state is de-

0
noted by Nateak:

The glutamate-glutamine flux is accounted for through

K (INa.leak - Iﬁa,leak )

if€()>0
lgu=10 : :

ifE()=0

which relates it to the energetic cost of glutamate-glutamine cy-
cling during synaptic activity (Calvetti et al., 2018).

We collect the five unknowns of the electrophysiological model
in the vector

V()
[Na™J;()
[K* Jees ()

n(t)

h(t)

(13)

u(t) = eR,

and express the governing equations as the nonlinear system of
ordinary differential equations

du

Ezf(us pI’ls pavg)! (14)
where the input phosphorylation states are determined by the
metabolic model described above.

The Hodgkin-Huxley model and generalizations thereof were
originally thought for a single cell, while the metabolic spa-
tially lumped model represents a volume containing an unspeci-
fied size of cell population. When integrating neuronal firing with
metabolism and hemodynamics, we implicitly assume the electro-
physiological model to represent the activity of an average neuron-
astrocyte pair. Therefore the energetic needs of the complex are
the integrated needs of the cell population, with the electrophys-
iological single cell model providing the justification for the cou-
pling between the energetics of neuron and astrocyte populations.
Summarizing, the input for the EMM consists of

 Arterial concentrations of glucose, oxygen and lactate [M]art,
M = {glucose, oxygen, lactate};

o Cerebral Blood Flow CBF(t);

e Activation function &(t).

The metabolic and electrophysiological modules are connected
through a double feedback loop where

o The metabolic model defines py(t) and pa(t), the inputs for the
electrophysiological model;

e The electrophysiological model determines the ATP demand
used to compute Y2, . in neuron and ¥ g, in astrocyte,
comprising the input for the metabolic model.

The difference of several orders of magnitude in the character-
istic time scales of metabolism and electrophysiology poses a real
challenge for computing model predictions with a numerical time
integrator, the millisecond range of electrophysiology time scale
requiring a much finer time discretization than what would suf-
fice for the metabolism, whose time scale is in the order of sec-
onds or minutes. A numerical scheme designed specifically to ac-
commodate the different time scales has been recently proposed
(Calvetti et al., 2018).

3. Blood flow model

Neuronal activation is followed by a rapid focal increase of CBF
and cerebral blood volume (CBV), supplying the activated region
of the brain with the nutrients necessary to support the increased
metabolic activity, most importantly oxygen. While experiments
confirm the basic mechanism (Logothetis et al., 2001), details con-
cerning the underlying signaling are not fully known. Experimental
evidence for potential causes of the vasodilation supports different
possible mechanisms, including increased concentration of lactate
(Mintun et al., 2004), extracellular potassium (Filosa et al., 2006),
or nitric oxides originating from the neurotransmission related glu-
taminase (Lourenco et al., 2016). Evidence points to a central role
of astrocytic regulation through the end feet in the signal transmis-
sion to the hemodynamic complex (Iadecola, 2017; Takano et al.,
2006; Nortley and Attwell, 2017).

The increase in CBF and CBV can be understood in terms of
activity-induced relaxation of the smooth muscles in the walls
of arterial and venous blood vessels and/or pericytes in capillary
walls, physically leading to an increased vessel compliance, al-
though it has not been settled definitely which segment of the
cerebrovascular network is responsible for the increase of the
blood flow; a comprehensive discussion of the topic has been re-
cently published (ladecola, 2017). Recent evidence from optical
imaging that the increase in CBF is mainly due to arterial rather
than venous blood vessels, made obsolete the hypothesis of a
mainly venous contribution of the original balloon (Buxton et al.,
1998) and windkessel models (Mandeville et al., 1999; Kong et al.,
2004). The hemodynamic portion of our integrated model does not
exclude some venous and capillary contribution, but implicitly as-
sumes a much more prominent arterial contribution, in agreement
with recent findings.
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Fig. 2. Schematic of the hemodynamic model, and the corresponding analog RC circuit, in which the volumes (v;) correspond to electric charges, pressures (p;) to voltages,
and blood flows (f;) to electric currents. The flow resistances (r;) correspond to electric resistances, and compliances (¢;) to capacitances. The pressures are normalized to
intracranial pressure, representing the ground. The given input pressure p; corresponds to the total pressure drop across the complex.

