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Abstract

We examine gradient descent on unregularized logistic regression problems, with homogeneous
linear predictors on linearly separable datasets. We show the predictor converges to the direction
of the max-margin (hard margin SVM) solution. The result also generalizes to other monotone de-
creasing loss functions with an infimum at infinity, to multi-class problems, and to training a weight
layer in a deep network in a certain restricted setting. Furthermore, we show this convergence is
very slow, and only logarithmic in the convergence of the loss itself. This can help explain the
benefit of continuing to optimize the logistic or cross-entropy loss even after the training error is
zero and the training loss is extremely small, and, as we show, even if the validation loss increases.
Our methodology can also aid in understanding implicit regularization in more complex models
and with other optimization methods.
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1. Introduction

It is becoming increasingly clear that implicit biases introduced by the optimization algorithm play a
crucial role in deep learning and in the generalization ability of the learned models (Neyshabur et al.,
2014, 2015; Zhang et al., 2017; Keskar et al., 2017; Neyshabur et al., 2017; Wilson et al., 2017). In
particular, minimizing the training error, without explicit regularization, over models with more pa-
rameters and capacity than the number of training examples, often yields good generalization. This
is despite the fact that the empirical optimization problem being highly underdetermined. That is,
there are many global minima of the training objective, most of which will not generalize well, but
the optimization algorithm (e.g. gradient descent) biases us toward a particular minimum that does
generalize well. Unfortunately, we still do not have a good understanding of the biases introduced
by different optimization algorithms in different situations.

We do have an understanding of the implicit regularization introduced by early stopping of

stochastic methods or, at an extreme, of one-pass (no repetition) stochastic gradient descent (Hardt et al.,

2016). However, as discussed above, in deep learning we often benefit from implicit bias even when
optimizing the training error to convergence (without early stopping) using stochastic or batch meth-
ods. For loss functions with attainable, finite minimizers, such as the squared loss, we have some
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understanding of this: in particular, when minimizing an underdetermined least squares problem us-
ing gradient descent starting from the origin, it can be shown that we will converge to the minimum
Euclidean norm solution. However, the logistic loss, and its generalization the cross-entropy loss
which is often used in deep learning, do not admit finite minimizers on separable problems. Instead,
to drive the loss toward zero and thus minimize it, the norm of the predictor must diverge toward
infinity.

Do we still benefit from implicit regularization when minimizing the logistic loss on separable
data? Clearly the norm of the predictor itself is not minimized, since it grows to infinity. However,
for prediction, only the direction of the predictor, i.e. the normalized w(t)/ ||w(t)||, is important.
How does w(t)/ ||w(t)| behave as ¢ — oo when we minimize the logistic (or similar) loss using
gradient descent on separable data, i.e., when it is possible to get zero misclassification error and
thus drive the loss to zero?

In this paper, we show that even without any explicit regularization, for all linearly separa-
ble datasets, when minimizing logistic regression problems using gradient descent, we have that
w(t)/||w(t)| converges to the Lo maximum margin separator, ie. to the solution of the hard mar-
gin SVM for homogeneous linear predictors. This happens even though neither the norm || w/||, nor
the margin constraint, are part of the objective or explicitly introduced into optimization. More
generally, we show the same behavior for generalized linear problems with any smooth, monotone
strictly decreasing, lower bounded loss with an exponential tail. Furthermore, we characterize the
rate of this convergence, and show that it is rather slow, wherein for almost all datasets, the distance
to the max-margin predictor decreasing only as O(1/log(t)), and in some degenerate datasets, the
rate further slows down to O(loglog(t)/log(t)). This explains why the predictor continues to im-
prove even when the training loss is already extremely small. We emphasize that this bias is specific
to gradient descent, and changing the optimization algorithm, e.g. using adaptive learning rate meth-
ods such as ADAM (Kingma and Ba, 2015), changes this implicit bias.

2. Main Results

Consider a dataset {x,, yn}gzl, with x,, € R and binary labels y,, € {—1, 1}. We analyze learning

by minimizing an empirical loss of the form
N
L(w) = ZK (anTxn) . (1)
n=1

where w € R is the weight vector. To simplify notation, we assume that all the labels are positive:
Vn : y, = 1 — this is true without loss of generality, since we can always re-define y,,x,, as x,,.

We are particularly interested in problems that are linearly separable, and the loss is smooth
strictly decreasing and non-negative:

Assumption 1 The dataset is linearly separable: 3w, such thatn : w]x, > 0.

Assumption 2 ¢ (u) is a positive, differentiable, monotonically decreasing to zero', (soYu : £ (u) >
0,0 (u) < 0, limy 00 £ (1) = limy—00 ¢ (u) = 0), a B-smooth function, i.e. its derivative is [3-
Lipshitz and lim,_, o, ¢' (u) # 0.

1. The requirement of non-negativity and that the loss asymptotes to zero is purely for convenience. It is enough to
require the loss is monotone decreasing and bounded from below. Any such loss asymptotes to some constant, and is
thus equivalent to one that satisfies this assumption, up to a shift by that constant.
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Assumption 2 includes many common loss functions, including the logistic, exp-loss” and probit
losses. Assumption 2 implies that £ (w) is a 802, (X )-smooth function, where opax (X ) is the
maximal singular value of the data matrix X € RN,

Under these conditions, the infimum of the optimization problem is zero, but it is not attained
at any finite w. Furthermore, no finite critical point w exists. We consider minimizing eq. 1 using

Gradient Descent (GD) with a fixed learning rate 7, i.e., with steps of the form:

N
w(t+1)=w(t)—nVL(w(t) =w(t)—n ZE' (W (t)Txn) Xp.- (2)
n=1

We do not require convexity. Under Assumptions 1 and 2, gradient descent converges to the global
minimum (i.e. to zero loss) even without it:

Lemma 1 Let w (t) be the iterates of gradient descent (eq. 2) withn < 237 1o 2, (X ) and any
starting point w(0). Under Assumptions 1 and 2, we have: (1) limy_,g 1, £ (W (t)) = 0, (2)
limy o0 [|[W (£)|| = 00, and (3) Vn @ limy_yoo W (t)T X, = 00.

