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Closed Form Time Response of an Infinite Tree of Mechanical
Components Described by an Irrational Transfer Function
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Abstract—1In this work we determine the time-domain
dynamics of a complex mechanical network of integer-
order components, e.g., springs and dampers, with an
overall transfer function described by implicitly defined
operators. This type of transfer functions can be used to de-
scribe very large scale dynamics of robot formations, multi-
agent systems or viscoelastic phenomena. Such large-scale
integrated systems are becoming increasingly important in
modern engineering systems, and an accurate model of
their dynamics is very important to achieve their control.
We give a time domain representation for the dynamics
of the system by using a complex variable analysis to find
its impulse response. Furthermore, we validate how our
infinite order model can be used to describe dynamics of
finite order networks, which can be useful as a model
reduction method.

I. INTRODUCTION

Important modern engineering problems deal with
systems or phenomena that consists of many inter-
acting components with coupled dynamics which are
often impractical or intractable to model. Examples
of such systems include cyber-physical systems, robot
formations, vibration, viscoelasticity, and others (see,
for further details [1]-[7]). Thus, developing accurate
low order models for large-scale complex systems is
important for controlling and designing tasks [8]. In [9]—
[11] it is shown that for some network configurations
of elements, the equivalent behavior of the system can
be represented by implicitly defined integro-differential
operators. Fractional order systems are cast as a subset
of implicit operators in [11], asserting in this manner
that its study could go beyond the use of fractional
calculus. In relatively simple cases, the implicit operator
describing the system dynamics is the solution to a
quadratic operator equation with the implicit operator
as the quadratic variable and with known operator coef-
ficients. In such a case, the equation can be solved for
multiple operator solutions. However, the operator that
is the solution is irrational.
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Fig. 1. Networked mechanical system.

We consider the system illustrated in Fig. 1, which is
a networked mechanical system with a graph structure
of a tree graph. Specifically, at each node in the system,
the subsequent generation has p + ¢ nodes where p of
the nodes are attached by a spring and q of the nodes
are attached by a damper to the previous generation. In
the specific case when p = 1 and ¢ = 1, the system
reduces to a well known fractional order system [12].
For the cases where either p > 1 or ¢ > 1, we have
previous results presented in [12], [13] that study its
time response but by means of approximations and non-
analytical results.

The goal of this research is to develop an analytical
way for analyzing the behaviour of complex systems
modeled by implicitly defined operators. For such a
purpose, this work presents a complex-variable based
analysis to obtain the analytical impulse response of
the system by means of the Inverse Laplace Transform
(ILT) for the irrational transfer function describing the
dynamics of the mechanical network with p springs
and ¢ dampers. This time domain solution, which is in
terms of the parameters will permit us to understand the
physics in the phenomenon, ultimately leading to better
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design and control of such systems.

Throughout the paper the following standard notation
is adopted: C is the set of complex numbers, and j :=
Vv/—1. For z € C, z, R(z) and 3(z) define the complex
conjugate, the real and the imaginary part of z. Erf(z)
is the well known error function of z and R is the set
of real numbers.

II. BACKGROUND

Consider the network of dampers and springs as illus-
trated in Figure 1 which has been originally presented as
a viscoelastic model from [14] when p = ¢ = 1, but can
be generally considered as a graph where each node is a
mass and each edge is either a spring or a damper (see
[13]) or in practical terms as a type of formation robots
wherein each robot controls its position relative to its
neighbors in accordance with a potential or viscous-like
relationship (for further details, see [12]). This network
is a tree where each subsequent generation contains p
springs and ¢ dampers or more generally speaking p
edges with operator G and g with operator Gs. Let G
be defined as the operator representing the relationship
between x1,; and 4. In this mechanical network G
stands for the force on the rightmost node as a function
of the relative position of x;,; With respect to x1,; i.e.,

== GOO(S) (Xl’l(s) - Xlast(s)) ) (1)

where G (s) can be found by using the following.

