Multireference Alignment is Easier with an
Aperiodic Translation Distribution

Emmanuel Abbe'2, Tamir Bendoryl, William Leeb', Jodo M. Pereira', Nir Sharon', and Amit Singerl’3

!The Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ, USA
%Electrical Engineering Department, Princeton University, Princeton, NJ, USA
3Department of Mathematics, Princeton University, Princeton, NJ, USA

Abstract—In the multireference alignment model, a signal is
observed by the action of a random circular translation and
the addition of Gaussian noise. The goal is to recover the
signal’s orbit by accessing multiple independent observations. Of
particular interest is the sample complexity, i.e., the number of
observations/samples needed in terms of the signal-to-noise ratio
(the signal energy divided by the noise variance) in order to drive
the mean-square error (MSE) to zero. Previous work showed that
if the translations are drawn from the uniform distribution, then,
in the low SNR regime, the sample complexity of the problem
scales as w(1/SNR?). In this work, using a generalization of
the Chapman-Robbins bound for orbits and expansions of the
x? divergence at low SNR, we show that in the same regime
the sample complexity for any aperiodic translation distribution
scales as w(1/ SNR?). This rate is achieved by a simple spectral
algorithm. We propose two additional algorithms based on non-
convex optimization and expectation-maximization. We also draw
a connection between the multireference alignment problem and
the spiked covariance model.

Index Terms—multireference alignment, spectral algorithm,
method of moments, spiked covariance model, non-convex op-
timization, expectation-maximization, cryo—-EM

I. INTRODUCTION

The problem of multireference alignment (MRA) arises in
a variety of engineering and scientific applications, among
them structural biology [1], [2], [3], [4], [5], radar [6], [7],
robotics [8] and image processing [9], [10], [11]. In these
applications, one aims to estimate a signal from its translated
or rotated noisy copies. The problem also serves as a simplified
model for more general problems like single-particle recon-
struction by cryo—electron microscopy (cryo—EM), in which a
three-dimensional density is recovered from two-dimensional
projections taken at unknown viewing directions [12], [13].

In this paper, we focus on the one-dimensional discrete
MRA problem on a circle. In this model, we acquire N
measurements from the model

Y; = Rs,z +0Gj, j=1,...,N, @D
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where the G; are i.i.d and drawn from NV'(0, 1), i.e. G; € RE
and its entries are i.i.d standard Gaussian variables. The
operator R, translates a signal z € RZ circularly by s
elements, namely, (Rsx)[i] = z[i—s], where all indices should
be considered as modulo L. The translations S; are i.i.d. and
drawn from some unknown distribution p on Zy. Figure 1.1
illustrates the MRA problem in different noise levels.

Previous approaches for estimating x from (I.1) can be
broadly classified into two main categories. The first ap-
proach is based on estimating the translations S;, aligning
all observations and averaging them to suppress the noise.
However, alignment is too erroneous in low signal-to—noise
ratio (SNR) [14], defined here as SNR, := ||z||?/o%. Note
that while the translations S; are unknown, their estimation
is not the primary goal of the problem. The translations are
frequently called latent, hidden or nuisance parameters.

An alternative approach aims at estimating the signal z di-
rectly. Existing methods bypass the need to estimate the trans-
lations by employing expectation-maximization (EM) methods
or by using features that are invariant under translation [15].
Section II is devoted to a detailed discussion on existing results
and algorithms for MRA. In this paper, we take a different
route by trying to estimate both the signal and the distribution
of translations p simultaneously. When p is aperiodic, it turns
out this is an easier problem than ignoring the fact that p is
not uniform and estimating x alone.

In this paper we focus on the regime where both the
number of observations and the variance of the noise are
diverging. More specifically, our goal is to determine the
sample complexity of (I.1), which we define to be the minimal
number of measurements, as a function of the SNR, required
such that there is a sequence of estimators {X ~} of x with
mean square error (MSE) converging to 0 as N diverges. We
define the MSE as

MSE = E | min |R,X — z|3], 1.2)
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where the expectation is taken over the estimator X , which
is a function of the random observations Y; with distribution
determined by (I.1). Allowing for a cyclic shift in (I.2) is
intrinsic to the problem: if we apply a shift Rs to z, and its
inverse R_g to the right of p, we will produce exactly the same
samples, thus there is no estimator X that is able to distinguish
the observations that originate from x and the ones from R,z.



In [16], it was proven that when p is the uniform distri-
bution, then in the low SNR regime, the sample complexity
for estimating signals with non-vanishing Discrete Fourier
Transform (DFT) is w(1/SNR?). In this work, we show that if
the translation distribution p is aperiodic, meaning there is no
1< ¢ < L—1where p[k+{] = p[k] forall 0 < k < L—1, the
sample complexity for estimating these signals is w(1/ SNR?).
This rate is optimal and can be provably achieved by a spectral
algorithm based on the first two moments of the data. The main
result of this paper is stated as follows:

Main Result (informal): Consider the model (1.1) and
suppose that © € RY has a non-vanishing DFT. When p is
aperiodic, the sample complexity of the MRA problem is lower
bounded by w(1/SNR?). This sample complexity is achieved
by a spectral algorithm, based on the first two moments of
the data. Conversely, the sample complexity for any periodic
distribution with periodicity smaller than L/2, in particular
the uniform distribution, scales like w(1/ SNR?).

The proposed framework is based on a reliable estimation
of the first two moments of the data. Hence, it requires only
one pass over the measurements, low storage resources and is
computationally efficient. To estimate the signal from the esti-
mated moments, we propose, in addition to the aforementioned
spectral algorithm, a non-convex least-squares (LS) algorithm.
While the problem is non-convex, it empirically converges to
the underlying signal, in the absence of noise, from a random
initialization. We also suggest an expectation-maximization
(EM) algorithm.

The outline of the paper is as follows. Section II provides
a detailed discussion of existing results and algorithms for
MRA. In Section III we prove that the sample complexity
is lower bounded by w(1/SNR?). We also show that the
sample complexity of any periodic distribution of translations
with a period of less than L/2 scales as w(1/SNR?). This
is an extension of the results of [16] which considered the
uniform distribution case. In Section IV we show that if the
distribution is aperiodic, then any signal with non-vanishing
DFT can be estimated from its first and second moments,
achieving the optimal estimation rate. Section V draws the
connections between the MRA model and the well-studied
spiked covariance model [17], [18], [19], [20], [21]. Section VI
discusses and analyzes alternative algorithmic methods based
on LS and EM. Section VII examines the performance of the
proposed algorithms by numerical simulations. Section VIII
concludes the paper and proposes potential future extensions.

Throughout the paper we use the following notation. We
will use capital letter for random variables, and lower case
letter for instances of this random variables. An estimator of
a signal z € R” is denoted by Z. We assume throughout that
all signals are defined cyclically; that is, all indices should be
considered modulo L. The indices will range from 0 to L — 1.
The DFT of z is defined by (Fz)[k] = Y- 7' z[ile 2mki/L,
where + = /—1. We use C, for a circulant matrix whose
first column is z, namely, C,[i,j] = z[i — j]. A diagonal
matrix whose diagonal is z is denoted by D,. We reserve E,
and ® for expectation, convolution and entry-wise product,
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Fig. I.1.  The figures illustrates the MRA measurements according to (I.1).

The left column presents three measurements with different translations in
the absence of noise. In this case, because the solution is defined up to
translation, each measurement is a solution. The middle and right columns
show measurements with the same translations and low and high noise levels,
respectively.

respectively. The L—simplex is denoted by A”. That is to say,
z € AL implies that z[i] > 0 for all i and ZiL:_Ol z[i] = 1.

II. RELATED WORK
A. Multireference alignment via synchronization

Given the translations s;, the MRA problem (I.1) is easy.
One trivial unbiased estimator of x is given by aligning
all measurements and then averaging to suppress the noise,
namely,

N
X = %ZR;}Y, (IL1)
j=1

The variance of this estimator is ¢2/N and therefore the
number of measurements N needs to scale like 02 to retain
a constant estimation error. In other words, the sample com-
plexity grows like w(1/SNR). One can replace (II.1) with
other estimators, such as James-Stein shrinkage [22], [23],
[24], but it will not change the asymptotic sample complexity.
In practice, we do not have access to the underlying trans-
lations. However, if one can obtain a reliable estimation of
the unknown translations 5;, then one can estimate x by the
sample mean as in (IL1) at sample complexity w(1/SNR).
This motivates the design of synchronization methods that aim
to estimate the translations s; from the data y;.

A naive approach for synchronization could be to fix one
observation as a template, say Y7, and estimate the relative
translation of each Y, with respect to Y7, by the peak of their
cross-correlation:

L—1
S; = arg max Z Y1[i]Y;[i + s].
i=0
This approach may work in the high SNR regimes, but fails as
the noise level increases (see for instance Figure 1.1 in [15]).



Many alternative synchronization methods were proposed
in the literature. For instance, the angular synchronization
method aims at aligning all pairwise observations simultane-
ously [25], [26], [27], [28], [29], [30]. Other methods propose
to align through different semidefinite programs (SDPs) [31],
[32], [33], [34]. However, alignment is impossible below a
critical SNR threshold, no matter how many measurements
are acquired. For instance, for the continuous counterpart
of (I.1), it has been shown that the Cramer—Rao lower bound
is proportional to o2 and does not depend on N. This bound
holds even if the sought signal is known [14].

