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The thermal cycles associated to friction stir welding and processing produce a wide range of

microstructures, resulting in different mechanical behaviors along the weld. Most research

efforts  have focused on the development of welding parameters to obtain sound welds,

yet  there is still an opportunity for performance improvement based on the understand-

ing  of how microstructures are produced. This work explored the different microstructures

obtained  after physical simulation of an X80 pipeline steel, as a function of the cooling rate

and  the isothermal transformation temperature. The aim was to study the development

of  complex mixed microstructures under controlled conditions, in order to compare them

to  the ones obtained after friction stir processing. As result of the continuous cooling and

isothermal  thermal simulations, intermediated and high cooling rates, the microstructures

matched  with those found at the processed plates. These results might help developing a

better cooling control after welding.
© 2018 Brazilian Metallurgical, Materials and Mining Association. Published by Elsevier

Editora Ltda. This is an open access article under the CC BY-NC-ND license (http://
onding author.
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 welding. First, no solidification microstructures,
n zone and partially melted heat-affected zone,

d after FSW. The Coarse-grained heat-affected zone
,  observed after arc welding, evidence typical grain
ween 75 and 150 �m [2]. In fact, such CGHAZ has
ded into two sub zones: the coarser CGHAZ (near the
e) and the finer-grained HAZ (away from the fusion
he former is not observed in FSW; while the latter is
t to the stir zone (SZ) in terms of grain size, hardness,
s [3], and bainitic microstructure [4]. Nevertheless,
, the CGHAZ has been considered absent [3] or not

 [4] by conventional light optical microscopy (LOM)
ing electron microscopy (SEM), because the obtained
e is very similar to the one at the base material. A

echanically affected zone (TMAZ) is observed right
e SZ, followed by the fine grain heat affected zone

 the inter-critical heat-affected zone (ICHAZ) and the
al  heat-affected zone (SCHAZ). After FSW, the grain
g the HAZ, measured with electron backscattering
n (EBSD), has shown very small variations of around

 However, subzones within the HAZ after FSW/P can
 using a combination of hardness and EBSD mapping

80 HSLA steel is fabricated by a thermomechanical
d processes (TMCP) followed by accelerated cooling
ich controls the austenite to ferrite transformation,

 high strength, high toughness and good weld-
]. The microstructure of HSLA steels is a matrix
d by ferrite and bainite [8]. Depending on the nom-
on content and the cooling rate, different so-called
y phases (SP) and constituents, such as martensite-

 (MA), degenerated pearlite (DP), bainite (B) and
te (M)  [9] can appear. After FSW, the microstructure
d by several factors, such as the strain and tem-

 [4,10] during the metal stirring and the subsequent
ates [11–13]. Previous works published elsewhere
rly shown that the as-processed microstructure of

line steels can be rather complex due to the mix-
olygonal ferrite (PF), quasi-polygonal ferrite (QPF),
ferrite (AF), granular bainite (GB), bainite with irreg-
es (B-IP), bainite with straight plates (B-SP) and fine
y  phases [6]. Furthermore, an additional microstruc-
dient is found at the hard zone (HZ) inside the SZ,
s been reported to undergo the highest strains and
ures of the whole weld [12,14]. Therefore, differ-

 temperatures and cooling rates can be obtained
 stir zone because of such thermomechanical inho-

ties  [15], resulting in the complex mixing of hard
,6,15].
ork encompasses an experimental effort to obtain,

ntrolled conditions, mixed and isolated microstruc-
ough continuous cooling (CCT) and time temperature
nsformation experiments, respectively, using physi-
ation. This can be very useful to isolate or maximize
ence of a phase of interest, and to associate such

cture to the resulting hardness. The results were
d  to the as-processed microstructure after FSP
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xperimental  procedure

study API 5L X80 pipeline steel plates of
 × 15 mm were used and the chemical composition is

 Table 1. The chemical analysis was carried out using
 optical emission spectrometer. However, C and S

ted separately with a dedicated fusion-combustion
. This steel was produced by controlled thermome-

processing and accelerated cooling (TMCP + ACC)
ion stir processing was performed in a dedicated
hine. Details on welding and processing parameter

 can be found elsewhere [5,6]. A single-processing
also used at [15], was performed using a downward
trol of 34 kN, spindle speed of 300 rev min−1, trans-
ed of 100 mm min−1 and average torque of 115 N m.

Re tool with 9.5 mm pin length was used.
rical samples with a reduced section diameter of
d free span of 5 mm were machined perpendicu-
e rolling direction to perform physical simulations
ble® 3800 thermomechanical simulator. The ther-

 was controlled by resistive heating, using a k-type
uple. The volumetric phase transformations were

d  with a contact dilatometer. Quasi-static dilatom-
s were conducted at heating and cooling rates of
1 to stablish the near equilibrium phase transforma-
peratures Ac1 and Ac3 on heating, and the Ar3 and
oling. Continuous cooling transformation (CCT) tests
ducted in slow (0.5, 1 ◦C s−1), intermediated (3, 5, 10

 s−1) and rapid (40, 100, 140 and 170 ◦C s−1) cooling
e temperature transformation (TTT) experiments

formed to produce specific microstructures, such
rmal perlite and bainite [16]. A fast cooling rate of

1 was used to perform the isothermal transformation
he corresponding soaking times and transformation
ures were 10,800 s at 700 ◦C, 9000 s at 650 ◦C, 3600 s at
d 9000 s at 550, 500, 400 and 300 ◦C. Before cooling,

 and CCT cycles were austenitized at 950 ◦C during
g a heating rate of 10 ◦C s−1.