Proof Since the data is linearly separable, 3w, which linearly separates the data, and therefore
N
w, VL (w)= Z A (WTXn) w, X,
n=1

For any finite w, this sum cannot be equal to zero, as a sum of negative terms, since Vn : w,x, > 0

and Vu : ¢/ (u) < 0. Therefore, there are no finite critical points w, for which VL (w) = 0. But
gradient descent on a smooth loss with an appropriate stepsize is always guaranteed to converge to a
critical point: VL (w (t)) — O (see, e.g. Lemma 10 in Appendix A.4, slightly adapted from Ganti
(2015), Theorem 2). This necessarily implies that ||w (t)|| — oo while Vn : w (¢)' x,, > 0 for

large enough t—since only then ¢’ <w )" xn> — 0. Therefore, £ (w) — 0, so GD converges to
the global minimum. |

The main question we ask is: can we characterize the direction in which w(t) diverges? That is,
does the limit lim;_,~, w (¢) / [|w (¢)|| always exist, and if so, what is it?

In order to analyze this limit, we will need to make a further assumption on the tail of the loss
function:

Definition 2 A function f (u) has a “tight exponential tail”, if there exist positive constants ¢, a, fi , fi—, U
and u_ such that

Vu > uy of (u) < e(l+exp(—pqu))e ™
Vu > u_ i f (u) > c(l —exp(—p_u))e ™.

Assumption 3 The negative loss derivative —{' (u) has a tight exponential tail (Definition 2).

For example, the exponential loss ¢ (u) = e~ and the commonly used logistic loss ¢ (u) =
log (1 + ™) both follow this assumption with ¢ = ¢ = 1. We will assume a = ¢ = 1 — without
loss of generality, since these constants can be always absorbed by re-scaling x,, and 7.

We are now ready to state our main result:

2. The exp-loss does not have a global 8 smoothness parameter. However, if we initialize with n < 1/£(w(0)) then it
is straightforward to show the gradient descent iterates maintain bounded local smoothness.
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Theorem 3 For any dataset which is linearly separable (Assumption 1), any 3-smooth decreasing
loss function (Assumption 2) with an exponential tail (Assumption 3), any stepsize n < 28 1o 2 (X))
and any starting point w(0), the gradient descent iterates (as in eq. 2) will behave as:

w(t) = wlogt + p(t) , 3)
where W is the Lo max margin vector (the solution to the hard margin SVM):

W = argmin ||w|? s.t. w'x, > 1, 4)
weRd

and the residual grows at most as || p (t)|| = O(loglog(t)), and so

w (t) _ W
oo lw (@)l (Wl

Furthermore, for almost all data sets (all except measure zero), the residual p(t) is bounded.

Proof Sketch  We first understand intuitively why an exponential tail of the loss entail asymptotic
convergence to the max margin vector: Assume for simplicity that ¢ (u) = e~ * exactly, and examine
the asymptotic regime of gradient descent in which Vn : w (t)T X, — 00, as is guaranteed by
Lemma 1. If w (t) / |[w (¢)]| converges to some limit w, then we can write w (t) = ¢ (t) Woo +
p (t) such that g (t) — oo, Vn :x, oo > 0, and limy_, p (t) /g (t) = 0. The gradient can then be
written as:

—VL(w)= f: exp (—w 0N xn) Xy = f: exp (—g (t) w;—oxn> exp (—p 0N xn) Xp . (5)
n=1 n—1

As g(t) — oo and the exponents become more negative, only those samples with the largest (i.e.,
least negative) exponents will contribute to the gradient. These are precisely the samples with
the smallest margin argminnw;xn, aka the “support vectors”. The negative gradient (eq. 5)
would then asymptotically become a non-negative linear combination of support vectors. The limit
W Will then be dominated by these gradients, since any initial conditions become negligible as
||lw (t)|| — oo (from Lemma 1). Therefore, w, will also be a non-negative linear combination of

support vectors, and so will its scaling w = w,/ (minn w;xn). We therefore have:
N
w = Z Xy vn (an > 0 and \?vTxn = 1) OR (an =0 and WTxn > 1) (6)
n=1

These are precisely the KKT conditions for the SVM problem (eq. 4) and we can conclude that w
is indeed its solution and w, is thus proportional to it.

To prove Theorem 3 rigorously, we need to show that w (¢) / ||w (¢)|| has a limit, that g (t) =
log (¢) and to bound the effect of various residual errors, such as gradients of non-support vectors
and the fact that the loss is only approximately exponential. To do so, we substitute eq. 3 into the
gradient descent dynamics (eq. 2), with wo, = W being the max margin vector and g(¢) = logt.
We then show that, except when certain degeneracies occur, the increment in the norm of p (t) is
bounded by C1¢~" for some C7 > 0 and v > 1, which is a converging series. This happens because
the increment in the max margin term, W [log (¢ + 1) — log ()] ~ Wwt~!, cancels out the dominant
t~! term in the gradient —V £ (w (t)) (eq. 5 with g (t) = log () and w . x,, = 1).



GRADIENT DESCENT ON SEPARABLE DATA

Degenerate and Non-Degenerate Data Sets An earlier conference version of this paper (Soudry et al.,
2018) included a partial version of Theorem 3, which only applies to almost all data sets, in which
case we can ensure the residual p(¢) is bounded. This partial statement (for almost all data sets) is re-
stated and proved as Theorem 9 in Appendix A. It applies, e.g. with probability one for data sampled
from any absolutely continuous distribution. It does not apply in “degenerate” cases where some
of the support vectors x,, (for which w 'x,, = 1) are associated with dual variables that are zero
(o, = 0) in the dual optimum of 4. As we show in Appendix B, this only happens on measure zero
data sets. Here, we prove the more general result which applies for all data sets, including degener-
ate data sets. To do so, in Theorem 13 in Appendix C we provide a more complete characterization
of the iterates w(¢) that explicitly specifies all unbounded components even in the degenerate case.
We then prove the Theorem by plugging in this more complete characterization and showing that
the residual is bounded, thus also establishing Theorem 3.

Parallel Work on the Degenerate Case Following the publication of our initial version, and
while preparing this revised version for publication, we learned of parallel work by Ziwei Ji and
Matus Telgarsky that also closes this gap. Ji and Telgarsky (2018) provide an analysis of the degen-

erate case, establishing converges to the max margin predictor by showing that H Hg—ggll — ﬁ H =

(@] ( loi lgotgt) . Our analysis provides a more precise characterization of the iterates, and also shows
the convergence is actually quadratically faster (see Section 3). However, Ji and Telgarsky go even
further and provide a characterization also when the data is non-separable but w(¢) still goes to

infinity.