B. Multireference alignment in low SNR

This section reviews recent works on MRA in the low SNR
regime, in which methods based on alignment fail. The key
idea is to estimate the signal directly, without estimating the
translations beforehand. As will be emphasized throughout, all
these works did not consider the translation distribution p, and
either assumed or enforced it to be uniform.

In [16], it was shown that if the translations are uniformly
distributed, namely, S ~ Uniform[0,1,..., L — 1], then the
number of measurements needs to scale like w(1/SNR?) for
the estimator to converge in L? to the true signal. A follow-
up paper [35] showed that this rate can be achieved by a
tensor decomposition algorithm. The analysis of the uniform
distribution is of particular interest since, no matter what p
is, one can always enforce it to be uniform. This can be done
simply by reshuffling all measurements by z; = Rs;, 15, where
S§ are drawn from the uniform distribution. The new set of
measurements z; obeys the MRA model (I.1) with uniform
translation distribution. However, as will be shown, this is in
general a bad strategy, since the uniform distribution has a
sample complexity scaling as w(1/SNR?).

From the algorithmic point-of-view, a recent paper [15]
proposes a method that completely overcomes the need to
estimate the translations. The core idea is to estimate features
of the underlying signal that are invariant under cyclic transla-
tion. Particularly, it was proposed to estimate the mean, power
spectrum and bispectrum of the signal from the moments of
the data. Since these invariant features are polynomials in
the signal with degree at most three, they can be estimated
at sample complexity growing like w(1/ SNR?). Using these
invariant features, one can recover the signal as N — oo
using a variety of algorithms [15]. In [36], it was shown that
a similar technique can be used to estimate several signals
simultaneously from heterogeneous samples (see also [35,
Section 5]). Since the invariant feature technique requires only
one pass over the data, it can be performed in a streaming
mode, can be parallelized, requires low storage resources
of O(L?) and has low computational load. The framework
proposed in this paper is also based on estimating moments of
the data and therefore enjoys the same advantages; however,
since we only require second-order moments, we bring the
sample complexity down to w(1/SNR?).

Another approach for MRA is to apply an EM algo-
rithm [37]. EM is an iterative algorithm that aims to find
the maximum likelihood estimator and is used ubiquitously

in many statistical models. For the MRA model (I.1), and
under the assumption that the translations are drawn from
the uniform distribution, this algorithm takes a simple form
and consists of two steps at each iteration [15]. Given a
current estimation xg_1, the first step (called the E-step)
computes a set of weights which can be understood as the
translation distribution of each measurement y;, if x;_; was
the underlying signal. These weights are computed by

i _ i~ | Rewk—1—y;l2
w,” = Cjle 252 iz

where C,z is a normalization factor so that ), wi’j = 1. Then,
the signal estimation is updated by marginalizing over the
distributions and averaging (called the M-step):

N L-1

T = %Z Z wyl Ry My

j=1 £=0

(IL.2)

The EM algorithm enjoys an excellent numerical performance;
however, its computational load and storage requirements are
heavy since it passes through all the data at each iteration. In
Section VI-B, we modify the standard EM algorithm to take
the distribution into account.

III. INFORMATION THEORETIC LOWER BOUND

In this section, we provide lower bounds for the MSE
of an estimator of the signal in terms of the SNR and the
number of observations V. In particular, we show that under
mild conditions on the signal the MSE is bounded away
from zero if N = O(1/ SNR?). As described in Section IV,
the MSE of Algorithm 2 converges to O if the number of
measurements grows like w(1/SNR?). In addition, if the
distribution is periodic, the MSE is bounded away from zero
if N = O(1/SNR?). The framework proposed in [15] and
described in Section II achieves this sample complexity for
any distribution.

Recall that we can estimate the signal only up to cyclic
translation. We define the best alignment of X with x by

(bw()?) = argmin |z —z|. (IIL.1)
ze{Rs)?}sezL
Accordingly, we write (1.2) as
1 .
MSE = 5 [62(X) —x||§} . (I1L.2)

Since we are interested in estimators that converge to a cyclic
shift of x in L? as N diverges, we only consider estimators
which are asymptotically unbiased, i.e., E[¢,(X)] — z as
N — oo. However the information lower bounds presented
in this paper can be adapted to biased estimators (see Theo-
rem I11.4). We now present the main results of this section as
follows:

Theorem IIL.1. Assume that x is not a constant vector. If X

is an asymptotically unbiased estimator of x, then

1 1 1
MSE > — — .
~ 8N SNR? (N SNR1'5>

(I11.3)



Moreover, if p is periodic, with a period { < %, then
1 L-2¢ 1
MSE >

1
= 54N 20 SNR® 0 (NSNR2~5> - D

Note that previous work [16] derived the sample complexity
for the uniform distribution of translations. Theorem III.1
extends it to any distribution. In addition, we extend [16]
by providing the constant that multiplies ¢, for the uniform
distribution case.

In the rest of this section, we develop the main tools required
to prove Theorem III.1. Specifically, we start by introducing
an auxiliary notation and definitions. Then, in Section III-B we
use an adaptation of the Chapman-Robbins lower bound [38],
which is a generalization of the Cramér-Rao bound [39],
to derive a lower bound on the MSE in terms of the x?2
divergence, this is Theorem III.4. Then, in Section III-C, we
express the x? divergence in terms of the Taylor expansion
of the posterior probability density and the moment tensors,
obtaining Lemma IIL.5. Finally in section III-D we combine
Theorem III.4 and Lemma IIL.5 to obtain a general lower
bound for MRA, that we particularize for the case when p
is aperiodic and periodic, respectively. The final details of the
proof of Theorem III.1 are given in Appendix D.

A. Notation and definitions

Let YV € REXN be the collection of all measurements as
columns in a matrix. Let us denote by év , the probability

density of the posterior distribution of YV,

N
NN =] fenwi)s (IIL5)
j=1

and the expectation of a function g of the measurements under
the measure fév , by

()] = [0 () )

For ease of notation, we write E {g (Y~ )} when the signal

and distribution are implicit. The bias-variance trade-off of the
MSE is given by

Cov|, (X))

]2

IE[¢, (X)] — z?

MsE = = L
]

(I11.6)

with

Covlga(X)] = E [62(X)0a(X)T | — Elo,(X)El6. ()"
(II1.7)
We conclude this part with two definitions. First, we define
the moment tensors. For a vector z € R”, we denote by
2®¢ the L? dimensional tensor where the entry indexed by
k = (ki,...,ka) € Z$ is given by szla:[kj}. The space
of d-dimensional tensors forms a vector space, with sum and
multiplication defined entry-wise. This vector-space has inner
product and norm defined by (A, B) = ZkeZdL Alk|B[k] and
|A||? = (A, A), respectively.

Definition III.2. The n-th order moment of z over p, is the
tensor of order n and dimension L", defined by

My, =E [(Rsx)@’"] ,
where S ~ p.

We will explore this notion in more detail in section IV-A,
in particular we give explicit formulas for the moments when
n=1(IV.l) and n =2 (IV4).

Our last definition is of the x? divergence, which gives a
measure of how "far" two probability distributions are.

Definition ITL.3. The x? divergence between two probability
densities f4 and fp, with f4 absolutely continuous with
respect to fp, is defined by

C(fallfs) = [(;;g -1) ] ,

where B ~ fg.

Due to equation (IIL5), the relation between the x? diver-
gence for N and one observations is given by

XN = O0C (fa.llfep) + DY — 1. (IIL.8)

B. Chapman-Robbins lower bound for an orbit

The classical Chapman-Robbins gives a lower bound on
an error metric of the form E[||X — x||?], i.e., it does not
take into consideration a translation-invariant error metric as
appears naturally in the MRA problem. Hence, we modify
the Chapman-Robbins bound to accommodate error of the
form (II1.2). We point out that Cov|[¢, (X)] is related to the
MSE by (111.6).

Theorem II1.4 (Chapman-Robbins for orbits). For any = €
RE such that ¢, (%) # x and p € A, we have

Cov]p.(X)] = A
T RN,
where z = Bz 5[¢2(X)] — Eq [ (X)).
Proof. See Appendix A. O

C. Fisher information and moment tensors

In this subsection we give a characterization of the y?
divergence, which appears in the Chapman-Robbins bound,
in terms of the moment tensors.

Instead of considering the posterior probability density of
YN, we will consider its normalized version YV = Y /.
We then have

Y; = yRs,z + G, (I1L.9)

where v = 1/0, S; ~ p and G; ~ N(0, ). While this change
of variables does not change the x? divergence, we can now
take the Taylor expansion of the probability density around
~ =0, that is,

< J
FepWi7) = fo() Y a;,p(y)%, (IIL.10)
=0 '



where fc(y) = fz,,(y;0) is the probability density of G,
(since when v =0, fj =G;) and

. J
ol () : L0 fap (IL11)

T aly) oy
thus of

2.p(y) = 1. We note f. ,(y;~) is infinitely differentiable
for all y € RY, thus o ,(y) is always well-defined. We now
use (II1.10) to give an expression of the x? divergence in
terms of the moment tensors.

