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Abstract— In this work we determine the time-domain
dynamics of a complex mechanical network of integer-
order components, e.g., springs and dampers, with an
overall transfer function described by implicitly defined
operators. This type of transfer functions can be used to de-
scribe very large scale dynamics of robot formations, multi-
agent systems or viscoelastic phenomena. Such large-scale
integrated systems are becoming increasingly important in
modern engineering systems, and an accurate model of
their dynamics is very important to achieve their control.
We give a time domain representation for the dynamics
of the system by using a complex variable analysis to find
its impulse response. Furthermore, we validate how our
infinite order model can be used to describe dynamics of
finite order networks, which can be useful as a model
reduction method.

I. INTRODUCTION

Important modern engineering problems deal with
systems or phenomena that consists of many inter-
acting components with coupled dynamics which are
often impractical or intractable to model. Examples
of such systems include cyber-physical systems, robot
formations, vibration, viscoelasticity, and others (see,
for further details [1]–[7]). Thus, developing accurate
low order models for large-scale complex systems is
important for controlling and designing tasks [8]. In [9]–
[11] it is shown that for some network configurations
of elements, the equivalent behavior of the system can
be represented by implicitly defined integro-differential
operators. Fractional order systems are cast as a subset
of implicit operators in [11], asserting in this manner
that its study could go beyond the use of fractional
calculus. In relatively simple cases, the implicit operator
describing the system dynamics is the solution to a
quadratic operator equation with the implicit operator
as the quadratic variable and with known operator coef-
ficients. In such a case, the equation can be solved for
multiple operator solutions. However, the operator that
is the solution is irrational.
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Fig. 1. Networked mechanical system.

We consider the system illustrated in Fig. 1, which is
a networked mechanical system with a graph structure
of a tree graph. Specifically, at each node in the system,
the subsequent generation has p + q nodes where p of
the nodes are attached by a spring and q of the nodes
are attached by a damper to the previous generation. In
the specific case when p = 1 and q = 1, the system
reduces to a well known fractional order system [12].
For the cases where either p > 1 or q > 1, we have
previous results presented in [12], [13] that study its
time response but by means of approximations and non-
analytical results.

The goal of this research is to develop an analytical
way for analyzing the behaviour of complex systems
modeled by implicitly defined operators. For such a
purpose, this work presents a complex-variable based
analysis to obtain the analytical impulse response of
the system by means of the Inverse Laplace Transform
(ILT) for the irrational transfer function describing the
dynamics of the mechanical network with p springs
and q dampers. This time domain solution, which is in
terms of the parameters will permit us to understand the
physics in the phenomenon, ultimately leading to better
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design and control of such systems.
Throughout the paper the following standard notation

is adopted: C is the set of complex numbers, and j :=√
−1. For z ∈ C, z̄, <(z) and =(z) define the complex

conjugate, the real and the imaginary part of z. Erf(z)
is the well known error function of z and R is the set
of real numbers.

II. BACKGROUND

Consider the network of dampers and springs as illus-
trated in Figure 1 which has been originally presented as
a viscoelastic model from [14] when p = q = 1, but can
be generally considered as a graph where each node is a
mass and each edge is either a spring or a damper (see
[13]) or in practical terms as a type of formation robots
wherein each robot controls its position relative to its
neighbors in accordance with a potential or viscous-like
relationship (for further details, see [12]). This network
is a tree where each subsequent generation contains p
springs and q dampers or more generally speaking p
edges with operator G1 and q with operator G2. Let G∞
be defined as the operator representing the relationship
between x1,1 and xlast. In this mechanical network G∞
stands for the force on the rightmost node as a function
of the relative position of xlast with respect to x1,1 i.e.,

mlasts
2Xlast(s) = G∞(s) (X1,1(s)−Xlast(s)) , (1)

where G∞(s) can be found by using the following.
Proposition 2.1 (from [13]): The operator G∞(s)

satisfying the relation F (s) = G∞(s)∆X(s) where
∆X(s) is the Laplace transformed difference of position
between the first node x1,1 and the last node xlast of
a network of springs and dampers interconnected as in
Figure 1 is given by

G∞(s) = 1
2 [(p− 1)k + (q − 1)bs]

± 1
2

√
[(p− 1)k + (q − 1)bs]

2
+ 4(p+ q − 1)kbs,

(2)

for p ≥ 1, q ≥ 1 and initial conditions for each element
in the tree equal to zero.