Although the blood flow has been incorporated in some
metabolic models to explain the BOLD signal as a causal re-
sponse to increased metabolic activity (Aubert and Costalat, 2002),
and to connect it to oxygen dynamics in tissue (Huppert et al.,
2007; Kocsis et al., 2006; Zheng et al., 2005), an integrated model
including a feedback loop between metabolism and blood flow
seems to be missing. In this work, we propose a model interfac-
ing the EMM with a multi-compartment cerebral blood flow model
(Barrett et al., 2012) that divides the vascular complex in arterial
(j=1), capillary (j =2) and venous (j =3) compartments, each
characterized by time dependent volume v;, resistance r; and com-
pliance ;. Denoting by f;_; and f; the blood flows in and out of the
jth compartment, it follows from the conservation of mass that

dv; .
5 =f—fi 1=i=3 (15)
The compliance relates the pressure P; in the compartment relative
to the intracranial pressure with the compartment volume,

vi=cP,  1<j<3, (16)
and by dividing the resistance of each compartment symmetrically
between inflow and outflow, the pressure drop between the entry
point and exit point is related to the blood flow and resistance,

1 Tj 1 Tj

pj—P Pj—pjs =37 (17)
i

J = 2 fjf] ’
where p; is the entry pressure, p;,; the exit pressure.

The resistance of the compartment depends on the dilation of
the vascularization, which in turn depends on the volume. Assum-
ing a Poisseuille flow model in a fictitious cylindrical tube, resis-
tance can be expressed in terms of volume,

o —, 18
T2 (18)
i

where « means proportionality with a proper scaling. Finally,
following Barrett et al. (2012), in order for the compliance to take
into account the viscoelastic and stiffness properties of the veins,
we write
kj—

] v; _E de

9= i

where c}f and u}f are the baseline compliance and volume, re-
spectively, k; is the stiffness, E; is the viscoelastic constant and
sj = s;(t) is the vasodilatory stimulus associated with the compart-
ment. The system can be interpreted in terms of an analog RC cir-
cuit with known electromotive force corresponding to the known
pressure drop over the full circuit, see Fig. 2.

The presence of the derivative of the volume in (19) makes the
system a non-standard differential model, and an efficient solu-
tion requires careful handling (Calvetti et al., 2019): the cerebral
blood flow can be computed as a weighted average over the inter-
compartmental flows,

S U O[f1 O + F0)]
CBF(t) = = - . (20)
2 Z] Vj (t)
j=

To couple the hemodynamic model with the EMM
(Calvetti et al, 2018), we postulate the following feedback
connection mechanisms:

o The blood flow input function of the EMM is computed accord-
ing to (20) from the output of the hemodynamics model;

The extracellular potassium concentration [K*]ecs(t) is com-
puted by the EMM and determines the arterial stimulus func-
tion S(t) =s¢(t) in (19), while s, =s3 =0. In light of experi-
mental findings (Filosa et al., 2006), we assume that the el-
evated extracellular potassium concentration triggers a calcium
wave in the surrounding astrocytes, which travels along the end
feet to the penetrating arterioles, causing an increase in the ar-
terial compliances as described by Eq. (19). The increased com-
pliance induces an increase in arterial volume (16) and a de-
crease in resistance (18), in turn increasing the downstream
pressure leading to an increase of both capillary and venous
volumes. The details of the interface are given in the following
section.

4. Coupling metabolism, electrophysiology and blood flow

The inputs to the EMM are the arterial metabolite concentra-
tions, blood flow, and the activation function &(t) which triggers
the neuronal firing. The only input to the hemodynamic model
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is the vasodilatory stimulus function that we postulate to depend
on the extracellular potassium concentration, computed as an out-
put by the EMM, while the CBF is an output of the hemodynamic
module. This suggests a double feedback between EMM and hemo-
dynamic model based on the potassium signal and CBF. The only
external inputs remaining to be specified are the arterial concen-
trations and the activation function. A schematic of the complete
three-way feedback loop is shown in Fig. 3. The dependency of the
vasodilatory stimulus on extracellular potassium concentration is
modeled as

