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1  |   INTRODUCTION

Sustainable and effective provision of biomass is critical for 
the development of the bioenergy industry (Richard, 2010). 
Compared with other biomass sources such as energy crops and 

forest biomass, crop residues are by‐products of crop produc-
tion. Crop production, influenced by the effects of crop, climate, 
soil, agricultural practices, and their interactions, is spatially het-
erogeneous in nature (Liu et al., 2013). Climate, cropping pat-
tern, farming practices, and policy change with time, and these 

Received: 25 January 2019  |  Revised: 30 March 2019  |  Accepted: 14 April 2019

DOI: 10.1111/gcbb.12622  

O R I G I N A L  R E S E A R C H

A spatiotemporal assessment of field residues of rice, maize, and 
wheat at provincial and county levels in China

Tao Lin1   |   Jialu Xu1  |   Xiqiang Shen1  |   Hao Jiang1  |   Renhai Zhong1  |   
Sensen Wu2,3  |   Zhenhong Du2,3   |   Luis Rodriguez4  |   K. C. Ting4,5

This is an open access article under the terms of the Creat​ive Commo​ns Attri​bution License, which permits use, distribution and reproduction in any medium, provided the original 
work is properly cited.
© 2019 The Authors. GCB Bioenergy Published by John Wiley & Sons Ltd

1College of Biosystems Engineering 
and Food Science, Zhejiang University, 
Hangzhou, Zhejiang, China
2School of Earth Sciences, Zhejiang 
University, Hangzhou, Zhejiang, China
3Zhejiang Provincial Key Laboratory 
of Geographic Information Science, 
Hangzhou, Zhejiang, China
4Department of Agricultural and Biological 
Engineering, University of Illinois at 
Urbana‐Champaign, Urbana, Illinois
5International Campus, Zhejiang University, 
Haining, Zhejiang, China

Correspondence
Zhenhong Du, School of Earth Sciences, 
Zhejiang University, Hangzhou, Zhejiang, 
China.
Email: duzhenhong@zju.edu.cn

Funding information
National Natural Science Foundation of 
China, Grant/Award Number: 31701316 
and 41871287; China National Key 
Research and Development Program, Grant/
Award Number: 2016YFC1400903 and 
2017YFD0700605

Abstract
China has a huge resource potential for biomass‐based renewable energy develop-
ment, but the resources of field residues are still not effectively used. Rice, maize, 
and wheat made up 89% of staple crop production in China in 2009. A comprehen-
sive assessment of field residues of these three crops is necessary for the develop-
ment of biomass‐based industries. This research was based on multiyear county‐level 
data of crop production, area and yield, as well as the crop phenology information 
from agrometeorological stations. Spatial and temporal analyses were conducted to 
quantify the spatial patterns, seasonal variations, and temporal trends of the three 
major field residues. The mean amount of field residue of rice, maize, and wheat was 
470.8 Mt/year from 2002 to 2009. Rice residue topped the field residues at 188.5 Mt/
year, followed by maize (152.6 Mt/year) and wheat (129.8 Mt/year). The resource 
supply of field residues varied temporally throughout the season, where peak months 
are May, June, September, and October. The resources of all three field residues 
increased from 2002 to 2009, topped by maize residues at a rate of 10.0 Mt/year. 
Spatially, high production counties had the fast growth rate and a strong positive spa-
tial autocorrelation. The results showed that the intersection area of East and South 
Central regions has a spatially concentrated residue density and a stable supply for 
5 months. The region can be considered as a suitable region for bioenergy develop-
ment. A better understanding of spatial and temporal distribution of crop residues 
could facilitate strategic and tactical bioenergy planning.
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changes would alter the spatial and temporal heterogeneity of 
crop residue production. A comprehensive assessment of spatial 
characteristics and temporal variations of crop residue provi-
sion is vital not only for the resource evaluation but also for the 
strategical and tactical planning of bioenergy facility operations 
(Hiloidhari et al., 2017; Yang et al., 2014).