(y;0),

Lemma IIL5. The divergence x*(fz ;|| fz.p) can be expressed
in terms of the data moments as:

X2(f5:,/3| ‘fm,p)

0.72d 2 o
= WE {(a%yﬁ(G) - aip(G)> ] + O(o7 2471,
(IIL.12)
_o” M2 — M2 |2+ 0(c~21),  (IL13)
d! P P ’ ’
where d = inf {n DM 5 — My |17 > 0}.
Proof. See Appendix B. [

Equation (ITI.12) is not specific to MRA: one can always
obtain this expression as long we are considering the low SNR,
regime and the observations are independent of the signal in
the limit of SNR tending to 0. The particularization to MRA
happens in (II1.13), due to (II1.9) and (III.11).

D. General lower bound for the MRA problem

The following theorem is obtained from the results pre-
sented in the previous sections.

Theorem IIL.6. Consider the estimation problem given by
equation (1.1). For any signal ¥ € R” such that ¢,(%) # x
and for any p € AL, let K:; = %HMgﬁ — M£p||2,

dz,; = inf {n CKE > O} and d = max dz ;. Finally let

N=N/c>", meL,.
We have
=\ 12 2
MSE > sup ll¢2(2) — l*/ll2]*_
#,p:dz p=d | exp ()\%Kg,ﬁ) ~140 (X]ivo__l)

B (II1.14)
thus the MSE is bounded away from zero if )\jlv is bounded
from above, or equivalently N = O(1/SNR?).

Proof. We first note that d < L, so the maximum is well
defined. By Theorem III.4, Lemma II1.5, equations (II1.7) and
(II1.8) we obtain

=112/l

N
(1 + U*Qng)ﬁ + 0 (0*2‘[*1)) -1

MSE > (IIL.15)

)]. Since X is asymptoti-
2

with 2 = Bz 5[5 (X)) = Eo [0 (X
t) — z||* as N diverges. On the

cally unbiased, ||z|? — ||¢(
other hand we have

(1 +o MK+ 0(0*2‘“))]\[ =
exp (A%Ki,;) +0 ()\‘Jivafl)

and (III.14) now follows from taking the supremum over &
and p. O

From this theorem we can obtain (III.3) by providing # and
p which have M%ﬁ = M;yp, this implies d > 2 and the MSE
is bounded away from 0 if N = O(1/SNR?). Moreover, to
obtain (IIL.4) when p is periodic we can provide & and p which
have M, g, ;=M g, , for d = 1,2, similarly to Proposition IV.6,
this implies d > 3 and the MSE is bounded away from O if
N = O(1/SNR?). .

However, when N = w(1/SNR?) the supremum in (IIL.14)
is going to be achieved in the limit (%, p) — (=, p). Thus,
to prove Theorem III.1, we use intermediate results which
explore the limit (Z,5) — (z,p), and thus provide tighter
bounds. However, since considering the limit introduces some
technical details, we leave its analysis to Appendix C. The
final details of the proof of Theorem III.1 are presented in
Appendix D.

IV. PROVABLE ALGORITHM BASED ON THE FIRST TWO
MOMENTS

In this section, we provide a spectral algorithm to estimate
the signal, up to cyclic translation, from the first and second
moments of the data, provided that the translation distribution
is aperiodic. We prove that this algorithm estimates the signal
exactly with high probability in the limit of SNR tending
to 0 with a growing number of samples; we will describe
the asymptotic model more precisely in Section IV-C. Be-
cause the method relies on only second-order information, its
sample complexity in this case only grows like w(1/ SNR?),
compared to sample complexity growing as w(1/SNR?) if
the translation distribution is periodic (with period smaller
than L/2; see Section IV-D). As we proved in Section III,
w(1/SNR?) is indeed the sample complexity for aperiodic
distributions.

A. Moments of Rgx

Before describing the algorithm, we will review a few basic
properties of the moments of the random vectors Rgx, defined
in Definition III.2, and conclude with a theoretical result about
the sufficient information they hold.

We will first consider the first moment of the translated
signal, M! = E[Rsx], where S ~ p. This is equal to the
convolution of z with p; that is,

M'=zxp=Cyp=C,x, (IV.1)

where C,, is the circulant matrix with z as its first column
(and similarly for C)). In this case, the convolution theorem
implies

FM' = Fz o Fp, (IV.2)



where ® and F' denote entry-wise product and Fourier trans-
form, respectively. We can estimate the first moment from the
noisy observations (I.1) by

(IV.3)

Note that if L and o are fixed, then M is a consistent estimator
of M! as N — .
The second moment of Rgx is defined as

M? =E |(Rsz)(Rsz)" |,
where S ~ p. It can be verified that

M?=C,D,CT, Iv.4)

where D, is a diagonal matrix of p. The unbiased second
moment of Rgx is then estimated from the observations Y
by:
1
M? = ¥ S vy -6, (IV.5)
i=1
where I denotes the L x L identity matrix. As with the first
moment, when L and o are fixed then M? is a consistent
estimator of M2 as N — cc.

We conclude this section with the following result, showing
conditions which guarantee that there exists only one pair of
signal and distribution (up to translation) that exactly agrees
with the second moment data. First, recall that a distribution
p is periodic if and only if there exists a period 1 < ¢ < L
such that

plk] = plk + 4],

If no period exists we simply call p aperiodic distribution.

k=0,....L —1.

Theorem IV.1. Assume that py is an aperiodic distribution,
and that x1 is a signal with non-vanishing DFT. Let xo and
p2 be any other signal and distribution with the same first
two moments as x1 and p1. Then xo and py are equal to x
and py, respectively, up to a shift. More precisely, there is
s€{0,...,L — 1} with xo = Rsx1 and ps = R_sp1.

The proof is given in Appendix E. Next, we show a
constructive method to recover x and p from their first two
moments M* and M2

B. Moment inversion when p has a unique entry

The key observation driving the algorithm we will describe
is that when p has at least one distinct entry, and if = has
non-zero DFT, then x can be recovered exactly from the first
two moments M ! and M?2.

We first note that the power spectrum of the signal, P,[k] :=
|(Fz)[k]|?, is the Fourier transform of the signal’s auto-
correlation and thus can be derived directly from the second
moment. We first recall the factorization M? = C,D,CT
from equation (IV.4). The circulant matrix C, is diagonalized
by the Fourier matrix F' as follows:

C, =F'Dp,F,

thus we have
1
FM?F~! = ZDFmCFpDﬁ. (IV.6)

The k-th element of the diagonal of (IV.6) is given by

LE)0] [(Fa)lK)” =

where (Fp)[0] = >, pli] = 1, since p is a distribution.
Consequently, we can obtain the power spectrum of x from
My by P, = Ldiag(FM?F~1).

Now if we conjugate M? by the matrix F~'Dyp 12 F,

we obtain the matrix M? = C;D,CL, where Z is the vector
with the normalized Fourier transform

- (Fz)[k]
(FE)k] = 7= av.7)

|(F')[K]|
Therefore, the matrix C; is both circulant and real orthonor-
mal, ie., C L= C’iT . Consequently, the decomposition

M? = C:D,CT is an eigendecomposition of M2, and the
eigenvectors are translations of z.

If p has at least one distinct entry, then the associated
eigenvector v will be a translation of z, with arbitrary scaling;
that is, v = « - R;@ for some number « and shift s. Since the
Fourier coefficients are still normalized, we multiply |Pw|1/ 2
and F'v coordinate-wise to get

f=a- F! (F(Rsi) ®\Pr|1/2) =a- R

Letting Sum(x) denote the sum of all elements in x, we have
a = Sum(?)/Sum(z). To uncover «, note that the zeroth
Fourier coefficient of M! = x x p is (FM')[0] = (Fx)[0] -
(Fp)[0]. But since p is a probability vector, (Fp)[0] = 1,
and so Sum(M') = (FMY)[0] = (Fz)[0] = Sum(z).
Consequently, @ = Sum(%)/Sum(M?!), and Ryx = /.

Note that once we have determined x, we can also determine
p from M' = z * p by deconvolution; indeed, since M! =
Cyp, we have p = C; 1 M. The algorithm is summarized in
Algorithm 1.

Algorithm 1 Exact recovery from the first two moments

Input: Moments M*! and M?2.

Output: The signal x and distribution p.
/" Normalize F'x

1.1: P, + Ldiag(FM?F~1)

12: p + (P,)~1/?

13 Q + F7'D,F

14: M? + QM?*Q*
/I Extract eigenvector and rescale

2.1: v + UniqEig(M?)

22: 9+ F~1 ((ch)l/2 o Fv)

23 z < (Sum(M*)/Sum(?)) v

24: p CPM?

2.5: return z and p

We have proved the following result:

Proposition IV.2. Suppose x has non-vanishing DFT and
p has at least one distinct entry and let M' = E[Rgz]



and M* = E[(Rsx)(Rsz)T] be the first two moments. Then
Algorithm 1 returns the signal x and the distribution p exactly
(up to translation).

C. Estimating x in low SNR

Section IV-B shows that Algorithm 1 recovers z exactly
from the exact values of M! and M?, so long as the DFT of
x is non-vanishing and p has at least one distinct entry. In this
section we show that under the same conditions Algorithm 1
is stable under small perturbations of the moments. We also
show that if N = w(o?), or equivalently N = w(1/SNR?),
the MSE of the estimate given by Algorithm 1 converges to
0 as NN diverges.

We first observe that whenever p is aperiodic, we can
modify the observations to assume that p in fact has all distinct
entries. Indeed, we generate a new set of measurements z; =
RS} y;, where S ; are drawn from a new, known distribution 6.
In this case, the translations are distributed according to p * 6.
The following lemma shows that by choosing 6 as a random
probability distribution on the simplex, we can ensure that all
entries of px* 6 are distinct with probability 1. Note that if the
DFT of 6 is non-vanishing (which holds with probability 1 for
random @), then one can recover fully p from p * 6.

