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Abstract—The high impedance fault (HIF) has random, ir-
regular and unsymmetrical characteristics, making such a fault
difficult to detect in distribution grids via conventional relay
measurements with relatively low resolution and accuracy. This
paper proposes a stochastic HIF monitoring and location scheme
using high-resolution time-synchronized data in µ-PMUs for
distribution network protection. Specifically, we systematically
design a process based on feature selections, semi-supervised
learning (SSL), and probabilistic learning for fault detection
and location. For example, a wrapper method is proposed to
leverage output data in feature selection to avoid overfitting
and reduce communication demand. To utilize unlabeled data
and quantify uncertainties, an SSL-based method is proposed
using the Information Theory for fault detection. For location,
a probabilistic analysis is proposed via moving window total
least square based on the probability distribution of the fault
impedance. For numerical validation, we set up an experiment
platform based on the real-time simulator, so that the real-time
property of µ-PMU can be examined. Such experiment shows
enhanced HIF detection and location, when compared to the
traditional methods.

I. INTRODUCTION

High impedance faults normally exist in distribution power
systems with voltages ranging from 4 kV to 34.5 kV. Upon
the occurrence of HIF, its immediate vicinity is imposed with
potential danger, which is hazardous to public safety. For
such reasons, researchers and engineers have been exploring
novel ways to detect HIFs since the 1970s. Many algorithms,
e.g., [1], aim at enhancing conventional relays at the early
stage. They propose methods such as proportional relaying
algorithm [2], impedance-based method [3] and PC-based
fault locating and diagnosis algorithm [4], etc. However, two
critical issues hinder HIF detection performance: measurement
accuracy and information extraction capability. Due to these
reasons, it was revealed in one case study that conventional
protection cleared only 17.5% of staged HIFs [5]. Specifi-
cally, existing commercial microprocessor-based relays rely
on threshold constructed by direct physical measurements,
making detection logic exhibit unsatisfactory performances.

For measurement accuracy, µ-PMUs are becoming available
in distribution grids, capable of providing HIF detection de-
vices with high-precision and high-resolution measurements
[6]. For example, multiple utility and campus locations have
µ-PMUs installed in the distribution systems to enable further
research [7]. With the data streams, phasor data concentrators
(PDCs) can conduct data analytics algorithms for capturing
distinct characteristics of HIFs. Therefore, this paper designs a
framework for highly accurate data-driven HIF monitoring and
location scheme based on µ-PMUs for distribution network
protection. Specifically, we systematically design a process
based on feature selections, SSL, and probabilistic learning
for fault detection and location.

For feature selection, we aim at reducing feature numbers
to avoid overfitting and reduce communication demand. As

µ-PMU data provides high-precision time-stamped measure-
ments and synchronized data aggregation from multiple lo-
cations, we utilize the data to extract hidden information by
considering three factors in the features: (1) how large the
physical quantity becomes, (2) how fast the signal changes,
and (3) how strong the harmonics are. By “how large”, we
mean that the selected features need to include the signal
magnitude from the discrete Fourier transform (DFT) over
cycles. “How fast” considers the first-order derivative of times
series data. As for “how strong each harmonic is”, it means the
adopted feature needs to embed harmonic information derived
from the PMU data. After information extraction, we rank
features via a wrapper method instead of the filter method
to leverage the output data in feature selection to keep a
balance between information gain on selected features and the
complexity for avoiding overfitting.

After feature selection, one can conduct supervised learning
directly for obtaining the HIF results. For example, [8], [9]
introduces expert systems based on artificial intelligence. [10]
uses the wavelet transform to extract data and uses Bayes
classifier to differentiate fault cases in the Bayesian frame-
work. [11] uses the nearest neighborhood rule for classification
simplicity. Decision tree learning method is proposed in [12]
to provide a white box for interpretations. Neural network
type of methods is proposed for highly nonlinear function
approximation in the decision process [13], [14]. The fuzzy
inference to detect HIFs can also be seen in the literature
[15], [16]. However, these supervised learning methods have
a strong requirement on the labeled dataset, which may not
be widely available for HIF database. In addition, there are
always fault or non-fault events that are never seen by the
classifier. Finally, recording the events and correctly labeling
them are a slow and mostly non-existent [5] process in utility
companies. Therefore, we focus on utilize unlabeled data and
quantify uncertainties for HIF in this paper.

For this purpose, an SSL-based method is proposed using
the Information Theory for maximizing the accuracy on HIF
fault detection. The work in [17] also utilizes SSL, but for the
multi-class classification among four general types of events
including HIFs. However, in this paper, we investigate the
mathematical model of the HIF and then propose a binary
classification method designated for traditional HIF detection
with a fault current ranging from 10 to 50 amps [5]. Moreover,
this paper adopts the wrapper approach to extract features
from a systematically-designed pool with many practical and
reliable features widely used in microprocessor-based relays.

For fault location, a variety of methods are proposed based
on µ-PMUs data [18]–[22]. For example, [21] proposes to use
compensation theorem in circuit theory to identify the source
of different types of power events. [22] utilizes synchrophasor-
based state estimation to locate the faults. In this paper, we
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introduce an HIF location method according to the probability
output of the SSL method and the HIF impedance probability
distribution. For example, a probabilistic analysis is proposed
via a moving window total least square based on the proba-
bility distribution of the fault impedance.

Finally, we use the real-time simulator for validation, which
helps to verify the effectiveness of using real-time µ-PMU
measurements. For example, we set up an experiment platform
based on the real-time OPAL-RT simulator, so that the real-
time property of µ-PMU can be examined. Such experiment
shows enhanced HIF detection and location capability when
compared to the traditional methods.

In summary, this paper makes three contributions. First, we
build a feature pool and formulate a feature selection method
to avoid overfitting and reduce communication bandwidth.
Second, we propose an SSL method to increase data availabil-
ity for HIF learning. In such a learning process, we utilize the
mutual information metric to quantify the uncertainties from
HIF fault and output detection confidence values for further
HIF location. Third, within the probabilistic framework, we
develop a HIF location method based on the anti-diode DC-
source HIF model along with its fault impedance probability
distribution.

This paper is organized as follows: Section II elucidates the
proposed method including the feature selection method for
HIF detection, the information-theoretic SSL method, and the
probabilistic method for HIF location. The three methods are
then combined and an implementation scheme is proposed in
Section III. The experiment results are presented in Section IV,
followed by the Discussions in Section V. Section VI explains
the hardware experiment. Section VII draws the conclusions.