s(t) = o ([K" Jecs — KP*¢™%) scw(t)
t
= o [ (I st — KO Yw(e — ) 1)
0

where Kb3semax js the maximum extracellular potassium concen-
tration for awake resting state and w(t) is a weight function such
that

w(t) = exp (—%) x =0.6514 s, (22)

and o is a volume-dependent scaling constant. Observe that the
kernel w describes the fading off of the vasodilatory stimulus after
the excess potassium in extracellular space has been removed by
astrocyte clearing and diffusion. The time constant x is chosen so
that after 3 s the kernel has decreased to 1% of its peak value,
therefore the length of the interval of integration in (21) can be
limited effectively to 3 s.

The different characteristic time scales must be handled care-
fully when designing a numerical scheme to compute model pre-
dictions. The time step At of electrophysiology, in the millisecond

range, is adaptively chosen by the built-in MATLAB function
ode15s; the time step of the metabolic processes is set to At =
0.05 sec, while a time step AT =1 sec is used for the compu-
tation of the much slower changes in blood flow (Calvetti et al.,
2018). Denoting by T, the current value in the coarse time step, let
tj =T+ jAt, 0 < j <m = 20 with t;, = T, + AT. Denoting by Kj(t')
the potassium concentration profile over the interval over [t;, tj.4],
we define

tj+At
0;= / (Kj(t/) _ Kbase.maX)dt/. (23)

£
The stimulus function (21) at time ¢; can now be approximated as

ti—(e=1)At
([K+]ecs (t/) _ Kbase,max)w(t _ t/)dt/
AL

L
Si=s(tp) =) «
L

~ay WAoo,
=1

where the entries o;_, with negative index refer to entries com-
puted during the previous hemodynamic time steps, and the index
L is determined by the condition w(¢A;) ~ 0 if ¢ > L.

The numerical procedure for computing the predictions of the
current three-way feedback integrated model of hemodynamics,
electrophysiology and metabolism is summarized below. Since the
algorithm comprises three different time scales and requires model
matching on two time scale interfaces, we divide the algorithm de-
scription in two parts, the coarse and the fine time scale marching
schemes. Both interfaces use the same algorithmic structure.
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Coarse time scale marching

Given: Time steps At, AT = mAt;
Initialize: T, = 0, CBF. = baseline value;
while T; < Thax do

Propagate EEM over [T, T, + AT] using CBF* as input;

O<j=m

Update CBF. = CBF';
Update T, = T, + AT.

end do

Extrapolate CBF as constant over [T, T. + AT]. Call it CBF*;
Compute o;, 1 < j < m defined by formula (23), and the stimulus S; = s(Tc + jAt),
Propagate the hemodynamic model using S; as input to get updated CBF at T; + AT;

Define CBF over [T, T + AT] by interpolating linearly between CBF. and CBF*;
Repropagate EEM over [T, T + AT] using the interpolated CBF as input;

Above, we propagate twice the EEM model over a time inter-
val of length AT, which is accomplished by running the algorithm
below.

Fine time-scale marching

Given: Time steps A1, At = kAT;
Initialize: t; = T¢, pc = (Pn, Pa)c = values at Tg;
while t. < T, + AT do

Update p. = p*;
Update t; = t. + At.

end do

Extrapolate p = (pn, pa) as constant over [t tc + At]. Call it p* = (p}. p%);
Propagate electrophysiology model over |[tc, tc + At] using p* as input;

Compute ¥ = [(¥xrpyeer ¥Atpase)1: -+ - (W Rrpase: ¥ irpase Jk1:

Propagate the metabolic model using i/ as input to get updated p* at t. + At;
Define p over [t., t. + At] by interpolating linearly between p. and p™;

Repropagate electrophysiology model over [t., t. + At] using interpolated p as input;

5. Results

To demonstrate the predicting power of our computational
model, we consider two computer experiments. In the first exam-
ple we track changes in brain metabolism and hemodynamics over
an interval of 10 min as the system undergoes transitions from an
awake resting state, characterized by neuronal mean firing at 8 Hz
frequency to a period of neuronal activation of the duration of 45
s, at a mean firing frequency of 90 Hz. In the second one, the du-
ration of the 90 Hz activation period is increased to 3 min, and the
total simulation time interval is increased to 30 min. The rationale
and physiological interpretation of the simulations are discussed
in the next section, where we analyze the results in the context of
experimental findings reported in the literature. The frequency in-
crease from 8 Hz to 90 Hz is induced by a rise of the value of the
activation input from & = 0.05 during rest awake to & = 2.5 during
neuronal activation. The activation periods are indicated in Figs. 4
and 5 by gray shading.

