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A Feature Selection Method for High Impedance
Fault Detection
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Abstract—High impedance fault (HIF) has been a challenging
task to detect in distribution networks. On one hand, although
several types of HIF models are available for HIF study, they
are still not exhibiting satisfactory fault waveforms. On the other
hand, utilizing historical data has been a trend recently for using
machine learning methods to improve HIF detection. Nonetheless,
most proposed methodologies address the HIF issue starting with
investigating a limited group of features and can hardly provide
a practical and implementable solution. This paper, however,
proposes a systematic design of feature extraction, based on an
HIF detection and classification method. For example, features
are extracted according to when, how long, and what magnitude
the fault events create. Complementary power expert information
is also integrated into the feature pools. Subsequently, we
propose a ranking procedure in the feature pool for balancing
the information gain and the complexity to avoid over-fitting.
For implementing the framework, we create an HIF detection
logic from a practical perspective. Numerical methods show the
proposed HIF detector has very high dependability and security
performance under multiple fault scenarios comparing with other
traditional methods.

Index Terms—High impedance fault, distribution network,
data mining, feature selection.

I. INTRODUCTION

H IGH impedance fault (HIF) normally exists in distribu-
tion power systems with voltages ranging from 4 kV to

34.5 kV. Upon the occurrence of HIF, its immediate vicinity
is imposed with potential danger, which is hazardous to public
safety. Unfortunately, HIFs cannot always be recorded in the
fault report to relay engineers and the reported cases are
therefore less than what line crews observe from the field. It
was revealed in [1] that conventional protection cleared only
17.5% of staged HIFs. With renewable integration into the
distribution grids, the importance of HIF detection increases
dramatically. Therefore, an effective HIF detection method is
required to avoid false tripping and maintain the continuity of
power supply.

Specifically, an HIF is usually associated with an undowned
or downed conductor. The undowned conductor scenario in-
volves the contacts between overhead lines and tree limbs that
have large impedance. Similarly, if a downed conductor falls
on a poorly conductive surface such as sand, asphalt, grass,
soil, and concrete, the fault current might be too low to reach
the pickups of traditional ground overcurrent relays. Typical
fault currents are reported ranging from 10 to 50 amps, with
an erratic waveform [1].

It has been decades for researchers and engineers to seek
for a universally effective solution to HIF detection. At the
early stage, enhancements of conventional relays are proposed,
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leading to a proportional relaying algorithm [2], impedance-
based method [3], and PC-based fault locating and diagnosis
algorithm [4]. However, these methods are ineffective in
detecting HIFs with a low fault current. For this problem,
harmonics patterns are utilized to capture HIF characteristics,
such as magnitudes and angles of 3rd and 5th harmonics [5],
even order harmonic power [6], and interharnomic currents
[7]. Besides, [8] proposes a Kalman-filter-based method to
monitor harmonics in HIF detection. This type of methods
actively injects higher than fundamental frequency signals
like positive/zero voltage signals [9] into the grid to detect
HIFs. Moreover, wavelet transform [10], genetic algorithm
[11] and mathematical morphology [12] are proposed to detect
HIFs. Unfortunately, most of these attempts at addressing
HIF detection issues rely on simple thresholds and logic,
which lacks a systematical procedure that determines the
most effective features for various distribution systems and
scenarios during HIFs. Therefore, it is getting necessary to
introduce a systematic design for a learning framework so
that information gain in high-dimensional correlation can be
quantified for better HIF detections.

For learning, artificial intelligence such as expert system is
proposed in the early 90’s [13]. After this work, methods using
neural networks [14], decision trees [15] and fuzzy inferences
[11] are discussed in the subsequent years. In recent years,
some data processing techniques including wavelet transform
and mathematical morphology are gaining popularity in HIF
detection. These techniques supply historical data to several
machine learning algorithms (Bayes, nearest neighborhood
rule, support vector machine (SVM), etc.) to differentiate fault
cases [16]–[18].

Although the work above reveals the importance of machine
learning in HIF detection, they only utilize a certain type of
detection features on general HIFs. However, it is unlikely
for a certain category to capture all characteristics of HIFs.
Actually, various physical features from multiple types of
signal processing techniques should be generated to explore
the HIF pattern. In addition, the important step of feature
selection should not be omitted before applying any learning
algorithm. Otherwise, the historical data is not utilized enough
for efficient learning in HIF.

This paper contributes to use variable-importance-based
feature selection method to identify an effective feature set
out from a large feature pool. Specifically, we conduct a
systematic design of HIF feature pool by looking into when
the fault happens, how long it lasts, and what the magnitude
of the fault is. For when, we first calculate different quantities
such as active power and reactive power based on the voltage
and current time series. Then, we use the derivative of these
quantities to tell when there is a potential change due to
HIF. For how long, we use discrete Fourier transform (DFT)
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to quantify the harmonics so those suspicious ones can be
recorded for later inspection. For what magnitude, we employ
Kalman Filter (KF) based harmonics coefficient estimation.
Finally, power expert information is integrated into the pool,
e.g., the angle difference between zero and negative sequence
voltage. Finally, we focus on the power of feature extraction,
information ranking, and detection logic, the merits of which
keep unchanged under different HIF models.

In addition to the feature pool establishment, we also
provide a framework for learning: feature ranking for maxi-
mizing information gain, HIF detection logic, and performance
analysis. Inspired by the work in [19], we employ the elements
in the confusion matrix and other associated evaluation cri-
teria for performance comparison. These criteria enable the
performance comparison with the existing high impedance
fault detection techniques. Comparing to the signal processing
techniques in [10]–[12], the applications of DFT and KF in
this paper are mature, simple, cheap and reliable, which are
widely deployed in present digital relays [20] and PMUs [21].