II. HIF MONITORING AND ALARM SCHEME

The proposed HIF monitoring and alarm scheme comprises
three key factors in HIF detection and location: feature engi-
neering, data classification, and fault location.

A. Feature Selection for HIF Detection

For regular fault detection in power systems, the voltage
and current are ideal features since they capture most of the
variance from the CT and PT measurements. Unlike regular
faults, HIFs face challenges in identifying effective features
due to the randomness of impedance. Therefore, past works
focus on proposing different features from the time/frequency
domain for indicating HIF [1], [23], [24]. However, these
studies could not evaluate the effectiveness of their proposed
features in contrast with other features.

To resolve this issue, we create a feature pool using various
features from different proposals and form a large dataset
containing HIF and non-HIF event data (the details of the
dataset can be found in Section III-A). To determine a relevant
subset of features, we conduct feature subset selection. The
objective is to find an optimal subset of features that generates
the highest possible classification accuracy. For example, we
plot in Fig. 1 the percent variability explained by the top
ten principal components, which provides only 52% of the
data information. This means that many of the proposed

detection features are not useful when competing in the feature
pool, calling an enhanced feature selection method for HIF
detection.
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Fig. 1. First ten principal components.

Since HIFs are associated with different contact surfaces,
moisture, temperatures, and locations, there is an extremely
large number of parameter combinations when translated to the
mathematical or simulation models of HIFs. For example, 200
features have 2200 possibilities for the feature set. Therefore, it
is impossible to conduct simulations and experiments to cover
all scenarios of HIFs and label them accordingly. This means
that if we adopt the filter approach in feature selection, e.g.,
look into the input only, it is extremely expensive. Therefore,
we adopt another key approach in feature selection, namely
the wrapper approach [25]. Specifically, Fig. 2(a) shows that
the filter approach attempts to assess the merits of features
only from the data, ignoring the induction algorithm, which
is used to induce a classifier that maps the space of feature
values to the set of class values. For example, the classifier can
be decision trees, support vector machines, etc. The resulting
feature subset cannot guarantee good performance of the
induction algorithm.
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Fig. 2. Two approaches to feature subset selection [25].

Meanwhile, the wrapper approach in Fig. 2(b) evaluates
the selection of feature subset using the induction algorithm
itself as part of the function evaluating feature subsets. During
data training, different feature sets are evaluated with the
help of the feature selection search, feature evaluation, and
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induction algorithm blocks. Feature evaluation estimates the
performance is a certain feature set and updates the feature
selection search algorithm with the current best feature set.
It is noteworthy that the performance estimation refers to the
accuracy estimation technique that estimates the accuracy of
the induction algorithm. In this paper we adopt the cross-
validation (CV) technique, the details of which are explained
in Section III-A(2). Furthermore, the induction algorithm
prepares the feature evaluation with the optimal parameters
in a corresponding hypothesis, which is a function that can
best classify the training data. Since the induction algorithm
is wrapped into the selection procedure, this approach is more
suitable to our setup.

B. Semi-supervised Learning for HIF Detection

After feature extraction, we can apply a supervised learning
approach for HIF detection. However, the performance of
supervised learning relies on the number of labeled HIF event
in the past, which may not be sufficient. For this reason, we
propose to employ semi-supervised to incorporate data from
unseen events, so that only a small number of events needs to
be labeled. Table I shows the comparison of required dataset
among unsupervised learning, supervised learning, and SSL.
As a highlight, SSL only requires a few labeled observations
and can improve performance significantly by adding a large
number of unlabeled observations, which is cheap to obtain.

TABLE I
THREE MACHINE LEARNING CATEGORIES FOR LABEL AVAILABILITY.

Category Input dataset a Labeling

Unsupervised
Learning X = [x1, . . . ,xn]T Y ∈ ∅

Supervised
Learning X = [x1, . . . ,xn]T Y ∈ Rn×1

Semi-Supervised
Learning X = [x1, . . . ,xl, . . . ,xl+u]T b Y ∈ Rl×1

a xi = [x1, x2, . . . , xd], i ∈ N , X ∈ Rn×d, where n denotes the
number of observations and d denotes the number of features.

b l + u = n, usually l < u, where l denotes the number of labeled
observations and u denotes the number of unlabeled observations.

To utilize both labeled and unlabeled dataset, there are
many SSL methods. Two popular methods are self-training
and co-training approaches, where self-training makes the
classifier use its own predictions to train itself, while co-
training employs two classifiers to train each other with the
most confident prediction labels they feel. In this paper, we
choose self-training since HIF detection does not need two
classifiers in co-training. For such training, we also need to
choose among generative probabilistic models and discrimi-
native models. For generative probabilistic, Gaussian mixture
model is calculated between the observation and the label. The
objective function attempts to learn the parametric vector θ
through θ̂ = arg maxθ

(
logP (YL|XL; θ) + α logP (XU ; θ)

)
,

where XL = [x1, . . . ,xl]
T , XU = [xl+1, . . . ,xl+u]T , YL =

[y1, . . . ,yl]
T . The first term is related to the posterior class

probability of the labeled data. The second term introduces
the log likelihood of the unlabeled data, with the weight α.

However, such an approach requires joint distribution,
which is not available and hard to obtain due to the compli-
cated relationship between input feature data and the output
labels of HIF. This is because discriminative models focus on
the conditional probability and attempt to “discriminate” the
value of the label given the observation. For the discriminative
model, we adopt the information-theoretic SSL method [26],
because 1) it is built upon probabilistic description for the
randomness of impedance in HIF, 2) it uses powerful metric
such as mutual information based on previously selected
features, and 3) it guarantees the globally optimal solution
which means dependability in protection. Specifically, the
deployed method relies on the square-loss mutual information
regularization. Two useful objectives are offered in the method,
namely the analytic expression of the globally optimal solution
and the probabilistic values to determine HIFs. Consider a
d-dimensional dataset X ⊆ Rd and Y = {1, . . . , c} where
c denotes the number of classes for HIF. Assume i.i.d.
{(xi, yi)

l
i=1} and {(xi)

n
i=l+1} with n = l + u and l < u,

where the former represents the labeled dataset, and the later
represents the dataset without labels.

