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Topology Optimization of
Structures Made of Discrete
Geometric Components With
Different Materials
We present a new method for the simultaneous topology optimization and material selec-
tion of structures made by the union of discrete geometric components, where each com-
ponent is made of one of multiple available materials. Our approach is based on the
geometry projection method, whereby an analytical description of the geometric compo-
nents is smoothly mapped onto a density field on a fixed analysis grid. In addition to the
parameters that dictate the dimensions, position, and orientation of the component, a size
variable per available material is ascribed to each component. A size variable value of
unity indicates that the component is made of the corresponding material. Moreover, all
size variables can be zero, signifying the component is entirely removed from the design.
We penalize intermediate values of the size variables via an aggregate constraint in the
optimization. We also introduce a mutual material exclusion constraint that ensures that
at most one material has a unity size variable in each geometric component. In addition
to these constraints, we propose a novel aggregation scheme to perform the union of geo-
metric components with dissimilar materials. These ingredients facilitate treatment of the
multi-material case. Our formulation can be readily extended to any number of materials.
We demonstrate our method with several numerical examples. [DOI: 10.1115/1.4040624]

1 Introduction

Topology optimization has been used extensively in order to
generate novel designs that improve structural performance while
decreasing the cost. One important option to improve the structure
is to employ multiple materials. By having an appropriate distri-
bution of materials, multimaterial designs can outperform designs
made of each of the materials separately. Moreover, besides
decreasing cost, multimaterial designs can take advantage of sub-
stantial differences in properties to perform multiple functions.

Methods for multimaterial topology optimization were first
introduced in density-based approaches. In [1], a method is devel-
oped to determine the optimal distribution of multiple phases to
obtain composite materials with extreme thermal expansion
behavior. This work employs an extension of the power-law inter-
polation used in solid isotropic material penalization (SIMP) [2,3]
to three-phase material designs (two solid materials and void).
The interpolation uses two design variables, one that indicates
where to put material or void and another that determines which
material to choose. This and similar formulations are applied to
various problems, such as design of multiphase composites with
extremal bulk modulus [4], design of multiphase piezoelectric
actuators [5,6], combined optimization of material and voltage
distribution [7], and optimal reinforcement of concrete structures
[8]. As indicated in Ref. [9], this formulation violates the
Hashin–Shtrikman bounds and renders different designs if the
phases are interchanged. In Ref. [9], a formulation that combines
the power-law penalization with an interpolation of every material
property within its Hashin–Shtrikman bounds is proposed to cir-
cumvent the foregoing limitations to design multimaterial actua-
tors. In all of these applications, the maximum number of phases
involved is three (including two solid phases and a void phase) as

the generalization of their interpolation schemes to more than
three phases becomes quite involved.

A method for topology optimization of multi-material compli-
ant mechanisms using an alternative material interpolation scheme
that employs only one density variable is proposed in Ref. [10].
As opposed to the single-material topology optimization, where
the optimal density indicates either void (zero) or solid (unity), in
this method, the density variable in the optimal design can take
any real value. The proximity of this value to one of the means of
a sum of Gaussian distributions with given mean locations and
with modes corresponding to the property values for different
materials indicates the choice of material. To avoid premature
convergence to undesired local minima, this method starts with a
large standard deviation for each material’s property distribution
and decreases it gradually in order to sharpen the peaks.

The discrete material optimization method (DMO) [11] simul-
taneously optimizes the stacking sequence, reinforcement orienta-
tion, and choice of material of composite shell structures. In this
method, there is a set of materials from which each finite element
can be made in order to minimize the objective function. A mate-
rial interpolation scheme is formulated, whereby an increase in
the weighting factor for one material decreases the weighting fac-
tors for all other materials. The weighting factor for a given mate-
rial indicates the relative influence of that material on the
properties of the corresponding finite element. If the weighting
factor for a given material is unity, it indicates that finite element
is made solely of that material (e.g., pure phases). One challenge
with this formulation is that the weighting factors do not add up to
unity except for pure phases. The proposed solution is to normal-
ize each weighting factor by the summation of all weighting fac-
tors. However, this alters the penalization effect and the
monotonic convergence. The DMO method is used in Ref. [12] to
optimize the buckling behavior of multimaterial composite shell
structures, and in Ref. [13], to compare topology optimization of
multimaterial structures with a mass constraint using both this
method and the one presented in Ref. [1]. The work in Ref. [14]
formulates simpler multimaterial interpolations by imposing one
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linear constraint per finite element that ensures that it is made of
only one material (or no material).

Other density-based methods employ a heuristic rule for the
multimaterial interpolation. The work in Ref. [15] uses a homoge-
nization approach with a unit cell made of two materials and a
square hole. The optimization allows for continuous mixtures of
the three phases. Then, a postprocessing heuristic rule is applied
to every finite element in the optimal design to determine if it is
made of one of the two materials or void. In Ref. [16], material is
iteratively removed from a fully solid initial design by applying a
rule to each finite element that changes its material, or that makes
it solid or void based on the elemental change in compliance
incurred by these changes.