More Refined Analysis of the Residual In some non-degenerate cases, we can further character-
ize the asymptotic behavior of p (¢). To do so, we need to refer to the KKT conditions (eq. 6) of
the SVM problem (eq. 4) and the associated support vectors S = argmin,, W ' x,,. We then have the
following Theorem, proved in Appendix A:

Theorem 4 Under the conditions and notation of Theorem 3, for almost all datasets, if in addition
the support vectors span the data (i.e. rank (Xs) = rank (X), where X is a matrix whose columns
are only those data points x,, s.t. W' x,, = 1), then lim;_, . p (t) = W, where W is a solution to

VnedS: nexp (—X;LI—\X/') =y, @)

Analogies with Boosting Perhaps most similar to our study is the line of work on understanding
AdaBoost in terms its implicit bias toward large L;-margin solutions, starting with the seminal work
of Schapire et al. (1998). Since AdaBoost can be viewed as coordinate descent on the exponential
loss of a linear model, these results can be interpreted as analyzing the bias of coordinate descent,
rather then gradient descent, on a monotone decreasing loss with an exact exponential tail. Indeed,
with small enough step sizes, such a coordinate descent procedure does converge precisely to the
maximum L;-margin solution (Zhang et al., 2005; Telgarsky, 2013). In fact, Telgarsky (2013) also
generalizes these results to other losses with tight exponential tails, similar to the class of losses we
consider here.

Also related is the work of Rosset et al. (2004). They considered the regularization path wy =
arg min £(w) + A [[w/||? for similar loss functions as we do, and showed that lim_,o wy/ [[w[|, is
proportional to the maximum L, margin solution. That is, they showed how adding infinitesimal L,
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(e.g. L1 and Lo) regularization to logistic-type losses gives rise to the corresponding max-margin
predictor.> However, Rosset et al. do not consider the effect of the optimization algorithm, and
instead add explicit regularization. Here we are specifically interested in the bias implied by the
algorithm not by adding (even infinitesimal) explicit regularization. We see that coordinate descent
gives rise to the max L; margin predictor, while gradient descent gives rise to the max Lo norm
predictor. In Section 4.3 and in follow-up work (Gunasekar et al., 2018) we discuss also other
optimization algorithms, and their implied biases.

Non-homogeneous linear predictors In this paper we focused on homogeneous linear predictors
of the form w ' x, similarly to previous works (e.g., Rosset et al. (2004); Telgarsky (2013)). Specif-
ically, we did not have the common intercept term: w ' x + b. One may be tempted to introduce
the intercept in the usual way, i.e., by extending all the input vectors x,, with an additional 1’ com-
ponent. In this extended input space, naturally, all our results hold. Therefore, we converge in
direction to the L max margin solution (eq. 4) in the extended space. However, if we translate this
solution to the original x space we obtain

argmin ||w||? +b? s.t. w'x, +b> 1,
wcRe beR

which is not the Lo max margin (SVM) solution

argmin ||w|? s.t. w'x, +b>1,
weR? beR

where we do not have a b? penalty in the objective.

3. Implications: Rates of convergence

The solution in eq. 3 implies that w (¢) / |w (¢)|| converges to the normalized max margin vec-
tor w/ ||W|| . Moreover, this convergence is very slow— logarithmic in the number of iterations.
Specifically, our results imply the following tight rates of convergence:

Theorem 5 Under the conditions and notation of Theorem 3, for any linearly separable data set,
the normalized weight vector converges to the normalized max margin vector in Lo norm

H w(t) \iv H :O<loglogt> ’ ®
w @I [lwll log t
with this rate improving to O(1/1og(t)) for almost every dataset; and in angle
T o 2
loglog t
- W <—°g°g> , ©)
[[w (@) [[w]] log t

with this rate improving to O(1/log?(t)) for almost every dataset; and the margin converges as

1 min,, x,) w (t) ( 1 >
— - =0|— ). 10
[l [w ()]l log t 1o

3. In contrast, with non-vanishing regularization (i.e., A > 0), arg minw £(w) + X [|w/||? is generally nor a max margin
solution.



GRADIENT DESCENT ON SEPARABLE DATA

On the other hand, the loss itself decreases as

cowi)=o(3)- an

t

All the rates in the above Theorem are a direct consequence of Theorem 3, except for avoiding
the loglogt factor for the degenerate cases in eq. 10 and eq. 11 (i.e., establishing that the rates
1/logt and 1/t always hold)—this additional improvement is a consequence of the more complete
characterization of Theorem 13. Full details are provided in Appendix D. In this appendix, we also
provide a simple construction showing all the rates in Theorem 5 are tight (except possibly for the
log log t factors).

The sharp contrast between the tight logarithmic and 1/¢ rates in Theorem 5 implies that the
convergence of w(t) to the max-margin w can be logarithmic in the loss itself, and we might need
to wait until the loss is exponentially small in order to be close to the max-margin solution. This can
help explain why continuing to optimize the training loss, even after the training error is zero and
the training loss is extremely small, still improves generalization performance—our results suggests
that the margin could still be improving significantly in this regime.

A numerical illustration of the convergence is depicted in Figure 1. As predicted by the theory,
the norm ||w (t)|| grows logarithmically (note the semi-log scaling), and w(t) converges to the max-
margin separator, but only logarithmically, while the loss itself decreases very rapidly (note the
log-log scaling).

An important practical consequence of our theory, is that although the margin of w(t) keeps
improving, and so we can expect the population (or test) misclassification error of w(t) to improve
for many datasets, the same cannot be said about the expected population loss (or test loss)! At the
limit, the direction of w(¢) will converge toward the max margin predictor w. Although W has zero
training error, it will not generally have zero misclassification error on the population, or on a test or
a validation set. Since the norm of w(¢) will increase, if we use the logistic loss or any other convex
loss, the loss incurred on those misclassified points will also increase. More formally, consider the
logistic loss ¢(u) = log(1 + e™*) and define also the hinge-at-zero loss h(u) = max(0, —u). Since
w classifies all training points correctly, we have that on the training set 22;1 h(w'x,) = 0.
However, on the population we would expect some errors and so E[h(W " x)] > 0. Since w(t) ~
w log t and ¢(au) — ah(u) as @ — oo, we have:

E[¢(w(t)"x)] = E[¢((logt)w ' x)] =~ (log t)E[h(W " x)] = Q(logt). (12)

That is, the population loss increases logarithmically while the margin and the population misclassi-
fication error improve. Roughly speaking, the improvement in misclassification does not out-weight
the increase in the loss of those points still misclassified.