This paper is organized as follows: Section II introduces
three types of HIF models. Section III, IV and V elaborate on
the proposed systematical method of detecting HIFs, from the
feature selection method to the generation of detection logic,
and the suggested performance analysis. The conclusions are
presented in the last section.

II. HIGH IMPEDANCE FAULT MODELING

Although HIF phenomena are difficult to model in general,
there are mainly three ways to model HIFs including both
downed and undowned types for analysis. Each way provides
acceptable similarity with real HIFs from its own perspective.
In the following, we briefly explain each of them and the
motivation behind the chosen model.
• The first one is called the transient analysis of control

systems (TACS) controlled switch, as proposed in [22].
This model emulates arc conduction, re-ignition, and
extinction. The advantage of this model is the adjustable
phase difference between the applied voltage and fault
current.

• The second way originates from the Kizilcay model [23]
which utilizes a dynamic arc model derived from the
viewpoint of control theory based on the energy balance
in the arc column [24].

• The third way of modeling HIF is the employment of
two anti-parallel DC-sources connected via two diodes,
plus two variable resistors. The nonlinear impedances was
included to add the non-linearity of fault current [5]. Later
on, the model is extended with two anti-parallel DC-
sources connected via two diodes [25], which modeled
the asymmetric nature, as well as the intermediate arc
extinction around current zero. The above model was
then modified by adding one [15] or two [17] variable
resistances in series with the DC sources. This kind of
model is able to model the effective impedance and thus
the randomness of the resulting fault current.

In this paper, we employ the third model due to its easiness
of implementation in Matlab Simulink for multiple simulations

to realize the proposed machine learning-based method. In
addition, this model is further improved here by replacing
the two variable resistors with two controlled resistors. Each
controlled resistor has an integrator to represent the moisture
changing process in the vicinity of the point of contact of the
conductor with the ground, a randomizer to introduce more
randomness during HIF and a first-order transfer function to
tune the response to the introduced randomness.

Fig. 1 shows the HIF model used in this paper. This
model connects one phase of the power line to the ground.
Two variable resistors are both changing randomly and model
the dynamic arcing resistance. Two sets of diodes and DC
sources are connected in an anti-parallel configuration. The
two DC sources are randomly varying as well, which model
the asymmetric nature of HIF. The positive half cycle of HIF
current is achieved when Vph > Vp, while negative half cycle
when Vph < Vn. When Vn < Vph < Vp, the current equals to
zero, which represents the period of arc extinction. In order
to generate a fault current down to 10 A in the benchmark
system, we adopt the model settings in Table I.

Vph

RnRp

DnDp

Vp Vn

Fig. 1. HIF two anti-parallel dc-source model.

TABLE I
HIF MODEL PARAMETERS.

Component Value range Values change every

Vp 5 ∼ 6 kV 0.1 ms

Vn 7 ∼ 8 kV 0.1 ms

Rp 30 ∼ 1500 Ω 0.1 ms

Rn 30 ∼ 1500 Ω 0.1 ms

This model, therefore, becomes more accurate than the one
in [17] since the moisture change and system dynamic re-
sponse are incorporated. The obtained HIF current waveforms
are presented in Fig. 2, which clearly displays the irregular,
random, asymmetric and decreasing current waveforms upon
the HIF. On the other hand, the course of arc extinction
is depicted as well around small current in Fig. 3. It not
only highlights the capability of the employed model on arc
extinction modeling but also the asymmetric and nonlinear
characteristics of the HIF. Through a harmonic decomposition
of the measured HIF voltage signal, a total harmonic distortion
of 0.31% is observed on the voltage signal and 24.99% is
observed on the current signal in an ideal single phase circuit
test. It makes sense that a HIF has a severely distorted fault
current due to arcing and a not-much-compromised voltage
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waveform regulated by the grid. Test results of this HIF model
reveal a good modeling performance and are validated in the
simulation [12] and field test results [26].

Fig. 2. The current waveforms upon HIF. The upper waveform shows the
instantaneous and RMS HIF currents during 1 sec. The lower waveform is
zoomed in from the upper waveform from 0.5 to 0.6 sec.
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Fig. 3. HIF V-I characteristics.

III. FEATURE SELECTION METHOD FOR HIGH IMPEDANCE
FAULT

Feature selection helps HIF detection identify key feature
set and reduce data amount/layers, which increases the appli-
cability of the method. Therefore, we elaborate on the way
of selecting the key features in this section. The variable-
importance in feature evaluation is firstly explained, followed
by the pool of features and selected features. The way of
obtaining the feature pool data is highlighted in the end.

A. Variable-importance in Feature Evaluation

The decision-tree-based algorithm in machine learning pro-
vides protection engineers with optimal relay logic and settings
in distribution network protection [27]. However, it is of
significant challenge to locate the key features of HIF given
its randomness and irregularity. In other words, an effective
and unbiased feature evaluator is required to calculate the
merit of each tested feature before the classification between
HIF event and non-HIF event. Here, we take advantages of
the information gain and minimum description length (MDL)-
based discretization algorithm to select important features
during HIF. For the convenience of power background readers,
we call MDL score the variable of importance in this paper.

The MDL-based method relies on the information gain (also
known as entropy). Once the information gain of each feature

is calculated for the classification variable, those features that
contribute more information will have a higher information
gain value over others, whereas those that do not add much
information will have a lower score and can be removed.

The score of variable-importance is one type of selection
measures in machine learning. The problem of selecting the
best attribute can be stated as the problem of selecting the
most compressive attribute [28]. Assuming that all features are
discrete, the objective is to find the best features that maximize
the selection measure. “n..” denotes the number of training
instances and “ni.” is the number of training instances from
class Ci, n.j is the number of instances with the j-th value of
the given attribute, and nij is the number of instances from
class Ci and with the j-th value of the given attribute. Given
C classes, the MDL can be defined as follows using the
logarithm of all possible combinations of class labels:

MDL =
1

n..