Lemma IV.3. Let p be an aperiodic vector on the simplex and
let 0 be a random probability density function on the simplex.
Then, all entries of p x 0 are distinct with probability 1.

Proof. See Appendix F. [

Using this lemma, we will assume from now on that all
entries of p are distinct. The following corollary states that
Algorithm 1 is stable to perturbations of the moments and
power spectrum:

Corollary IV.4. Suppose x has non-vanishing DF'T and
denote by M and M? the sample moments and power
spectrum defined by equations (IV.3) and (IV.5). Suppose that
HM1 MYr < € and HM2 M?||r < g for_sufficiently
small € > 0. Then Algorithm 1, with input data M* and M 2
returns an estimate X, Spectral Of T with error at most Ce, where
C' is a finite and positive constant which depends only on x
and p.

Proof. This follows immediately from the variant of the Davis-
Kahan theorem found in [40, Theorem 2]. O

The following theorem shows that if N grows like w(o?),
the MSE of the estimator converges to 0 as N diverges.

Theorem IV.5. If N = w(c?), the MSE of Xspecira, defined
in Corollary IV.4, converges to 0 as N diverges.

Proof. See Appendix G. O

Algorithm 2 describes the entire pipeline for estimating
z from the noisy measurements (I.1), including randomly
shifting the observations, estimating the moments, and using
Algorithm 1 to estimate = from the estimated moments.

Algorithm 2 Estimating = and p from noisy data

Input: y;, j =1,..., N of (I.1) and noise variance 0.
Output: An estimated signal  and estimated distribution p.
/I Reshuffling observations (optional)
1.1: draw a random distribution § € A"
1.2: for each j =1,...,N: y; < Rgy; for St~ 0
// Moment estlmation
2.1 N Z] 1 Y5
2.2: M2 ~ ZJ ly]yj —o?]
/I Eigendecomposition and normalization R
3.1: obtain & and p’ from Algorithm 1 with M* and M?2.
32: return & and p = C, ' p

D. Non-uniqueness for periodic p

We have shown that the first and the second moments suffice
to determine the signal if the distribution is aperiodic. In this
section, we provide a complementary result, showing that if the
distribution is periodic, then having the first two moments is
not enough to uniquely determine a signal with non-vanishing
DFT. In particular, given a distribution p with period /¢, a
signal zo has the same first two moments as x; if it satisfies:

(Fxl)[kL
—(Fz)[k],

L
k’ = t?’
otherwise.

t=0,...,0—1,
(Faz)[k] = {
(Iv.8)
This construction is demonstrated in Figure IV.1.

Proposition IV.6. Ler ¢ < L/2 be a divisor of L > 1.
Suppose that p is periodic, with period ¢, and let x1 be a
given signal with non-vanishing DFT. Then the signal xo
defined by (IV.8) is not a translation of x1, and has the same
first and second moments as x1. Therefore, if the distribution
is periodic, then any signal with non-vanishing DFT is not
uniquely determined from its first two moments.

Proof. See Appendix H. O

In Section III we established this result from an information-
theoretic perspective by showing that the sample complexity
for periodic distribution grows like w(1/SNR?), and extend-
ing [16] that considered only the uniform distribution. Indeed,
the uniform distribution is merely a special case of periodic
distributions with minimal period ¢/ = 1. When ¢ > 1, one
can interpret the periodicity as having a uniform distribution
over the different cosets of Z; with respect to the subgroup
generated by a translation in ¢ coordinates. These cosets are
exactly the analogue of the sparsity pattern of F'p attained by
jumps of L/¢. This also explains why uniformity is the only
pathological case for a prime L. Therefore, if one can choose
how to sample the signal, a prime number of samples should
be considered.

As it turns out, there is one special case where the first two
moments are enough to determine x uniquely, up to cyclic
translation, even when p is periodic. This special case occurs
when L is even and p is L/2-periodic. Note that in this case
the information theoretic lower bound presented in section III
is also w(1/ SNR?). This result is formulated in the following
claim:



0.5

0

-0.5

-1 0.03
2 4 6 8 10 12 14 2 4 6 8

10 12 14

(a) The two different real signals
z1 and z2 of length 15

(b) The 5-periodic distribution

Fig. IV.1.

411 \WT W ety ]
Sl Ml HIE

(c) The real parts of F'x1 and Faa (d) The imaginary parts of Fxi

and Fzo

This example demonstrates the constriction of (IV.8) and Proposition IV.6. The figures present two different real signals of length 15 and a

S-periodic distribution. The Fourier transforms of the signals obey (IV.8). The two signals have the same first two moments under the periodic distribution.

Claim IV.7. Suppose that = has non-vanishing DFT, L is even
and p is L/2-periodic. Then, z is uniquely determined from
its first two moments, up to global translation.

Proof. See Appendix I. O

V. CONNECTION WITH THE SPIKED COVARIANCE MODEL

In this section, we point out a connection between the
spectral algorithm presented in Section IV and the spiked co-
variance model well-known in statistics [17], [18], [19], [20],
[21]. Though somewhat informal, this analysis will provide
insight into how the complexity of recovering = depends on
the dimension L when the distribution p has a fixed support
size.

In the spiked model, we observe a matrix

Y =X+ G e RIXV, (V.1)

where X is a rank r matrix and
G =(Gy), Gy “N(0,02).

This model is typically studied in the high-dimensional regime,
in which L grows proportionally to NV; that is, L = L(N) and
L/N — ~v > 0as N — oo. In this setting, there is a precise
understanding of the limiting behavior of the data matrix Y
and the low-rank matrix X = [X1,..., Xy].

In [20] (see also [18]), it is shown that when the low-rank
matrix X is random (for instance, its columns may be drawn
from a suitable low-rank, mean-zero distribution), then the
limiting cosine ¢ of the angles between the top eigenvector
of XX and the top eigenvector of YY7 is given by the
formula:

1—oty /X% . 2
02 _ 14+02v/A ifA>o ﬁ’ (V.Z)
0 otherwise,
where ) is the top eigenvalue of XX /NV.
The key phenomenon is the phase transition at
Acritical = 0—2\/’7» (V.3)

It is only when A is greater than this critical value that
we are guaranteed a non-trivial correlation between the top
eigenvector of the observed matrix YY? /N and the top
eigenvector of XX”'/N.

We can view the observation model in the one-dimensional
MRA model (I.1) as a special instance of the spiked model,

by taking the ith column of X to be X; = Rg,z. As N — oo,
we can write

1

N
Consequently, under the assumption that the DFT of z does
not vanish, the rank of X is the size of the support of p. When
the support size of p is fixed at r, the MRA problem is an
instance of the spiked model.

Let us assume that the |(Fz)[k]| = 1 for all k. This
can be done by estimating the power spectrum first and
then normalizing all Fourier coefficients. In this case, C,
is an orthogonal matrix. In other words, x 1 Ryx for
every ¢ # 0; consequently, the Ryx are precisely the top
r eigenvectors of XXT /N, with corresponding eigenvalues
llz||?p[€]. Then, (V.2) tells us exactly how well we expect
the spectral algorithm to perform in recovering x; indeed,
the theory predicts a non-zero angle between z and the top
eigenvector of YY7 /N whenever:

Lo* B L 1
~ (maxp)? SNR*

Below this threshold, the output will be essentially random.
We see that if the distribution is well-localized, then max p =
Q(1) (with respect to the growing value of L) and then the
sample complexity grows like ﬁ. On the other hand, if
the distribution is almost uniform, then max p = O(1/L) as
L — o0, and thus the sample complexity will be proportional
to L3/ SNR2.

To illustrate the relationship between the spiked model and
MRA, we ran the following experiment. We generated a signal
x € R0 with i.i.d. normal entries and normalized it so that
lz]l2 = 10. For noise levels ¢ between 0.1 and 10, we drew N
samples of x with noise at level o, where N is chosen at 100
plus the critical threshold given by (V.5) for ¢ = A1/2y~1/4 =
5.5313 according to (V.3). For o large enough, N will not be
large enough for the spectral method to produce an estimate
better than random. The distribution of translations p was taken
to be pli] oc 32, for i = 1,...,5, and zero elsewhere. Each
experiment was repeated 200 times. The plots in Figure V.1
display the average values over these 200 runs.

For each draw, we compute the top eigenvalue of the clean
data matrix (V.4), denoted by A, and the associated eigenvec-
tor, which is a translated copy of x. We also compute the top
eigenvector of the data matrix YY? /N. The angle between
the two eigenvectors is predicted by (V.2). In Figure V.1(a), we

xx" =¢,D,CL. (V.4)

N>
[[]|*(max p)?

(V5)



plot the predicted cosine against the true cosine. Clearly, we
never attain the predicted value of zero in finite samples, but
we see a precipitous decline when the noise level o exceeds
its threshold value (the vertical dashed line).

We also measure the relative mean squared error defined by
equation (I.2), where X is the top eigenvector multiplied by
|||- In Figure V.1(b), we plot this error as a function of o.
For reference, we also plot the ordinary error predicted by the
spiked model (as derived from the predicted cosine between
the vectors), without minimizing over shifts. Of course, min-
imizing over shifts will decrease the error; however, we still
see the same qualitative behavior predicted from the spiked
model, namely an increase in error as o grows, until the critical
threshold of o is reached, after which the error plateaus.