structural characterization was performed in pol-
mples down to 0.05 �m colloidal silica and etched
l 3% to reveal the grain for LOM and SEM character-
icro-hardness measures were performed with load,
e and distance between indentations of 200 g, 13 s
m,  respectively.

esults

riction  stir  processing  microstructures
rent microstructures found in the cross-section of
ample are shown in Fig. 1. Additionally, Fig. 2 shows
ness variations along the detail A–A schematized in
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Fig. 1 – FSW microstructure zones: base metal (BM), heat-affected zone (HAZ), subcritical-grained HAZ (SCHAZ),
coarse-grained HAZ (CGHAZ), stir zone (SZ) and hard zone (HZ). Microstructures: bainite packets with straight ferrite plates
(B-SP), bainite packets with irregular ferrite plates (B-IP), granular bainite (GB), acicular ferrite (AF), quasi-polygonal ferrite
(QPF), ferrite (F). Yellow arrows indicate position of some SP. SEM images

Fig. 2 – Measured hardness vs expected peak temperatures
(TPeak) [1]. Microstructural zones: stir zone (SZ), hard zone
(HZ), thermo-mechanically affected zone (TMAZ),
coarse-grained HAZ (CGHAZ), fine-grained HAZ (FGHAZ),
inter-critical HAZ (ICHAZ), sub-critical HAZ (SCHAZ) and
base  met
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d  to the BM. In these cases, quasi-polygonal ferrite
s observed as the main microstructure (Fig. 1d). The
structure was composed by acicular ferrite (AF) [17],
bainite (GB) [17,18] and coarse bainite packets with

ates and irregular morphologies (B-IP) (Fig. 1e). More-
 HZ within the SZ presented coarse bainite packets
ight ferrite plates (B-SP) (Fig. 1f) [5].
hermal cycles underwent at the CGHAZ, FGHAZ,
nd SCHAZ produced softer microstructures, when
d  to 231 ± 2 HV at the BM, whereas the thermal

 the SZ and TMAZ regions resulted in little hard-
difications. The SCHAZ did not undergo noticeable
ctural changes. However, the peak temperature was

ugh to cause tempering [19], reducing hardness when
d  to the BM.  The softening in HSLA steel depends on
ctors, such as chemical composition, plate fabrica-
ess, heat input and cooling rates [3]. Slow cooling

0–500 ◦C), which are associated to high heat inputs,
arge softening [20]. However, FSW/P provides little
ening [3,6] when compared to arc welding [20].

hysical  simulation
ontinuous  cooling  transformation  tests
inuous cooling transformation (CCT) diagram, along

 resultant hardness and with some representative
ctures are presented in Fig. 3. The variation of the
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Fig. 3 – (a) Continuous cooling transformation (CCT) diagram showing the variation of the Ar3 and Ar1 transformation
temperatures  as a function of the cooling rate (CR). The resultant Vickers hardness is reported after each cooling cycle. The
corresponding microstructural characterization is presented for: BM (b, c); and after cooling rates of 0.5 (d, e); 5 (f, g); 20 (h, i);
40 (j, k) and 140 ◦C s−1 (l, m).  Microstructures: bainite packets with straight ferrite plates (B-SP), bainite packets with
irregular  ferrite plates (B-IP), granular bainite (GB), acicular ferrite (AF), polygonal ferrite (PF), quasi-polygonal ferrite (QPF),
ferrite (F). Etched with Nital 3%. Red arrows: pearlite islands; yellow arrows: fine acicular secondary phases. (b, d, f, h, j, l)
optical im
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Fig. 4 – Dilatometric heating and cooling curves showing the variation of Ac1, Ac3, Ar3 and Ar1 transformation temperatures
as a function of the cooling rate; (a) dilatometry test in quasi-static rates, (b) slow cooling rates, (c) intermediated cooling
rates and
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Fig. 5 – Dilatometric results during the physical simulation of the time temperature transformation cycles, involving rapid
cooling at 170 ◦C s−1 and isothermal transformations at: (a) 700 ◦C during 10,800 s, 650 ◦C during 9000 s and 550 ◦C during
9000 s; (b) 500 ◦C during 9000 s and 300 ◦C during 9000 s. (c) Dimensional change associated to the isothermal stages. F:
ferrite; B: bainite. The corresponding microstructures after isothermal transformations are presented: 700 ◦C/10,800 s (d, e);
650 ◦C/9000 s (f, g); 550 ◦C/9000 s (h, i); 500 ◦C/9000 s (j, k); 400 ◦C/9000 s (l, m);  and 300 ◦C/9000 s (n, o). Microstructures: second
phases (SP), polygonal ferrite (PF), quasi-polygonal ferrite (QPF), granular bainite (GB), bainite packets with straight ferrite
plates (B-SP), bainite packets with irregular ferrite plates (B-IP) and acicular ferrite (AF). Etched with Nital 3%. Red arrows:
pearlite i h, j, 
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Fig. 6 – Microstructural results after: CCT with a fast cooling rate of 170 ◦C s−1 (a, b); and after auto-tempering of bainite after
a fast cooling of 170 ◦C s−1 and subsequent isothermal stage at 300 ◦C during 9000 s (c, d). The relative dimension change, as
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Fig. 8 – Hardness distribution of the microstructural zones of the FSP plate and samples submitted to physical simulations.
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