The increase in the test loss is practically important because the loss on a validation set is
frequently used to monitor progress and decide on stopping. Similar to the population loss, the
validation loss will increase logarithmically with ¢, if there is at least one sample in the validation set
which is classified incorrectly by the max margin vector (since we would not expect zero validation
error). More precisely, as a direct consequence of Theorem 3 (as shown on Appendix D):

Corollary 6 Let ¢ be the logistic loss, and V be an independent validation set, for which Ix € 'V
such that x "W < 0. Then the validation loss increases as

La(w(t)=Y ¢ (w Ol x) = Q(log(t)).

xeY



SOUDRY, HOFFER, NACSON, GUNASEKAR, AND SREBRO

(B) (C)0
= 1 10
2
3 2.
X 05 E10°
é ~ —GD
g 0| —GpmMo
z 10
10° 10 100 100 10" 100 10° 10° 10 100 100 10" 100 10°
_ t t
™ )
8 0.1
o
6 :
5 4 5 0.05
= <
<2 =
0
1

=)
>
=)
)
S
=)

Figure 1: Visualization of or main results on a synthetic dataset in which the Lo max margin vec-
tor w is precisely known. (A) The dataset (positive and negatives samples (y = =+1)
are respectively denoted by '+’ and 'o’), max margin separating hyperplane (black line),
and the asymptotic solution of GD (dashed blue). For both GD and GD with momentum
(GDMO), we show: (B) The norm of w (%), normalized so it would equal to 1 at the last
iteration, to facilitate comparison. As expected (eq. 3), the norm increases logarithmi-
cally; (C) the training loss. As expected, it decreases as t~' (eq. 11); and (D&E) the
angle and margin gap of w (¢) from w (eqs. 9 and 10). As expected, these are logarith-
mically decreasing to zero. Implementation details: The dataset includes four support
vectors: x1 = (0.5,1.5) ,x9 = (1.5,0.5) with y; = yo = 1, and x3 = —x1, X4 = —X2
with y3 = y4 = —1 (the Lo normalized max margin vector is then w = (1,1) / V2 with
margin equal to v/2 ), and 12 other random datapoints (6 from each class), that are not on
the margin. We used a learning rate n = 1/02,,, (X), where 02, (X) is the maximal

max max
singular value of X, momentum v = 0.9 for GDMO, and initialized at the origin.

This behavior might cause us to think we are over-fitting or otherwise encourage us to stop the
optimization. However, this increase does not actually represent the model getting worse, merely

|lw(t)|| getting larger, and in fact the model might be getting better (increasing the margin and
possibly decreasing the error rate).

4. Extensions
4.1 Multi-Class Classification with Cross-Entropy Loss

So far, we have discussed the problem of binary classification, but in many practical situations
we have more then two classes. For multi-class problems, the labels are the class indices vy, €
[K] £ {1,..., K} and we learn a predictor wy, for each class k¥ € [K]. A common loss function

in multi-class classification is the following cross-entropy loss with a softmax output, which is a
generalization of the logistic loss:

N exp (WT xn)
L ({witrex) = — Zlog o (13)
n=1

Zszl €xp (W/I XN)
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Figure 2: Training of a convolutional neural network on CIFARI10 using stochastic gradient de-
scent with constant learning rate and momentum, softmax output and a cross entropy
loss, where we achieve 8.3% final validation error. We observe that, approximately: (1)
The training loss decays as a t~!, (2) the Lo norm of last weight layer increases logarith-
mically, (3) after a while, the validation loss starts to increase, and (4) in contrast, the
validation (classification) error slowly improves.

What do the linear predictors wy,(t) converge to if we minimize the cross-entropy loss by gradient
descent on the predictors? In Appendix E we analyze this problem for separable data, and show that
again, the predictors diverge to infinity and the loss converges to zero. Furthermore, we prove the
following Theorem:

Theorem 7 For almost all multiclass datasets (i.e., except for a measure zero) which are linearly
separable (i.e. the constraints in eq. 15 below are feasible), any starting point w(0) and any small
enough stepsize, the iterates of gradient descent on 13 will behave as:

wi(t) = Wi log(t) + py (1), (14)
where the residual py,(t) is bounded and Wy, is the solution of the K-class SVM:
K
argming, o Z W% s.t. Vn, Yk # yy, : w;nxn >wix, + 1. (15)
k=1

4.2 Deep networks

So far we have only considered linear prediction. Naturally, it is desirable to generalize our results
also to non-linear models and especially multi-layer neural networks.

Even without a formal extension and description of the precise bias, our results already shed
light on how minimizing the cross-entropy loss with gradient descent can have a margin maximizing
effect, how the margin might improve only logarithmically slow, and why it might continue to
improve even as the validation loss increases. These effects are demonstrated in Figure 2 and Table
1 which portray typical training of a convolutional neural network using unregularized gradient
descent*. As can be seen, the norm of the weight increases, but the validation error continues
decreasing, albeit very slowly (as predicted by the theory), even after the training error is zero and
the training loss is extremely small. We can now understand how even though the loss is already

4. Code available here: https://github.com/paper—submissions/MaxMargin
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Epoch | 50 | 100 | 200 | 400 | 2000 | 4000 |
Ly norm 13.6 | 165 19.6 | 203 | 259 | 27.54
Train loss 0.1 0.03 0.02 | 0.002 | 107* [ 3-107°
Train error 4% 1.2% 0.6% | 0.07% 0% 0%

Validation loss | 0.52 0.55 0.77 0.77 1.01 1.18
Validation error | 12.4% | 10.4% | 11.1% | 9.1% | 8.92% | 8.9%

Table 1: Sample values from various epochs in the experiment depicted in Fig. 2.

extremely small, some sort of margin might be gradually improving as we continue optimizing.
We can also observe how the validation loss increases despite the validation error decreasing, as
discussed in Section 3.

As an initial advance toward tackling deep network, we can point out that for several special
cases, our results may be directly applied to multi-layered networks. First, somewhat trivially, our
results may be applied directly to the last weight layer of a neural network if the last hidden layer
becomes fixed and linearly separable after a certain number of iterations. This can become true,
either approximately, if the input to the last hidden layer is normalized (e.g., using batch norm), or
exactly, if the last hidden layer is quantized (Hubara et al., 2018).

Second, as we show next, our results may be applied exactly on deep networks if only a sin-
gle weight layer is being optimized, and, furthermore, after a sufficient number of iterations, the
activation units stop switching and the training error goes to zero.