((
n..

n1.,...,nC.

)
−
∑
j

log
(

n.j

n1j ,...,nCj

)
+ log

(
n..+C−1

C−1
)
−
∑
j

log
(
n.j+C−1

C−1
)) (1)

In this paper, we use the MDL value to differentiate the
merit of each detection feature for the classification between
HIFs and non-HIFs. More details regarding how the variable-
importance approach has been used in the feature evaluation
for the HIF detection can be found in Appendix A.

B. The Pool of Candidate Features

In this study, 245 features are investigated as candidate
features. For example, the feature pool in Table II is designed
in four steps. Firstly, the time series data of voltage and current
is obtained through with the DFT-based technique. Upon the
aforementioned data, the feature pool is greatly expanded with
multiple physical quantities through calculation in the second
step. These calculated measurements range from the basic
value (e.x. df , frequency) to the first order derivative (e.x.
df/dt, the rate of change of frequency), considering both the
absolute value and its changing rate. Thirdly, the harmonic
coefficients are estimated through the KF-based technique,
presenting the in-phase and in-quadrature components, i.e.
KF I sin H1. Lastly, in order to capture some unconven-
tional phenomena, some features are invented in the category
of ”other feature”. For example, θV2

−θV0
, the angle difference

between the negative and zero sequence voltage, is a good
indicator of the unbalance level in distribution grids. Note that
harmonic phase angles are in harmonic degrees and are the
phase difference between the zero crossing of the fundamental
frequency reference and the next zero crossing in the same
direction of the harmonic.

Remark 1. These features are extracted mainly through two
techniques: discrete Fourier transform (DFT) and Kalman
filter (KF). Both techniques are simple, reliable and imple-
mentable in engineering fields. The DFT is used to capture the
majority of physical quantities in fault detection as is widely
used in microprocessor-based relays. On the other hand, the
utilization of the KF-based algorithm is motivated by the fact
that it can accurately track the harmonics and inter-harmonics
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coefficients at given frequency components embedded in the
input signals.

TABLE II
FEATURE POOL.

Feature Type Designed Feature Other Feature

DFT-based

df, df/dt, P, dP/dt, pf, df/dP, df/dQ,

dpf/dt,Q, dQ/dt, φ, dφ/dt, dV/dP, dV/dQ,

HV 1 ∼ HV 6, HI1 ∼ HI6, dHV 1/dt, dHI1/dt,

Vabc, V012, Iabc, I012, dI/dt, θV2
− θV0

, θI2 − θI0
dV/dt, Vph, Vll, θV012 , θI012 ,

θHV 1 012
, θHI1 012

KF-based

KF I cos H1 ∼ H6, KF V DC

KF I sin H1 ∼ H6,

KF V cos H1 ∼ H6,

KF V sin H1 ∼ H6

We are trying to include as many important and imple-
mentable features as possible. For instance, the parameters
of “when” a HIF occurs such as the rate of change of active
power (dP/dt) form a certain group of features in the feature
pool. It actually does not matter if some non-HIF cases such
as capacitor bank switching lead to similar changes since these
cases only trigger certain features but not all features together
in the proposed feature set or any well-trained statistical
machine learning model. The reason for such choice is the
adopted machine learning model might be so complicated that
it needs the assistance of the “when” feature group at different
thresholds for decision-making.

C. Systems and Events for Feature Selection

1) Benchmark System: The benchmark system utilized can
be found in Fig. 4. The system configuration under different
distributed energy resource (DER) technologies is presented
in Table III. The wind farm is type 4 and rated at 575 V, 6.6
MVA. According to IEEE Standard 1547, the wind farm adopts
constant power control with LVRT capability. The maximum
fault current is limited to 1.5 pu.

TABLE III
SYSTEM CONFIGURATION UNDER DIFFERENT DER TECHNOLOGIES.

System Type Location A Location B

Synchronous-machine-based system SG N/A

Inverter-based system WF N/A

Hybrid system SG WF

SG, WF and N/A stand for the synchronous generator, wind farm
and “not available“ respectively.

2) Events Under Study: The technique is transferable on
different feeders because the event category and event type in
Table IV are suitable for most of distribution feeders during the
training. Some of the event numbers are explained as follows.
The 10 events from Type 1 is associated with the undowned
conductor, where 3 SLG (AG, BG, CG), 3 LLG (ABG,
ACG, BCG), 3 LL (AB, BC, AC), and 1 LLLG (ABCG)
faults are included. The 3 events of Type 2 fault are the
downed conductor for each phase. The fault impedance values
includes 50, 150, 250, 350, 450, and 550 Ω in this paper. In
load switching, the 6 types of non-fault events include 4 single

load switching (L-4, L-9, L-19, L-23) and 2 combinational
load switching ((L-2,L-4,L-5) and (L-9, L-10)) events. The
system loading for the normal state is shown in Appendix B.
The 2 capacitor switching events have both the on and off
status of the capacitor bank near bus B-15.

Moreover, the event category is flexible and can be tailored
for other special systems by adding or deleting some of
the event categories/types. In this case study, comprehensive
scenarios are considered in the event category (refer to Table
IV). A loading condition ranging from 30% to 100%, in a step
of 10%, is simulated. Furthermore, eight loading conditions
and three DG technologies are examined respectively on top
of the base case scenario. Therefore, the number of fault and
non-fault events are calculated as follows:
• Fault event: since two types of fault, summing up to

13 cases, are included, the number of fault events with
one fault impedance, one fault location and one fault
impedance is (10 + 3)× 8× 3 = 312. Given 6 simulated
fault impedances, 4 fault inception angles, and 3 fault
locations, the total number of fault events add up to
312× 6× 4× 3 = 22464.