There also exist several level set methods for topology optimi-
zation of multimaterial structures. In the color level-set method
[17], the boundaries of multiple regions made of different materi-
als are given by the zero level-sets of multiple functions. Instead
of using a level set function per material, this method employs m
level-set functions whose combinations can represent up to 2m

materials. This strategy circumvents the need for an equality con-
straint that would be required to avoid overlapping materials if
one level set per material was used. Since the combination of level
sets renders one and only one material at any point, this method
eliminates the need for material interpolation. This method is
applied to topology optimization of multimaterial compliant
mechanisms in Ref. [18] and stress-based topology optimization
of continuum structures involving multiple materials in Ref. [19].
In Ref. [20], the color level-set method is combined with a varia-
tional approach for optimization of structures made of function-
ally graded materials.

In the level set method of Ref. [21], only one level-set, piece-
wise constant function is used as an “index” that indicates the
choice of material. A constraint is applied to ensure that the level
set function converges to the index values. This method is applied
to design of piezoelectric actuators [22]. In Ref. [23], n level-set
functions are used to represent n solid materials and void (i.e.,
nþ 1 phases). This method employs a material interpolation simi-
lar to the one proposed in Ref. [1], except it uses the Heaviside of
the level-set functions instead of density variables.

The design of multimaterial structures has also been studied
with phase-field topology optimization methods. The generalized
SIMP interpolation scheme proposed in Ref. [11] in combination
with the mutual material exclusion constraint of Ref. [14] is
employed in the phase field methods of Refs. [24–26]. In Ref.
[27], the volume fraction of each phase in phase field model
directly represents the contribution of the corresponding material
to the material properties. A constraint on these volume fractions
ensures that they add up to unity, while a penalization term added
to the objective function ensures that the volume fractions are
zero or unity upon convergence. Phase field methods for topology
optimization of multimaterial structures require a very large num-
ber of iterations, typically in the order of thousands.

All the aforementioned methods produce organic designs that
cannot be readily manufactured with stock material. The geometry
projection method presented in Refs. [28–30] generates designs
that can be made of stock material, such as bars and plates, by
smoothly mapping an analytical description of the geometric ele-
ments onto a density field over a fixed finite element grid. A size
variable is ascribed to each geometric component that is penalized
in the spirit of SIMP, allowing the optimizer to entirely remove
that component from the design. In the moving morphable compo-
nents method of Refs. [31] and [32], a parametric description of
bars is mapped onto a level set representation (termed the
“topological description function”) for the analysis. The foregoing
methods for design with discrete geometric elements use a single
material. Recently, the work in Ref. [33] proposed a geometry
projection method for the topology optimization of multimaterial,
three-dimensional (3D) lattice structures. This method adapts the
material interpolation scheme of Ref. [1] to the geometry projec-
tion framework, by assigning additional variables to each

geometric component that determine the choice of material.
Although possible, the extension of this interpolation scheme to
more than two materials is not straightforward and it is more
prone to getting locked into undesired local minima, as reported
in Ref. [11]. Also recently, the work in Ref. [34] extends the mov-
ing morphable components method to accommodate multiple
materials by seeding the initial design with geometric components
made of different materials (i.e., the material of a component does
not change during the optimization). The material interpolation
scheme in regions where two or more geometric components
intersect chooses the stiffer material of any intersecting
component.

In this paper, we extend the geometry projection method so that
it can be readily applied to structures whose geometric compo-
nents can be made of one of any number of available materials.
We achieve this by means of several key ingredients. The first
ingredient corresponds to a new aggregation function used to per-
form the union of geometric components, since the function used
in the previous geometry projection schemes cannot accommodate
components made of dissimilar materials. A second important
ingredient pertains to the interpolation of properties from the mul-
tiple material candidates. Here, we adapt the DMO formulation to
accommodate discrete geometric components made of different
materials. Unlike DMO, however, we impose two separate aggre-
gate constraints in the optimization to (a) penalize the size varia-
bles of geometric components (discreteness constraint), and (b) to
ensure that each component is made of at most one of the avail-
able materials (mutual material exclusion constraint). We demon-
strate the effectiveness of our method via numerical examples.

The rest of the paper is organized as follows. Section 2
describes the projection of geometric components onto the analy-
sis mesh for analysis, including the aggregation function for the
union of geometric components and the interpolation of material
properties. Sections 3 and 4 detail the constraints to penalize inter-
mediate values of size variables and to ensure that geometric com-
ponents are made of at most one material, respectively. The
modification of the geometry projection to enforce a symmetric
design is presented in Sec. 5. Section 6 describes the optimization
problem. We present numerical examples to demonstrate our
method in Sec. 7 and draw conclusions of our work in Sec. 8.