The goal of the proposed SSL method for HIF is to
classify any x ∈ X achieving ŷ = arg maxy∈Y p(y|x).
Initially, a uniform class-prior probability p(y) = 1/c is
assumed. Then, the class-posterior probability is approximated
with q(y|x;α) := 〈K−1/2Φn(x),D−1/2αy〉, where kernel
k : X × X 7→ R, kernel matrix K ∈ Rn×n, the empirical
kernel map Φn : X 7→ Rn,x 7→ (k(x,x1), . . . , k(x,xn))>,
the degree matrix D = diag(d1, . . . , dn) with di =∑n
j=1 k(xi,xj), the model parameter α = {α1, . . . , αc}

and αu = (αy,1, . . . , αy,n)>. Consequently, the optimiza-
tion problem in this particular SSL method is formulated
as minα1,...,αc∈Rn ∆(p, q) − γŜMI + λ

∑
y∈Y

1
2‖αy‖

2
2 (*),

where the loss function is defined as the squared-difference
of probabilities p and q: ∆(p, q) = 1

2

∫
X
∑
y∈Y(p(y|x) −

q(y|x;α))2p(x)dx, the squared-loss mutual information (SMI)
is given by ŜMI = c

2n tr(A
>D−1/2KD−1/2A) − 1

2 , and
tr(·) is the trace operator, A = (α1, . . . , αc) ∈ Rn×c, γ, λ > 0
are the regularization parameters.

C. A Probabilistic Method for HIF Location
After SSL-based detection, we need to locate the fault. The

location function (Fig. 3) utilizes the probability output of the
SSL-based HIF detection algorithm, then ranks the prediction
probability to narrow down the faulty zones. Through the
probabilistic fault location estimation method which will be
elucidated below, the estimated HIF location range is obtained
using the µ-PMU data.

Specifically, we model HIF with the extensively used the
anti-parallel dc-source model [24], as shown in Fig. 4b. Two
variable resistors are both changing randomly, modeling the
dynamic arcing resistance. Two sets of diodes and DC sources
are connected in an anti-parallel configuration. The two DC
sources are stationary but with different values, which model
the asymmetric nature of HIF. The positive half cycle of HIF
current is achieved when Vph > Vp, while negative half cycle
when Vph < Vn. When Vn < Vph < Vp, the current equals to
zero, which represents the period of arc extinction. Test results
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Fig. 4. The single line diagram and HIF model under study: (a) Single line
model for the HIF location analysis [28]; (b) Two anti-diode HIF model [24].

of this HIF model reveal a good modeling performance and
are validated in the simulation [24] and field test results [27].

Originally, we formulate the relationship between the one-
terminal measurement and fault location using a constant-
impedance constant-DC-source HIF model. Since constant
impedance and DC source are assumed, the deployed HIF
model in [28] cannot well represent the random phenomenon
of fault impedance during arcing. Moreover, conventional solu-
tions such as the one in [28] have limitations on measurement
location, device, and accuracy [29], [30]. To solve these issues,
we introduce randomness to the HIF model and sets up the
HIF location system in the µ-PMU environment.

The single line diagram of the one terminal measurement
system is demonstrated in Fig. 4a. The left-hand side terminal
of Fig. 4a has the voltage values of vn, denoting the nth µ-
PMU measurement. Depending on the location of the HIF
fault, the equivalent line impedance Req+jωLeq is equal to the
distance δ times the per-unit-length line resistance, inductance.
To simplify the calculation, the shunt capacitance is lumped
at the measurement terminal, consuming the current of iC . vF
and iF are the HIF voltage and current.

Assuming that R, L, and C represent the per-unit-length
resistance, inductance, and capacitance, therefore, if we apply
Kirchhoff’s voltage law (KVL) in Fig. 4a circuit, we have
vn = δR(in − iC) + δLd(in−iC)

dt + vF , where vn and in
are terminal voltage and current measurements, and vF is the
voltage at the fault point. According to the HIF model in Fig.
4b, we have the fault voltage in two cases:

vF =

{
iFRp + Vp, iF ≥ 0,

iFRn − Vn, iF < 0,
(1)

In underground cable networks, the line capacitance C is
the major source of error in fault location [31]. However,
in overhead line applications where HIF is associated with,
the shunt capacitance can be neglected without generality in
the distribution lines [32]. Therefore iC = δC dVn

dt ≈ 0. In
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Fig. 5. The proposed HIF monitoring and alarm scheme with four func-
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location system, and HIF alarm & execution.

addition, if combining the two cases in one equation, and
replacing (1) in the previously mentioned KVL equation, we
have vn = δ(Rin + Ldin

dt ) + RF iF + VDC (**), where RF
and VDC have their positive and negative cycle values of Rp,
Rn, and Vp, (−Vn) respectively.

We adopt the fault current (iF ) estimation method in [28] to
estimate the distance value of the HIF, then utilize the moving
window total least square method [28], [33] to estimate the
variables of δ, RF , and VDC at the positive and negative
cycles. Note that vn and in are directly from µ-PMU data,
and that din

dt is derived from µ-PMU current data. From (**)
we can get: {

Rp = cp1δ + cp0, iF > 0,

Rn = cn1δ + cn0, iF < 0,
(2)

where cp1 = − 1
iF

(Rin + Ldin
dt ), cp0 =

vn−Vp

iF
, cn1 =

1
iF

(Rin + Ldin
dt ), and cn0 = − vn+Vn

iF
.

To better understand how the fault location is computed, we
provide a simple example in Appendix B.

III. IMPLEMENTATION SCHEME

Fig. 5 shows the implementation scheme of the proposed
tools. In such a scheme, µ-PMUs are installed along the feeder
and phasor data concentrators (PDCs) connect the data for
the red box. In the red box, an HIF scheme is shown with
four function blocks: feature extraction and selection, SSL-
based HIF detection, HIF location system, and HIF alarm &
execution.

A. Feature Extraction and Selection

The collected data from PDC is normalized first and then
goes through the algorithm of feature extraction and selection.

1) Feature Extraction: When the data resolution is low,
although it is possible to correlate dependence between time
slots, the dependence gets too weak due to the large time
elapse in between. µ-PMUs provide higher sampling rate
and measurement resolution comparing to traditional PMUs.
Under this circumstance, some features such as harmonics are
captured with high fidelity during the transient period upon
a fault. This characteristic of µ-PMUs is important under the
stringent detection requirements upon the HIF that has a very
low fault current.
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TABLE II
TYPICAL FEATURES IN THE FEATURE POOL.