VI. ADDITIONAL ALGORITHMS

While the spectral algorithm (Algorithm 2) is asymptot-
ically optimal as o, N — oo and for signals with non-
vanishing DF'T, it may not perform well in small sample size
or low DFT values. Therefore, in this section, we present
two additional algorithms based on non-convex least-squares
minimization and a modification of the EM algorithm pre-
sented in Section II that takes the distribution into account. In
Appendix K, we also describe and analyze a convex relaxation
approach based on semidefinite programming.

A. Non-convex least-squares minimization

The following method aims to find a signal in RY and a
distribution in A” that fit the observed data as well as possible
in the LS sense. We formulate the problem as a smooth,
non-convex, optimization problem with the constraint that the
distribution lies on a simplex. Given estimators M?* and M?
of the first two moments M! and M?, the problem reads
IM? — Cz D;CT |1 + AlM* — (VL)

min Capll3,

ZeRL, pe AL
where A > 0 is a predefined parameter. It can be verified
that, by omitting signal-dependent terms, the variance of the
elements of the first moment estimator is proportional to o2.
It can be also shown that the variance of the elements of the
second moment is proportional to 3Lo* and Lo? in the low
and the high SNR regimes, respectively (again, by omitting
signal-dependent terms). Therefore, we set A = L in

L(1+302)
our implementation.

B. An expectation-maximization algorithm for estimating x
and p simultaneously

In Section II, we reviewed the EM algorithm for MRA from
[15], which is invariant to the distribution of translations. In
this section, we modify the algorithm to take the distribution
into account. A similar approach was introduced for the
application of cryo-EM in [41].

If we denote s := {s;}i<j<n, the forward model of the
MRA model (I.1) reads:

= fao(yls) H

2

fm,p(y»

i S L)
:Hp[Sj]WE 202 || S

j=1

The log-likelihood function is then given, up to a constant, by

N

o8 L(0.sf.0) = 3 108015 = 55 |z — s}
j=1
The goal of the EM algorithm is to compute the maximum
in z, p of the marginal likelihood L(y|z, p) = >, L(y, s|z, p).
The algorithm proceeds as follows. Start with some initial
guesses xg and py for the signal and distribution. Given xy
and pg, the next guess is given as follows:

(-rk+l7 Pk+1) = argmax Q(mv p|xk7 pk)7
z,p

where

Q(z, plek, px) =E [logﬁ (y,Sk|sc,p)] ) (VL.2)

Here the distribution S* depends on z, and py through

pr[f],

where C’,z is a normalization term so that ), wi’j =1 We
can explicitly write (VI.2) (omitting the constant term) as

i ik — g — (o= oz | Rewk—y;]1?
wy?! = P[S) =] = Cje” 22 I

Q(l’,ﬂ|xk,Pk)
N . 1 ,
= ZE log p[S}] — @HRS}@ =yl
Jj=1
N L-1 1
=3 5wl {losstt - gl uit
J=1¢=

To maximize @ over x and p is simple, since the first term
depends only on p and the second term depends only on x.
Specifically, it is easy to see that the maximum over x is given
by a weighted average of the translated observations:

N L-1

Z Z wi]Ré Yj-

]1@0

Tht1 = (VL.3)

This step is almost identical (up to the values of the weights)
to the standard EM update step (IL.2).

The maximimizing value of p also has a closed formula.
First, observe that we can write:

L-1

Pkl = arg maXZ Wi [ log(p[4)),
pEAL 4Ty

where Wy [(] = Z;\Ll wif . To maximize a positive weighted
combination of logarithms over the simplex, we use the

following lemma:
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threshold value of o = )\1/27_1/4 = 5.5313.

Lemma VL1. If w[f] > 0 are positive weights, then the
maximizer of >, w[(]log(q[¢]) over all ¢ € AL is

g1 = wle]/ Y wlt].

Proof. See Appendix J. O
From this lemma, the maximizing p is given by the formula:
Wi [(]
=0 Wi [f’]

To conclude, the modified EM updates the signal and the
distribution estimations by (VL.3) and (VL.4), respectively.
However, compared to the methods which are based on
moments estimation like Algorithm 2 or the LS, it passes
through the data at each iteration. Therefore, for large sample
size, its computational cost may be substantially heavier.

VII. NUMERICAL EXPERIMENTS

In this section, we present numerical results for the algo-
rithms described in Section VI and Algorithm 2. To measure
the accuracy of an estimator X, we define the recovery relative
error as

|RsX — s
]2

The code of this section, including Matlab implementations
and examples, is publicly available online .

relative error = min (VIL1)

SEZLL,

A. Influence of the number of samples

In the first example, we use a Haar-like signal of length
L = 20, depicted in Figure VII.1(a). Next, we generate its
noisy, translated copies according to the MRA model (I.1),
with noise variance of ¢ = .25. One example of a data sample
corrupted with such noise is illustrated in Figure VIIL.1(b).

Uhttps://github.com/nirsharon/aperiodicMR A

—»— MSE
r | —p— Predicted MSE

MSE

(b) Empirical MSE compared to the asymptotic MSE predicted by
spiked model. The MSE is defined in (I1.2).

Experiments related to the connection between the spike model and the MRA problem as discussed in Section V. The dashed line is the predicted

We use the EM algorithm of Section VI-B to estimate
the signal. This process is repeated three times for different
number of samples, N = 103, N = 10°, and N = 107.
The estimates are presented in Figure VIL.1(c)-VIL.1(e). As
expected, the quality of the estimation improves significantly
as N grows.

B. Comparison of EM algorithms

In [15], it is shown that in most cases, an EM method
as described in Section II-B, achieves the smallest estimation
error compared to the competitor algorithms. The EM algo-
rithm described in that paper is invariant to the distribution p.
In particular, it treats the data as if it were drawn from the
uniform distribution, which requires sample complexity that
grows like w(1/ SNR?) rather than w(1/ SNR?). By contrast,
the EM algorithm we propose in Section VI-B also estimates
the distribution p at each iteration. The updated estimation of
the distribution is then used to update the signal’s estimation.

To demonstrate the importance of including the distribution
into the model of the estimator, we consider a family of
distributions

plt] o< exp(—t2/s?) (VIL2)

where the parameter s > 0 controls the concentration of
p, or alternatively its uniformity: the larger s is, the more
uniform p is. In general, we expect our algorithms to provide
better estimations when s is smaller, i.e., when p is more
concentrated; see Section V.

We compared the standard EM with the EM algorithm
described in Section VI-B. The experiments were conducted
as follows. We fixed a random signal of length L = 25
with 1.i.d. normal entries and unit norm, and a series of
distributions of the form (VIIL.2) with the parameter s varying
between 3 and 9. Then, for each distribution we generated
N = 2,000 samples drawn with a fixed level of noise o = 1.
We repeated the test independently 20 times and averaged
the errors. In Figure VIL.2, we plot the relative errors of



(a) The clean signal (b) An example of a data sam-

ple (one measurement) N =1,000

Fig. VILI.

the methods as a function of the uniformity parameter s. As
expected, the standard EM is invariant to s. On the other hand,
the adapted version of the EM exploits the varying distribution
and performs better under more concentrated distributions.
As the distribution becomes more uniform, the two methods
exhibit similar error rates.
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Fig. VIL2. EM comparison: the standard EM described in Section II

(uniform EM) versus the EM that includes distribution estimation (improved

EM) described in Section VI-B. The algorithms were compared with different

distributions of the form VIIL.2 as a function of the parameter s.

C. Comparison of the different methods

This paper presents three main approaches for solving the
MRA: the spectral method described in Algorithm 2, the LS
optimization of Section VI-A, and the EM of Section VI-B.
In this comparison, we examined the estimation error of these
three methods with different noise levels. In detail, we use a
random signal of length L = 25 with i.i.d. normal entries with
unit norm, and a random distribution. We fix the number of
samples to be N = 10,000. Then, we increase the level of
noise o from 0.001 to 1. In Figure VII.3 we plot the average
error. As can be seen, the LS and EM methods are more robust
to noise than the spectral method. In addition, the gap between
these two methods becomes small as the SNR decreases.

D. Numerical error rates for the EM algorithm

When the distribution p is aperiodic, the optimal MSE for
recovering x in the low SNR, or large o, and large N regime

(c) An estimate with

(d) An estimate with N
100, 000

(e) An estimate with
N = 10,000,000

An example of the estimation quality of a Haar-like signal with different number of samples (IN), using the LS method. In these tests, o = 1.

Relative error
>
9

—_— LS
M
= = Spectral

10! 100

o

1072

Fig. VIL.3. A comparison of three methods: least squares (LS), expectation
maximization (EM), and the spectral method, under varying level of noise.

is of size O(c*/N). Since the relative error scales as v MSE,
by (VIL1), if the log-error is viewed as a function of log(o),
the slope is expected to be no smaller than 2 when o is large.

In Figure VII.4 we plot the average log-error of the EM
algorithm over 300 trials as a function of log(c). In each trial,
we used the EM algorithm to estimate a randomly generated
signal, with translations drawn from a randomly generated
probability distribution. When o is large, the curve is indeed a
line with slope close to 2, which is the expected rate. However,
when ¢ is small, the curve is a line with slope close to
1; namely, the error behaves approximately like O(c/v/N),
rather than O(0?/v/N). The moderate slope for high SNR
suggests that in this regime the recovery problem is easier; for
example, we know that alignment is possible in high SNR, as
described in Section II-A.