Strategically, maize, rice, and wheat are the top three 
staple crops in China, which made up 89% of Chinese sta-
ple crop production in 2009 (National Bureau of Statistics 
of China, 2010). Their residues are considered to be a re-
liable feedstock for bioenergy. The design of the biomass 
supply chain depends on a comprehensive understanding 
of spatial characteristics of feedstock provision (Hiloidhari 
et al., 2017). Previous studies presented state/provincial‐
level and national‐level assessments of biomass availability 
(Ferreira‐Leitao et al., 2010; Kim & Dale, 2004; Li et al., 
2012; Matsumura, Minowa, & Yamamoto, 2005; Wang et al., 
2013), county‐level spatial distribution and usage of biomass 
in certain states (Ćosić, Stanić, & Duić, 2011; Yang et al., 
2015), as well as the economic potential for biomass supply 
from crop residues (Chen, 2016). The distribution of crop 
residues has not only spatial heterogeneity but also temporal 
dynamics. As a result of climate change and improvement 
in agricultural practices, annual crop production changes 
with time (Hou et al., 2014; Xiong, Holman, You, Yang, & 
Wu, 2014). These annual changes have a close association 
with the cropping system and location (Osborne & Wheeler, 
2013). Therefore, the availability of crop residue, even at the 
county level, is not constant over time.

Tactically, the uneven distribution and seasonal varia-
tions of crop residues make it difficult for biomass storage 
and logistics operations (Hu, Lin, Wang, & Rodriguez, 2017; 
Sharma, Ingalls, Jones, & Khanchi, 2013). Maize, rice, and 
wheat are planted in varying cropping systems in the world 
and have region‐specific maturity times. In the United States, 
maize is planted as an annual crop, and is mostly harvested 
between September and November (USDA, 2018). In Brazil, 
more than half of the maize is sown as a secondary crop 
after soybean and harvested mainly in June to July (USDA, 
2009). In China, 20 provinces have adopted multiple crop-
ping systems, and thus have varied cropping patterns (Yan et 
al., 2014) and seasonal variations in crop residue availability 
(Han et al., 2015). A quantitative understanding of the sea-
sonal provision patterns of crop residue is needed to support 
the operational design of biomass supply chain systems.

To the best of our knowledge, most studies focus on the 
statistical summaries of national or regional biomass re-
source evaluation (Table 1), without much consideration of 
spatial correlations or seasonal and interannual variations 
of the residues, especially at the county level. Spatial statis-
tical analysis has been widely used to quantify spatial cor-
relations in natural sciences (De Knegt et al., 2010; Fortin, 
James, MacKenzie, Melles, & Rayfield, 2012) and social 

sciences (Gesler, 1986; Páez & Scott, 2005). Moran's I 
statistic and other similar statistics provide standard ap-
proaches to identify spatial patterns and quantify spatial 
correlations between spatial observations (Arthur, 1995; 
Getis & Ord, 1992; Moran, 1950). Spatial association in-
cludes correlation and heterogeneity: spatial correlation 
shows the closeness of similarity between observations, 
whereas heterogeneity quantifies the difference between 
spatial observations. Spatial associations can change under 
varied spatial resolutions, because spatial heterogeneity 
and dependency change with the resolution. Selection be-
tween provincial and county boundaries would probably 
result in changes in spatial patterns because of the differ-
ent sizes and shapes of the sampling unit (Fortin, 1999). 
County‐level data can reflect a more reliable and accurate 
analysis than province‐level data to identify spatial associ-
ations such as high provision cluster regions. Therefore, we 
should consider both provincial and county‐scale data to 
illustrate the global and local spatial characteristics of field 
residue provision.

In recent decades, residue resources have received great 
interest and have been widely studied in both developed 
and developing countries. However, a comprehensive 
study considering large spatial area, high spatial resolu-
tion, and long time series data analysis simultaneously is 
lacking (Table 1). China has an increased demand for re-
newable energy and a high crop residue yield potential; 
however, the residue resources are not used effectively 
(Jiang, Zhuang, Fu, Huang, & Wen, 2012). Most existing 
studies have only focused on the large‐scale (e.g., regional 
or provincial level) residue provision (Hiloidhari, Das, & 
Baruah, 2014) or considered particular rural regions for 
case studies (Muth, Bryden, & Nelson, 2013; Zyadin et al., 
2018). Given the complexity of its cropping systems, and 
a lack of quantitative understanding of the interrelations 
at various spatial and temporal resolutions, we take China 
as an example to provide a comprehensive spatiotemporal 
statistical analysis to quantify the spatial characteristics 
and temporal variations of field residue resources. This 
study focuses on the residues of three major field crops—
rice, maize, and wheat—at provincial and county levels 
in China from 2002 to 2009. The objectives of this study 
are to (a) identify the nationwide spatial patterns of field 
residue production at the provincial and county levels; (b) 
quantify the temporal trend and seasonal variations of field 
residue production; and (c) analyze the spatial structures 
and variations of field residues in high production regions 
of China. The detailed spatiotemporal assessment of field 
residues aims to provide a new perspective on biomass re-
source evaluation considering spatial characteristics and 
temporal variations, which could facilitate sustainable 
planning and operational development of the bio‐based 
industry.
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2  |   MATERIALS AND METHODS