Corollary 8 We examine a multilayer neural network with component-wise ReLU functions f (z) =
max [z, 0], and weights {Wl}lel. Given input x,, and target y, € {—1, 1}, the DNN produces a
scalar output

up, = Wrf(Wr_1f (- Waf (Wix,)))
and has loss { (ynuy, ), where £ obeys assumptions 2 and 3.
If we optimize a single weight layer w; = vec (WIT) using gradient descent, so that L (w;) =

Zgzlﬁ (ynun(wy)) converges to zero, and Ity such that Wt > to the ReLU inputs do not switch
signs, then wi(t)/ ||w;(t)|| converges to

w; = argmin |[wy||? s.t. yuun(w;) > 1.
W

Proof We examine the output of the network given a single input x,,, for ¢ > 3. Since the ReLU
inputs do not switch signs, we can write v;, the output of layer [, as

l
Vin = H Am,nmena

m=1

where we defined A, ,, for [ < L as a diagonal 0-1 matrix, which diagonal is the ReLU slopes at
layer [, sample n, and Ay, = 1. Additionally, we define

I+1
T L3 _
6l,n = Al,n H WmAm,n; Xln = 6l,n & Ui—1,n -

m=L

10



GRADIENT DESCENT ON SEPARABLE DATA

Using this notation we can write

L
un(wl) =VLn = H Am,nwmxn - 6[anlul—1,n - >~(l—l,—nvvl . (16)

m=1

This implies that
N N
Liw) = > (ynun(w) = € (X))
n=1 n=1

which is the same as the original linear problem. Since the loss converges to zero, the dataset
{X1.n,yn }_, must be linearly separable. Applying Theorem 3, and recalling that u(w;) = X, w;
from eq. 16, we prove this corollary. |

Importantly, this case is non-convex, unless we are optimizing the last layer. Note we assumed
ReLU functions for simplicity, but this proof can be easily generalized for any other piecewise linear
constant activation functions (e.g., leaky ReLU, max-pooling).

Lastly, in a follow-up work (Gunasekar et al., 2018b), given a few additional assumptions, ex-
tended our results to linear predictors which can be written as a homogeneous polynomial in the
parameters. These results seem to indicate that, in many cases, GD operating on exp-tailed loss
with positively homogeneous predictors aims to a specific direction. This is the direction of the max
margin predictor minimizing the Lo norm in the parameter space. It is not yet clear how to generally
translate such an implicit bias in the parameter space to the implicit bias in the predictor space — ex-
cept in special cases, such as deep linear neural nets, as we have shown in (Gunasekar et al., 2018b).
Moreover, in non-linear neural nets, there are many equivalent max-margin solutions which mini-
mize the Lo norm of the parameters. Therefore, it is natural to expect that GD would have additional
implicit biases, which select a specific subset of these solutions.

4.3 Other optimization methods

In this paper we examined the implicit bias of gradient descent. Different optimization algorithms
exhibit different biases, and understanding these biases and how they differ is crucial to under-
standing and constructing learning methods attuned to the inductive biases we expect. Can we
characterize the implicit bias and convergence rate in other optimization methods?

In Figure 1 we see that adding momentum does not qualitatively affect the bias induced by
gradient descent. In Figure 4 in Appendix F we also repeat the experiment using stochastic gradient
descent, and observe a similar asymptotic bias (this was later proved in Nacson et al. (2018)). This
is consistent with the fact that momentum, acceleration and stochasticity do not change the bias
when using gradient descent to optimize an under determined least squares problem. It would be
beneficial, though, to rigorously understand how much we can generalize our result to gradient
descent variants, and how the convergence rates might change in these cases.

On the other hand, as an example of how changing the optimization algorithm does change the
bias, consider adaptive methods, such as AdaGrad (Duchi et al., 2011) and ADAM (Kingma and Ba,
2015). In Figure 3 we show the predictors obtained by ADAM and by gradient descent on a simple
data set. Both methods converge to zero training error solutions. But although gradient descent
converges to the Lo max margin predictor, as predicted by our theory, ADAM does not. The implicit
bias of adaptive methods has in fact been a recent topic of interest, with Hoffer et al. (2017) and

11
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Figure 3: Same as Fig. 1, except we multiplied all z2 values in the dastaset by 20, and also train
using ADAM. The final weight vector produced after 2- 106 epochs of optimization using
ADAM (red dashed line) does not converge to L2 max margin solution (black line), in
contrast to GD (blue dashed line), or GDMO.

Wilson et al. (2017) suggesting they lead to worse generalization, and Wilson et al. (2017) providing
examples of the differences in the bias for linear regression problems with the squared loss. Can
we characterize the bias of adaptive methods for logistic regression problems? Can we characterize
the bias of other optimization methods, providing a general understanding linking optimization
algorithms with their biases?

In a follow-up paper (Gunasekar et al., 2018) provided initial answers to these questions. Gunasekar et al.
(2018) derived a precise characterization of the limit direction of steepest descent for general norms
when optimizing the exp-loss, and show that for adaptive methods such as Adagrad the limit direc-
tion can depend on the initial point and step size and is thus not as predictable and robust as with
non-adaptive methods.

4.4 Other loss functions

In this work we focused on loss functions with exponential tail and observed a very slow, logarithmic
convergence of the normalized weight vector to the Ly max margin direction. A natural question
that follows is how does this behavior change with types of loss function tails. Specifically, does the
normalized weight vector always converge to the Lo max margin solution? How is the convergence
rate affected? Can we improve the convergence rate beyond the logarithmic rate found in this work?

In a follow-up work Nacson et al. (2018) provided partial answers to these questions. They
proved that the exponential tail has the optimal convergence rate, for tails for which ¢'(u) is of the
form exp(—wu”) with v > 0.25. They then conjectured, based on heuristic analysis, that the expo-
nential tail is optimal among all possible tails. Furthermore, they demonstrated that polynomial or
heavier tails do not converge to the max margin solution. Lastly, for the exponential loss they pro-
posed a normalized gradient scheme which can significantly improve convergence rate, achieving

O(log(t)/ V).