• Non-fault event: it comprises normal state, load switching
(adding and shedding) and capacitor switching events.
Therefore the total number of non-fault events equals to
(1 + 6 + 2)× 8× 3 = 216.

The above event number results in an imbalanced dataset,
where the number of data points belonging to the minority
class (“non-fault“) is far smaller than the number of the data
points belonging to the majority class (“fault“). Under this
circumstance, an algorithm gets insufficient information about
the minority class to make an accurate prediction. Therefore,
the synthetic minority over-sampling technique (SMOTE) is
employed to generate synthetic samples and shift the classifier
learning bias towards minority class [29].

TABLE IV
EVENT CATEGORY OF SYSTEM UNDER STUDY.

Event Category Event Type Number
of Events

System Operating Loading Condition (30%-100%) 8
Condition DER Tech. (SG, inverter, hybrid) 3

Fault Event

Type 1: SLG, LLG, LL, LLLG 10
Type 2: Downed conductor 3
Fault impedance 6
Inception Angle (0°, 30°, 60°, 90°) 4
Fault location 3

Non-fault Event
Normal State 1
Load Switching 6
Capacitor Switching 2

3) Spatial data extraction: The HIF detection method
should include spatial data by implementing current and
voltage transformers and measurement devices at a substation
and the downstream of the feeder. Knowledge extracted from
these measurements is able to serve data from the spatial
dimension for better detection coverage. Moreover, the pro-
posed HIF detector installed along the distribution feeder is
supplementary to the devices installed near the substation.
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Fig. 4. Single line diagram of distribution feeder under study.

Since the further the HIF is to the substation, the lower the
signal magnitude becomes if the HIF detector is installed near
the substation. The signal sensitivity and accuracy issues are
therefore addressed.
D. Effective Feature Set (EFS)

Finally, we propose an EFS in Table V after mining the
collected data, applying the feature ranking algorithm and
selecting the effective feature set (EFS) by considering the
comprehensive performance in different distribution systems
in Table III. The authors determine the cut-off point through a
simple descending search process in the variable-importance
list. A trade-off is realized between the detection performance
improvement and the complexity of the detection logic. We
start the search process by testing the first feature that has
the highest score, then the first two features with the highest
scores, then the first three and so on. Then we set two stopping
criteria: (1) the incremental of detection accuracy (A, defined
in Appendix C) of two adjacent tests is larger than 0.1%,
and (2) the number of features is smaller than a practical
number N (N = 15 is adopted in this paper). After extensive
tests, we find that the increase of the performance indices
becomes marginal when the variable-importance threshold is
selected at 0.787. Meanwhile, the complexity of the detection
logic and the number of signals are within an acceptable
level (6 signals ignoring phases, three categories, suitable for
unbalanced faults as shown in Table V).

According to the mathematical formulation and physical
interpretation in Section III-A and III-B, the reasons that
enhance these features to be used for the fault detection are
(1) some physical quantities are statistically more relative to
the classification results than others, and (2) based on the
merit of each feature, the features in Table IV contribute more
information gain than others. For example, θV2−θV0 , the angle
difference between the negative and zero sequence voltage, is
selected since it captures the incremental of the unbalance level
contributed from HIFs to distribution grids. The using of the
angle difference between zero and negative sequence voltage is
inspired by the work in [5], [30], and the practical engineering
experience of the authors. To the best of our knowledge, this
feature is utilized in some other fault detection application
such as [30], but not in HIF detection before. Table VI shows
the reference to the unbalanced fault detection features in EFS.

TABLE V
EFFECTIVE FEATURE SET OF HIF DETECTION IN THREE TYPES OF

DISTRIBUTION SYSTEMS.

Fault Type Proposed Feature

SLG, LL, LLG
V2, I2, θV2

− θV0
, θI2 − θI0

KF V cos H3,KF V sin H3

LLLG
Vll, Vph, HV 1, θHV 1 1

KF I cos H1,KF I sin H1

TABLE VI
REFERENCE TO THE UNBALANCED FAULT DETECTION FEATURES IN EFS.

Feature in EFS Reference
V2 [5], [31]
I2

θV2
− θV0 [30], [5]

θI2 − θI0
KF Va cos H3 [5] (3rd harmonic), [8] (KF and low-order odd
KF Va sin H3 harmonic), [32] (KF harmonic decomposition)

IV. HIGH IMPEDANCE FAULT DETECTION LOGIC

Inspired by the tree structure of the machine learning
classifier model, the authors further explore the possibility
of relating the EFS and the detection logic using simple
thresholds as most of the commercial products [33] and patents
do [34]. Statistically, since three-phase faults take up only
2%−3% of the fault occurrences [35], an HIF detection logic
is designed in this regard for unbalanced HIF only.

The HIF detection logic is targeted to be implemented
in a microprocessor-based digital relay, as guaranteed by
the selected feature selection techniques discussed in Section
III-B. Similar to conventional digital relays, the proposed relay
logic takes the voltage and current signals as its input. In
addition, DFT and KF are required for corresponding feature
extraction. Before the explanation of the HIF detection logic,
the logic circuit is presented first in Fig. 5. Generally, the
proposed HIF detection scheme updates its comparison and
decision logic according to the obtained decision tree structure.

As indicated in the detection logic, three-phase voltage and
current signals are sent to DFT and KF for feature extraction.
This section takes the obtained EFS in Section III as an
example. (2) and (3) show the extracted instantaneous signals
after the DFT and KF blocks:
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Fig. 5. The proposed HIF detection logic scheme.