2.1  |  Data source and crop residue 
calculation
Provincial and county‐level crop production data from 
2002 to 2009 were collected from the National Bureau 
of Statistics of China (National Bureau of Statistics 
of China, 2010) to quantify the spatial and temporal 
changes. From 2002 to 2009, data of rice, maize, and 
wheat from 31 provinces were collected (Figure 1). After 
data quality check and preprocessing, the number of 
counties with eight consecutive years of data for residue 
analysis was 1,270, 1,767, and 1,431 for rice, maize, and 
wheat, respectively.

The field residue availability (FRA) of each crop was cal-
culated by Equation 1 (Wang, Xue, & Xie, 2012):

where ACP is the annual crop production and FRI is a field residue 
index (stubble included). In our study, the FRIs of rice, maize, and 
wheat are 1.04, 1.07, and 1.28, respectively (Wang et al., 2012).

The provincial data of the three crops were used to es-
timate the total amount and the monthly provision changes 
in field residue from 2002 to 2009 (China Meteorological 
Administration, 2018). The trend of county‐level field resi-
due production from 2002 to 2009 was quantified using lin-
ear regression analysis. Data of the crop‐growing period were 
collected from agrometeorological stations in China. The 
mean maturity date of all agrometeorological stations within 
each province was calculated as the province‐level maturity 
time of each crop. The mean maturity time was used as the 
timing for monthly field residue resource supply.

(1)FRA=ACP×FRI

T A B L E  1   Summary of previous studies on biomass residue resources by various spatial resolutions, time lengths, and seasonal changes

Studied region

Data coverage

Residue type
Seasonal 
changes Reference

Spatial 
resolution

Time 
length 
(Year)

Asia China National Province 2 Crop and processed No Wang et al. (2013)

China Regional County 3 Crop Yes Han et al. (2015)

China National County 10 Crop No Chen (2016)

Japan National National 1 Crop No Matsumura et al. (2005)

China Regional County 3 Crop and processed No Yang et al. (2015)

India National State 5 Crop No Hiloidhari et al. (2014)

India Regional Village 5 Crop No Hiloidhari and Baruah 
(2011)

Europe EU27 National National 10 Crop No Scarlat, Martinov, and 
Dallemand (2010)

Poland Regional County 1 Crop and forestry No Zyadin et al. (2018)

Croatia Regional County 5 Crop and forestry No Ćosić et al. (2011)

Five European 
countries

Regional 1 km × 1 km 1 Crop No Haase, Rosch, and Ketzer 
(2016)

Germany National National multi Agricultural, forestry, 
municipal, industrial 
and other

No Brosowski et al. (2016)

EU National National 5 Agricultural No Searle and Malins (2016)

America US National County 2 Crop No Muth et al. (2013)

US National County 30 Crop and forestry No Langholtz et al. (2016)

Canada National Province 10 Crop No Li et al. (2012)

Brazil National National 1 Crop No Ferreira‐Leitao et al. (2010)

Argentina Regional District 2 Crop and forestry No Roberts, Cassula, Osvaldo 
Prado, Dias, and Balestieri 
(2015)

Global   National 5 Crop No Kim and Dale (2004)

  National 3 Crop No Bentsen et al. (2014)

Note: EU27: European Union, which includes 27 countries in the period of 2007–2013.
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2.2  |  Spatial correlation analysis
Crop production systems in China are divided into six 
regions according to the National Bureau of Statistics of 
China: North (N), Northeast (NE), East (E), South Central 
(SC), Southwest (SW), and Northwest (NW). The top two 
production regions for each crop were selected to conduct 
the spatial correlation analysis of field residues. After fil-
tering the nonconsecutive county‐level data for each crop, 
NE (132 counties) and N (288 counties) were chosen for 
maize analysis, SC (315 counties) and E (315 counties) for 
rice, and SC (256 counties) and E (254 counties) for wheat 
in this study. Semivariance, Moran's Index, and spatial 
clustering analysis were conducted to quantify the spatial 
correlation of crop residues. Semivariance quantifies the 
spatial variability of a regional field residue. Semivariance 
γ(h) is computed as half the mean squared difference be-
tween the components of data pairs as shown in Equation 
2 (Burrough, 2001):

where h can be any distance of paired counties, N(h) is the 
total number of paired counties separated by the distance h, 
Z represents the amount of field residue in a county, and xi is 
the centroid of a county. With the equation above, a set of h 
and γ(h) can be calculated. A semivariogram is plotted with 
γ(h) on the y axis and h on the x axis. Range is the h value 
after which the γ(h) levels off. Two counties further away 

than the range value are considered as not spatially correlated 
in field residue amount. Range is also used in the calculations 
of Moran's I.