In Figure VILS we plot the average log-error (again over
300 experiments) as a function of log(o), but in this case each
experiment used the uniform distribution of translations. In this
regime, we know from [16] that the optimal slope is 3, not 2;
and indeed, when o is large the curve has slope close to 3. As
in the other plot, when o is small the curve has slope close to
1. Taken together, these two experiments suggest that the EM
algorithm exhibits near-optimal behavior for both periodic and
aperiodic distributions.
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VIII. DISCUSSION

In this paper, we have shown that the sample complexity for
MRA with an aperiodic distribution of translations grows like
w(1/SNR?). This sample complexity can be achieved by a
simple spectral algorithm. We also examined empirically the
LS and EM algorithms. Additionally, we extended previous
works by showing that the sample complexity for any periodic
distribution scales as w(1/SNR?).

We drew connections between the MRA problem and the
spiked covariance model. This connection implies that the
sample complexity is inversely proportional to the square of
the maximal value of the distribution. Therefore, the more
uniform the distribution is, the higher the sample complexity
of the problem.

One of the motivations for considering the MRA model
arises from the imaging technique called single particle
cryo—electron microscopy (cryo—EM), allowing to visualize
molecules at near-atomic resolution [12], [13]. In cryo-EM,
noisy two-dimensional tomographic projections of the three-
dimensional underlying molecule, taken at unknown viewing
direction, are collected. The distribution of viewing directions
in cryo-EM is typically non-uniform, as many molecules
exhibit some preferred orientation [42].

The MRA model (I.1) can be thought of as a simplified
model for the cryo—-EM problem, where cyclic translations
replace actions of elements of the group SO(3). The tomo-
graphic projection does not appear in (I.1). Our technique for
MRA, based on the low-order moments of the data, is similar
to the framework proposed by Zvi Kam in [43], [44] for
cryo—EM. In particular, Kam suggested a method to estimate
a molecule directly from the statistics of the projections,
rather than estimating the viewing directions. Our work is one
step towards understanding the sample complexity of Kam’s
method in particular, and the cryo—-EM problem in general.
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APPENDIX

A. Proof of Theorem II1.4

The proof mimics the one of the classical Chapman and
Robbins bound. Recalling equation (II.7) and the definition
of positive semidefinite matrices, the statement is equivalent
to

Ee,p [(wT(¢z ()?) - Ewp[¢w()?)])>2]

[wT (Ei,p[%(-}?)] - EI’P[%(}?)])} 2
>

> . (AD)
XI5l 12,)

for all w,# € R and jp € AL. Define

and note that
o E;pl9(Y)Z] =E
e E,,[Z—-1]=0,
* Ewm[(z - 1)2] = XQ(fng aé\,[p)~

™
=%
—~
h<
=

8

)

We have
wT (Em,p[qS:E ()?)] - E%P[QSJC (55)])
= Ej,,;[ngsz()?)] - Ex,p[wTﬁbx(X)]
= Ez,p[wTﬁz’r()?)(Z —1)]
= By [u (62(8) ~ Bz (D)) (2 - 1)

{ (fcﬁ(bx )] = Eg,p[¢a(X )]
< Ea p[(0" ($2(X) = B 60 (X)) £Y,).



B. Proof of Lemma IIL.5

Equation (II1.12) follows from some algebraic manipula-
tions:

X (Fz.l1frp)
2
N /RL <m - 1) Faup(ys ) dy

( ij (ak 5(y) — a;,p<y>>zf>
- I

-/ e fel)dy
&Y S oak, )%
1=0
(f:d ok 5(y) — a;,p@))zf)
= / s ——fa(y)dy
SR R WMk

- (ju)zE [(O‘%ﬁ(G) - ai,p(G))z} + 0>,

where the third equation follows from the definition of d,
ie. af 5(z) = aj ,(2) almost surely for all n < d. Equa-
tion (II1.12) now follows from v = 1/0.

We now prove (III.13). It is enough to show that
(@)] =ar{md, ),

Z,p7 77 T,p

E {oﬂ ~(G)ad7

z,p

Let S and 5: be two independent random variables such that
S ~ pand S ~ p. We have

(Mt M2, ) = (El(R52)™ ], El(Rsa)®"])

E |((Rs)°", (Rs2)®")]

- d
) [<R§x,RSa§> } . (B.1)
On the other hand, we can write f, , explicitly by
L-1
1 ly — YRex|?
fap(y37) = pllexp | —
var zz:% 2

where S ~ p, thus by equation (III.11)

E [af ;(G)a ,(G)]
a9 (fi,ﬁ(G§’~Y) ot <fa:,p(G; )
074 fG(G) =0 oy? fG(G) ~=0
_ 9% {fﬁ,ﬁ(G;’?) fa:,p(GW)]
07104 fe(G)  fa(G) |5,
_ 9% {fG(GiRSf) fG(G_'YRSx)]
a:Yda'Yd fG(G) fG(G) 3,v=0 ’

where S and S are defined as in (B.1). We have
E [fG(G —YR3%) fa(G — yRsw) 3 S]

fa(G) fc(G)

_ 1 = = 3R5&|* + |lz — vRsz|* — |2/
= T exp — 5 dZ
V2r JRE

1 2z — 4R z% — yRsz|]?
= L/L exp <—” il 52 vRsz| +'y’y<R§5ﬁ,Rsx>> dz
V2T R

=exp (’yﬁ <R§i, Rsx>> .
The proof of (III.13) finally follows from equation (B.1) and

E[ad (G)ad ,(G)]

82(1
IO katoolkd

exp (75/ <R§:E, R5x>)

¥,7=0
= d'E [(Rg#, Rsz)"] .

C. Analog results for derivatives

This section provides analog results to the ones presented
in section III, but involving the limit (%, p) — (z, p). More
specifically, we will take (Z,p) = (xz + hz,p + h6), and
study the limit A — 0. For the rest of the section, identify
v = (2,0) € R2E. Since p + h6 has to be a probability
distribution, we require that 170 = 0 and 6[i] > 0 whenever
pli] = 0.

In comparison with section III, where we used the X2
divergence and the moment tensors, in this section we use
the Fisher information matrix and directional derivatives of the
moment tensors, respectively. We define the Fisher information
matrix as the 2L x 2L matrix such that

Fi\fp := Cov[Vlog i,\fp].

Here Vlog [ , € R2L, since there is a component that de-
pends on = and one that depends on p. The Fisher information
matrix is also the Hessian of the X2 divergence, i.e.,

2( N N
lim X (fz+hZ,P+h9||fx,p) _ UTFin’U.

h0 h2 €D

The Fisher information matrix of N observations is related to

the one observation version by
Iy, =NIg,. (C.2)

We define the Jacobian J, , as the L x 2L matrix such that

Ex+hz,p+h9[¢z ()?)} - Ew,p[¢z ()?)} )

Ju oV = %1_>mo . (C3)
We also define the directional derivative of Mg’ , along v =
(z,0) as the d-dimensional tensor

d d
\Vi Md — lim Mm+hz,p+h9 - Mac,p
R A h '

This derivative always exists, an explicit formula for VUMi o
is given in Lemma D.1. The next corollary is an analog of the
Cramér-Rao bound for estimation of an orbit in MRA.



Corollary C.1. For any v = (z,0) € R*L, such that 176 = 0
and 0[i] > 0, whenever pli] = 0, we have

= Tz povT JT
Cov(p,(X)] = —=L——2L2,
OV[¢ ( )} — N’UTFI’p'U

Proof. 1If 6 is under the hypothesis of the theorem, then there
exists hg > 0 such that for all 0 < h < hg, p + h8 € AL,
Letting (&, p) = hv + (z, p) in Theorem II1.4 we obtain for
any w € RE

w” Cov[gy(X)]w

> lim

(wT(EI-i-hz,p-i-hO [P ()?)} —Eqy plo ()?)]))2

h—0
_ (wTJz,pU)2
NoTT, v

X?V(fm+hz7p+h0‘|fm7p)

by equations (C.1), (C.2) and (C.3), and the corollary follows.
O

We now use (III.10) to give an expression of the Fisher
information in terms of the directional derivative of the tensor
moments.

Lemma C.2. For any v = (z,0) € R?L,
o2 2 —2d—
vTFz’pv = (d!)2E [(vTVa;i’p(G)) } + O™,
(C4
g2 d |2 —2d—1
= VoM |7+ O(o ) (C5)

where d = inf {n IV M2 |12 > o}.

Proof. In this case we cannot just take the limit h — 0
in (IIL.12), since the term contained in O(c~2?~!) might
blow up. Instead we proceed by doing similar algebraic
mampulatlons Recall that Vf, ,(y;v) and Vo, ,(y) are in
R2E, with vTV f, ,(y;~y) being the directional derlvatlve of
fz,p(y;7y) in the direction v = (z,§). We have

vIT, ;v =0T Cov[Vlog f, ,(Y

v
ZELP (’U .Z];xp )

where the second line follows from

Vfa:,p(YQ 7)

Fer(Vi7) | 0

Ez,p

By the definition of d and (C.5), we have v" Vo (z) = 0
almost surely for n < d, thus

2
(Z vTVa;,,,@)z,)
T . i=d
v F@.’pv—/
RL

1—&—2@;’#

fa(y)dy
(v) &
2d

:(jl,) [, (et ) ot dy+017)

_ v Ty7,.d 2 2d+1
= " [(v v%p(a)) } + 0724+,
Equation (C.4) now follows since v = 1/0.