2 Geometry Projection

To perform the analysis for any given design made of the union
of geometric components, we use the geometry projection method
[28,29], wherein a parametric description of the components is
smoothly mapped onto a density field over a fixed grid. In this
work, we model bars as the solid enclosed by the surface defined
by the set of points equidistant to a straight line segment (the
medial axis of the bar). In two-dimensional (2D), these bars corre-
spond to semicircular-ended rectangles of width w and out-of-
plane thickness t [29], and in three-dimensional, they correspond
to cylinders with semi-spherical ends, both with diameter w. Here,
we follow closely [29] to define the projected density for a single
component; the reader is referred to that work for more details.

The projection calculates a density at each point p in the design
domain as the area fraction (for 2D components) or volume frac-
tion (for 3D components) of the portion of the sample window Br

p

that intersects the solid structure x (cf. Fig. 1), i.e.,

q x; rð Þ :¼
jBr

p \ xj
Br

p

(1)

where

Br
p :¼ fxj kp� xk � rg (2)

Assuming that the sampling window is small in relation to the
geometric component, the projected density of Eq. (1) for

111401-2 / Vol. 140, NOVEMBER 2018 Transactions of the ASME



component q can be approximated for 2D components as the area
ratio of the circular segment of height r � /q (cf. Fig. 1)

qq /q; r
� �

:¼

0 if /q > r

1

pr2
r2arccos

/q

r

� �
� /q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � /2

q

q� �
if � r � /q � r

1 if /q < �r

8>>>>><
>>>>>:

(3)

and for 3D components as the volume ratio of the circular cap of
height r � /q

qq /q; r
� �

:¼

0 if /q > r

1

2
þ

/3
q

4r3
�

3/q

4r
if � r � /q � r

1 if /q < �r

8>>>><
>>>>:

(4)

where /qðpÞ is the signed distance from point p to the boundary
@xq of geometric component q. That is, the projected density at a
point p with respect to a component q is entirely dictated by its
signed distance to the component (for a fixed sampling window
radius r).

For the bars considered in this work, a bar q is parameterized
by the positions of the endpoints of its medial axis, xqo

and xqf
.

Thus, the signed distance is given by

/q dq;wð Þ :¼ dq xqo
; xqf

; pð Þ �
w

2
(5)

where dq is the unsigned distance from point p to the medial axis
of bar q. As indicated by the arguments in the equation above, the
minimum distance dq is a function of the bar parameters (cf.
Fig. 1) and can be computed as

dqðxqo
; xqf

;pÞ :¼
jjbjj if a � b � 0

jjgjj if 0 < a � b < a � a
jjejj if a � b > a � a

8><
>: (6)

where

a :¼ xqf
� xqo

(7)

b :¼ p� xqo
(8)

e :¼ p� xqf
(9)

P?a :¼ I� 1

jjajj2
a� a (10)

g :¼ P?a b (11)

In these expressions, k � k denotes the Euclidean 2-norm, �
denotes the dyadic (or tensor) product, and P?a is the perpendicu-
lar projector on a. We fix w as we desire to design structures with
fixed-width members, but note that this could readily be a design
parameter.

Since several components can intersect, in the previous work
we aggregated the corresponding densities in the intersection by
using a p-norm, which smoothly approximates the maximum pro-
jected density of any of the intersecting components. While this
approach is effective for single-material structures, it does not
accommodate components made of multiple materials. In this
work, we consider a different aggregation strategy, which we
explain in the following.

Let us first consider components made of the same material.
We want the contribution of a bar q to the projected density at
point p to be 1.0 if p is in the interior of the bar, and 0.0 if it is
outside the bar. We can achieve this by using the Heaviside func-
tion of the signed distance to express the effective density as

qeff z;pð Þ ¼

XNb

q¼1

H �/q z;pð Þ
� �

qq z;pð Þ

XNb

q¼1

H �/q z;pð Þ
� � (12)

In the expression above, z ¼ ½zT
1 zT

2 …zT
Nb
�T is the vector of design

variables, with zq ¼ ½xT
q0

xT
qf
�T being the vector of design variables

for bar q. Nb is the number of bars in the design. With the Heavi-
side weighting factor, a component contributes to the effective
density when /q � 0, i.e., if p is inside the component. The sum of

all weighting factors in the denominator ensures qeff 2 ½0; 1�. Since
the exact Heaviside function is not differentiable, we replace it

with a smooth approximation ~H e [35] so that design sensitivities
are well defined and we can use gradient-based optimizers

~H e xð Þ ¼

0 if x < �e
1

2
þ x

2e
þ 1

2p
sin

px

e

� �� �p

if � e � x � e

1 if x > e

8>>><
>>>:

(13)

We introduce the exponent p> 1 as a parameter to sharpen the
Heaviside (i.e., to reduce the range over which it attains an inter-
mediate value). In the case of single-material structures, the mate-
rial properties are modified by some function of the foregoing
effective density, as in our previous work. With the smooth Heavi-
side, it is clear that material properties vary continuously within a
narrow band around the boundary of the bars.