Global Moran's I is used to study the overall spatial auto-
correlation, whereas Local Moran's I is used to identify the 
degree of spatial autocorrelation in each specific location 
(Anselin, 1995).

Global Moran's I is calculated by Equation 3 (Cliff & Ord, 
1981):

where n is the number of samples; zi is the value of the 
variable at region i; zj is the value at other locations (where 
j ≠ i); z̄ is the mean value of z with the sample number of 
n; S0=

∑n

i=1

∑n

j=1
wi,j and wij is a spatial weighting between 

zi and zj. Z test is applied for the significance test of Global 
Moran's I.

1.	 I  =  0 means there is no global spatial autocorrelation 
between observations.

2.	 I > 0 means the global spatial autocorrelation is positive.
3.	 I < 0 means the global spatial autocorrelation is negative.

Local Moran's I is calculated by Equation 4 (Getis & Ord, 
1996):

where zi is the value of the variable at location i; zj is the value 
at other locations (where j ≠ i); z̄ is the mean value of z with 
the sample number of n; σ2 is the variance of z; and wij is a 
spatial weighting between zi and zj. The area i is spatially as-
sociated with its neighbors when values of Ii are statistically 
different from 0. Z test is for significance evaluation of Local 
Moran's Index.

1.	 Ii > 0 means the local spatial autocorrelation is positive.
2.	 Ii < 0 means the local spatial autocorrelation is negative.

Spatial weight matrix was constructed to identify con-
tiguous counties. When the distance between the paired 
counties was smaller than the range from the semivario-
gram, they were considered correlative and their spatial 
weight was calculated in ArcGIS with the inverse distance 
weighted model. Otherwise, the paired counties were con-
sidered to be noncorrelative and their spatial weight was 0. 
Both Global Moran's I and Local Moran's I were carried 
out on each spatial weight matrix. In this research, con-
tiguity was defined using spatial matrix based on inverse 

(2)� (h)=
1

2N (h)
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)]2
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F I G U R E  1   Average annual resource density of the field residues 
of rice, maize, and wheat in the 31 provinces in China from 2002 to 
2009. The bold dark lines display the six administrative regions in 
China, i.e., Northeast (NE), North (N), Northwest (NW), Southwest 
(SW), South Central (SC), and East (E) regions
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distance. The range according to semivariance was used as 
the distance parameter to calculate Global Moran's I and 
Local Moran's I. Local Moran's I of crop residue in dif-
ferent regions were also calculated in two periods, from 
2002 to 2005 and 2006 to 2009. Local Indicators of Spatial 
Association cluster maps based on Local Moran's I were 
used to identify spatial cluster patterns of crop residue dis-
tribution (Harries, 2006). Cluster maps were prepared by 
ArcGIS10.2 based on Local Moran's I. The cluster map re-
flects four kinds of regions, including:

1.	 high–high spatial cluster: high values are surrounded 
by high values;

2.	 high–low spatial outlier: high values are surrounded by 
low values;

3.	 low–high spatial outlier: low values are surrounded by 
high values;

4.	 low–low spatial cluster: low values are surrounded by low 
values.

3  |   RESULTS

3.1  |  Spatial patterns of crop residue 
resources at the provincial level
The annual field residue production of rice, maize, and wheat 
was estimated at the mean of 470.8 million metric tonnes per 
year (Mt/year) from 2002 to 2009 (Table 2). Rice residue topped 
the biomass production at the mean of 188.5 Mt/year, followed 
by maize (152.6 Mt/year) and wheat (129.8 Mt/year) residues.

East and South Central were the top two regions in terms 
of the total field residue resource potential, where both regions 
produced more than 125 Mt/year (Table 2). They were also the 
top two regions for rice and wheat residue productions, which 
accounted for 69.8% and 64.8% of national production, respec-
tively. Northeast and North regions topped the maize residue 
with 51.2% of national resources. At a provincial level, Henan, 
Jiangsu, Shandong, and Anhui had the highest amounts of residue 
resource (Table 2). Especially, Henan was the only province that 
produced more than 50.0 Mt of crop residues annually, which was 
close to the total production from SW and N regions.