By using Proposition 2.1, we have that the transfer
function that relates the position of the last elements
xlast with the first one x1,1 is

Gx(s) = Xlast(s)
X1,1(s) = G∞(s)

mlasts2+G∞(s) . (3)

A. Multivalued functions and the inversion formula

In complex analysis, expression (3) is considered as
a multivalued function. Hence, for computing its ILT,
we have to consider the location of its Branch Points
(BP) and Branch Cuts (BC) in addition to common
singularities like poles (see, for further details [15]). To
obtain the ILT of any multivalued function, we follow

the procedure described in [15] and use the common
inversion formula given by

f(t) = 1
j2π

∫ γ+j∞

γ−j∞
F (s)estds = 1

j2π

∫
Br
F (s)estds,

(4)
where Br stands for the path γ − j∞ to γ + j∞ with
γ ∈ R to the right of all singularities of F (s), known as
Bromwich path considered in the region of convergence
(for instance, see [16]). Additionally, it will be useful to
have in mind the Cauchy Residue Theorem of complex
variables (see [15]).

III. MAIN RESULTS
Taking into consideration the transfer function given

by (3), our objective is to solve the following problems.
Problem 1: To study the dynamics of the last ele-

ments xlast(t) in an infinite generation tree-like network
of simple mechanical components, as the one shown in
Figure 1 by describing a time response of the system in
terms of its parameters using the transfer function (3).

Problem 2: To compare the infinite network or Infi-
nite Generations System (IGS) response with a Finite
Generations System (FGS) to validate how our model
can be used instead of a very large system of differential
equations.

Consider the general case where we have multiple
springs and dampers in (3), then we can write it as
follows

Gx(s)=Xlast(s)
X1,1(s) = G∞

mlasts2+G∞
=

%+σs±
√

(%+σs)2+ςs

ms2+%+σs±
√

(%+σs)2+ςs
,

(5)
where % = (p− 1)k, σ = (q − 1)b, ς = 4(p+ q − 1)kb
and m = 2mlast.

In the following subsections, we detail the impulse
response of system (5) by studying, individually, four
possible cases we consider important when constructing
the infinite tree of simple mechanical components in
order to understand the physical behavior of the system.
Due to space limitations we only give proof of the more
illustrative cases.

A. Simple binary tree network with one spring and one
damper

When p = 1 and q = 1 in (5) this gives

Gx(s) =
Xlast(s)

X1,1(s)
= G∞(s)

mlasts2+G∞(s) =
±√ςs

ms2±√ςs . (6)

Proposition 3.1: (One spring and one damper infinite
tree response.) Given system (6), its impulse response
is described by

xlast(t)=

3
√
ςe
−

3√ςt
2m2/3

(
−e

3 3√ςt
2m2/3 +

√
3 sin

(√
3 3√ςt

2m2/3

)
+cos

(√
3 3√ςt

2m2/3

))
3m2/3

±
3∑
`=1

z`

[√
ς
(√
r`e

r`t Erf
(√
r`t
)
+ 1√

π
√
t

)]
, (7)
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where,

r1 =
3
√
ς

m2/3 , z1 = m7/3

(1+ 3
√
−1)(1+(−1)2/3) 3

√
ς
,

r2 = −
3
√
−1 3
√
ς

m2/3 , z2 = m7/3

( 3
√
−1−1)(1+ 3

√
−1) 3
√
ς
,

r3 = (−1)2/3 3
√
c

m2/3 , z3 =
3
√
−1m7/3

( 3
√
−1−1)(1+(−1)2/3) 3

√
ς
.

(8)

Remark 1: Mathematically G∞(s) has two solutions
according to (2). However, in the present situation the
solution with the plus sign is the one with physical
significance and therefore this paper will only consider
that case.

B. Network with multiple springs and one damper

Consider now the case p ≥ 1 and q = 1 in (5) such
that

Gx(s) = Xlast(s)
X1,1(s) = G∞(s)

mlasts2+G∞(s) =
%±
√
%2+ςs

ms2+%±
√
%2+ςs

.