Type Example Feature

Time series feature Vabc, Iabc

DFT-based original P,Q, I012, V012, φ

DFT-based 1st order deri. df/dt, dV/dt, dP/dt, dHV 1/dt

KF-based original KF -V -cos,KF -V -sin (H1 ∼ H6)

Other θV2
− θV0

, dV/dP, df/dP,KF -V -DC

In the following, we show one example of how we extract
features sequentially for a physical power system. We first ap-
ply DFT to estimate the voltage and current, and calculate mul-
tiple physical quantities to quantify how large their magnitudes
are. Then, we take the derivative of some variables to quantify
how fast the parameter changes. Such a process can capture
small change which may not trigger traditional HIF detection
methods. Thirdly, the harmonic magnitude coefficients (mag-
nitudes) are estimated through KF by decomposing different
harmonics and learn the transition matrix1 (coefficient). Such
features are presented as the first-order harmonics of in-phase
and in-quadrature voltage components, i.e. KF -V -cos-H1 and
KF -V -sin-H1. Finally, we convert power expert information
to capture some unconventional phenomena, e.g., θV2

− θV0
,

the angle difference between the negative and zero sequence
voltage. Empirically, we find that such a feature is a good
indicator for the unbalance level in distribution grids caused
by HIF. It is noteworthy that, in the HIF monitoring and alarm
scheme, the features are taken from several micro-PMUs in
different locations to provide the synchronized spatial data.
We adopt 200 ms2 as the general window size of time-series
measurement. The window size is adjustable according to the
event under study. With such a systematic design, a feature
pool is generated in Table II.

2) Feature Selection: This paper adopts the wrapper ap-
proach as its feature evaluator to solve the binary classification
problem in HIF detection. Unlike the filter approach, the
training set in the wrapper approach goes through three steps
before it is sent to the ultimate induction algorithm: feature
selection search, feature evaluation, and induction algorithm.

The best-first search engine is employed in the feature
selection search, due to its robustness comparing with the hill-
climbing search engine. Best-first search is a method that does
not just terminate when the performance starts to drop but
keeps a list of all attribute subsets evaluated so far, sorted
in order of the performance measure so that it can revisit
an earlier configuration instead [36]. It searches the space of
attribute subsets by greedy hill-climbing augmented with a
backtracking facility. Its algorithm is shown in Algorithm 1.

The evaluation function used here is five-fold CV. The
assumption is that all folds are independent while training. The

1The transition matrix here refers to the state transition matrix F . Assuming
we have measurement z(k) of the incoming signal x(k). With the following
Kalman filter model, the state variable X (k) can be recursively estimated:
X (k + 1) = FX (k), z(k) = HX (k) + v(k), where F is the transition
matrix and v(k) is the measurement noise. Refer to [34] for the detailed
implementation of the Kalman filter approach.

2In a µ-PMU with 120 frame/sec output streaming [35], its length is
equivalent to 24 samples.

Algorithm 1 Best-first algorithm
1: Put the initial state on the OPEN list.
2: CLOSED list← φ , BEST← initial state.
3: Let v = arg maxw∈OPENf(w) (get the state from OPEN

with maximal f(w)).
4: Remove v from OPEN, add v to CLOSED.
5: if f(v)− ε > f(BEST ) then
6: BEST← v.
7: Expand v: apply all operators to v, giving v’s children.
8: For each child not in the CLOSED or CLOSED list,

evaluate and add to the CLOSED list.
9: if BEST changed in the last k expansions then

10: goto 3.
return BEST.

number of repetitions is determined on the fly by evaluating
the standard deviation of the accuracy estimate. If 1% of the
standard deviation of the accuracy estimate is violated and five
CVs have not been executed, an extra CV is initiated. This
heuristic method works well from applicability to efficiency
when dealing with large datasets. Exemplary CV applications
using power system simulation data can be found in [17], [37],
and [38]. Simply speaking, with the best-first search method,
the exploration of feature space does not just terminate when
the performance (estimated by CV) starts to drop but keeps
a list of all feature subsets evaluated so far, sorted in order
of the performance measure, so that it can revisit an earlier
feature combination instead [39]. If we have not found an
improved node in the last k expansions, we terminate the
search. An improved node is defined as a node with an
accuracy estimation at least ε higher than the best one found
so far. In remaining of the paper, k is set to five and ε is 0.1%.

B. Classification Between HIF and non-HIF
By collecting various feature data from each µ-PMU, the

HIF detection can be formulated as a large-scale binary
classification problem, with the goal of accurately classifying
each µ-PMU’s measurement data as either ‘HIF’ or ‘non-
HIF’. This paper utilizes the SSL-based detection approach.
The information-theoretic SSL method outputs the probability
values for each observation based on local µ-PMU measure-
ment. In other words, each µ-PMU is corresponding to one
classification model based on its local measurement. Specifi-
cally, we get the model in (*) of Section II-B trained with the
best parameters chosen by CV. This model minimizes the loss
function regarding the posterior probability and maximizes the
mutual information between the unseen data xi and the label
y. After this optimization process, this SSL method provides a
probability matrix Yprob(i, j), which indicates the probability
that data set xi belongs to class j – either HIF or non-HIF.

The generalization error bounds of the proposed SSL-based
detection problem can be established through its accessible
analytical solution. The inequality is provided below since
it guarantees a tight upper bound of the proposed protective
scheme based on the inductive Rademacher complexity. The
proof of which can be found in [26]. If the real class
labels of the dataset XU are available for classification (even
though they are not used for training), for any η > 0 and
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0 < ε < 1, with the probability at least 1 − ε, the esti-
mation expectation of the indicator loss function (defined as
`(z) = (1−sign(z))/2) with respect to the correct labeled data
is bounded by E`(yf(x)) ≤ 1

n

∑n
i=1 `η(yif(xi)) + 2BkBF

η
√
n

+

min(3, 1 +
4B2

kB
′
F

η )
√

ln(2/ε)
2n , where the output label y is now

reformulated as ±1, multiplied by the decision function f(x)
that provides a closed form solution to label y as well using the
optimal solution – the vector α∗ 3 obtained from (*) in Section
II-B, `η(z) = min(1,max(1 − z/η)) is the surrogate loss
function, Bk, BF , and B′F are the model parameters associated
with α∗. The error bound equation shows how we benefit from
unlabeled data by a lower empirical error when n increases.
The necessity of introducing SSL in the HIF detection problem
is therefore proved.