The provinces with the highest absolute residue resource 
potential, Henan, Jiangsu, Shandong, and Anhui, were exactly 
the provinces with the highest resource density, which refers 
to the annual field residue production per unit area. Their po-
tential resource densities were as high as 318.9, 286.0, 250.8, 
and 202.5 tonnes per square kilometer (t/km2), respectively 
(Figure 2). As a reference, the national average resource 
density of the three field residues was only estimated at the 
mean of 49.3 t/km2. These four provinces with high residue 
resource density are concentrated in the northern part of East 
and South Central China (Figure 2).

By crop, wheat residue production was the most spatially 
heterogeneous, and the production is concentrated in fewer, 
highly productive regions. The top five provinces (Henan, 

T A B L E  2   Average annual production of field residues of rice, 
maize, and wheat in 31 provinces of China from 2002 to 2009 (million 
tonnes)

Region

Source of field residue

TotalRice Maize Wheat

East 63.02 23.56 46.18 132.76

Shandong 1.06 17.84 23.34 42.23

Jiangsu 17.69 2.23 10.48 30.39

Anhui 13.41 3.09 11.87 28.37

Jiangxi 17.48 0.07 0.03 17.57

Zhejiang 7.03 0.18 0.27 7.47

Fujian 5.43 0.13 0.03 5.59

Shanghai 0.94 0.03 0.16 1.13

South Central 68.53 20.55 38.00 127.08

Henan 3.94 14.28 34.60 52.82

Hunan 24.33 1.36 0.13 25.81

Hubei 15.47 2.15 3.24 20.86

Guangxi 12.00 2.07 0.02 14.08

Guangdong 11.36 0.64 0.02 12.01

Hainan 1.43 0.07 0.00 1.50

Northeast 22.20 44.93 1.20 68.33

Heilongjiang 12.85 14.16 1.08 28.09

Jilin 4.77 19.39 0.04 24.20

Liaoning 4.57 11.39 0.08 16.04

Southwest 31.39 17.44 8.92 57.75

Sichuan 15.31 6.18 5.56 27.04

Yunnan 6.40 5.06 1.35 12.82

Guizhou 4.61 3.79 0.79 9.18

Chongqing 5.06 2.40 0.88 8.34

Tibet 0.01 0.02 0.34 0.36

North 1.27 33.21 20.34 54.82

Hebei 0.54 13.56 14.65 28.75

Inner Mongolia 0.60 11.72 1.80 14.13

Shanxi 0.01 6.43 2.96 9.39

Tianjin 0.11 0.82 0.60 1.53

Beijing 0.01 0.68 0.33 1.02

Northwest 2.05 12.86 15.21 30.11

Shaanxi 0.83 4.78 5.02 10.63

Xinjiang 0.54 4.00 5.20 9.73

Gansu 0.04 2.67 3.44 6.15

Ningxia 0.63 1.40 0.98 3.01

Qinghai 0.00 0.02 0.58 0.59

Total 188.45 152.55 129.84 470.85
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Shandong, Hebei, Anhui, and Jiangsu) accounted for 73.1% of 
national wheat residue production. Maize residue (51.9% con-
tributed by Jilin, Shandong, Henan, Heilongjiang, and Hebei) 
and rice residue production (47.9% contributed by Hunan, 
Jiangsu, Jiangxi, Hubei, and Sichuan) were less concentrated 
in highly productive provinces than wheat residue production.

3.2  |  Temporal variations of crop residue 
resources at provincial level
All three crop residues had an increased production trend from 
2002 to 2009 but at different rates (Figure 2). Maize residue had 
the largest increase rate at 10.0 Mt/year, followed by wheat and 
rice residue at the rates of 6.3 and 4.7 Mt/year, respectively. The 
increase in rice residue was driven by the increase in both har-
vested area (0.30 million ha/year) and yield (68 kg ha−1 year−1). 
The increase in maize residue was mainly because of increased 
harvesting area (1.06 million ha/year), while the increase in wheat 
residue was mainly due to its yield increase (146 kg ha−1 year−1). 
In general, maize area and wheat yield contributed the most to the 
total residue increase of three crops together.