(9)
Proposition 3.2: (Network with multiple springs and

one damper.) Given system (9),we can rewrite it as

Gx(s)=H1(s)+H2(s)= %ms−ς
m2s3+2%ms−ς +

ms
√
%2+ςs

m2s3+2%ms−ς .
(10)

Furthermore, its impulse response when Gx(s) has poles
of multiplicity one (none of them inside the BC) is
defined by

xlast(t)=
3∑
`=1

z`e
r`t+

3∑
`=1

w`f`(t). (11)

If two of the poles of Gx(s) are complex conjugates,
then

xlast(t)=z1e
r1t + 2|z2|eJ2t cos (K2t+ arg(z2))

+
3∑
`=1

w`f`(t), (12)

where %, ς and m are defined as previously and r` are
the poles of Gx(s) defined as: r1 = J1, r2 = J2 + jK2

and r3 = r̄2, with J1,2,K1,2 ∈ R and

z`= lim
s→r`

(s− r`)H1(s),

y`= lim
s→r`

(s−r`)√
s+qp

H2(s), (13)

f`(t)=
√
qp + r`e

r`t Erf

(√
t(qp + r`)

)
+ e−qpt√

π
√
t
,

with z2 = z̄3, y2 = ȳ3 and ` = 1, 2, 3. Finally, qp = %2

ς
which corresponds to the BP of H2(s).

Proof: First, we can see that (10) corresponds to
the rationalized version of system (9). By considering
the case where the poles of the characteristic polynomial

C5

C4C3

<

=

qp

C7

C1

Br

C6

C2

ρ

x r2

x r3

x
r1

R→∞

Fig. 2. Integration path of Eq. 16-Proposition 3.2.

m2s3 + 2%ms− ς have multiplicity of one, such that its
poles are: r1, r2 and r3, and we have that:

h1(t)=L −1 [H1(s)]=L −1
[

%ms−ς
m2s3+2%ms−ς

]
=

3∑
`=1

z`e
r`t,

where z` = lim
s→r`

(s− r`)H1(s),

for the first term in (10). Hence, the final result is
obtained by solving:

h2(t)=L −1 [H2(s)] = L −1

[
ms
√
%2+ςs

m2s3+2%ms−ς

]
. (14)

By using partial fraction expansion in (14) we have

H2(s) =
√
s+ qp

3∑
`=1

y`
s−r` , (15)

where y` is given by Eq. (13). Each fraction can be
inverted by using the integration contour depicted in Fig.
2, while, r` is not inside the BC i.e., <(r`) > <(−qp)∨
=(r`) 6= =(qp). Then, its ILT can be found by solving
the following integral for each `:∫

Γ

y`
√
s+qp

s−r` estds=

∫
Br+C1+C2+···+C7

y`
√
s+qp

s−r` estds

=2jπ

[
lim
s→r`

y`
√
s+ qpe

st

]
. (16)

Since
∫
C1+C2+C4+C6+C7

= 0, we only need to analyze
C3 and C5, to obtain∫

C3+C5

=−2j

∫ ∞
qp

y`
√
x−qp

x+r`
e−xtdx. (17)

The integral in the right side of (17) has a solution∫ ∞
qp

y`
√
x−qp

x+r`
e−xtdx=y`π

√
qp+r`e

r`tErf
(√

t
√
qp + r`

)
−πy`

√
qp+r`e

r`t+y`
√
πe−qpt√

t
.

5830



Then from (16)

1

2πj

∫
Br

y`
√
s+qp

s−r` estds = y`f`(t), (18)

where f`(t) is defined as in (13). Finally, xlast(t) =
h1(t) + h2(t).

C. Mechanical network with multiple springs and
dampers, p ≥ 2 and q ≥ 2

Proposition 3.3 (Branch points locations.): Given
p ≥ 2 and q ≥ 2, system Gx(s) defined as (5) only
has real Branch Points (BPs) which are distinct and
negative.

Proposition 3.4: (Network with multiple springs and
dampers xlast(t) response.) Given system (5), we can
rewrite it as

Gx(s) = H1(s) +H2(s)

= ms(%+σs)−ς
m2s3+2ms(%+σs)−ς +

sσ
√
s2+( 2%σ+ς

σ2
)s+( %σ )2

m(s3+
2ms(%+σs)

m2 − ς
m2 )

. (19)

Furthermore, its impulse response for p ≥ 2 and q ≥
2 using the positive solution and considering the case
where Gx(s) has poles of multiplicity one with none of
them inside the BC of H2(s) is given by

xlast(t)=

3∑
`=1

z`e
r`t+

3∑
`=1

y`e
r`t−M(t). (20)

When Gx(s) has complex poles we have

xlast(t)=z1e
r1t + 2|z2|eJ2t cos (K2t+ arg(z2)) (21)

y1e
r1t + 2|y2|eJ2t cos (K2t+ arg(y2))−M(t),

for p� 2 and q � 2 the solution is approximated by

xlast(t) ≈ z1e
r1t + 2|z2|eJ2t cos (K2t+ arg(z2))