C. HIF Location Function
Once the HIF is detected, the HIF location information will

be beneficial to the utility’s dispatch center. The challenge of
HIF location comes from the deviation of the fault impedance.
Mathematically, the standard deviation of the fault impedance
depends on the fault current range under study, along with
the characteristics of the the ground (soil) or grounded object
(concrete, tree, etc.). As mentioned in Section I, an HIF current
usually ranging from 10 to 50 amps [5], which is the “blind
zone” of the conventional relays. To have a larger detection
range, we increase the upper bound from 50 amps to 100
amps. In order to generate a fault current between 10 and 100
A in a 25 kV benchmark system, we then calculate the fault
range of 200 ∼ 1, 500 Ω. More details of the model settings
are provided in Appendix A. Under the circumstances, we
propose two types of probability distribution models to capture
the deviation of the fault impedance: normal distribution and
uniform distribution.

1) Normal distribution of the HIF impedance: In the first
scenario, we have the HIF impedance RF (including Rp
and Rn) that follows RF ∼ N (µ, σ2). Thus, the fault
location δ follows δ ∼ N (µ−c0c1

, ( σc1 )2), where both c0 and c1
contain their positive and negative coefficients. Furthermore,
the confidence interval of the fault location estimation can be
easily quantified.

2) Uniform distribution of the HIF impedance: In the
second scenario, the HIF impedance is uniformly distributed
within an impedance range. Assuming that RF falls in the
range of (Rmin, Rmax), where 0 < Rmin < Rmax. The
range of the fault location estimation therefore belongs to
(Rmin−c0

c1
, Rmax−c0

c1
).

D. High Impedance Fault Alarm and Execution System

Once the HIF location range is computed, the HIF Alarm
and Execution System sends an assertion signal regarding
the detection of an HIF to the control center of the system
operator. The resulting action, depending on the local grid
code, can be either an alarm, or the tripping signal sent to the
execution system, which is part of the control system of the
corresponding circuit breaker.

3For the reference of the audience, the analytical solution
is α∗ = n(nD−1/2K1/2BBTK1/2D−1/2 + λnlIn −
γlcD−1/2KD−1/2)−1D−1/2K1/2By.
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Fig. 6. Benchmark system [40].

IV. EXPERIMENT RESULTS

A. Benchmark System

The benchmark system (Fig. 6) under study is developed by
McGill Electric Energy Systems Laboratory [40]. It models a
25 kV distribution feeder from a rural Canadian community.
This feeder has a 120 kV-25 kV transformer connecting the
utility and the feeder. The benchmark system runs in a real-
time simulator which will be part of the hardware experiment
platform that is explained in the next Section.

B. Feature Selection in HIF Detection
By far, we include 246 features in the feature pool. Many

other features in the literature can be added to the feature
pool in Table II. Therefore the feature pool is flexible and
expandable to maximize the HIF detection accuracy. The best-
first search algorithm is employed and the search is terminated
if an improved node in the last k expansions is not found.
An improved node is defined as a node with an accuracy
estimation at least ε higher than the best one found so far.
In the remainder of this paper, k is set to five and ε is 0.1%.

Since the wrapper approach considers how the algorithm
and the training set interact, experiments have been done on
real and artificial datasets to evaluate two different families
of induction algorithms: decision trees (DT) and Naive-Bayes
NB). Literature indicates that both induction algorithms have
achieved significant performance improvement on the same
datasets [25]. Here, we provide a comparison between them in
Table III. It can be seen that DT is outperforming NB in terms
of the merit of test subset, interpretability and hardware appli-
cability. This paper chooses DT as the induction algorithm
due to its visualizability, interpretability, and applicability.
The final selected feature group is exhibited in Table IV.
All features in the second column belong to the selected
feature group. 10 features are selected in this case. To clearly
demonstrate the effectiveness of the selection, the feature
group is categorized by the references.

The selected feature group includes sequence components
of voltage and current (V0, I2, I0), angle difference between
sequence components (θV2−θV0 , θI2−θI0 ), and the harmonic
components derived from discrete Fourier transform and KF
harmonic decomposition [44]. Especially for the harmonic
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TABLE III
A COMPARISON BETWEEN DT AND NB INDUCTION ALGORITHM.

Algo. # of features
(original, final)

Merit of best
subset found Interpretability Hardware

applicability

DT 246, 10 1.000 High [37]

NB 246, 14 0.999 Low Not
available

TABLE IV
THE SELECTED FEATURE GROUP RESULTING FROM WRAPPER METHOD

AND ITS REFERENCE (HIF MODEL: ANTI-PARALLEL DC-SOURCE).

Reference Feature in the selected feature group
[1], [41] V0, I2, I0
[42], [1] θV2

− θV0
, θI2 − θI0

[1], [43], [44]
V -THD-3rd,

V -THD-5th,KF -V -sin-H1,
KF -V -cos-H5, KF -V -cos-H1

components, it contains the total harmonic distortion (THD) of
the third and fifth order voltage signals, along with the in-phase
(cos) and in-quadrant (sin) part of the KF estimated first (H1)
and fifth (H5) order voltage signals. Since the PMUs cannot
provide the harmonic components, voltage and current samples
are collected by the PDC first, then the HIF monitoring and
alarm scheme calculates the harmonics using the DFT- and
KF-based signal processing techniques for multiple locations,
as shown in Fig. 5. The details of both harmonic estimation
methods can be found in [45] and [34].

Table V demonstrates the HIF detection performance com-
parison with other feature groups. Experiment data is obtained
from 198 HIF events and 256 non-HIF events using MATLAB
Simulink. By far, we conduct supervised learning to evaluate
the binary classification performance. Meanwhile, we employ
the following evaluation index:
• Precision = TP

TP+FP , where TP is the number of
the true positive instances, and FP is the number of
false positive instances, specifically, it is the number of
incorrectly detected fault events but they are actually non-
fault events. It indicates the percent of correctly predicted
HIF instances over the total number of the predicted HIF
instances.

• Recall = TP
TP+FN , where FN is the number of false

negative instances, specifically, it is the number of incor-
rectly detected non-fault events but they are actually fault
events. It measures the fraction between the correctly
predicted HIF instances and the total number of HIF
instances in the dataset.

• F1 score = 2·precision·recall
precision+recall . This index is the harmonic

mean of the precision and recall, providing an overall
evaluation of the classifier.