12
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4.5 Matrix Factorization

With multi-layered neural networks in mind, Gunasekar et al. (2017) recently embarked on a study
of the implicit bias of under-determined matrix factorization problems, where the squared loss of the
linear observation of a matrix is minimized by gradient descent on its factorization. Since a matrix
factorization can be viewed as a two-layer network with linear activations, this is perhaps the sim-
plest deep model one can study in full, and can thus provide insight and direction to studying more
complex neural networks. Gunasekar et al. conjectured, and provided theoretical and empirical evi-
dence, that gradient descent on the factorization for an under-determined problem converges to the
minimum nuclear norm solution, but only if the initialization is infinitesimally close to zero and
the step-sizes are infinitesimally small. With finite step-sizes or finite initialization, Gunasekar et al.
could not characterize the bias.

The follow-up paper (Gunasekar et al., 2018) studied this same problem with exponential loss
instead of squared loss. Under additional assumptions on the asymptotic convergence of update di-
rections and gradient directions, they were able to relate the direction of gradient descent iterates on
the factorized parameterization asymptotically to the maximum margin solution with unit nuclear
norm. Unlike the case of squared loss, the result for exponential loss are independent of initializa-
tion and with only mild conditions on the step size. Here again, we see the asymptotic nature of
exponential loss on separable data nullifying the initialization effects thereby making the analysis
simpler compared to squared loss.

S. Summary

We characterized the implicit bias induced by gradient descent on homogeneous linear predictors
when minimizing smooth monotone loss functions with an exponential tail. This is the type of loss
commonly being minimized in deep learning. We can now rigorously understand:

1. How gradient descent, without early stopping, induces implicit Lo regularization and con-
verges to the maximum Lo margin solution, when minimizing for binary classification with
logistic loss, exp-loss, or other exponential tailed monotone decreasing loss, as well as for
multi-class classification with cross-entropy loss. Notably, even though the logistic loss and
the exp-loss behave very different on non-separable problems, they exhibit the same behaviour
for separable problems. This implies that the non-tail part does not affect the bias. The bias
is also independent of the step-size used (as long as it is small enough to ensure convergence)
and is also independent on the initialization (unlike for least square problems).

2. The convergence of the direction of gradient descent updates to the maximum Lo margin
solution, however is very slow compared to the convergence of training loss, which explains
why it is worthwhile continuing to optimize long after we have zero training error, and even
when the loss itself is already extremely small.

3. We should not rely on plateauing of the training loss or on the loss (logistic or exp or cross-
entropy) evaluated on a validation data, as measures to decide when to stop. Instead, we
should look at the 0-1 error on the validation dataset. We might improve the validation
and test errors even when when the decrease in the training loss is tiny and even when the
validation loss itself increases.

13
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Perhaps that gradient descent leads to a max Lo margin solution is not a big surprise to those for
whom the connection between Lo regularization and gradient descent is natural. Nevertheless, we
are not familiar with any prior study or mention of this fact, let alone a rigorous analysis and study
of how this bias is exact and independent of the initial point and the step-size. Furthermore, we also
analyze the rate at which this happens, leading to the novel observations discussed above. Even more
importantly, we hope that our analysis can open the door to further analysis of different optimization
methods or in different models, including deep networks, where implicit regularization is not well
understood even for least square problems, or where we do not have such a natural guess as for
gradient descent on linear problems. Analyzing gradient descent on logistic/cross-entropy loss is
not only arguably more relevant than the least square loss, but might also be technically easier.
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Appendix

Appendix A. Proof of Theorems 3 and 4 for almost every dataset

In the following sub-sections we first prove Theorem 9 below, which is a version of Theorem 3,
specialized for almost every dataset. We then prove Theorem 4 (which is already stated for almost
every dataset).

Theorem 9 For almost every dataset which is linearly separable (Assumption 1), any [-smooth
decreasing loss function (Assumption 2) with an exponential tail (Assumption 3), any stepsize 1 <
28702, (X)) and any starting point w(0), the gradient descent iterates (as in eq. 2) will behave
as:

w(t)=wlogt+ p(t), (17)

where W is the Lo max margin vector

W = argmin ||w||® s.t. Vn: w!x, > 1,
weRd

the residual p(t) is bounded, and so

w (t)

im

t=oo [w (]~ W[l
In the following proofs, for any solution w (¢), we define
) =

r(t) =w(t

where w and w follow the conditions of Theorems 3 and 4, i.e. W is the Lo is the max margin vector
defined above, and W is a vector which satisfies eq. 7:

wlogt — w

VneS: nexp (—X;l;\i/') =, (18)

where we recall that we denoted X s € R%*IS| as the matrix whose columns are the support vectors,
asubset S C {1,..., N} of the columns of X = [xy,...,xy] € RV,

In Lemma 12 (Appendix B) we prove that for almost every dataset « is uniquely defined, there
are no more then d support vectors and «,, # 0, Vn € S. Therefore, eq. 18 is well-defined in those
cases. If the support vectors do not span the data, then the solution w to eq. 18 might not be unique.
In this case, we can use any such solution in the proof.

We furthermore denote the minimum margin to a non-support vector as:

0= n"gnx—rw >1, (19)
and by Cj,e;,t; (¢ € N) various positive constants which are independent of ¢. Lastly, we define
P, € R%*? a5 the orthogonal projection matrix’ to the subspace spanned by the support vectors

(the columns of X), and P; = I — Py as the complementary projection (to the left nullspace of
Xs).

5. This matrix can be written as P, = XsX ¥, where M is the Moore-Penrose pseudoinverse of M.
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A.1 Simple proof of Theorem 9

In this section we first examine the special case that £ (u) = e~ and take the continuous time limit
of gradient descent: n — 0, so

W (t) = —VL(w(t)).

The proof in this case is rather short and self-contained (i.e., does not rely on any previous results),
and so it helps to clarify the main ideas of the general (more complicated) proof which we will give
in the next sections.
Recall we defined
r(t) = w (t) — log () W — W. (20)

Our goal is to show that ||r (¢)]| is bounded, and therefore p (t) = r (t) + W is bounded. Eq. 20
implies that

B (6) = w (1) %w _ VL (w () - %w 1)
and therefore
1d 9 LT
L e = (@r
Y 1
= Z exp (—xnw (t)) X r(t)— =w'r(t)
n:l
T =T T T [
= Zexp( log (t)w'x, — W x —xnr(t))xnr(t) W r(t)]
nES
+ Z exp ( log () W' x, —W'x, —x,r (t)) x'r(t)|, (22)
| n¢S

where in the last equality we used eq. 20 and decomposed the sum over support vectors S and
non-support vectors. We examine both bracketed terms. Recall that w ' x,, = 1 for n € S, and that

we defined (ineq. 18) wso that ) _gexp ( —vNVTxn) X, = W. Thus, the first bracketed term in eq.
22 can be written as