We now prove (C.5) We let (Z,p) = (x, p) + hv in (I11.13)
and take the limit A — 0 to get

2
E [(UTVaip(G)) }
E {(ad (@) - ot (G)ﬂ

) z+hz,p+hé z,p

= pm h?
d d
— d lim ||Mw+hz7p+h9 - ‘]\417;)”2
h—0 h?

— |V, 2

O

Finally, from Corollary C.1 and Lemma C.2, we obtain a
result analog to Theorem IIL.6.

Corollary C.3. For any v = (2,0) € R?L, such that 176 = 0

and 0[i] > 0 whenever pli] = 0, let Q7 = ||V, M, pH2
¢ =1inf{n : Q¥ > 0} and § = maxq,. Then
Kl
MSE > sup (C.6)
Viqy=q

QI +0 (Mo

D. Proof of Theorem III.1

Before proving Theorem III.1, we need the following

lemma.
Lemma D.1. The entries with index k = (k1,ka,..., kq) €
Z% of M2 , and VvMi p can be explicitly written as
L d
M k] =" pl [ [ ki — 2, (D.1)
=0 =1
and
L-1 d d
(VoM )] = pl¢ Z [Tk~
£=0 i=1 i=1
(D.2)
where we use the convention x[k; — {]/x[k; — €] = 1 when
x[k; — €] = 0. Moreover, denote the d-dimensional Fourier

aq) € Z¢ we have

=Fp Zaj Hanj

Transform by Fy. For any a = (a1, as, .. .,

Fde (D.3)



and
(VoMg,)[a) = (D.4)
d s
Fz[aj] £ [Ej:l a]} Fde [a]
= Fzla;) Fp [Zd aj} P
D.5)
again using the convention Fxlaj]/Fxla;] = 1 when

Fzla;] = 0. The denote the d-dimensional Fourier Transform
preserves the Lo norm of the tensors, i.e.

15 ; —

—FyM? 1P, (D6)

and 1
VM2 I = 25 IFaV,

D.7)
Also,

Proof. We first prove equation (D.1). By equation (IIL.2), we
have

d
rolk] =E H(st)[ki]
~ 4 -
—E H zlki — 5]

:Z H ks — 1]

Equation (D.2) follows from the formula of the derivative of
the product:

d
— (p1g+pg> 2=l ,C_g Hx
i=1

We finally prove (D.3); the proof of (D.4) is analogous.

2me
Fadtd fal = Y 0t e (<27 o)
kezd
L-1 d ,
= Z Z ol H xlk; — () exp ( k;]a7)
kezd (=0 j=1
L—1 d 9
= Z ol¢] Hx[k]]exp (— 7 a;(k; —|—€)>
kezd (=0 j=1
L—1 d ,
Y Y st T elbsleww (- s + )
kezd (=0 j=1
= 2me d
= plllexp | —— EZaj HFa:[a]]
=0 j=1 j=1
d d
—pp || [ ol
j=1 | j=1

O

We are now ready to prove Theorem IIL.1, starting by (III.3).
Since X is asymptotically unbiased, E, ,[¢,(X)] — 2 and
Jop = I Opxr] as N — oo. By (II1.6) and Corollary C.1
we have

lim N -MSE
N —o00

N tr(Cov]ps(X)))

> i D.
= N ]2 (D-8)
. HprU”Q 1 2d—1
> lim — —O(O’ )
N—oo d' > [[VoMZ,|?
o ||z|? 1
SR Lo ().
@ RV O B9

We will choose z = z— 1—L“’1, and § = +1— p. This choice of
6 is under the theorem assumptions, since 170 = 0 and 0[i] =
1 > 0 whenever p[i] = 0. By the linearity of the Fourier
transform, this definition is equivalent to F'z = F'z — Fx[0]d
and F = Fp[0]éy — Fp = §y — Fp. Since the d-dimensional

Fourier Transform is unitary, we can write using Lemma D.1

P = 2 S IR M

acZ¢

VM, (D.10)

For d = 1,2 we have
1 —
VM, ,[a] = Fpla]Fz[a] + F0[a]Fz[a],
and
FV,M7, =Fpla1 + az] Fz[a1] Fxas)]
+ Fplar + ag] Fzla1)Fz[as]
[

+ FO[ay + as] Fzla1]Fxlaz]. (D.11)

a1, az]

Now by our choice of z and 6 we have Fpla|Fz[a] =
—F6[a]Fza] forall a € Zg, so ||V, M, || = 0. On the other
hand, by some algebra manipulation of (D.11) we obtain

IV |12

1
= 25 [ BIPEs+ 3 1Fplas + as] Ffan) Fofas]

aczZ?
4
< S IFe
<4z l=]1%,

where we used |Fpla; + a2]| < 1 and |[Fz|ls < ||[Fz| <
||Fx||, and (II1.3) follows.

We now proceed to prove (II1.4). Suppose that p is periodic
with period ¢ < %, and let b = %, so that b > 2. Then
Fplk] = 0 if b does not divide k. For a positive integer i <
[252], define z; € RE such that

Fxlk]
—Fx[k]

if bk — 4,
Fzilk] = if blk + 1,
0 otherwise,

where b|k means that b divides k. Assume z; # 0, let 6; = 0
and v; = (z;,0;). Since X is asymptotically unbiased and



{zit1<i< re=27 is a set of orthogonal vectors, we have by (D.8)
and Corollary C.1:

lim N -MSE
N—00
o N(Corn(R))
NS00 |||
1 & N2T Cov[py(X)]2
> lim L d :

N=oo [|z[2 = i1

1

21 o4
1 ot [ 2d;—1
> E 70(0 i )
2> = dit ([, M2 ’

inf{n [V, M2 |2 > 0
tion (D.10) and since #; = 0, we have now for d = 1,2, 3,

where d; = } Recalling equa-

Flvv,iMip[a] = Fpla]Fz;[a], (D.12)
BNy, M; a1, as] = Fplay + ag] (Fzilai] Fafag)
+ Fzlai]Fzlas]), (D.13)

and

F3V,,M; la,as,a3) =Fp[ay + as + a3]
(Fz;|a1]Fxlaz)Fxlas)
+ Fzla1]Fz;[as]) Fxlas]

+ Fxla1]|Fzlas) Fz;[as]).
(D.14)

Since Fpla] # 0 = bla = Fzla] = 0, (D.12) = 0 Va €
Zy, . Also Fpla; + ag] # 0 implies bla; + ag. Let a; =
mod (a;,b) for j = 1 and 2. Since bla1 + a9, a1 + @2 = b,
so assume with out loss of generality that a; < g. If a; # 1,
then F'z[a1] = Fz[ag] = 0. On the other hand, if @; = 4, then

Fzla1)Fzlas] + Fxla1])Fz[as]

= (Fzla1)Fzlaz] — tFxlai|Frlas]
=0,

so (D.13)= 0 Va € Z2. Finally since |Fp[]| < 1 we have

9
Vo M2, 1P < 75 D [Failaa] Frlas] Farlas]?
aczZ?
=9z 1?11,

and the result follows. Finally, if z; = 0, we can alternatively
choose
v if blk — 4,
Fzilkl =< —¢ if blk+1,
0 otherwise.
We still have (D.12) = 0 Va € Zjy, and (D.13) = 0 for all

a € Z% except if a; = 4. But z; = 0 implies Fz[a] = 0 if
mod (a,b) = %4, so (D.13) = 0 also if a; = i.

E. Proof of Theorem IV.1

We show that if the first two moments of two pairs, signal
and distribution, are equal then the pairs are identical up to a
translation. Specifically, suppose that 21 and p; have the same
first two moments as xo and ps. Equality of the first moments
means that xq x p1 = 22 * po, and therefore:

(Fx1)[k] - (Fpu)[k] = (Fg)[k] - (Fp2)[K].

Since F'z; is non-vanishing, we define the ratio

F
) )l
(F1)[k]
Then,
(Fp1)[k] = (Fp2)[k] - r[k]. (E.1)
Furthermore, from the equality of second moments

Ce, D, CL = Cob,D,,CL, or equivalently (after taking
Fourier transforms) Dpy,Crp, D5y, = DrpzyCrp, Dioy, -

Consequently, for k, p=0,...,L—1:

(Fa1)[k] - (Fp1)[k — p] - (Fx1)[p]®
= (Fag)[k] - (Fp2)[k —pl - (Fa2)[pl",
or equivalently,

(Fp1)[k = pl = (Fp2)[k — p] - r[k] - r[p]".
Because p; and ps are probability distributions, (Fp;)[0] =
(Fp2)[0] = 1. Therefore, taking £k = p in (E.2) implies
[r[k]] = 1. By (E.1), r[0] = 1, and Fp; and Fpy have the
same support.

We will denote by GCD (ayq, ..., a) the greatest common
divisor of the positive numbers a1, ..., ay.

(E.2)

Lemma E.1. If a distribution p is aperiodic then
GCD ({k|1< k<L, (Fp)k] #0}) = 1.