Proposition 2.1 (from [13]): The operator Goo($)
satisfying the relation F(s) = Goo(s)AX(s) where
AX (s) is the Laplace transformed difference of position
between the first node 11 and the last node ;44 Of
a network of springs and dampers interconnected as in
Figure 1 is given by

mlastSQXlast (S)

Gools) = 3 [(p = 1)k + (g — 1)bs]

i%vﬁpf1m+(qfnmf+4@+q—1mm,
2)

for p > 1, ¢ > 1 and initial conditions for each element
in the tree equal to zero.

By using Proposition 2.1, we have that the transfer
function that relates the position of the last elements
Z1qst With the first one xq 7 is

Goo(8) ] (3)

Xast
Ga(s) = % 5 = T Miasts2+Goo(s)

Xl 1(3)
A. Multivalued functions and the inversion formula

In complex analysis, expression (3) is considered as
a multivalued function. Hence, for computing its ILT,
we have to consider the location of its Branch Points
(BP) and Branch Cuts (BC) in addition to common
singularities like poles (see, for further details [15]). To
obtain the ILT of any multivalued function, we follow

the procedure described in [15] and use the common
inversion formula given by

1 e st et
f(t):jﬁ/' F(s)e ds—m/F ds,

y=3 @
where Br stands for the path v — joo to v 4 joo with
v € R to the right of all singularities of F'(s), known as
Bromwich path considered in the region of convergence
(for instance, see [16]). Additionally, it will be useful to
have in mind the Cauchy Residue Theorem of complex
variables (see [15]).

III. MAIN RESULTS

Taking into consideration the transfer function given
by (3), our objective is to solve the following problems.

Problem 1: To study the dynamics of the last ele-
ments x4 (t) in an infinite generation tree-like network
of simple mechanical components, as the one shown in
Figure 1 by describing a time response of the system in
terms of its parameters using the transfer function (3).

Problem 2: To compare the infinite network or Infi-
nite Generations System (IGS) response with a Finite
Generations System (FGS) to validate how our model
can be used instead of a very large system of differential
equations.

Consider the general case where we have multiple
springs and dampers in (3), then we can write it as
follows

GI(S) otosty/(o+os)2+ss

Xiast(s) Goo _
m52+g+os:|:\/(g+crs)2+<s ’
5

X1,1(s) T Miasts?+Goo

where o = (p— )k, 0 = (¢ — 1)b, ¢
and m = 2myqst.

In the following subsections, we detail the impulse
response of system (5) by studying, individually, four
possible cases we consider important when constructing
the infinite tree of simple mechanical components in
order to understand the physical behavior of the system.
Due to space limitations we only give proof of the more
illustrative cases.

= 4(p+q—1)kb

A. Simple binary tree network with one spring and one
damper

When p =1 and ¢ =1 in (5) this gives

C Xiast(8)  Gu(s) . 4y
Ga(s) = X14(s) T Miasts?+Goo(s) | ms2E s ©)

Proposition 3.1: (One spring and one damper infinite
tree response.) Given system (6), its impulse response
is described by

- ¥et EX G
%(’ 2m?2/3 ( e2m2/3 +\/§§1n(‘f,“,{3ﬁ)+ oq(f£)>

3m?2/3

Tlast (t):

j:izz [ﬁ(ﬁe”tErf (v/ref) +—2 ﬁ)} %
=1
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where,

_ s _ m7/3
[ STER S /| (RN VRN T
Y=135 mT7/3
ro = — mz/}sﬁa z22 = (\/— 1)(1+ \/—) (8)
—1)2/3 3¢ = m7/3
r3 = %a 23 = !

(¥=1-1)(1+(-1)/3) g5~

Remark 1: Mathematically G (s) has two solutions
according to (2). However, in the present situation the
solution with the plus sign is the one with physical
significance and therefore this paper will only consider
that case.