+ y1e
r1t + 2|y2|eJ2t cos (K2t+ arg(y2)) , (22)

where %, σ, ς and m are defined as previously and r` are
the poles of Gx(s) defined as r1 = J1, r2 = J2 + jK2,
and r3 = r̄2, with J1,2,K1,2 ∈ R. Besides:

z` = lim
s→r`

(s− r`)H1(s), y` = lim
s→r`

(s− r`)H2(s),

M(t) =
1

π

∫ v2−v1

0

σ(v2−x)
√
x(v2−v1−x)

mP (x) e(v2−x)tdx,

P (x) = 2(v2−x)(%+σ(v2−x))
m − σ

m2 + (v2 − x)3. (23)

with ` = 1, 2, 3.
Proof: Gx(s) in (5) can be rationalized by multi-

plying and dividing by ms2 +%+σs∓
√

(%+ σs)2 + ςs
this gives expression (19) as stated. The ILT of H1(s),
which can be computed easily, and therefore we will
focus on the ILT of H2(s).
H2(s) is a multivalued function with 3 poles and 2

BPs. According to Proposition 3.3, we can conclude that

C6

C5C4

C3

C2

C8

C7

<

=

R→∞

ρρ

v1
v2

x
r1

x r2

x r3

Br

C1

C9

Fig. 3. Integration contour of Eq. (24)-Proposition 3.4, r1 is
considered to be inside Γ.

there exist three possible integration contours we have
to consider in order to find the ILT of H2(s). Here we
will consider only one of them, where the real root r1

of the characteristic equation is inside the contour Γ =
Br +C1 +C2 + · · ·+ C9 as depicted in Figure 3. The
other cases would be: r1 is inside the BC from v1 to v2

and r1 would be somewhere between ∞ and v1. Then,
to obtain L −1 we have to solve the following integral:∫

Γ

H2(s)estds=

∫
Br+C1+C2+···+C9

H2(s)estds

=2jπ

[
3∑
`=1

lim
s→r`

(s− r`)H2(s)est

]
. (24)

We can see that
∫

Γ0
= 0, for Γ0 = C1 +C2 +C3 +C5 +

C7+C8+C9. In order to do the integration along C4 and
C6 , let us do the parameterization s = xe±jπ± jδ+v2

where positive and negative signs correspond to C4 and
C6, respectively, x ∈ (0, v2−v1) and δ is a small positive
number which tends to zero. Some algebra yields∫

C4+C6

sσ
√

(s−v1)(s−v2)

m(s3+
2ms(%+σs)

m2 − ς
m2 )

estds =

=

∫ v2−v1

0

2j
σ(v2−x)

√
x(v2−v1−x)

mP (x) e(v2−x)tdx,

where P (x) is defined as in (23). Analyzing the
last integral we can see that |P (x)| > |σ(v2 −
x)
√
x(v2 − v1 − x)| and if we add more elements

|P (x)| starts to increase making this integral to have
a very small value. Hence, we can say this value is
negligible for describing the whole behaviour of xlast(t)
when p� 2 and q � 2.

D. Mechanical network with one spring and multiple
dampers, p = 1 and q ≥ 2

Proposition 3.5 (Multiple dampers one spring case.):
Consider the system described as in (5) and H1(s) and
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H2(s) as in Proposition 3.4, for p = 1 and q ≥ 2, the
impulse response of the system is given by

xlast(t)=
3∑
`=1

z`e
r`t+

3∑
`=1

y`e
r`t−N(t). (25)

When r2 and r3 are complex conjugated we have

xlast(t)=z1e
r1t + 2|z2|eJ2t cos (K2t+ arg(z2)) (26)

y1e
r1t + 2|y2|eJ2t cos (K2t+ arg(y2))−N(t),

where %, σ, ς and m are defined as previously and r` are
the poles of Gx(s) defined as r1 = J1, r2 = J2 + jK2,
and r3 = r̄2, with J1,2,K1,2 ∈ R. Besides:

z` = lim
s→r`

(s− r`)H1(s), y` = lim
s→r`

(s− r`)H2(s),

N(t)
1

π

∫ qp

0

mσx
√
x(qp−x)

m2x3−2mσx2+ς e
−xtdx, qp = ς

σ2 , (27)

with ` = 1, 2, 3.