To extend this interpolation to components made of one of Nm

materials, we express the effective elasticity tensor at point p as

Cðz;pÞ ¼ Cmin þ
XNm

i¼1

ðCi �CminÞqi
effðz; pÞ (14)

where Ci is the elasticity tensor for material i, Cmin is the elastic-
ity tensor of a weak isotropic material that prevents the analysis
from being ill-posed, and qi

eff is an effective density per material
given by

qi
eff z;pð Þ ¼

XNb

q¼1

~H e �/q z; pð Þ
� �

qq z;pð Þwq
i zð Þ

XNb

q¼1

~H e �/q z; pð Þ
� � (15)

In this expression, wq
i is a weighting factor for bar q and material

i. Here, we adapt the DMO interpolation scheme to our method,
and define these weights as

Fig. 1 Bar geometry (left) and sample window Br
p for projected

density calculation (right)
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wq
i ðzÞ ¼ ða

q
i Þ
YNm

j¼1

1� aq
j6¼i

	 
	 

(16)

The main difference between this expression and the original
DMO approach for density-based topology optimization is in the
variables a. In the density-based approach, these variables corre-
spond to element-wise densities per material. In our approach, we
ascribe a size variable aq

i 2 f0; 1g to geometric component q that

indicates if it is made of material i when aq
i ¼ 1. Correspondingly,

the vector of design variables for bar q is now given by zq ¼
½xT

q0
xT

qf
aT

q �
T

(note that wq
i only depends on aq and not on xT

q0
or

xT
qf

, but we use the foregoing notation for simplicity).

These size variables are discrete, which precludes the use of
nonlinear programming methods; therefore, we relax them so that
they can take any value between 0.0 and 1.0. To ensure that the
optimizer converges to a design with pure phases, we penalize
intermediate values in the same spirit as the SIMP method. The
second difference between our approach and the original DMO
method lies in that the penalization is not imposed through the
weights of Eq. (16), but through an optimization constraint, as
described in Sec. 3. Furthermore, as we desire each component to
be made of one and only one material, a mechanism to ensure that
aq

i is 1.0 for at most one material is required. We detail a con-
straint to enforce this requirement in Sec. 4.

One problem with the expression for qi
eff in Eq. (15) is that in

the intersection between a solid bar made of material i (i.e., with
aq

i ¼ 1 and aq
j ¼ 0 for j 6¼ i) and a void bar (i.e., with aq

i ¼ 0 8i),
the effective density for material i is 0.5. Consequently, the effec-
tive elasticity tensor of Eq. (14) equals 0:5ðCi þCminÞ, which is
clearly incorrect. This occurs because the denominator is counting
all the bars in the intersection and not only the solid bars. To rem-
edy this, we modify the denominator so that it only counts the
nonvoid bars (i.e., those for which

PNm

i aq
i > 0) as follows:

qi
eff z;pð Þ ¼

XNb

q¼1

~H e �/q z;pð Þ
� �

qqwq
i zð Þ

XNb

q¼1

~H e �/q z;pð Þ
� �XNm

i¼1

aq
i

 ! (17)

However, another problematic situation arises: if all bars in an
intersection have a zero size variable for all materials, the denomi-
nator would be zero. In this case, we want the denominator to be
replaced by 1, hence we redefine the effective density per material
as

qi
eff z; pð Þ ¼

XNb

q¼1

~H e �/q z;pð Þ
� �

qqwq
i zð Þ

Aþ B
(18)

wherein

A ¼
XNb

q¼1

~H eð�/qðz; pÞÞ
XNm

i¼1

aq
i

 !
(19)

B ¼ 1�max ~H eð�/qðz;pÞÞ
XNm

i¼1

aq
i

 !
(20)

The term B equals 1 if all intersecting bars have zero size varia-
bles, and 0 if at least one size variable equals 1. We note that both
situations occur only when all intersecting bars have pure phases.
Finally, the maximum function is not differentiable, hence we
replace it with a Kreisselmeier–Steinhauser (KS) approximation
[36]

qi
eff z;pð Þ ¼

PNb

q¼1

~H e �/q z;pð Þ
� �

qqwq
i zð Þ

Aþ C
(21)

where

C ¼ 1� KS
q
ð ~H eð�/qðz;pÞÞ

XNm

i¼1

aq
i Þ (22)

and

KS
i

xð Þ :¼ 1

k
ln
X

i

ekxi

� �
(23)

The KS function approximates better the maximum as the param-
eter k increases.