B. Network with multiple springs and one damper

Consider now the case p > 1 and ¢ = 1 in (5) such
that

Go(s) = Xiast(s) _ Goo(s) oty/0%+ss
z T X1,1(8) T miasts?+Goo(s) m32+gi\/g2+§s.
9)

Proposition 3.2: (Network with multiple springs and
one damper.) Given system (9),we can rewrite it as

ms+/02+ss

G:C(S): m2s3+4+2oms—c¢*

oms—g
m2s3+2oms— §+

Hi(s)+Ha(s)=

Furthermore, its impulse response when G (s) has poles
of multiplicity one (none of them inside the BC) is
defined by

Y

xlast(

3 3
t):Z ZeeerZ we fo(t)
=1 =1

If two of the poles of G,(s) are complex conjugates,
then

Tiast(t)=21€"" + 2|Z2|8J2t cos (Kot + arg(z2))

3
+ Z we fo(t)
=

where o, ¢ and m are defined as previously and r, are

(12)

the poles of G, (s) defined as: r; = Jq, ro = Jo + Ko
and r3 = 79, with J172,K172 € R and
ZZ:}LI%(S —r¢)Hi(s),
_ (s=re)
ye= lim 5= Hy(s), (13)
D=t i Bt (e +70)) + 2

with zo = Z3, y2 = g3 and £ = 1,2, 3. Finally, ¢, = %
which corresponds to the BP of Hs(s).

Proof: First, we can see that (10) corresponds to
the rationalized version of system (9). By considering
the case where the poles of the characteristic polynomial

&

o

Cr

Fig. 2. Integration path of Eq. 16-Proposition 3.2.

m?2s3 + 2pms — ¢ have multiplicity of one, such that its
poles are: r1,72 and 73, and we have that:

oms—g

' [Hy(s)] mZs3 1 2gma— g} ZZze

ze = lim (s — r¢)Hi(s),

S—Typ

hi(t)=%¢" =1
where

for the first term in (10). Hence, the final result is
obtained by solving:

ho(t)=%2"" [Ha(s)] = £} {m’” i;,,t] . (14)

By using partial fraction expansion in (14) we have

w/s—i—qp

where y, is given by Eq. (13). Each fraction can be
inverted by using the integration contour depicted in Fig.
2, while, 7y is not inside the BC i.e., R(r¢) > R(—gp) Vv
3(r¢) # 3(gp). Then, its ILT can be found by solving
the following integral for each ¢:

Yey/s5+4q AVARK'!
/ = peStdSZ/ —= estds
r Br+Ci1+Ca+--+Cr

o . st
=2j7 LILH}E Yer/ S + qpe

= 0, we only need to analyze

5)

ST[

(16)

Since [ e i 0yt corcr
C3 and C5, to obtain

__2 . > Yer/ Tp 7ztd
- J T+rye €.
C3+C5

dp

a7

The integral in the right side of (17) has a solution
/ ye m”j;qp e T dr= =yem\/qp+ree™ Erf(xf\/qp —l—rg)
q

P
—qpt
—mYen/qp+ree"™ +yq ﬁf/;p .
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Then from (16)

1 \/s
9 %eﬁds = ygfz(t), (18)
) JBr
where fy(t) is defined as in (13). Finally, z;,s:(t) =
hq (t) + hy (t) ]

C. Mechanical network with multiple springs and
dampers, p > 2 and q > 2

Proposition 3.3 (Branch points locations.): Given
p > 2 and ¢ > 2, system G(s) defined as (5) only
has real Branch Points (BPs) which are distinct and
negative.

Proposition 3.4: (Network with multiple springs and
dampers x5t (t) response.) Given system (5), we can
rewrite it as

Ga(s) = Hi(s) + Ha(s)

Lo ek (87

34 2ms(etos) ¢ .
m(s?+ m?2 m?)

ms(o+os)—¢s
m2s3+4+2ms(p+os)—¢s

19)

Furthermore, its impulse response for p > 2 and ¢ >
2 using the positive solution and considering the case
where G, (s) has poles of multiplicity one with none of
them inside the BC of Hs(s) is given by

3 3
Tiast ()= _zee™ + yre™ —M(t).  (20)
=1 =1

When G (s) has complex poles we have
Traer () =217 + 2|25|e72 cos (Kot + arg(zy)) 21
Y1t 4+ 2lyale??t cos (Kot + arg(yz)) — M(t),
for p > 2 and ¢ > 2 the solution is approximated by
T1ast(t) = 217 + 2| 25]e2! cos (Kot + arg(z))
+ 1€t + 2lys|e??! cos (Kot + arg(y2)), (22)

where g, o, ¢ and m are defined as previously and r, are
the poles of G, (s) defined as r1 = Jy, ro = Jo + jKo,
and r3 = 72, with J; 5, K; 2 € R. Besides:

zg = lim (s —rg)Hi(s), ye= lim (s —rg)Hy(s),

s—Tp s—1p
1 UQ_UUU —x T(V2—vV1—T
e
m™Jo
P(z) = 2(v2—w)(£;;-a(v2—x)) _ ﬁ + (vg — l‘)?’. (23)
with £ =1,2,3.