:% exp <—\7VTxn) <exp (—x:;r (t)> - 1) x 1 (t) <0, (23)

since Vz, z (e * —1) < 0. Furthermore, since Vz e *z < 1 and 0 = argminngsx;\?v > 1 (eq.
19), the second bracketed term in eq. 22 can be upper bounded by

Zexp( log (¢ w Xy — v~vTxn) exp (— T (t)) ) < —Zexp( W xn) . (24

n¢S

Substituting eq. 23 and 24 into eq. 22 and integrating, we obtain, that 3C, C” such that

bt
vt vt > @ - )P <0 [ G <<,
t1
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since € > 1 (eq. 19). Thus, we showed that r(¢) is bounded, which completes the proof for the
special case. B

A.2 Complete proof of Theorem 9

Next, we give the proof for the general case (non-infinitesimal step size, and exponentially-tailed
functions). Though it is based on a similar analysis as in the special case we examined in the
previous section, it is somewhat more involved since we have to bound additional terms.

First, we state two auxiliary lemmata, that are proven below in appendix sections A.4 and A.5:

Lemma 10 Let £ (w) be a 3-smooth non-negative objective. If n < 2371, then, for any w(0), with
the GD sequence
w(t+1)=w(t) —nVL(w(t)) (25)

we have that 3°° |V £ (w (u))||* < 0o and therefore lim;_,., | VL (w (t))||* = 0.

Lemma 11 We have
A0ty VE> b : (e (t+1) —r(8) r(t) < Ot~ ™nO 1504, 140.50-) (26)
Additionally, Ve1 > 0, ACy, to, such that V't > to, if
[P1r ()] = €1, 27)
then the following improved bound holds
(x(t+1)—r@) rt)<-Cot~'<o0. (28)

Our goal is to show that ||r (¢)]| is bounded, and therefore p (t) = r (¢) + W is bounded. To
show this, we will upper bound the following equation

I+ D12 =t +1) —r @ +2(c(t+1) —r ) v @)+ [r @) (29)
First, we note that first term in this equation can be upper-bounded by

v (t+1) —x ()]
Diw(t+1) = wlog (t + 1) — W — w (t) + Wlog (£) + w]|?

2 =0V L (w () — W [log (t + 1) — log (£)]?

=02 VL (w ()] + | W] log? (1 +t71) + 2pw VL (w () log (1 +¢71)

R IVE (w ()2 + ]2 (30)

where in (1) we used eq. 20, in (2) we used eq. 2, and in (3) weused Vx > 0: = > log (1 + z) > 0,
and also that

N
WIVL(w(t) =Y ¢ <w O xn) W x, <0, 31)
n=1
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since W ' x,, > 1 (from the definition of W) and ¢'(u) < 0.
Also, from Lemma 10 we know that

IVL (w (#)* = 0(1) and Y VL (w (1))]* < oo. (32)

Substituting eq. 32 into eq. 30, and recalling that a £~" power series converges for any v > 1, we
can find C{ such that

o0
lr(t+1) —r@)|°=o(1) and Y [r(t+1) —x(t)]* = Co < co. (33)
t=0
Note that this equation also implies that Ve

Fto Yt > to < [[r (t+ D] = [[r @) <eo- (34)

Next, we would like to bound the second term in eq. 29. From eq. 26 in Lemma 11, we can find
t1, Cy such that Vt > tq:

(I' (t + 1) —r (t))T r (t) S Clt_ min(9,1+1.5p+,1+0.5,u,,) ) (35)
Thus, by combining eqgs. 35 and 33 into eq. 29, we find
e ()11 — I (¢2) 11

t—1
> [l (1) = v ()

t—1
Co + 2 Z Chu~ min(0,1+1.5u4,1+0.50_)

u=t1

which is a bounded, since & > 1 (eq. 19) and p—, 4 > 0 (Definition 2). Therefore, ||r (¢)|| is
bounded. W

A.3 Proof of Theorem 4

All that remains now is to show that ||r (¢)| — 0 if rank (Xs) = rank (X), and that W is unique
given w (0). To do so, this proof will continue where the proof of Theorem 3 stopped, using
notations and equations from that proof.

Since r (t) has a bounded norm, its two orthogonal components r (t) = Pyr (¢) + Pyr () also
have bounded norms (recall that P, P; were defined in the beginning of appendix section A). From
eq. 2, VL (w) is spanned by the columns of X. If rank (Xs) = rank (X), then it is also spanned
by the columns of X, and so P1VL (w) = 0. Therefore, P;r (¢) is not updated during GD, and
remains constant. Since W in eq. 20 is also bounded, we can absorb this constant Pyr (t) into w
without affecting eq. 7 (since Vn € S : XZ P;r (t) = 0). Thus, without loss of generality, we can
assume that r (t) = Pyr (¢).

We define the set

T = {t > max [ta, to] : |[r ()]| < e1} .

18
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By contradiction, we assume that the complementary set is not finite,
T = {t > max [ta, to] : [|r (£)|| > €1} .

Additionally, the set 7 is not finite: if it were finite, it would have had a finite maximal point
tmax € T, and then, combining eqs. 28, 29, and 33, we would find that V¢ > t;,.x

=1 t—1
e @ = e () I = - [l @+ 1) = e @)P] < Co—205 3w —o0,
U=Tmax U=tmax

which is impossible since ||r (¢)||* > 0. Furthermore, eq. 33 implies that

Yo le(ut1) = @) =Co—h(t)
u=0

where h (t) is a positive monotone function decreasing to zero. Let ¢3, ¢ be any two points such that
ts <t,{ts,t3+1,...t} C T,and (t3 — 1) € T. For all such t3 and ¢, we have

t—1
e ()1 < e )17+ [Ilr(qu DI* = fr (w)|J*

u=ts
t—1

= e ()P + > [l (et 1) = (@) + 20w+ 1) = v () T r (w)]

u=ts

t—1
< e (ta)l® +h(ts) —h(t—1) -2 Y u™

u=ts

< ||r ()| + R (t3) - (36)

Also, recall that t3 > to, so from eq. 34, we have that |||r (¢3)]| — [|r (t3 — 1)||| < €. Since
|r(t3 —1)|| < e (from T definition), we conclude that ||r (3)|| < €1 + €o. Moreover, since T~
is an infinite set, we can choose t3 as large as we want. This implies that Veo > 0 we can find ¢3
such that ea > h (t3), since h (t) is a monotonically decreasing function. Therefore, from eq. 36,

Veq, €g, €2, Itz € T such that
Vit lr@)]? <ei+eo+e.