The major maturity time for the three crops in 20 major 
production provinces varied from May to November (Figure 
3a). September is the most important time period, which con-
tributes 44% of total annual residue production, followed by 
June (14%), May (13%), and October (12%). The highest field 
residue production occurred in September with 150.8  Mt, 
which mainly came from maize residue. A relatively small 
amount of field residue was harvested during the period from 
December to April.

Rice residue had a relatively wide harvesting range from 
July to November (Figure 3b). The highest rice residue pro-
duction occurred in October, accounting for 36.1% of total 

production, followed by September (28.8%) and July (20.7%). 
In China, rice is mainly planted as single rice (56.7%), whereas 
double rice (43.3%) can be further divided into early or late 
rice (52% and 48%, respectively). The maturity time varies by 
region for the three types of rice. Early rice was mainly grown 
in provinces such as Hunan, Jiangxi, Guangxi, and Guangdong, 
and the maturity time was July. Single rice was mostly planted 
in Jiangsu, Sichuan, Heilongjiang, and the other four provinces. 
The maturity time of single rice varied from August to October. 
Late rice was mature in October and November in Hunan, 
Jiangxi, Guangdong, Guangxi, and the other three provinces.

The maturity period of wheat production ranged from 
May to August. Winter wheat was mature in May and June, 
while spring wheat was mainly mature in June, July, and 
August. Wheat residue in China was mainly made up of win-
ter wheat (122.3 Mt/year), accounting for 94.2% of all wheat 
residue. June was the peak month for wheat residue produc-
tion amounting to 59.0 Mt, or 50.3% of the sum of wheat 
residues in the top ten provinces. Every year, wheat harvest 
along with the residue production started in May from south-
ern provinces (Sichuan, Hubei, Henan, and Anhui) and ended 
in August in northern provinces (Hebei and Inner Mongolia).

3.3  |  Spatiotemporal patterns of crop 
residue at the county level
Crop residue production had a marked spatial heterogeneity 
at the county level in China for all three crop residues (Table 
3). The amount of crop residue production varied from less 
than 10 t to more than 5.0 Mt/year. Among three crop resi-
dues, rice residue had the highest mean and median values 
but the lowest standard deviation at the county level (Table 
3). The results indicated that rice residue had the relatively 
more stable distribution when compared with maize and 
wheat residues. The mean value of maize residue was double 
of its median value, whereas the mean value of wheat resi-
due was triple of its median value. In particular, the county 
with the largest amount of wheat residue produced more than 
5.5 Mt/year, which is much higher than that produced by the 
county with largest maize (2.0 Mt/year) and rice (0.95 Mt/
year) residue production.

The county‐level distributions of rice, maize, and wheat residues 
varied spatially (Figure 4). Rice residue had a relatively distributed 
spatial pattern of high production, with 70 counties providing rice 
residue over 400 kt annually amounting to 36.7 Mt (22.4% of total 
rice residues). The high production counties of rice residue were 
mainly located in South Central, East, and part of Northeast re-
gions. The wide spread of high production counties demonstrated 
the relative distributed pattern of rice straw production.

For wheat residue, there were 51 counties where the an-
nual average production was over 400 kt, with 28.2 Mt in total. 
The high production counties of wheat residue were mainly 
located in the western region of E and northern region of SC, 

F I G U R E  2   Potential resource of field residues of rice, maize, 
and wheat and trends during 2002–2009. Solid, dashed, and dash‐
dot lines stand for the trends of rice (slope = 4.7 Mt/year), maize 
(slope = 10.0 Mt/year), and wheat (slope = 6.3 Mt/year) residues, 
respectively
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accounting for 23.9% of national wheat residue production. 
For maize residue, only 44 counties could produce more than 
400 kt/year, with the total amount of 36.0 Mt/year, contribut-
ing to 25.5% of the total maize residue. These high production 
counties are mainly concentrated in the central area of NE.

The results showed that 78.7% of the counties with 
maize residue production increased their production from 
2002 to 2009. Among them, 112 counties, or 6.3% of the 
counties, had a rapid increase with over 20 kt/year, which 
mainly were located in the NE region and east of Inner 
Mongolia. Sixty percent of counties had an increase in rice 
residue. About 6.3% of counties, which were located in the 

central area of SC and NE, had an increase with more than 
20 kt/year. For wheat, 54.2% of counties had an increased 
field residue from 2002 to 2009, with 7.1% of counties with 
production increases of more than 20 kt/year. The counties 
with high increasing rates were located in the northern and 
central area of E.