Proof of Lemma E.I. A necessary and sufficient condition for
a distribution p to have period £ is that (Fp)[m] # 0 only for
m of the form k(L/¢), k = 0,1,...,¢ — 1. Therefore, the
aperiodicity of a distribution p means that the shared greatest
common divisor of all the indices of nonzero entries in F'p
(which includes L, since p[0] = p[L] = 1) is 1. In fact, if the
GCD were equal to some d > 1, then the distribution would
be periodic with a period of L/d as all nonzero entries would
be of the form kd, k € {0,1,...L/d}. O

Let my,...,my be the indices of the support of Fp;
(and Fpy). Because the greatest common divisor GCD is
associative — that is, GCD(a,b,c¢) = GCD(GCD(a,b),c) —
by Lemma E.1 there exist integers aq, ..., ay such that

n
Zajmj =1 mod L.

(E.3)
j=1
Taking k — p = m; in (E.2), we obtain:
rlp+m;] = @; - rlp] (E.4)
where
o (Ep)lmy]
j
(Fp2)[my]



From (E.3), repeated application of (E.4) yields:

rlpl = w-rlpl,

where w = @ - - - @,*. Repeatedly applying (E.5), we obtain
r[m] = w™r[0] = w™, or equivalently:

rlp+1] = o8 ... oo (E.5)

(Fxg)[m] = w™ - (Fz1)[m]. (E.6)

Furthermore, when m = L, we see:

i.e., wis an L' root of unity. Equation (E.6) then implies
o is a translation of x;. Finally, (E.1) then shows that
(Fp1)[m] = w™(Fpa)[m], so that p; is also a translation
of po. This completes the proof.

FE. Proof of Lemma IV.3
For any 0 < ¢ < L — 1, we can write
(p * 0)[7’] = G?Cpa,

with e; the unit vector with one in its ith entry. Consequently,
equality of two distinct entries ¢ and j implies

(e; —e))TC,0 =0. (F.1)

However, for a random choice of 0, if (F.1) holds with non-
zero probability, then

T
(e; —e;)" Cp =0,
or,
T _ AT,
C’pei—Cpej.

The latter implies that p shifted by i equals p shifted by j,
ie., plk —i] = plk — j], or

plk] = plk +i—j], Vk.

Therefore, p is periodic.

G. Proof of Theorem IV.5

Since the residuals M! — MY, M2 — M and P, — P, are
subexponential, we can apply the Bernstein-type inequality for
subexponential random variables found in [45], together with
Corollary IV.4, to obtain

P mizn ||RSXSPCCLI“AI - ‘THQ > t:|
L

sE

N .
< Chexp —;mln G Cs

* */i} . (@G.D)

where C7, Cy and C' are finite, positive constants that depend
on x and p. We have

MSE - ||z||* = E {min ||R5)?Spectral - x||2]
SEZLy

o0
:/ P [mizn | Rs Xspectral — |* > t] dt
0

seLr

o0 N t WVt
< ~Zmind =, YU ) g
701/0exp U4m1n{02’03}

4 ot N
Cs + (Cs + 2N> exp (—Cs ;)

-,z
(G.2)

N
with Cy = 0103? and C5 = 02/032, El\luS if N = OJ(O'4), (G.2)
converges to 0 as n diverges, and Xsgpecrat coOnverges to the
true signal in L2, up to a cyclic shift.

I

H. Proof of Proposition 1V.6

It is clear that, as L > 1, &1 # x5. In addition, since z is
real, the construction ensures that x5 is real as well.

The ¢ periodicity of p means a sparsity pattern for Fp.
Particularly, F'p is zero everywhere besides

(Fp) [kL/€]) #0 <= kL/{is integer, (H.1)
for k=0,...,¢ — 1. It is easy to verify that
(Fe))[M(Fp)[k] = (Fao)[K(Fp)lkl, k=0,...,L 1.

Therefore, 1 and x5 share the same first moment.
For the second moments, we will show the equality

Cy,D,CY, = Cy,D,CY .

Applying the Fourier matrix, due to the realness of p, the latter
is equivalent to

DlechDle = DFwQCFpDFx27

Similar to (E.2) and by the sparsity pattern of (H.1), this
equality should hold only if

(Fay)[i] (Fa1) [i + tL/€)" = (Fao)[i] (Fao) [i +tL/]",

forallt =0,...,f and i = 0,...,L — 1. By the construc-
tion (IV.8), this equation holds true.

L. Proof of Claim IV.7

Throughout the proof, we assume that each period has no
repeated values. This property is guaranteed by reshuffling the
measurements with random 6 € Ay ; see Lemma IV.3. Addi-
tionally, we assume without loss of generality that | Fz|[k] = 1
for all k. R

Observe that both x and Rj,/»x are eigenvectors of M 2=
CmDPCf (we assume exact knowledge of the moments)
with the same eigenvalue. Also, = and Ry oz are orthogonal
as columns in the orthogonal matrix C,. Then, if u is an
eigenvector, we can write for some scalars o, 3 € RL:

u=az+ BRL ),



and therefore,
Rpjou = aRyp oz + P,

as Rp /o = RZ/IQ. Then, one can verify that the inner product
of u and Ry, jou is 2f3||||?. Since the signals are orthogonal,
their inner product is zero. This means that o or S must be
zero. This in turn implies that u was either z or Ry /» in
the first place. Therefore, x is the unique eigenvector of M?
that is orthogonal to its translation by L /2. This completes the
proof.

J. Proof of Lemma VI I

It is easy to check that the condition ¢[¢] > 0 is automati-
cally enforced whenever w[¢] > 0 (otherwise the objective is
—00). So the simplex constraint is equivalent to Zf;ol qlf] =
1. The Lagrangian for this problem is the function:

L-1 L-1
(g.v) =Y wlf)log(gld) +v [ 1= qlf] |,
=0 =0

and the KKT conditions imply ¢*[(] = # Since ¢ is on the
simplex, we conclude that v* = Ef,;(l) wll'].

K. Convex relaxation with semidefinite program

In this section, we propose an additional algorithm for
non-uniform MRA based on a semidefinite program (SDP)
relaxation.

Since the power spectrum of the signal can be estimated
from the data at sample complexity scaling as w(1/ SNR?)
according to (IV.6), we assume in this section, without loss
of generality, that |Fz|[k] = 1 for all k. Note, that as in
Algorithm 2, the normalization is done on the second moment
matrix, not the individual observations, in order to retain the
noise statistics.

The SDP relaxation is based on considering the second
moment matrix in the Fourier domain, namely,

M2=F (M2) F~' = Dp,CE D, (K.1)
The last expression can be also written as
M? =CFE,® (FxFx*),
or
M2oX = Crp, (K.2)

where X = (Fx)(Fz)*. and p:= F~1(Fp).

The formulation of (K.2) suggests to pose the recovery
problem as,
2

min HMz@E?CFﬁH

5. X F

subject to  diag(X) =1, rank(X)=1, (K.3)
X[1,0]=1, X =0, pl0]=1,

plk] = pI—k], Vk.

The constraint X[1,0] = 1 follows the assumption that
(Fx)[0] = (Fx)[1] = 1. While we can easily estimate (F'z)[0]

and therefore fix it, the assumption of fixed (Fz)[1] = 1 is
more delicate. Recall that the solution for the MRA problem
is always up to cyclic translation. In the Fourier domain, it
means that the first entry of the Fourier transform of the signal
is determined up to an arbitrary modulation by e?™*/L for
some ¢ € Z. If L — oo, this allows us to fix this coefficient
arbitrarily.

Similarly to the well-known SDP relaxation of the Max-Cut
problem [46], the non-convex problem (K.3) can be relaxed to
a convex program by omitting the rank constraint as follows,
2

min H]\?2 ©X - CF,3H

X F

subject to  diag(X) =1, X[1,0]=1, (K.4)
X =0, plo]=1, plk]=p[—k], Vk.

This relaxation is convex and can be solved in polynomial
time using off-the—shelf software, such as CVX [47].

The SDP relaxation (K.4) recovers the Fourier phases of
the signal and the distribution exactly for N — oo and fixed
noise level, since in this regime we can estimate the first two
moments arbitrarily well.

Theorem K.1. Assume that |Fz|[k] = 1 for all k and that
Fp is non-vanishing. In addition, assume that (Fzx)[0] =
(Fx)[1] = 1. Then, if N — oo and o is fixed, the solution
of (K.4) is given by X = (Fz)(Fz)* and p = F).

Proof. Since ¢ is fixed and N — o0, one can estimate Mf as
in (K.1) exactly. Then, since (K.4) admits at least one solution
(the underlying signal and distribution), the objective is zero
at the solution and we get the relation:

C;=M?0X =Cpy® (FaFz*) ® X, (K.5)

where we use p := F~(Fp). Let u = jp/F). Since X = 0
we conclude that C,, = 0 and hence Fu > 0 (the Fourier
transform of w is non-negative). By the constraints of (K.4), we
also have u[0] = 1. By examining the (1, 0)th entry of (K.5),
we also conclude that

(Fz)[1)(Fz)[0](Fp)[1] X1, 0] = p[1] = u[l] = X[1,0] = 1,
where the last equality holds because of the constraints
of (K.4).

Until now, we have shown that the vector u satisfies u[0] =
u[1] = 1, it is conjugate-symmetric and its Fourier transform is
non-negative. Therefore, by Lemma IV.2 of [15], we conclude
that u[n] = 1 for all n, or 5 = F'p. Next, we substitute p = Fp
in (K.5) and get

1= (Fxe*)@?,

where the equality holds entry-wise. Since all entries of &

are normalized, we conclude that X = (Fz)(Fxz)*. This
concludes the proof. O