Proof: G(s) in (5) can be rationalized by multi-
plying and dividing by ms?+o+0osF+/(0 + 0s8)% + s
this gives expression (19) as stated. The ILT of Hi(s),
which can be computed easily, and therefore we will
focus on the ILT of Hs(s).

Hj(s) is a multivalued function with 3 poles and 2
BPs. According to Proposition 3.3, we can conclude that

A
AN

Br%

Fig. 3. Integration contour of Eq. (24)-Proposition 3.4, r1 is
considered to be inside I'.

there exist three possible integration contours we have
to consider in order to find the ILT of Hs(s). Here we
will consider only one of them, where the real root r;
of the characteristic equation is inside the contour I' =
Br+ Cy 4+ Cy + - + Cg as depicted in Figure 3. The
other cases would be: r; is inside the BC from v to vs
and r; would be somewhere between oo and v;. Then,
to obtain .#~! we have to solve the following integral:
/HQ(S)SStdS:/ Hy(s)eds

r Br+C1+Cz+--+Cyg

3
:ZjW[Z 1i_{n (s — o) Ha(s)e|. (24)
s—Ty
=1

We can see that fl“o =0,forTy=C1+Co+C3+C5+
C74Cg+Cy. In order to do the integration along Cy and
Cs , let us do the parameterization s = xe®™I™ £ j§ 4 vy
where positive and negative signs correspond to Cy and
Cs, respectively, z € (0,v2—wv7) and J is a small positive
number which tends to zero. Some algebra yields

/ soy/(s—v1)(s—v2)
Cs+Cs m

2ms(o+os)
(7 + 22— o)

eStds =

/v2 v1 2jg(u2—w)7we(v2,r)tdx’
0

where P(x) is defined as in (23). Analyzing the
last integral we can see that |[P(z)] > |o(vy —
x)y/x(vy —v1 — )| and if we add more elements
|P(x)| starts to increase making this integral to have
a very small value. Hence, we can say this value is
negligible for describing the whole behaviour of ;4 (t)
when p > 2 and ¢ > 2. [ |

D. Mechanical network with one spring and multiple
dampers, p=1and q > 2

Proposition 3.5 (Multiple dampers one spring case.):
Consider the system described as in (5) and H;(s) and
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Hs(s) as in Proposition 3.4, for p = 1 and ¢ > 2, the
impulse response of the system is given by

3 3
xlast(t):z:zge”t—&—z:yge”t—N(t). (25)
=1 =1

When r5 and r3 are complex conjugated we have

Trasr () =217 + 2|25]e72 cos (Kot + arg(z2))  (26)
yre™t + 2|y2\e‘]2t cos (Kot + arg(y2)) — N(¢),

where o, o, ¢ and m are defined as previously and r, are
the poles of G, (s) defined as r1 = J1, ro = Jo + jKo,
and rg = 79, with JLQ,KLQ € R. Besides:

2= Jim (s = r)H(s), ye = Jim (s = ro) Ha(s),

1 dp . p —
N(t)* m x\/'c(qp ) e—actdl,7

2,3 P]
7 Jo m2x3—2mox?+¢

27)

dp = ﬁ7
with £ = 1,2,3.

IV. TIME DOMAIN VALIDATION
SIMULATIONS

As stated in Problem 2, we aim to prove the efficiency
of our results when trying to model tree-networks of
finite generations. This could be useful for the avoiding
of long computations due to the high number of dif-
ferential equations needed when adding large levels to
the tree. In the next figures we show some simulations
which compare our analytical expressions with the time
response of a FGS. The FGS solution zjqs,(t) V j =
1,2,---, N, is computed in Octave by using Isode()
routine. It is worth mentioning that in the FGS every
node in the last generation is considered to have the
same position.