3 Discreteness Constraint

Since the relaxed size variables aq
i can take any value between

0.0 and 1.0, a penalization scheme is needed to push them toward
these values throughout the optimization in order to have a physi-
cal meaning. Unlike the DMO method, which performs the penal-
ization through the weighting factors directly, we enforce this
penalization via an equality constraint in the optimization

gdðzÞ :¼ 4 KS
i;q
ðaq

i ð1� a
q
i ÞÞ ¼ 0 (24)

in which we use the lower-bound KS function

KS
i

xð Þ :¼ 1

k
ln

1

N

X
i

ekxi

 !
(25)

where a
q
i is the size variable for component q and material i. The

lower-bound KS function approaches the maximum from below,
therefore we circumvent the need to adaptively adjust the con-
straint limit (cf. [37]) and guarantee that gd 2 ½0; 1�. As before, we
denote gd being dependent on z for notational simplicity, however
it only depends on the size variables. If all size variables are 0.5,
the above constraint will attain its largest value, 1.0. If all size var-
iables are either zero or unity, the constraint value will be zero.

Since enforcing equality constraints is more difficult than
enforcing inequality constraints in nonlinear programming meth-
ods, we replace the constraint of Eq. (24) with the inequality
constraint

gdðzÞ � ed � 1 (26)

For the penalization to be effective, the positive bound ed should
be small enough. However, if we start the optimization with a
very small value, the size variables will quickly converge to 0.0 or
1.0 as the optimizer tries to reach the feasible region, which means
that a geometric component can prematurely get “locked” into
one of the available materials. Consequently, the optimization can
get locked into undesirable local minima. To prevent this, we use
a continuation strategy, whereby we start the optimization with a
relatively large value of eð0Þd . Then, we slowly start decreasing it at
every iteration by an amount Ded once the relative change in the
objective function in consecutive iterations falls below a specified
value Df �, i.e.,

If Df ðIþ1Þ � Df � then eðIþ1Þ
d  maxðeðIÞd � Ded; e

�
dÞ (27)
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where e�d is the final constraint limit we want to attain, and the rel-
ative change in the objective function at iteration Iþ 1 is defined
as

Df Iþ1ð Þ :¼ j f
Iþ1ð Þ � f Ið Þj

f Ið Þ (28)

4 Mutual Material Exclusion Constraint

By applying the discreteness constraint, we can ensure pure
phases in the optimal design. However, this constraint does not
prevent more than one material from having a size variable of 1.0
for a bar. To avoid this situation, we introduce a mutual material
exclusion constraint in the optimization, defined as

gmðzÞ :¼ KS
q

XNm

i¼1

aq
i

 !
� 1 � 0 (29)

in which we again use the lower-bound KS function of Eq. (25)
with N¼Nb.

When all the size variables aq
i for bar q satisfy the discreteness

constraint, the term in parenthesis equals 1.0 if the bar is solid (in
which case it is made of one and only material) or 0.0 if the bar is
void. We employ a similar continuation strategy as in Sec. 3 to
avoid premature convergence to an undesired local minimum. To
this end, we write

gmðzÞ � em � 1 (30)

As before, we start with a relatively large value of eð0Þm , and start
decreasing it once the relative change in the objective function in
consecutive iterations is smaller than a specified value, i.e.,

If Df ðIþ1Þ � Df � then eðIþ1Þ
m  max eðIÞm � Dem; e

�
m

	 

(31)

Note that eð0Þm must be smaller than 1.0, as otherwise it is possible
for a bar to be made of more than one pure phase. In this situation,
a decrease in one of the material size variables can increase the
violation of the discreteness constraint, making it difficult for the
optimizer to find feasible designs with bars made of at most one
material.

5 Symmetry

If the boundary conditions and design envelope are such that a
symmetric design is expected, density-based and level set topol-
ogy optimization methods have significant design freedom that
allows them to readily produce symmetric designs. However, as
discussed in Ref. [29], the more restrictive design representation
enforced by discrete geometric components can lead to asymmet-
ric designs as the optimizer satisfies exactly the resource con-
straint. Specifically, if the design can only be made of a finite
number of discrete geometric components, it is entirely possible
to find an asymmetric design that exactly satisfies the weight
fraction constraint and it has lower compliance than the best sym-
metric design that can be obtained with the available set of
components.

In cases where a symmetric design is expected or desired, we
employ a simple approach to enforce symmetry that consists of
reflecting the geometry projection for elements on the opposite
side of the symmetry plane. This approach was introduced in Ref.
[33]. We define geometric components only on one side of the
symmetry plane and bound their location to ensure they remain on
that side. To compute the projected density for a point on the
reflected side, we reflect the point with respect to the symmetry
plane, and then compute the projected density for the reflected
point as usual using Eq. (3). The sensitivities are modified accord-
ingly to account for this reflection.

In the case of a symmetry line for two-dimensional problems,
the reflected point is given by

p̂ :¼ Rpþ 2s (32)

R :¼
cosð2/Þ sinð2/Þ
sinð2/Þ �cosð2/Þ

" #
(33)

where s is a vector from the origin to the closest point on the line
of symmetry, / is the angle between the symmetry line and the e1

axis, and R is the reflection matrix. We use this approach to
enforce symmetry in the example of Sec. 7.3.