Row A of Figs. 4 and 5 shows the time course of metabolite
concentrations in blood and the relative increase in CBF during the
respective activation protocols, and row B the time course of prin-
cipal metabolite concentrations in the tissue compartments dur-
ing the simulation period. Row C summarizes the cross-membrane
transport rates, while row D and panels (i) and (ii) of row E the
reaction fluxes in neuron and astrocyte. Panels (iii) and (iv) of row
E show the time course of the oxygen glucose index (OGI) and the
cerebral metabolic rate of glucose. Panels (i) and (iii) of row F show
how action potential and frequency, as well as intracellular sodium

and extracellular potassium concentrations, change as the system
transitions from resting state to activation, and back. Panels (ii) and
(iv) of row F show details of the slow after-hyperpolarization.

6. Discussion

A typical neuron population in human cortex consists roughly
of principal pyramidal neurons and interneurons, the former ones
being more abundant, the interneurons comprising about 10% of
the population, depending on the cortical region (Freund and
Buzsaki, 1996; Viskontas et al., 2007). The firing rate of human cor-
tical neurons vary from one neuron type to another. The fast spik-
ing (FS) neurons generate high frequency action potential trains
with little frequency modulation, the maximal mean frequency be-
ing about 340 Hz, with momentary instantaneous frequency reach-
ing up to 450 Hz (Wang et al., 2016). Among the interneurons, the
FS neurons are abundant, mostly GABAergic neurons, constituting
up to 40% of the neocortical interneuron population. The frequency
distribution in an active region of the human brain is location de-
pendent, and difficult to determine. Non-invasive methods, such as
EEG and MEG, are mostly believed to observe oscillations of the
post-synaptic dipole field (Himadldinen et al., 1993), which is not
directly related to the neuron firing rate. Likewise, clinical depth-
electrodes, implanted in the brain of epilepsy surgery patients
record local field potentials, which do not translate directly into ac-
tion potentials. However, it is believed that the high y-band (HG)
oscillations (60-200 Hz) are related to inhibitory post-synaptic
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Fig. 4. Model predictions of the changes in metabolism, electrophysiology and CBF as the system switches from resting state to high frequency firing for a period of 45 s: In
each panel, the high activity period is indicated by a gray shadow. Row A. Blood compartment: (i) glucose, (ii) lactate, (iii) oxygen concentrations and (iv) relative CBF. Row
B: neuron (red), astrocyte (blue) and extracellular space (black) time courses for the concentrations of (i) glucose, (ii) lactate, (iii) oxygen and (iv) pyruvate concentrations.
Row C: Transport rates between (i) extracellular space and neuron, (ii) extracellular space and astrocyte, and (iii) blood and extracellular space for glucose (blue), lactate
(red) and oxygen (black). Panel (iv) shows lactate dehydrogenase balance flux for neuron. Row D: Reaction fluxes for (i) glycolysis, (ii) tricarboxylic acid cycle, (iii) oxidative
phosphorylation and (iv) Creatine phosphorylation net flux. Row E: (i) phosphorylation state in neuron (red) and astrocyte (blue), (ii) redox state in neuron (red) and
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the slow after-hyperpolarization, (iii) time course of intracellular sodium (black) and extracellular potassium (red), (iv) sodium and potassium concentrations in the slow
after-hyperpolarization phase. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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polarization (Bragin et al., 1999), and therefore possibly to FS activ-
ity. Further, the HG oscillations are believed to be related to func-
tional activation of the human cortex (Ray et al., 2008; Smith et al.,
2014), and to be the representative signature of activated neu-
ronal populations as they describe wide-scale neuronal processes
that are associated with cognition and perception (Cheyne and
Ferrari, 2013). In the simulations of the previous section, we have
selected the mean frequency representing high neuronal activity
to be 90 Hz; such mean activity could be obtained, e.g., by as-
suming roughly 90% of pyramidal cells with firing frequency of
60 Hz, and 10% of FS interneurons with frequency of 340 Hz. This
hypothetical partitioning serves only to justify the parameter se-
lection in our computational model simulation. The durations of
the high neuronal activities are chosen to represent an intense
task of 45 s in the first protocol, while the second protocol, with
high intensity firing lasting three minutes, is intended to simulate
an extreme event, e.g., a tonic-clonic epileptic episode, that typi-
cally continues for 1-3 min. Interestingly, the GABAergic interneu-
rons are identified to be susceptible for neuron loss during pro-
longed epileptic episodes (status epilepticus) of more than 5 min
(Sutula et al., 2003), supporting the assumption that the high fre-
quency activity using up the energy resources can be attributed to
these neurons. Furthermore, while our current metabolic model is
too simplified to distinguish between glutamatergic and GABAer-
gic neurons, the significant role of the latter ones during inten-
sive neuronal activation has been recognized both in experiments
(Hertz et al., 1988; Patel et al., 2005), as well as in simulation stud-
ies (Occhipinti et al.,, 2010; Calvetti and Somersalo, 2012). Recall
that, according to the volume scaling argument, more focal activ-
ity can be simulated by scaling the time by the volume fraction,
as pointed out in the introduction. However, the combined model
proposed here is not directly scalable, as the electrophysiology and
metabolism still need to be appropriately coupled (Calvetti et al.,
2018).