C. HIF Detection Performance

With the selected feature group, the proposed SSL algo-
rithm is further tested in the benchmark systems. To test
the performance of the proposed SSL algorithm, 14, 580 HIF
and non-HIF events are simulated and labeled. These events
include a wide range of scenarios, such as HIFs with different

TABLE V
PERFORMANCE COMPARISON WITH OTHER PROPOSED FEATURES.

Method # of Features Precision Recall F1
score

[1] 2 0.519 0.203 0.292
Filter approach

(top 10 features) 10 0.968 0.959 0.964

Selected feature
group 10 0.979 1.000 0.989

Note: The top 10 features in filter method include: θI2 −θI0 , I2,
I0, V2, V0, KF -I-cos-H3, KF -V -sin-H3, KF -V -cos-H3,
KF -V -cos-H5, KF -V -sin-H5.

fault impedance, HIFs with different fault location, HIFs with
different fault types, load switching, capacitor switching, load
variation, etc. In order to demonstrate the concept of SSL,
we pick up two typical features – df/dt and dV/dt – to
visualize the complexity of the classification task in a two-
dimension plot and to depict the SSL classification process of
the unlabeled data. Here, the two selected features can be any
other features, since the figure below focuses on the way how
SSL works. Initially, 25% of the data is served as the training
data, which is indicated in Fig. 7a. Concretely, these data are
labeled with either circle, representing the non-fault events, or
diamond, representing the fault events. At the meantime, the
75% unlabeled data is marked with “x”. It can be seen that
overlapping between the non-fault and fault data is prevailing,
which indicates the necessity of deploying a viable large-scale
binary classification algorithm. Meanwhile, Fig. 7b shows the
results of the SSL algorithm, two extra categories are added to
highlight the predicted classes, marked with filled circles and
diamonds. It is clear that the proposed method learns from the
training data and conducts prediction on the unlabeled dataset.
Moreover, although multi-dimension data is hard to visualize,
Fig. 7b intuitively indicates, to some extent, that the predicted
points are spatially consistent with the labeled data in Fig. 7a.

To further investigate the accuracy of the SSL-based
method, we demonstrate the performance of this method in
terms of regularization coefficients, precision, recall, and F1
score in Table VI. This table further compares the classification
performance under two device precision: 2 digits representing
the measurement from a commercial digital relay, and 4
digits representing a state-of-the-art µ-PMU’s voltage and
current measurement. In this case study, the model parameters
associated with α∗ have the following values: Bk = 10.0000,
BF = 11.0031, and B′F = 147.7377. On one hand, by
comparing between 2 digits and 4 digits results, Table VI
reveals and quantifies the improvement on fault detection.
Take the metric of precision as an example, the enhancement
on measurement precision has improved the precision by
2.82%, 0.74%, 9.69%, and 0.00% when there are 6.25%,
12.5%, 25%, and 50% of labeled data. On the other hand,
statistically, the F1 score in average rises as the percentage of
labeled data increases. However, to maintain a fair comparison,
we randomly select the labeled data, which means that the
quality of data during SSL varies case to case. However,
despite of the performance oscillation due to the goodness
of data, the precision, recall and F1 score have a trend to
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Fig. 7. Visualization of training and testing data in the SSL-based method. We utilize two typical features of df/dt and dV/dt to visualize the complexity
of the classification task in a two-dimension plot and to depict the SSL classification process of the unlabeled data. The corresponding data is rescaled and
standardized using the following equation: Y = X−Xmin

σ
, where X is the vector of the original data, Y is the rescaled and standardized vector, Xmin is

the minimum data value in the corresponding vector, and σ is the standard deviation of X . In this figure, 25% data are labeled.

TABLE VI
BINARY CLASSIFICATION RESULTS USING THE INFORMATION-THEORETIC SEMI-SUPERVISED LEARNING METHOD.

% of labeled
Device precision (2 digits) Device precision (4 digits)

data γ λ precision recall F1 score γ λ precision recall F1 score

6.25 0.01 1e-5 0.8396 0.9604 0.8959 0.01 1e-5 0.8678 0.9685 0.9154
12.5 0.1 1e-5 0.8479 0.9865 0.9120 0.01 1e-5 0.8553 0.9800 0.9134
25 0.01 1e-5 0.8031 0.9552 0.8726 0.01 1e-5 0.9000 0.9554 0.9269
50 0.1 1e-5 0.9981 0.9981 0.9981 0.1 1e-5 0.9981 0.9962 0.9972

increase as the percentage of labeled data grows as shown in
Table VI. The decreasing of F1 score in the 2 digits results
from 12.5% to 25% of labeled data indicates that it happens
when more percentage of data is labeled but they can hardly
provide more mutual information for the SSL. Nevertheless,
the overall performance increases as there are more labeled
data. Similarly, for the case where the F1 score in the 2
digits result is higher than that in the 4 digits results, since
the percentage of labeled data is already high (50%), the
device precision no longer plays a dominant role. Instead, the
quality of data becomes more important, resulting in the F1
score difference of 0.0009. It comes to a conclusion that the
performance of the proposed method maintains a larger than
85% precision rate when the percent of labeled data is no lower
than 6.25% using the µ-PMUs, the recall rate of which is even
higher. Besides, it highlights the advantage of the adoption
of high precision µ-PMU over conventional relays in such
protection task.

D. HIF Location

As discussed previously, one of the advantages of the
information-theoretic SSL method is the probabilistic output of
the data classification results [26]. This advantage enables us
to narrow down the faulty zones by collecting the probabilistic
output from each µ-PMU. We have simulated 18 events to test
the probabilistic output of all µ-PMUs that are monitoring,
from upstream, the HIF events for six critical lines: Line 2-3,
4-5, 7-8, 9-10, 11-12, 15-16. For each line, there are three
fault locations tested. Clearly, under this assumption, the HIF

location is observable only at these six lines. In Table VII,
we demonstrate one example on the case when the HIF is
applied on Line 7-8 at 3.0 km downstream B-7 (total length
of Line 7-8: 15 km). Then we rank the probability output of
each µ-PMU using the averaged probability output values and
determine the faulty line. As indicated by B-7 µ-PMU, the
algorithm is 99.39% sure that the HIF is located at Line 7-8.

TABLE VII
PROBABILISTIC OUTPUT OF ALL µ-PMUS WHEN THE HIF IS APPLIED AT

LINE 7-8 – 1.0 km DOWNSTREAM B-7.