6 Optimization Problem

In this work, we aim to minimize the structural compliance.
Since we have multiple materials, a total volume constraint results
in the exclusive use of the stiffest material. To avoid this, most of
the works cited in Sec. 1 impose individual volume constraints for
each one of the available materials. While this is an effective strat-
egy, the determination of constraint limits for each material is
somewhat arbitrary in practice. Instead, here we impose a weight
fraction constraint. The space occupied by the structure and the
design envelope are denoted by x and X, respectively, with
x 	 X. We consider linearly elastic problems without a body
load. The compliance minimization problem is then stated as

min
z

f ðuðzÞÞ :¼
ð

Ct

uðzÞ � tds (34)

subject to

wf :¼ 1

cref jXj
XNm

i¼1

ci

ð
X
qi

eff z; pð Þdv � w�f (35)

aðuðzÞ; vÞ ¼ lðvÞ; 8v 2 UX;u 2 UX (36)

gdðzÞ � eðIÞd (37)

gmðzÞ � eðIÞm (38)

xq0
; xqf
2 X (39)

0:0 � aq
i � 1:0 (40)

where ci is the physical density for material i, cref is a reference
density that we choose to be 1 here, jXj denotes the volume of the
design region, v denotes the virtual displacement, t denotes the
design-independent traction, and wf is the weight fraction. UX :¼
fuju 2 H1ðXÞ; ujCu

¼ 0g is the set of admissible displacements,
and u is the displacement obtained from the solution to Eq. (36),
with a and l being the energy bilinear and load linear forms,
respectively, given by

aðu; vÞ :¼
ð

X
rv �Cðz; pÞrudv (41)

lðu; vÞ :¼
ð

Ct
v � tds (42)

We impose move limits on the design variables at every iteration
to improve convergence by normalizing the design variables by
some reference value so that 0 � ẑ � 1, where ẑ denotes the
scaled design variable. The coordinates of the end points xq0

and
xqf

are normalized by the corresponding dimensions of the design

region. The size variables aq
i do not need normalization, as they
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already lie within the desired magnitude range. A single move
limit 0 � m � 1 is imposed on all normalized variables as

maxð0; ẑðI�1Þ � mÞ � ẑðIÞ � minð1; ẑðI�1Þ þ mÞ (43)

We stop the optimization when the discreteness and mutual mate-
rial exclusion constraints are feasible, and when the relative
change of the objective function between consecutive iterations
falls below the specified value Df �.

7 Examples

To illustrate the effectiveness of our method, we present several
examples. In all examples, we employ bilinear quadrilateral ele-
ments for the analysis. The entire code, including the finite ele-
ment analysis, the sensitivities calculation, and the optimization,
is implemented in MATLAB. To solve the optimization problem, we
use the method of moving asymptotes [38,39] with the default

parameters described in Ref. [39], i.e., a0 ¼ 1 for the objective
function, and al¼ 0, cl¼ 1000, and dl¼ 1 for every constraint l in
the optimization (we refer the reader to [39] for a description of
these parameters). Unless noted, the stopping criterion on the rela-
tive change in compliance between consecutive iterations is
Df � ¼ 10�4. Also, unless specified, we employ a move limit of
m¼ 0.3. We use e0

d ¼ 1:0 and e�d ¼ 0:01 for the discreteness con-
straint of Eq. (27), and e0

m ¼ 0:3 and e0
m ¼ 0:01 for the mutual

material exclusion constraint of Eq. (31). We use a power of p¼ 2
in the smooth Heaviside approximation of Eq. (13). The constant
k¼ 25 is used for the KS functions of Eqs. (23) and (25). All the
materials considered are homogeneous, isotropic, and linearly
elastic with Poisson’s ratio � ¼ 0:3, but with different Young’s
moduli and material densities.

Fig. 2 Two-bar cantilever beam design envelope, boundary
conditions, and initial design

Table 1 Optimization results for two-bar cantilever beam problem. Red (3) indicates material 1 and green (�) indicates material 2.
The last column indicates the number of iterations to convergence.

Design ID Optimal design w�f wf C a1
1 a1

2 a2
1 a2

2 Its.

1 0.0520 0.0506 1.0030 0.0000 1.0000 0.0010 0.0000 191

2 0.1020 0.1019 0.0347 1.0000 0.0000 0.0009 0.9999 164

3 0.1150 0.1150 0.0193 1.0000 0.0000 0.0008 0.9998 65

4 0.1600 0.1598 0.0163 1.0000 0.0000 0.0000 1.0000 35

5 0.1800 0.1800 0.0130 1.0000 0.0000 0.9996 0.0006 81

6 0.2300 0.2258 0.0103 1.0000 0.0000 1.0000 0.0000 36

Fig. 3 Compliance versus weight fraction for optimal two-bar
cantilever beams. Red (3) indicates material 1 and green (�)
indicates material 2. The circled numbers indicate the corre-
sponding runs in Table 1.
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7.1 Two-Bar Cantilever Beam. The first example is a short
cantilever beam made of two bar. The design envelope, boundary
conditions, and initial design are shown in Fig. 2. The design
envelope is meshed with a regular grid of 80
 80 elements. There
are two available materials with Young’s moduli E1 ¼ 10 and
E2 ¼ 5, and physical densities c1 ¼ 0:9 and c2 ¼ 0:45, respec-
tively. The initial design, shown in the same figure, consists of
two horizontal bars of width w¼ 0.25 and with aq