S̄DFT = {s1, s2 s3, s4} = {V2, I2, θV2
− θV0

, θI2 − θI0} (2)

S̄KF = {s5, s6, s7, s8, s9, s10} = {KF Va cos H3,

KF Vb cos H3,KF Vc cos H3,KF Va sin H3,

KF Vb sin H3,KF Vc sin H3}
(3)

A. System Characteristic Averager

The input of the System Characteristic Averager is the
extracted instantaneous signals after the DFT and KF blocks.
Meanwhile, the time duration T̄ needs to be provided to this
averager. Specifically, the System Characteristic Averager has
a memory that stores the signals for a predefined duration of
T̄ = {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10}. In other words, T̄ is
the time constant that is a vector of ten elements associated
with S̄DFT and S̄KF . The input signals are stored and calcu-
lated at every 18, 000 cycles (5 minutes) [5]. After each batch
of average value calculation, the system will automatically
overwrite the earliest records once the storage capacity has
been reached. The five minutes interval is subject to change
depending on the case-specific analysis. Normally, the five-
minute data is feasible for the distribution system condition
evaluation and for modern digital relay implementation. For
example, the HIF solution by SEL Inc. also deploys a memory
function to record unusual signal changes related to system
HIF [33], [36]. In-depth simulation or experimental results can
be conducted to validate the effectiveness of this time constant
over a large time scale. In the end, each time constant is either
increased or decreased depending on the signal’s slow or fast
dynamic process.

To avoid signal spikes, a limiter is implemented at the
beginning of each signal channel. Meanwhile, the time con-
stant T̄ is set according to the system characteristics of each
individual signal. A small ti (i = 1, 2,· · · , 10) can avoid
severe step change of signal but a large ti costs more data
storage and computational efforts. The output of the System
Characteristic Averager block generates the reference value
si ref (i = 1, 2,· · · , 10) for the Comparison Logic. A reliable
average value is a prerequisite to successful detection.

B. Comparison Logic

The block of Comparison Logic is depicted in Fig. 6.
Based on the feature extraction technique discussed in Section
III, the extracted instantaneous signal si can be understood
as the system background signal superimposed by the extra
signal contributed from the HIF behavior. The comparison is
therefore made between the extracted instantaneous signal si
and its reference value si ref [5].

Sign

ki

si

si_ref

x y
bi

Fig. 6. Comparison Logic in the proposed HIF detection logic.

The sensitivity gain of ki is incorporated in order to 1) set
the margin of detection and 2) add a handle to the detection
sensitivity. Where the undefined parameter of K̄ stands for:

K̄ = {k1, k2, k3, k4, k5, k6, k7, k8, k9, k10} (4)

The sensitivity gain K̄ is set at 1.2 (adjustable for each
element). The 20% above and below margin is adjustable and
is taken as typical blackout region where the HIF tripping is
not required [5]. This ki value can be set to close to 1.0 after
getting more confidence in HIF fault detection scheme. After
the summation block in Fig. 6, a Sign function is employed
to provide the following decision making:

• When x > 0, y = 1;
• When x 6 0, y = 0.

The output of the comparison logic is the comparison
assertion bit of bi (i = 1, 2,· · · , 10), the B̄, which is the input
to the decision logic.

C. Decision Logic

As mentioned in the previous subsection, the comparison
assertion bit of bi (i = 1, 2,· · · , 10) is the output of the
comparison logic in Fig. 6. The decision logic in Fig. 7, is
the execution part of the HIF detection logic. There are four
groups of signal bits:

b5

b6

b1

b2

b3

b4

b7

b8

b9

b10

bblock

 

AND

ANDOR

OR

Time Delay
(TD)

Fig. 7. Decision Logic in the proposed HIF detection logic.

1) DFT-based assertion bits. The four bits go through an
AND gate. If any of the four signals are not asserted,
the decision logic will not be set high.

2) KF-estimated in-phase components of third harmonic
voltage. If none of the three-phase in-phase components
of third harmonic estimated from the KF gets asserted,
the decision logic will not be set high.

3) KF-estimated in-quadrature components of harmonic
voltage. If none of the three-phase in-quadrature com-
ponents of third harmonic estimated from the KF gets
asserted, the decision logic will not be set high.
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4) The blocking bit bblock. If this bit is 1, the detection logic
is blocked and none of HIF events can be detected; if
this bit is 0, HIF detection is enabled.

A time delay of TD is implemented because an appropriate
selection of TD can effectively avoid the false operation
resulting from normal switching, which sometimes contributes
to third harmonics. The output of the HIF logic is either
alarming or tripping signal.

D. Performance Test of the Proposed HIF Detection Logic

1) Testing Environment: The proposed HIF detection logic
is tested under 7884 new scenarios: 7776 unbalanced faults and
108 non-faults. The fault locations under testing include faults
near B-3, B-11, and B-19. The detailed analysis regarding fault
locations can be found in Section V-B3. Similar to the work
in [5] and [12], the measurement point is at the substation. Its
sampling frequency is 2000 Hz. The time delay in Fig. 7 is set
to 100 ms. The average fault detection time is 0.126 sec using
OPAL-RT real-time simulator. The signals measured are the
three-phase voltage and current. The features used are derived
from the measured signals and can be found in the EFS in the
unbalanced fault row of Table IV.

2) Testing Criteria: In order to compare the proposed
technique with some existing ones in the field, we adopt
some of the criteria in [19], [37], including the accuracy (A),
dependability (D), security (S), speed (V), objectivity (OBJ),
and completeness (COM). The detailed definition of these
evaluation criteria is shown in Appendix C. We compare the
performance of the proposed method with four representative
HIF detection methods in [5], [16], [37], [38], as well as the
combined conventional relay elements (including frequency,
over/under voltage, over current) in Table VII. The methods
in the comparison group cover logic-gate based HIF detector,
wavelet domain analysis, time-frequency domain analysis, and
pattern recognition techniques.

TABLE VII
HIF DETECTION LOGIC PERFORMANCE COMPARISON.