In both computed experiments, the model predicts that within
the first second of neuronal activation, CBF increases 77% above
baseline value and 16 s after it stabilizes around 26% above base-
line for the duration of the activation period, in agreement with
recent literature (Moses et al., 2014).

We observe a similar spike in the neuronal frequency, which
initially reaches 107 Hz and then rapidly stabilizes at 90 Hz for the
duration of the neuronal activation. In line with what we would
expect from electrophysiology alone, there is a reduction in ampli-
tude of the action potential during activation, accompanied by an
increase of intracellular sodium and extracellular potassium con-
centrations.

Remarkably, the model accurately predicts the slow after-
hyperpolarization (sAHP) effect, (Gulledge et al., 2013; King et al.,
2015) a brief neuronal silencing at the end of the activation period
lasting approximatively 16 s regardless of the duration of the pre-
ceding activation. Panel (ii) of row (F) of Figs. 4 and 5 shows how
the activity stops and the membrane is hyperpolarized during the
slow AHP period, while panel (iv) in the same row shows the time
course of extracellular potassium concentration and intraneuronal
sodium concentration during the slow AHP period. The sAHP phe-
nomenon can be interpreted in two ways. As the electrophysiology
model is still a single neuron model, the silent period represents
a silencing of single neurons after prolonged high activity, how-
ever, the time scale for a single neuron may not be realistic. On
the other hand, in the context of mean activity of a neuron pop-
ulation, the sAHP represents an average slow-down of the firing
activity.

In conjunction with the increase in firing frequency, there is an
increase in the consumption of glucose, whose concentration dur-
ing the activation of three minutes falls to 35% of its baseline value
in neuron and extracellular space, and to 13% of its initial value

in astrocyte, while in the shorter activation simulation, the corre-
sponding lows are 75% and 50% of the baseline, respectively. In the
blood compartment, following the initial spike in CBF at the be-
ginning of the activation, the glucose concentration experiences an
initial increase due to increased availability. This is followed by a
slow steady decrease during the activation due to the increased
uptake, accompanied by a sharp increase in production of lactate.
The lactate concentration in blood increases 40% over its baseline
value during the 45 seconds’ activation and 60% for the activation
of 3 min; similar increases are observed in lactate levels in the
tissue. After the activation ends, the glucose values in blood have
sunk below the baseline, more pronouncedly after the longer acti-
vation protocol.