Location of
µ-PMU B-2 B-4 B-7 B-9 B-11 B-15

Avg. prob.
output over
a 200 ms

window size

0.2178 0.4041 0.9939 0.3808 0.1716 0.1775

Prior to presenting the location performance, the location er-
ror is defined as: Location error = estimated distance−actual distance

line length ×
100% [28]. The HIF location system is tested in multiple
locations along the distribution feeder. Fig. 8 exhibits the
testing results on the line between bus 2 and 3 (Line 2-3)
of Fig. 6. Compared with the estimation error of the linear
least square estimation (LSE) global behavior in [28]. The
line length in [28] is 0.6 km, whereas the line tested in the
benchmark system has 4.167 km. Therefore, there are more
data points in the results of the proposed method. The errors
in the proposed method tend to decrease when fault distance
increases from 0 to 0.4 km. This is because the variation of
the fault impedance plays a prominent role when the fault is
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close to the measurement, and when the fault is further, the
location estimation error is affected less by the fault impedance
variation.
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Fig. 8. Fault location error comparison. HIF impedance follows the uniform
distribution in the proposed method. Line length in the proposed method:
4.167 km. Line length in [28]: 0.6 km.

Comparing with common low-impedance faults whose lo-
cation can be quite accurate, the proposed fault location
estimation method actually shows a significant improvement
of performance. For example, for short lines less than 1 km,
its location error is less than 6% comparing to [28]; while for
lines up to 4 km, the method in [28] cannot location the HIF
due to its limitations on measurement devices and the method.
This paper aims to bridge the gap on the longer distribution
line HIF location. Current practice is that once the HIF is
detected, the utility begins a public address advising of the
danger, and also dispatches service personnel to search for the
downed conductor [5]. With the proposed method, 80% of line
length does not require the searching of a line crew, and the
removal of safety hazards is, therefore, more efficient.

Fig. 9 shows the fault location estimation when a fault that is
1.0 km downstream of bus 11 occurs. The distance estimation
using moving window total least square method exhibits two
behaviors under two types of the probability distribution of
the fault impedance. When the blue band covers 85% of the
estimation samples, Fig. 9a has a wider confidence interval
band than Fig. 9b due to its large standard deviation of the
fault impedance. In addition, in comparison with the work
in [28], Table VIII is shown to highlight the advantage of
the proposed HIF location method. As indicated in the table,
the proposed solution is capable of handling the anti-parallel
DC-source model with random fault impedance. Meanwhile,
the utilization of µ-PMU devices enables higher measurement
accuracy.

V. DISCUSSIONS

In this section, we first discuss the effect of µ-PMU place-
ment, and then carry out more general evaluations considering
fault scenarios in the context of measurement noise and DGs.

A. The Effect of µ-PMU Placement

It is reported that HIF instances are significantly less than
those trigger the operation of the conventional protection [5].

TABLE VIII
COMPARISON WITH BENCHMARK HIF LOCATION METHOD.

Method HIF model
Randomness

of fault
impedance

Meas.
device

Meas.
accuracy

[28] Anti-parallel
anti-DC source No

Disturbance
monitoring
equipment

0.01

[46] Constant
resistance No

Power line
communi-

cation
0.01

The
proposed
solution

Anti-parallel
anti-DC source Yes µ-PMU 0.0001

Therefore, the location function of HIF is an add-on function
to achieve. Similar to many other fault location methods that
utilize PMUs or other devices [28], [22], the admittance matrix
is the key to them. For HIF location in this paper, it is assumed
that µ-PMUs are placed at each bus to get the full observability
of the system. In reality, we suggest µ-PMUs are placed at
the upstream of critical lines, then those lines in particular
become observable for HIF location. If any load or distributed
generations (DG) is at the upstream of HIFs, the proposed fault
detection method can work but the location method cannot
due to the unobservability issue. To determine where and how
many µ-PMUs need to be placed, more work should be done
on the techno-economic analysis.

B. Performance Under Other Scenarios

1) Considering DGs and More Fault scenarios: To inves-
tigate the the effects of environmental noises on the feature
selection and the accuracy of the proposed method, the per-
formance of the feature selection and fault location is tested
under white Gaussian noise with mean 0 and variance of 10−6

and 10−4 [47]. We test the HIF detection performance on
six lines (named after from bus - to bus) as can be found
in Fig. 6. The HIF scenarios include 30%, 60%, and 90% of
the length of each line listed. It is concluded that the selected
features are not affected by environmental noise. Concretely,
the superimposed noise does not change the results in Table
IV. However, the accuracy of the fault location is affected by
the noise. As shown in Table IX, the noise with a variance
value of 10−4 deteriorates the fault location performance, and
it gets worse when the HIF occurs at a further location. When
the noise variance drops to 10−6, no notable alteration in
the location results is observed. Meanwhile, we integrate two
DGs: one is a synchronous generator on B-8, and the other
is an inverter-interfaced wind turbine on B-17. The results
listed in Table IX contain the effect of DGs. For critical lines
that are observable to the µ-PMUs, since the HIF cannot
cause obvious voltage change, the fault location performance
is hardly compromised before and after the DGs are integrated.

2) Measurement Accuracy: Commercial µ-PMUs have pre-
sented a satisfying accuracy in reality. It is reported that off-
the-shelf µ-PMUs devices achieve an accuracy of 0.001◦ res-
olution for phasor angle, 0.0002% for phasor magnitude, and
0.01% for Total Vector of Error (TVE) [35], [48]. Since an HIF
does not cause grid frequency deviation or even overcurrent
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(a) HIF impedance probability distribution: normal. Average dis-
tance: 0.9679. Blue band covers 85% of the estimation samples.

(b) HIF impedance probability distribution: uniform. Average dis-
tance: 0.9967. Blue band covers 85% of the estimation samples.

Fig. 9. Estimated fault location when the empirical fault location is 1.0 km. Upstream measurement location: CB-5 (refer to Fig. 6). Line length: 1.59 km.
Line 11-12 (from-bus to to-bus).

TABLE IX
FAULT LOCATION ERRORS IN DIFFERENT SCENARIOS WITH DGS

INTEGRATED IN THE SYSTEM.