1 ¼ aq
2 ¼ 0:5,

q¼ 1, 2. For this problem, we use a looser stopping criterion on
the relative change in compliance between consecutive iterations
of Df � ¼ 10�3.

We perform the optimization for several weight-fraction limits
w�f , and the results are presented in Table 1. The choice of w�f for
each run corresponds to expected configurations. For example,
w�f ¼ 0:0520 corresponds to a design made of a single horizontal
bar made of material 2 and completely inside the design envelope.
Some of the weight-fraction limits account for the fact that half of
the horizontal bar may be outside of the design envelope.

Fig. 4 Effective density qi
eff for materials i 5 1 (left) and i 5 2

(right) for initial (top) and optimal (bottom) designs for run 4 in
Table 1

Fig. 5 Design envelope, boundary conditions, and initial
design for the MBB beam

Fig. 6 MBB optimal designs with floating bars. Red (3) indicates material 1 and green (�) indi-
cates material 2: (a) w�f 5 0:1, C 5 1.439938; (b) w�f 5 0:11, C 5 1.483786; (c) w�f 5 0:12,
C 5 1.230245; (d) w�f 5 0:13, C 5 1.329151; (e) w�f 5 0:14, C 5 1.075210; (f) w�f 5 0:15, C 5 1.079675;
(g) w�f 5 0:16, C 5 0.919734; (h) w�f 5 0:17, C 5 0.899547; (i) w�f 5 0:18, C 5 0.872629; and (j)
w�f 5 0:19, C 5 0.783196.
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Two interesting cases are worth noting. For the second run, the
weight-fraction limit w�f ¼ 0:1020 corresponds to the weight frac-
tion of a single horizontal bar made of material 1 and completely
inside the design envelope. However, the optimization produces a
better design by using a short diagonal bar made of material 2.
For the third run, the weight-fraction limit w�f ¼ 0:115 corre-
sponds to a V-shape design made of the lighter material. However,
the optimizer finds a better design whereby the horizontal bar is
partially outside the design envelope.

In Fig. 3, we plot the compliance versus the weight fraction for
the optimal designs of all six runs to illustrate that the compliance
decreases as the weight fraction increases. As expected, for the
lowest weight-fraction limit, the optimal design corresponds to a
single bar made of the lighter (and weaker) material. As the
weight-fraction constraint increases, the optimizer first introduces
a second bar made of the heavier (and stiffer) material and eventu-
ally obtains a two-bar design made of the stiffest material. Finally,
Fig. 4 shows the effective density for each of the two materials for
the initial and optimal designs of run 4 in Table 1.

7.2 Messerschmitt–B€olkow–Blohm Beam. The second exam-
ple corresponds to the Messerschmitt–B€olkow–Blohm (MBB)
beam widely studied in topology optimization. The design enve-
lope, boundary conditions, and initial design are shown in Fig. 5.
We note that, as we have discussed in the previous work (cf.,
[29]), geometry projection methods are more prone to converging
to different local minima than free-form topology optimization
methods due to the more restrictive design representation. The
design envelope is meshed with a regular grid of 160
 40 ele-
ments. We use the same two materials of the preceding example.

The initial design consists of 21 bar of width w¼ 0.4 and with
aq

1 ¼ aq
2 ¼ 0:5, q ¼ 1;…; 21. We consider two configurations of

bars. In one configuration, as in the previous example, the end-
points xq0

and xqf
for each bar are independent from other bars, so

that bars are “floating” inside the design envelope. In the second
configuration, bars share common endpoints, so that the design
remains connected at all times.

We perform the optimization for several weight-fraction limits,
w�f ¼ 0:1; 0:11;…; 0:19. The optimal designs for the floating and
connected configurations are shown in Figs. 6 and 7, respectively.
Several of the designs obtained resemble known solutions for the
MBB beam. As expected, the runs with floating bars produce bet-
ter designs than their connected bars counterparts since they have
more design freedom. Also, the smallest “solid” size variable aq

i is
0.988249 for all floating bars runs and 0.983790 for all connected
bars runs; and the largest “void” size variable aq

i is 0.036276 for

Fig. 7 MBB optimal designs with connected bars. Red (3) indicates material 1 and green (�)
indicates material 2: (a) w �f 5 0:1, C 5 2.074616; (b) w�f 5 0:11, C 5 1.533285; (c) w�f 5 0:12,
C 5 1.342276; (d) w�f 5 0:13, C 5 1.165188; (e) w�f 5 0:14, C 5 1.312084; (f) w�f 5 0:15, C 5 1.038830;
(g) w�f 5 0:16, C 5 1.008228; (h) w�f 5 0:17, C 5 1.005593; (i) w�f 5 0:18, C 5 1.050758; and
(j) w�f 5 0:19, C 5 0.876429.