There is a significant consumption of pyruvate during neuronal
activation, as indicated by the increase in the rate of TCA cycle
of 83% in neuron and 59% in astrocyte. At baseline, the prevail-
ing direction of lactate dehydrogenase in neuron is slightly towards
pyruvate production, but during activation it shifts towards lactate
production. In astrocyte, on the other hand, the prevailing direc-
tion is slightly towards lactate production at baseline, switching
briefly to pyruvate production during the first seconds of activa-
tion, followed by a return to lactate production. Thus, the model
does not support a strong switch to a lactate supply from astro-
cyte to neuron during the activation, which has been a topic of
active debate in the literature (Chih and Roberts Jr, 2003; Pellerin
and Magistretti, 2003). To address the question properly, a more
comprehensive model would be necessary.

The difference in glucose concentration drops in neuron and in
astrocyte is a consequence of the different glucose transporter iso-
forms in neuron (GLUT3) and astrocyte (GLUT1) which are mod-
eled by different transport rates: The neuronal glucose concentra-
tion follows closely to the concentration in the ECS, while a larger
concentration gradient is necessary for the glucose transport to as-
trocyte. The resulting imbalance in glucose partitioning has been
identified as one of the key factors for deciding the direction of
lactate traffic between the cells (Calvetti and Somersalo, 2012; DiN-
uzzo et al., 2010). Not surprisingly, during neuronal activation oxy-
gen demand is much higher, and translates into a big decrease in
the oxygen levels in tissue: In both activation protocols, the oxy-
gen level in ECS drops by about 40%, by almost 90% in neuron, and
by 75% in astrocyte. In the blood compartment we report the to-
tal concentration of oxygen, i.e., the sum of the amount of oxygen
freely dissolved in plasma and oxygen bound to hemoglobin. An
initial spike in oxygen concentration in blood at the beginning of
the activation is followed by a modest increase of 3% over awake
resting state value. Once the activation ends, a dip of approxima-
tively 5% in oxygen blood level occurs, followed by a fast recovery
to baseline value.

Similarly, glycolysis in neuron shows a significant increase dur-
ing neuronal activation, while in astrocyte an initial peak is fol-
lowed by a decrease below baseline value. During the long acti-
vation, this decrease takes place already during the activation, in
parallel to the decrease of lactate production by astrocyte.

In neuron, the rates of the TCA cycle and oxidative phospho-
rylation reactions show an initial spike after which they settle for
the duration of the activation at approximatively 30% above base-
line. In astrocyte these reaction fluxes exhibit a very small decay
during activation, followed by a peak at the end of it.

As shown in row C of Figs. 4 and 5, the transport rates be-
tween extracellular space and neuron show a significant 4 fold
rate increase for glucose and a 30% increase in oxygen over rest-
ing state values. Conversely, there is a big decay in the trans-
fer rate of lactate from extracellular space to neuron during the
activation period. In fact, while lactate is transported from ex-
tracellular space to neuron at awake resting state, during activa-
tion lactate is transported from neuron to extracellular space. The
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Fig. 6. Recovery times required by glucose (first row, left panel), oxygen (first row, center panel), phosphorylation states (first row, right panel), lactate (second row, left
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ended in minutes and the y-axis shows the recovery of each metabolite, expressed in percentages.

transfer rates of glucose and oxygen from extracellular space to as-
trocyte exhibit a small decay during activation, matched by a small
increase in the rate of lactate efflux from astrocyte to extracellu-
lar space. The transport rate of oxygen across BBB shows an in-
crease of 15%, from 1.49 mM/min during baseline to 1.71 mM/min
during activation. The rate at which glucose crosses the BBB in-
creases about 40% during activation, while there is a 6 fold increase
in the rate at which lactate escapes from ECS to blood. The values
predicted by the model at awake resting state and during activa-
tion are well within the ranges reported in experimental literature
(Madsen et al., 1998; Wehrli et al., 2014).