IV. TIME DOMAIN VALIDATION
SIMULATIONS

As stated in Problem 2, we aim to prove the efficiency
of our results when trying to model tree-networks of
finite generations. This could be useful for the avoiding
of long computations due to the high number of dif-
ferential equations needed when adding large levels to
the tree. In the next figures we show some simulations
which compare our analytical expressions with the time
response of a FGS. The FGS solution xlastj (t) ∀ j =
1, 2, · · · , N , is computed in Octave by using lsode()
routine. It is worth mentioning that in the FGS every
node in the last generation is considered to have the
same position.

For computing our FGS responses, we have taken an
impulse-like input to be defined as: x1,1(t) = δα(t −

1) ≈ 1
|α|
√
π
e
−
(
t−1
α

)2

. Such an input is time shifted
one time unit in order to obtain better numerical results
when solving the differential equations of the FGSs. The
system parameters are taken as b = 1

10 and k = 2.
Every xlast(t) expressed analytically from Propositions
3.1 to 3.5 was also time shifted by 1 time unit, in
order to make the comparison of the impulse responses.
Furthermore, we add bar plots with error-index values.
The error measured used is the common integral square
error (ISE), defined here as: EI =

∫ 30

0
ε(t)2dt, where

ε(t) = xlast(t− 1)H(t− 1)−xlastj (t), H(t) stands for
the Heaviside step function. The expression i FGS in the
captions of Figs. 4 to 7 for i = 1, 2, 3, . . . stands for the
exact number of finite generations used when computing
the time domain solution in Octave.

0 5 10 15 20 25 30
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0

0.5

1

3 FGS

4 FGS

5 FGS

6 FGS

7 FGS

8 FGS

9 FGS

10 FGS
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0.692

0.331

0.165
0.087

0.049 0.032 0.028 0.040

3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

Fig. 4. Impulse response comparison for the case p = 1 and q = 1.
Here, xlast is used as in Proposition 3.1 but time-shifted 1 time unit
and x1,1 = δ 1

8
(t− 1).

0 5 10 15 20 25 30

-2

-1

0

1

2

2 FGS

3 FGS

4 FGS

5 FGS

IGS

2.7378

0.4944

0.0526 0.1221

2 3 4 5

0

1

2

3

Fig. 5. Impulse response comparison for the case p = 2 and q = 1.
Here, xlast is used as in Proposition 3.2 but time-shifted 1 time unit
and x1,1 = δ 1

15
(t− 1).

V. CONCLUSIONS AND FUTURE WORK

This paper illustrates a means for determining the
time response of an infinite tree of springs and dampers
whose dynamics are given by an implicitly-defined op-
erator. We have shown how the infinite order model can
be used as a model for FGSs by comparing impulse
responses. The results of the comparisons show a slight
difference in terms of amplitude but sometimes large
difference in time phase which increases the ISE. The
computation time increases exponentially when adding
more generations, which makes it difficult to have quick
and accurate numerical results for more generations in
each of the cases presented. In Fig. 4 we see how the
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0 5 10 15 20 25 30
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0

2
2 FGS

3 FGS

4 FGS

5 FGS

IGS

0 5 10 15 20 25 30

-0.04

-0.02

0

0.4051

0.0697 0.0478

0.4441

2 3 4 5

0

0.5

Fig. 6. Impulse response comparison for the case p = 2 and q = 2.
Here, xlast is used as in Proposition 3.4 but time-shifted 1 time unit
and x1,1 = δ 1

15
(t−1). The term M(t) is plotted to show how fast it

goes to zero, so that, this term can be avoided when using expression
(20).

0 5 10 15 20 25 30

-0.5

0

0.5

1

2 FGS

3 FGS

4 FGS
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0.0238

0.0115

0.0244

2 3 4

0

0.01

0.02

0.03

Fig. 7. Impulse response comparison for the case p = 1 and q = 5.
Here, xlast is used as in Proposition 3.5 but time-shifted 1 time unit
and x1,1 = δ 1

15
(t− 1).

ISE decreases exponentially but once we get to the 10th
generation response the error slightly increases, perhaps
due to numerical error. The difference in the number of
finite generations computed in each of the Figs. 4 to 7
corresponds to an increase in the computational effort of
finding the time domain response which did not allow
us to compute the same number of generations for each
case. Therefore, future efforts will be focused on proving
convergence of the infinite generation irrational system
to the proposed large, but finite model by other means
such as using a phase-magnitude error analysis of the
responses and a general frequency response analysis.
These results could be easier to achieve thanks to the
time domain responses presented in this work. Finally,

our closed form time responses naturally lead to other
possible future analysis useful in systems and control for
systems described by implicit operators such as stability,
design, or system identification.
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