Fig. 8 Design envelope, boundary conditions, and initial
design for Michell cantilever design
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all floating bars runs and 0.038084 for all connected bar runs. This
is an indication that the discreteness constraints are very effective
in penalizing intermediate values of the size variables.

7.3 Michell Cantilever. We now present an example that
shows that the proposed formulation can be readily extended to
any number of materials. It corresponds to a cantilever frame con-
sidered in Michell’s work [40], with design envelope and bound-
ary conditions as shown in Fig. 8. The design envelope is meshed
with 9700 elements. We enforce symmetry of the design with
respect to the horizontal center line shown in Fig. 8. For this
example, we use a tighter move limit of m¼ 0.2 to improve con-
vergence. The initial design is made of 12 near-zero length bars of
width w¼ 0.25 and with aq

i ¼ 0:5; q ¼ 1;…; 12.
We perform the optimization using four materials with Young’s

moduli E1 ¼ 6:5; E2 ¼ 5:0; E3 ¼ 4:5, and E4 ¼ 3:5 and physical
densities c1 ¼ 0:55; c2 ¼ 0:4; c1 ¼ 0:35, and c2 ¼ 0:25. We use a

weight-fraction limit of w�f ¼ 0:028 that allows us to obtain a
design with four materials, as otherwise we would get designs
made only of the stiffer material(s) if w�f is larger, or made only of
the weaker material(s) if w�f is smaller. Figure 9 shows the optimal
designs using one, two, three, and four materials. As expected, the
designs improve as we increase the number of materials available.
Also, the smallest solid size variable aq

i is 0.999817 for all runs,
and the largest void size variable aq

i is 0.003536 for all runs, once
again indicating the effectiveness of the penalization scheme.

7.4 Three-Dimensional Cantilever Beam. In the last exam-
ple, we perform the optimization for a 3D cantilever beam. For
this example, we migrated our MATLAB code to Cþþ using the
deal.II library [41,42]. The design envelope, boundary conditions,
and initial design are shown in Fig. 10. The design envelope is
meshed with a regular grid of 64
 32
 32 elements. We use the
same two materials of the first example. The initial design consists

Fig. 9 Michell cantilever optimal designs. Red (3) indicates material (stiffest/heaviest), green
(�) indicates material 2, blue (�) indicates material 3, and magenta (w) indicates material 4
(weakest/lightest): (a) one material, C 5 0.233370; (b) two materials, C 5 0.176354; (c) three
materials, C 5 0.193584; and (d) four materials, C 5 0.192687.

Fig. 10 Design envelope, boundary conditions and initial design for 3D cantilever design
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of 42 bar of width w¼ 0.2 and with aq
1 ¼ aq

2 ¼ 0:5; q ¼ 1;…; 42.
We consider an initial design with connected bars as in the previ-
ous MBB beam example of Sec. 7.2. The optimal designs corre-
sponding to weight-fraction limits of w�f ¼ 0.01, 0.02, 0.03, and
0.04 are shown in Table 2.

8 Conclusions

We presented a method for the design via topology optimiza-
tion of structures constructed as the union of geometric compo-
nents, where each component is made of one of several available
materials or removed from the design. Several examples that min-
imize the structural compliance subject to a constraint on the
weight fraction demonstrate the proposed method. The available
materials have different moduli but also different physical den-
sities, hence a combination of materials is most advantageous for
some weight fraction limits.

The examples demonstrate our method’s effectiveness in pro-
ducing structurally efficient multi-material designs. By penalizing
intermediate size variables and enforcing the mutual material
exclusion requirement as constraints in the optimization and not
through the interpolation scheme, our technique makes it easier to
incorporate any number of materials. Unlike density- and level
set-based topology optimization methods for design with multiple
materials, which produce material phases with geometries that are
difficult to manufacture and assemble, the use of geometric com-
ponents that are readily fabricated makes it easier to physically
realize the multimaterial structures. Also, instead of imposing
arbitrary volume fraction constraints on each of the available

materials, we directly constrain the weight, which is a more natu-
ral design requirement.

We have demonstrated our method for two- and three-
dimensional bars modeled with offset surfaces. Since the compu-
tation of the effective density qeff of Eq. (21) is uncoupled from
the calculation of the projected density qq of Eqs. (3) and (4), the
scheme to interpolate the material properties from various discrete
geometric components should work for any geometry representa-
tion, and thus, we believe that our method can be applied to other
component geometries; this will be demonstrated in future work.
Future work will also focus on incorporating other important
structural criteria.
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