The phosphorylation state in both neuron and astrocyte drops
almost to zero by the end of the 3 minutes’ neuronal activation pe-
riod, suggesting that all ATP produced goes towards satisfying the
increased energetic demand. Redox state, measured as the ratio be-
tween the concentrations of NADH and NAD", exhibits a large in-
crease over resting state value during activation: In the 3 minutes’
activation protocol, the increases are up to 8 fold in neuron and
4 fold in astrocyte. Panel (iii) in row E of Figs. 4 and 5 show the
time course of the oxygen glucose index (OGI), defined as the ra-
tio between the cerebral metabolic rate of oxygen and the cerebral
metabolic rate of glucose. The resting value 5.2 is in line with the
recent studies of OGI in gray matter: Hyder et al. (Hyder et al.,
2016) report resting OGI value around 5.3 consistently over the
whole brain. During the first 20 s of the activation, the OGI in-
dex increases about 10% over baseline, after which it starts to de-
crease, decreasing to 8% below the baseline value in the short acti-
vation, and 18% of the baseline value in the long activation, slowly
recovering to the resting value after the activation ceases. The de-
crease during the long activation protocol is well in line with ex-
perimental findings (Vafaee et al., 2012) for human left primary
motor cortex and left supplementary motor cortex when the acti-
vation corresponds to several minutes’ finger-to-thumb apposition
of the right and dominant hand. In the literature, smaller decreases
in OGI during moderate activation have been reported, from 8%

(Shulman et al., 2014) to 6% (Wehrli et al., 2014; Shulman et al.,
2001), which are perfectly in line with our findings in the short
activation protocol.

A question of interest from the point of view of, e.g., studying
recovery after seizures, is the return times of the metabolite lev-
els to baseline after the activity has ended. In Fig. 6, we show the
percentage of recovery of the principal metabolites at various time
instances for the experiment with an activation period of 45 s. No-
tice that just 1 min after the neuronal activation has stopped, most
of the metabolites have already recovered to 90% of their base-
line values. The astrocytic compartment is significantly slower in
terms of recovery compared to the other compartments for most of
the metabolites, due to the cleansing role of these cells: Energy is
needed for recovering the ion homeostasis after the activation. In
astrocyte, one minute after the end of the activation period, glu-
cose has recovered only 75% of its initial value, oxygen 91%, and
the phosphorylation state is at 89% of its baseline value.

7. Conclusions

This paper develops a unified model combining brain en-
ergy metabolism with the underlying electrophysiology describ-
ing neuron firing and astrocytic ion cleansing, as well as with the
metabolite supply system through hemodynamics. The model is
based on the idea of two-way mechanisms by which the different
constituents communicate with each other: the electrophysiology
model and metabolic components exchange information about en-
ergy needs and energy availability, the hemodynamic model pro-
vides the supply of metabolites and thus controls the energy pro-
duction, while itself being controlled by the potassium signal orig-
inating from neuron firing activity, affecting the vessel complian-
cies and thus the cerebral blood flow. The numerical simulations
demonstrate that even while the metabolic network is rather re-
duced, we are able to produce model predictions that qualitatively
and quantitatively correspond to experimental results.
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The integrated model has the potential for interpreting indi-
rect measurements of brain functions. Our understanding of work-
ing human brain is largely based on indirect observations of
one of the three main components of the model, hemodynamics
through BOLD fMRI, metabolism through PET, and electrophysiol-
ogy through EEG/MEG. While there are good reasons to use one
of the modalities as a proxy for another, the proposed integrated
model is a step towards putting the implicit assumptions on a
well-established basis. Moreover, the model may serve to better
understand the mechanisms behind some diseased states that in-
volve more than one of the three aspects of the brain functions.
The best candidates are migraine and cortical spreading depres-
sion that involve all three aspects of the brain, as well as epilep-
tic seizures, which are electrophysiological in nature, but the cell
damage is due to energy insufficiency. The connection between
epilepsy and metabolism is confirmed by the use of ketogenic diet
as seizure control in refractory epilepsy, however, the details re-
main elusive. In our simulation with a longer activation period, the
phosphorylation state going almost to zero causes a quenching of
the sodium-potassium pump action which could explain the cell
damage and neuronal loss reported following continued seizure-
like conditions. While the current model does not contain the ele-
ments of describing the damage process, it may serve as a base to
study seizure-related cell damage. Observe that in the shorter sim-
ulation, while the phosphorylation levels drop, they do not reach
as low levels as in the long activation, as one expects.
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