3.4  |  Spatial correlation and clustering 
analysis of crop residue
In both 2002–2005 and 2006–2009, all the Indexes of Global 
Moran for the three crop residues in different regions were 

F I G U R E  3   Maturity time and 
quantity of field residues of rice, maize, 
and wheat in high production provinces 
from 2002 to 2009: (a) sum of three crop 
residues from top 20 provinces; (b) rice 
residue from top 10 provinces; (c) maize 
residue from top eight provinces; (d) 
wheat residue from top 10 provinces. SW, 
Southwest; NE, Northeast; NW, Northwest; 
N, North; SC, South Central; E, East 
region; Mt, million tonnes

Field residue
Number of 
counties Min Median Max Mean SD

Rice 1,270 0.03 83.00 950.27 128.71 137.85

Maize 1,767 0.01 36.22 2,041.75 79.91 152.59

Wheat 1,431 0.02 23.36 5,536.03 82.51 190.30

T A B L E  3   Descriptive statistics for 
county‐level field residues of rice, maize, 
and wheat in China during 2002–2009 
(kilotonnes)
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F I G U R E  4   Mean and trend of crop residue (rice, maize, and wheat) production at the county level during 2002–2009: (a) mean production 
of rice residue; (b) trend in production of rice residue; (c) mean production of maize residue; (d) trend in production of maize residue; (e) mean 
production of wheat residue; (f) trend in production of wheat residue
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positive (Table 4). The results demonstrated that there was 
a significant (p < 0.01) positive spatial autocorrelation of 
each crop residue in high production regions, meaning that 
adjacent counties inside the same region had similar pro-
duction level. For rice residue, the results showed that there 
was a remarkable increase in Global Moran's Index in the 
East from 2002–2005 to 2006–2009, whereas the South 
Central region had a slight increase. Both increases in 
Global Moran's Index demonstrated an increased concen-
tration of rice residue resource during the two time periods, 
which also corresponds to the pattern in the trend analysis 
shown in Figure 4. For maize residue in the North region 
and wheat residue in the South Central region, the values 
of Global Moran's Index had a drop, suggesting that the 
distribution of residue resources became less concentrated.

Local Moran's I revealed the clustering patterns of the 
county level residue production. The results showed that 
spatial cluster patterns of the three crop residues remain 
relatively stable from 2002 to 2009. High–high clusters, 
referring to the high residue production regions that ag-
gregated together, remained mostly unchanged in differ-
ent regions over years for all crop residues except maize 
(Figure 5). For rice residue, high–high cluster areas were 
mainly in Hunan and Hubei provinces in the South Central 
region and in the middle of Jiangxi, Anhui, and Jiangsu 
provinces of the East region over the two periods. The 
number of counties in high–high cluster regions increased 
in the South Central region whereas it decreased in the 
East region during the two periods. For maize residue, un-
changed high–high cluster areas were only located in the 
middle of Jilin and southwest of Heilongjiang provinces. 
Local spatial autocorrelation in the North region changed 
over time. The high–high clusters of maize residue in N 
in 2002–2005 no longer occurred in 2006–2009 (Figure 
5c,d). For wheat residue, high–high cluster regions con-
centrated in the north of East and South Central regions, 

mainly in Henan, Shandong, north of Anhui and Jiangsu 
provinces.

Unlike the interlaced distribution of provinces with high 
or low residue productions, the results of spatial clustering 
analysis on county‐level residue productions showed that 
both rice and wheat residues had a relatively steady and 
locally concentrated field residue resource in high produc-
tion regions from 2002 to 2009 (Table 5). Maize residue, 
however, had an unsteady spatial concentration patterns in 
the North region.

4  |   DISCUSSION

4.1  |  Provincial level crop residue resources

Provinces with high resource densities, such as Henan, 
Jiangsu, Shandong, and Anhui, are favorable as locations 
for biomass plants and markets, mainly due to the com-
paratively low transportation costs. As the bulk densities 
of field residues are low, their overall cost can be sensitive 
to the distance required for road transport, which, for long 
distance transportation, can be 25%–30% of the total cost 
(Bentsen, Nilsson, & Larsen, 2018). High resource density 
and well‐established local facilities can reduce the cost of 
bioenergy and improve its competitiveness to other energy 
sources.