Solution under test A
(%)

D
(%)

S
(%) V OBJ COM

The proposed EFS and
HIF detection logic 97.0 98.3 95.7 0.13 No Yes

The work in [5] N/A 69.0 90.7 N/A No Yes

The work in [16] 96 90 100 0.25 No No

The work in [37] 93.6 100 81.5 1.00 Yes Yes

The work in [38] 94.9 90.0 90.9 0.11 No Yes

Combined conventional
relay elements 49.1 0.0 98.2 N/A Yes Yes

Note: N/A stands for “Not Available” in this table.

3) Performance Comparison: Comparing with the other
five methods in Table VII, it is indicated that the proposed
method has a superior overall performance in terms of the
six evaluation criteria. For example, the detection accuracy of
the proposed method is the highest among the solutions under
test; its detection speed (1/60/0.126 = 0.13, according to
Appendix C) is not the fastest but fits well in the HIF detector

requirements on response time 1. The detection time of less
than 1 second, which means the minimum speed of 0.017 in
a 60 Hz network is viewed as a conservative setting [12].

4) Security Performance Under Inrush Currents: Inrush
currents resulting from transformer energization and motor
starting are investigated in this subsection. We have modified
the benchmark system in Fig. 4 by integrating a three-phase
500 kVA transformers at L-2, as well as three 500 hp induction
motors (the stator windings in delta configuration) at L-3, L-
10, L-24. Consequently, aligned with Table IV, the number
of transformer energization events is 4 × 8 × 3 = 96 (four
inception angles 0◦, 45◦, 90◦, 135◦, eight loading conditions,
and three system configurations); the number of motor starting
events is 3 × 8 × 3 = 72 (three event locations, eight
loading conditions, and three system configurations). Table
VIII demonstrates the security index under these two types
of events. Based on the results, the proposed technique has
very high security performance and therefore can effectively
avoid false tripping under inrush currents.

TABLE VIII
SECURITY PERFORMANCE OF THE PROPOSED HIF DETECTION LOGIC

UNDER INRUSH CURRENTS.

Non-fault Event Type Number of Events S (%)

Transformer energization 96 100

Motor starting 72 100

5) Noise Immunity Capability: Environmental noise can
potentially cause false tripping for the HIF detection tech-
niques. The performance of the HIF detection logic under
white noise conditions of 5, 10, and 20 dB is tested. The test
is similar to the Out-of-Band test defined in IEEE Standard
C37.118.1 for PMUs. The testing scenarios in Section IV-D1
are repeated in MATLAB with the three types of noise
conditions added on the measurement.

It is found that the obtained results are closely matching the
ones in Table VII. The proposed technique is designed to be
immune to noise for the following reasons. Firstly, the signal
processing techniques in both DFT and KF blocks in Fig. 5 are
equipped with band-pass filters that pass frequencies within a
certain range and suppress noise occurring beyond the filters
bandwidth. Secondly, as discussed in Section IV-A, the system
characteristic averager is implemented with a limiter for each
signal channel to avoid signal spikes. The proper selection of
the time constant T̄ can also help mitigate this issue. Thirdly,
both the proposed detection logic and the machine learning
model to be tested in the next section are immunized to the
noise by itself because they are statistically reliable and the
spikes no matter from noise or from derivatives cannot trigger
the whole detection logic or the machine learning model.
Fourthly, since the high frequency noise is typically very short
(few cycles), the time delay that is implemented in the decision

1According to [1], to the degree that a utility’s service personnel can provide
very fast response, there may be less need to de-energize a feeder with a
suspected downed conductor. On the other hand, should the decision be made
to trip, the fast response by service personnel to isolate the faulted section
and restore the remainder of the feeder would minimize the effects of de-
energizing.
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logic (Fig. 7) can help distinguish high frequency noise from
HIFs. In sum, if a certain environmental situation is able to
compromise the security, the aforementioned points should be
satisfied simultaneously. In sum, if a certain environmental sit-
uation is able to compromise the security, the aforementioned
points should be satisfied simultaneously.

V. PERFORMANCE ANALYSIS

Performance analysis includes the most commonly occur-
ring single-line-to-ground-fault, the fault scenario analysis, and
the testing results.

A. Single-line-to-ground Fault Analysis

Typical waveforms of the proposed EFS upon single-line-
to-ground fault are shown in this subsection. A single-line-
to-ground HIF is applied in a hybrid distributed generation
system (refer to Fig. 4) when t = 0.3 second. Fig. 8 shows a
representative waveform among EFS.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Time (s)

-200

-100

0

100

200

300

D
eg

re
e

Typical waveforms upon HIF

V2- V0

I2- I0

Fig. 8. Typical waveforms angle difference between zero and negative
sequence voltage and current under HIF.

B. Fault Scenario Analysis

We evaluate the Effective Feature Set (EFS) in terms of
different fault impedances, fault inception angles, and fault
locations. The quantifier for evaluation is the variable of
importance explained in Section III-A.

1) Fault Impedance: To be practical, this paper investigates
the fault impedance up to 500 Ω to cover typical HIFs whose
fault currents are as low as 10 amps. The variable-importance
performances of each feature in EFS upon single-line-to-
ground (SLG) fault, line-to-line (LL) fault, line-to-line-to-
ground (LLG) fault, and three-line-to-ground (LLLG) fault are
all depicted. It is concluded that:
• The negative sequence of voltage and current are most

reliable features that can keep unaffected during any
unbalanced fault upon a varying fault impedance (Fig.
9(a), to be noticed that the dark blue line for V2 is covered
by other lines with the value of 1).

• The feature of the angle difference between negative
sequence voltage and zero sequence voltage is reliable
under LL faults but vulnerable to high fault impedance
under SLG and LLG faults (Fig. 9(a)-(d)).