For computing our FGS responses, we have taken an
impulse-like input to 2be defined as: z11(t) = 0a(t —

t—1

1) ~ ﬁe_(T) . Such an input is time shifted
one time unit in order to obtain better numerical results
when solving the differential equations of the FGSs. The
system parameters are taken as b = %0 and k£ = 2.
Every x;,s:(t) expressed analytically from Propositions
3.1 to 3.5 was also time shifted by 1 time unit, in
order to make the comparison of the impulse responses.
Furthermore, we add bar plots with error-index values.
The error measured used is the common integral square
error (ISE), defined here as: E; = f030 €(t)%dt, where
€(t) = T1ase(t — 1) H(t — 1) — w145, (t), H(t) stands for
the Heaviside step function. The expression ¢ FGS in the
captions of Figs. 4 to 7 for ¢ = 1,2, 3, ... stands for the
exact number of finite generations used when computing
the time domain solution in Octave.

3FGS 6 FGS 9FGS
= o051 4FGS 7FGS 10FGS |
= 8FGS - - -GS
S 0
05 ‘ ‘ ‘ ‘ ‘
0 5 10 15 20 25 30
Time (sec.)
08 0.692
06 f i
i 04t i
0.2
0087 0049 0032 0028 0.040
0
3 4 5 6 7 8 9 10
Number of generations
Fig. 4. Impulse response comparison for the case p = 1 and ¢ = 1.

Here, x4 is used as in Proposition 3.1 but time-shifted 1 time unit
and x1,1 = 01 (t — 1).
8

4FGS = = =IGS
5FGS

xlast(t)

0 5 10 15 20 25 30
Time (sec.)
3 2.7378 ‘ ‘
2 . 4
~
=
1L i
0.4944
0.0526 0.1221
0
2 3 4 5
Number of generations
Fig. 5. Impulse response comparison for the case p = 2 and ¢ = 1.

Here, x4 is used as in Proposition 3.2 but time-shifted 1 time unit
and x1,1 = 61 (t — 1).
15

V. CONCLUSIONS AND FUTURE WORK

This paper illustrates a means for determining the
time response of an infinite tree of springs and dampers
whose dynamics are given by an implicitly-defined op-
erator. We have shown how the infinite order model can
be used as a model for FGSs by comparing impulse
responses. The results of the comparisons show a slight
difference in terms of amplitude but sometimes large
difference in time phase which increases the ISE. The
computation time increases exponentially when adding
more generations, which makes it difficult to have quick
and accurate numerical results for more generations in
each of the cases presented. In Fig. 4 we see how the
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Time (sec.)

2 3 4 5
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Fig. 6. Impulse response comparison for the case p = 2 and g = 2.
Here, x4 is used as in Proposition 3.4 but time-shifted 1 time unit
and 1,1 = § 1 (t—1). The term M(¢) is plotted to show how fast it
goes to zero, so that, this term can be avoided when using expression
(20).

2FGS 4 FGS
55 05 3FGS = = =1GS i
Nad
3
S W
) 0
05 ‘ ‘ ‘ ‘ ‘
0 5 10 15 20 25 30

Time (sec.)

0.0115

3
Number of generations

Fig. 7. Impulse response comparison for the case p = 1 and ¢ = 5.
Here, x4 is used as in Proposition 3.5 but time-shifted 1 time unit
and r1,1 = 61 (t — 1).

15

ISE decreases exponentially but once we get to the 10th
generation response the error slightly increases, perhaps
due to numerical error. The difference in the number of
finite generations computed in each of the Figs. 4 to 7
corresponds to an increase in the computational effort of
finding the time domain response which did not allow
us to compute the same number of generations for each
case. Therefore, future efforts will be focused on proving
convergence of the infinite generation irrational system
to the proposed large, but finite model by other means
such as using a phase-magnitude error analysis of the
responses and a general frequency response analysis.
These results could be easier to achieve thanks to the
time domain responses presented in this work. Finally,

our closed form time responses naturally lead to other
possible future analysis useful in systems and control for
systems described by implicit operators such as stability,
design, or system identification.
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