Multiple cropping is common in the provinces with a high 
resource density. Multiple cropping systems are designed to ef-
ficiently use the environmental resources throughout the grow-
ing season. Field residue supply is therefore less concentrated in 
terms of quantity and time. This feature is very different as com-
pared to the cropping systems in the United States, where most 
areas adopt a single cropping system and corn stover contributes 
approximately 70% of total crop residues (Langholtz, Stokes, 
& Eaton, 2016). Multiple cropping not only reduces biomass 
storage requirement and the associated losses but also provides 

Crop Region Year
Global 
Moran's I Z value p‐value

Rice East 2002–2005 0.25 21.90 <0.001

2006–2009 0.38 21.33 <0.001

South Central 2002–2005 0.29 26.91 <0.001

2006–2009 0.30 26.93 <0.001

Maize Northeast 2002–2005 0.33 12.00 <0.001

2006–2009 0.29 10.87 <0.001

North 2002–2005 0.42 16.88 <0.001

2006–2009 0.11 2.60 <0.01

Wheat East 2002–2005 0.29 45.76 <0.001

2006–2009 0.29 44.47 <0.001

South Central 2002–2005 0.44 47.84 <0.001

2006–2009 0.31 42.60 <0.001

T A B L E  4   Global Moran's Index of 
field residue resources of rice, maize, and 
wheat in top two production regions in 
China
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F I G U R E  5   Spatial cluster maps of three field residues of (a, b) rice (East and South Central China), (c, d) maize (North and Northeast 
China), and (e, f) wheat (East and South Central China) in main production regions in 2002–2005 and 2006–2009
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a stable supply potential to the biomass based energy facilities. 
However, the pressure for timely harvests in multiple cropping 
regions would increase demand for harvesting machinery and 
logistics management. At the provincial level, due to its high 
density of crop field residues and relatively steady supply poten-
tial throughout the year, Anhui province is viewed as having an 
advantage for developing crop residue‐based bioenergy systems.

4.2  |  County‐level crop residue resources

The results of our county‐level analysis demonstrated that field 
residues had a varied spatial correlation structure even within 
the same province or high production region. This complexity 
indicated the necessity to understand the distribution of county‐
level residue resource. During 2002–2009, there was a special-
ization of crop production in the Northeast region. Maize and 
rice residues had increased during this period with a decreased 
wheat residue, indicating a replacement of wheat by maize and 
rice. Meanwhile, some high–high cluster disappeared, such as 
the rice residue cluster in the southern ends of Guangxi and 
Guangdong provinces and the maize cluster in Inner Mongolia.

The distribution pattern of residue resource can strongly 
influence the development of bioenergy market and indus-
try. It is critical for the government and business to consider 
where and how to develop biomass supply chain systems, 
including the number and capacity of storage and process-
ing facilities and associated logistics infrastructure such as 
road or rail transportations (Jonker et al., 2016; Lin et al., 
2016; You, Tao, Graziano, & Snyder, 2012; Zhang, Osmani, 
Awudu, & Gonela, 2013). A more spatially concentrated 
pattern of residue resource would reduce the logistics com-
plexity and costs for biomass‐based industry and support 
the development of large‐scale facilities to achieve econ-
omies of scale (Hu et al., 2017; Lin, Rodríguez, Shastri, 
Hansen, & Ting, 2013; Zhang et al., 2013).

Overall, the counties around the intersection of East 
and South Central regions (Shandong, Henan, Anhui, 
and Jiangsu provinces) have spatially concentrated high 

productivity and resource density, fast increasing trends of 
production, and stable supply potentials of crop residues 
in 5 months. The counties could be considered as a suit-
able region for bioenergy production. On the demand side, 
this region has a relatively high population and therefore 
a high energy demand. Developing bioenergy industry in 
this region would be able to take advantage of processing 
crop residue locally to meet an increased energy demand. 
Furthermore, the spatial characteristics of county‐level 
biomass availability could provide decision support for the 
supply chain optimization of biomass facility locations and 
biomass flow patterns.

A detailed spatiotemporal analysis of field residue pro-
vides a foundation to support sustainable bio‐based in-
dustry development. This study estimated the potential of 
residue provision based on the assumption that all residues 
could be collected and used. A more realistic estimation 
of residue provision should further consider the variations 
on the removal ratio of different crop residues in different 
regions due to soil conditions and tillage practices, as well 
as the loss during harvest and transportation. With the ad-
vances in crop breeding, future increase in grain yield may 
possibly result in a decrease in straw yield (Bentsen, Felby, 
& Thorsen, 2014). A spatiotemporal explicit residue har-
vest index should be considered in future studies on field 
residue resources.
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