• The third harmonic components estimated from KF gets
deteriorated when the fault impedance increases under
SLG and LL faults (Fig. 9(a) and (b)).

• The proposed three-phase HIF detection features are
all performing very well except for the fundamental
in-quadrature component of current estimated from KF
under LLLG faults (Fig. 9(d)).

Furthermore, the proposed algorithm is applicable to unbal-
anced power systems. Since the employed feature selection
method is based on the information gain, what is captured
by the information gain is the incremental or variation of the
negative sequence signal. Only when the variation pattern of
the negative sequence feature contributes to the information
gain given the output label belongs to the HIF, does this
feature get selected by the proposed algorithm. As a result,
the proposed method is applicable to an already unbalanced
system.

2) Fault Inception Angle: The effect of fault inception an-
gle is examined as well in this study. The results of unbalanced
faults and three phase faults are selectively shown in Fig.
10(a)-(c) respectively. The results in these figures include a
varying impedance from 30 Ω to 500 Ω.

The fault inception angle is an insignificant factor that can
perturb variable importance. The angles of 30° and 60° result
in a subtle decrease in the variable of importance of the KF
estimated third harmonic, but the change is limited. For an
LLLG fault, the first order harmonic components of current
estimated by KF have a performance drop in non-zero angles.

3) Fault Location: The variable-importance of the features
in EFS is presented at three fault locations (bus numbers refer
to Fig. 4):
• Location 1: Fault near Bus B-3;
• Location 2: Fault near Bus B-11;
• Location 3: Fault near Bus B-19;
The result is demonstrated in Fig. 10(c), including all fault

impedance and all fault inception angles in Table IV. The
feature of negative sequence current keeps being unaffected
at each location. However, the negative sequence of voltage
is so low at location 1 and 2 that the variable of importance
becomes almost zero. As the strong voltage source from the
substation is ideally balanced, the negative sequence voltage
deviation contributed from the HIF is weak. Location 3 is far
from the substation, so the negative sequence voltage becomes
a good HIF indicator again. To a negligible extent, it is similar
for the variable of importance performance of other features:
the further the fault is, the less compromised the features are.

C. Testing Results of the Effective Feature Set (EFS)

The proposed EFS is tested under the aforementioned
conditions in Table IV, but with dataset on different events.
1944 HIF events and another 1944 non-HIF events (they are
unnecessary to be the same number) are simulated for the
training of the HIF detector. The types of testing events are
similar to those of training events, but at different locations or
with different parameter values. There are totally 972 HIF and
972 non-HIF events in the testing. In addition, five classical
classifiers (Naive Bayes, Support Vector Machine, k-nearest
neighbor, decision tree and random forest) from Weka are
compared in order to find the best classifier.

The results with the proposed EFS under different classi-
fiers, shown in Table IX, reveal the effectiveness of the feature
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Fig. 9. Variable-importance of all features under faults in a grounded system.

selection. To limit problems such as over-fitting and inaccuracy
in prediction, each classifier model is acquired through the 10-
folder cross-validation. The performance with Naive Bayes
presents the lowest values. The accuracy of the other five
classifiers are all above 90%, and remarkably, the performance
of the selected artificial neural network (ANN) classifier is
exceptionally good. It shows that the proposed EFS works
well with most of the non-linear classifiers in HIF detection.
However, due to the limited interpretability and debuggability
of these classifiers, this paper adopts some linear logic from
the tree based classifiers.

TABLE IX
PERFORMANCE OF HIF DETECTION WITH THE EFS WITH DIFFERENT

CLASSIFIERS.

Classifier A (%) D (%) S (%)

Naive Bayes 78.0 73.0 82.9

SVM 91.9 89.6 94.1

k-nearest neighbor 98.0 97.7 98.3

Decision Tree 99.4 99.5 99.3

Random Forest 99.7 99.7 99.8

ANN 100.0 100.0 100.0

D. Discussions on the HIF Detection Logic and Classifiers

Derived from the tree structure of the machine learning
classifier model, the proposed HIF detection logic aims to
simplify the HIF detection process and be implemented in
microprocessor-based relays. The logic complexity of the pro-
posed technique in Fig. 5 is largely reduced. The trade-off here
is the HIF detection performance. Fortunately, the discovery
of the EFS guarantees a high detection accuracy (97% as
shown in Table VII) in the proposed logic. On the other
hand, although having excellent HIF detection performance,
non-linear classifiers like ANNs is still facing the engineering

challenge to be implemented in the digital relays. The multiple
interconnected neurons and layers of ANNs require a higher
performance CPU than the one in the digital relays.

The most computationally expensive parts in a machine-
learning-based HIF detection algorithm are usually the feature
extraction and classifier. In the proposed algorithm, both the
features and classifiers are obtained from offline simulation.
Therefore, the offline simulation is computationally expensive.
An Intel i7 CPU suffices for the majority of HIF detection
simulation tasks. If the electric network and operational com-
plexity increase significantly comparing to the system under
study, a GPU is required to conduct the offline simulation
and obtain the settings. The proposed HIF detection logic,
however, does not demand many computational resources and
can be integrated into a microprocessor-based relay. Section IV
elaborates on the implementation of this logic. If the non-linear
classifiers in Table IX are to be implemented in a commercial
relay for “real-time” operation, the hardware realization needs
to consider a CPU/GPU platform with parallel computation
paradigms, a multiply and accumulate operation architecture
to deal with the matrix-matrix product of the features and the
weights, and a memory hierarchy to store data such as the
network weights, etc. [39].