Line Noise var.
Errors (%) when HIF is located at

30% 60% 90%

2-3 (4.167 km)
0 7.2 15.8 19.9

10−4 8.5 16.8 20.6

4-5 (2.04 km)
0 6.1 12.4 15.6

10−4 9.8 17.7 21.7

7-8 (15.0 km)
0 5.2 10.8 17.7

10−4 1.8 6.9 25.8

9-10 (1.59 km)
0 4.1 10.6 12.2

10−4 9.0 12.0 18.4

11-12 (1.05 km)
0 2.5 6.2 7.3

10−4 11.8 16.0 19.0

15-16 (0.098 km)
0 3.9 5.9 8.4

10−4 11.2 14.0 16.6

[5], the measurement accuracy of µ-PMUs is not compromised
in most of the time. However, it is noteworthy that decaying
dc components may be present in fault currents, therefore, not
each µ-PMU has high accuracy in such a condition. Other
sources of inaccurate µ-PMUs data could be dropouts, packet
loss, measurement bias, loss of GPS synchronization, etc., by
which the robustness of the proposed method can be severely
jeopardized. Regular testing and bad data detection mechanism
are required to avoid the data quality issue.

VI. HARDWARE EXPERIMENT PLATFORM

The authors have set up a hardware experiment platform to
validate the proposed HIF monitoring and alarm scheme. This
platform is shown in Fig. 10. The real-time simulator emulates
the 25 kV distribution feeder. Several µ-PMUs are connected
to the analog output of the simulator through amplifiers. Each
µ-PMUs takes three-phase voltage and current signal of a cer-
tain bus and outputs the sample data to the PDC. The detection
algorithm is embedded in the PC, which is programmed with
all the functions of the proposed HIF monitoring and location

algorithm. The results on the detection time are shown in
Table X. We test the HIF detection performance on six lines
(named after from bus - to bus) in Fig. 6. The detection time
is averaged over the measurement results by introducing HIFs
at 30%, 60%, and 90% of the length of the line under study.

The experiment platform utilizes two µ-PMUs to collect
data. As discussed in Section IV-D, current practice is to
send dispatches service personnel to search for the downed
conductor. Therefore, the response and processing time is not
a concern for the HIF detection application. The proposed
scheme actually works as backup protection to catch the HIFs
that overcurrent relays cannot detect. The requirement on the
response time is not strict. In fact, some applications [22],
[49] have achieved the overall latency below 200 ms. It is
noteworthy that the detection output of the proposed scheme
is not sent back to the real-time simulator. Future work can be
done on “closing the loop” by introducing the scheme output
signal to the input of the simulator at the bus where circuit
breaker tripping is anticipated.

Real-time simulator

Distribution 
networks

μ-PMU1 μ-PMU2 μ-PMUn...

Ethernet 
Gateway

PDC

PC

HIF monitoring 
and location 

scheme

Fig. 10. The hardware experiment platform. The red dotted lines indicate
physical connection among real-time simulator, µ-PMUs, PDC, Ethernet
gateway and PC.

VII. CONCLUSIONS

This paper proposes a HIF monitoring and alarm scheme
using µ-PMUs. Results illustrate that through the feature
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TABLE X
HARDWARE EXPERIMENT RESULTS OF THE HIF DETECTION TIME.

Location
of line 2-3 4-5 7-8 9-10 11-12 15-16

Avg.
detection
time (ms)

469 482 488 514 491 470

extraction and selection function we can have a flexible feature
pool and generate a feature group that performs best under a
certain induction algorithm after searching the entire feature
space. The proposed SSL method not only addresses the issue
of high labeling cost but also demonstrates the possibility
of using the unlabeled data to help the overall classification
with high accuracy. After narrowing down the faulty zones,
we developed an HIF location method to locate the fault
considering its probability distribution, the results of which
indicate a small estimation error with the help of µ-PMUs, in
comparison with previous work.

Similar to many other fault location methods that utilize
PMUs or other devices, the admittance matrix is the key to
them. For HIF location, it is suggested that µ-PMUs are placed
at the upstream of critical lines. If any load or DG is at the
upstream of HIFs, the proposed fault detection method can
work but the location method cannot due to the unobservability
issue. To determine where and how many µ-PMUs need to be
placed, more work should be done on the techno-economic
analysis. The HIF location error is mainly contributed by the
variation of the fault impedance (the arcing) and the estimation
of fault current. To further mitigate this error, the investigation
needs to focus on a better modeling of the arcing and the
fault current estimation. Future work on a model-less data-
driven method to assist the HIF location can be an anticipated
solution.

APPENDIX A
PARAMETERS OF THE HIF MODEL

In order to generate a fault current between 10 and 100 A
in a 25 kV benchmark system, the model settings are provided
in Table XI.

TABLE XI
HIF MODEL SETTINGS.

Component Value range Values change every

Vp 5 ∼ 6 kV 0.1 ms

Vn 7 ∼ 8 kV 0.1 ms

Rp 200 ∼ 1, 500 Ω 0.1 ms

Rn 200 ∼ 1, 500 Ω 0.1 ms

APPENDIX B
USING LSE FOR CALCULATING HIF LOCATION

We use one simplified example that views fault impedance
as a constant value to show how fault location is computed.
The discussion considering the probability distribution of the
fault impedance can be found in Section III-C. According to
[28], equation (**) in Section II-C can be reformulated into

vn =
[
Rin + Ldin

dt iF sg+(iF ) sg−(iF )
]
·


δ
RF
Vp
Vn

 , (3)

where

sg+(iF ) =

{
1, iF > 0,

0, iF ≤ 0,
(4)

sg−(iF ) =

{
0, iF ≥ 0,

−1, iF < 0.
(5)

In a typical LSE method, the solution to the parameter
estimation of θ in y = Xθ̂ + ξ is given by

θ̂ = (XTX)−1XT y, (6)

where ξ represents the environment noise. Similarly, the
fault location can be also computed this way. Assume we
utilize N samples of µ-PMU output streaming data (including
the derived data din

dt , each element in equation (3) can be
expanded into
vn,1
vn,2

...
vn,N

 =


(Rin + Ldin

dt )1 iF,1 sg+(iF,1) sg−(iF,1)

(Rin + Ldin
dt )2 iF,2 sg+(iF,2) sg−(iF,2)

...
...

...
...

(Rin + Ldin
dt )N iF,N sg+(iF,N ) sg−(iF,N )

·

δ
RF
Vp
Vn


(7)

The transposed vector in equation (3), which contains the
fault location variable δ, can, therefore, be computed using
(6).
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