E. Detection Under Low Current Magnitude Levels

The proposed HIF detection technique relies on the time
domain features, therefore, its performance can be influ-
enced when the fault current magnitude is low. In the 25 kV
benchmark distribution network, the current magnitude in
the case study of 500 Ω fault impedance goes down to
25000/

√
3/500 = 28.87 A. The proposed EFS and HIF

detection logic can still maintain a high detection perfor-
mance (97.0% of accuracy). Further tests indicate that the
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Fig. 10. Variable-importance at different fault inception angles and locations.

proposed method can detect a fault current down to 14 A
(fault impedance up to 1000 Ω) with the detection accuracy
of 87.9%. However, as the fault impedance rises, the variable-
importance of some features like θV2

− θV0
drop significantly

(Fig. 9(a)). The precision issue is a problem for many HIF
detection techniques. Although the proposed method cannot
fully eliminate this problem, two mitigating approaches are
recommended: (1) since the proposed technique utilizes the
substation as its measurement point, more proposed HIF
detectors can be installed along the feeder to receive stronger

signals and reduce measurement noise, and (2) measurement
devices with higher precision can significantly improve detec-
tion performance under lower current magnitude levels.

VI. CONCLUSIONS

This paper proposes a new framework for HIF detection
and classification. By introducing the MDL-based algorithm to
rank a pool of systematically designed features, an effective
feature set is generated. The detection capability of such a
ranked feature set is evaluated through a comprehensive fault
analysis. Furthermore, an applicable logic is recommended
based on the extensively used techniques of DFT and KF as
well as easily implementable logic gates. It is shown that the
proposed method achieves significantly enhanced performance
in HIF detection with the effective feature set in different
scenarios and that the proposed HIF detection logic exhibits
satisfactory dependability, security, and detection time using
the real-time simulator.

This paper focuses on 1) proposing an innovative solu-
tion to extracting the useful features with advanced machine
learning methods, and 2) designing a computational simple
HIF detection logic that can be easily translated into relay
manufacturing. Admittedly, our lab has not done the physical
experiments by far due to the present laboratory condition.
In future research, the authors would like to include more
physical HIF experiments. The real-world experiment will
be helpful to test the proposed method and enhance the
practicality.

APPENDIX A
DERIVATION OF THE MINIMUM DESCRIPTION LENGTH

Assuming that all features are discrete, the objective is to
find the best features that maximize the selection measure.
Let C, A and V denote the number of classes, the number
of features, and the number of values of the given feature.
With this notation, we show in the following the entropy of
the classes (HC), the values of the given feature (HA), the
joint events class-feature value (HCA), and the classes given
the value of the attribute (HC|A).

HC = −
∑
i

pi. log pi., HA = −
∑
j

p.j log p.j ,

HCA = −
∑
i

∑
j

pij log pij , HC|A = HCA −HA,

where pij = nij/n.., pi. = ni./n.., p.j = n.j/n.. and pi|j =
nij/n.j . “n..” denotes the number of training instances and
“ni.” is the number of training instances from class Ci, n.j
is the number of instances with the j-th value of the given
attribute, and nij is the number of instances from class Ci

and with the j-th value of the given attribute.
The approximation of the total number of bits that are

needed to encode the classes of n.. is:

Prior MDL′ = n..HC + log
(
n..+C−1

C−1
)
, (5)
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and the approximation of the number of bits to encode the
classes of examples in all subsets corresponding to all values
of the selected attribute is:

Post MDL′ =
∑
j

n.jHC|j +
∑
j

log
(
n.j+C−1

C−1
)

+ logA.

The last term (logA) is needed to encode the selection of an
attribute among A attributes. However, this term is constant
for a given selection problem and can be ignored. The first
term equals n..HC|A. Therefore, the MDL′ measure evaluates
the average compression (per instance) of the message by an
attribute. The measure is defined by the following difference,
Prior MDL′ − Post MDL′, normalized with n..:

MDL′ = Gain +
1

n..

(
log
(
n..+C−1

C−1
)

(6)

−
∑
j

log
(
n.j+C−1

C−1
))
. (7)

However, entropy HC can be used to derive MDL′ if the
messages are of arbitrary length. If the length of the message
is known, the more optimal coding uses the logarithm of all
possible combinations of class labels for given probability
distribution:

Prior MDL =
(

n..
n1.,...,nC.

)
+ log

(
n..+C−1

C−1
)

(8)

Similarly, if we use the priori minus the posterior of the
MDL, (1) is obtained. The MDL value in (1) is the evaluation
index we deployed for the variable-importance approach.

APPENDIX B
FEEDER LOADING PER PHASE OF THE SYSTEM UNDER

STUDY

TABLE X
SYSTEM CONFIGURATION UNDER DIFFERENT DER TECHNOLOGIES.

Phase Active power (kW) Reactive power (kVar)

A 3, 297 745

B 3, 052 671

C 4, 425 987

Total 10, 774 2, 403

APPENDIX C
DEFINITION TO THE HIF DETECTION EVALUATION

CRITERIA

We borrow the concepts of true positive (TP), true negative
(TN), false positive (FP), and false negative (FN) from statisti-
cal classification, and define them and their related evaluation
criteria [37] as follows:
• TP: the number of correctly detected fault events.
• TN: the number of correctly detected non-fault events.
• FP: the number of incorrectly detected fault events but

they are actually non-fault events.
• FN: the number of incorrectly detected non-fault events

but them are actually fault events.
• Accuracy: A = TP+TN

TP+FP+TN+FN %.
• Dependability: D = TP

TP+FN %.

• Security: S = TN
TN+FP %.

• Speed: V =
Tone−cycle

Tdetection
%, where Tone−cycle and

Tdetection are the time duration of one cycle and the
detection time respectively.

• Objectivity (OBJ): the objectivity to fault type and net-
work, indicating whether the technique is objective to the
type of fault, and the network topology.

• Completeness (COM): the ability to hold important in-
formation, indicating the time window of the data that is
needed for the method to make the crucial decision for
HIF.
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