This implies that ||r (¢)|| — 0.
Lastly, we note that since Pyr (t) is not updated during GD, we have that P1 (W — w (0)) = 0.
This sets w uniquely, together with eq. 7. B

A.4 Proof of Lemma 10

Lemma 10 Let £ (w) be a 3-smooth non-negative objective. If n < 287", then, for any w(0), with
the GD sequence
w(t+1)=w(t) —nVL(w(t)) (25)

we have that ) " |VL (w (w)||* < oo and therefore limy_, ||V L (w (£))||> = 0.
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This proof is a slightly modified version of the proof of Theorem 2 in (Ganti, 2015). Recall a
well-known property of 5-smooth functions:

Q

fx) —fy)-Viy) x—y)| < §HX—YH (37)

From the S-smoothness of £ (w)
Low(t+1) < £(w () +vc<w<t>>T<w<t+ )+ 2w+ 1) - w ol
— L lw () = VL (w )+ 2w (w o >>u?
—cw)-n(1-2) IvLw )

Thus, we have

Lw(t) - Lw(+1)

> VL (w ()]

which implies

Lw(u+l) Lw(0)-L(w(+1)
ZHVﬁ Z 77(1_@) 77( _%>

The right hand side is upper bounded by a finite constant, since L (w (0)) < coand 0 < L (w (¢t + 1)).

This implies
D IVL(w ()] < oo,
u=0

and therefore || V£ (w (¢))||* — 0. &

A.5 Proof of Lemma 11

Recall that we defined r (¢) = w (t) — wlogt — w, with w and w follow the conditions of the
Theorems 3 and 4, i.e, W is the Ly max margin vector and (eq. 4), and eq. 7 holds

Vn €S : nexp (—X;l;\i/') =y .
Lemma 11 We have
A0t VE >tz (p(t+1) =1 (8) 1 () < Oyt~ ™m0 14 1504,14050-) (26)
Additionally, Ve, > 0, ACs, to, such that V't > to, if
[Pyr ()] = €1, 27)
then the following improved bound holds

(r(t+1)—r() r(t)<—Cot™ ' <0. (28)
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From Lemma 1, Vn : lim; oo W (t)T X, = oo. In addition, from assumption 3 the negative
loss derivative —¢' (u) has an exponential tail e (recall we assume a = ¢ = 1 without loss of
generality). Combining both facts, we have positive constants pi—, i+, t— and ¢, such that Vn

Vit >ty (W O8N xn) < (1 + exp <—,u_|_w " xn)) exp <—w O8N Xn) (38)
Vit (W ON xn) > (1 — exp (—,u_w ON xn)) exp (—w " Xn) (39)
Next, we examine the expression we wish to bound, recalling that r (t) = w () — wlogt — w

(r(t+1) —r () r ()
= (=nVL (w () — W [log (t + 1) = log (1)]) " r (¢)

N
=030 (W %) xlx () =W r ()log (1+ 1)
n=1

=w'r(t) [t_l —log (1 + t_l)} - Z A <w )" xn> xr(t) (40)
n¢S

_772[ exp( W xn>—|—€/< ()Txnﬂxl—r(t)
where in last line we used eqs. 6 and 7 to obtain
w = Zanxn —nZexp( w xn> Xy, -
nes nes

We examine the three terms in eq. 40. The first term can be upper bounded by
\?VTI' t7t —log (1 + t_l)]

< max [ T (t),O] [t7h —log (1 +t71)]

(1)
< max [WTPlr (t) ,O} t2

2) {kuqt—2 Vi [Pir (0] < e

41
o(t7) i [P ()] > a “h

where in (1) we used that P;w = P;Xsa = 0 from eq. 6, and in (2) we used that W 'r () = o (¢),
since

wir(t)=w'" <w (0) =n> VL (w(u)—Wwlog (t) — \i/)
u=0

w ' (w(0) — W — wlog (t)) — nt m11<1tWTV£( w(u)) =o(t)

IN

where in the last line we used that VL (w (t)) = o (1), from Lemma 10.
Next, we upper bound the second term in eq. 40. From eq. 38 3¢/, such that V > tg > t/,,

C(w(t) %) < 2exp(—w(t)x,). (42)
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Therefore, ¥t > ¢/, :

—n Z A (W )" xn> X, v (t)

n¢S

< - Z A (w )" xn) X, r(t)

ng¢S:x, r(t)>0

<n Z 2 exp <—W (t)T xn) xr(t)

ngS:x, r(t)>0

<n Z 2t Xn Wexp( A4 xn—xTr(t)) X, r(t)
ng¢S:x,) r(t)>0

3
<n Z 21 % Wexp< W xn>

ngS:x, r(t)>0

(4)
<nN exp (— min WTxn> 0 43)

where in (1) we used eq. 42, in (2) we used w (t) = wlogt + W + r(¢), in (3) we used
re™® < land x, r(t) > O,and in (4) we used # > 1, from eq. 19.
Lastly, we will bound the sum in the third term in eq. 40

- [ exp <—\7vTxn) 4 <w 0N xn)] xr(t) . (44)
nes

We examine each term 7 in this sum, and divide into two cases, depending on the sign of x| r (¢).
First, if x, r () > 0, then term 7 in eq. 44 can be upper bounded V¢ > ¢, using eq. 38, by

nt~texp <—\7VTxn) [(1 + ¢t H+ exp (—,u+v~v—rxn>> exp (—X;er (t)> - 1] X, r(t) (45)
We further divide into cases:

1. If ‘x r(t ‘ < Cot =54+ then we can upper bound eq. 45 with

7 exp (— (14 p4) min VVTxn) Cpt 1150+ 46)

2. If |x, ) v(t)| > Cot ~O5#+, then we can find ¢, > #, to upper bound eq. 45 V¢ > /] :
+
nt_le_WTX7l <1 + t_“*e_“*‘x’Tx”> exp (—C’ot_o'5“+) — 1] xzr (t)

<t tem T [ (1 e ) (1 Gt O 4 GRE) —1 xir (1)

n

St~ te™ X | (1 - Cot O 4+ Gt ) e

—p4+ min w ' xp,
n

(2) "
<0, vt > " (47)

where in (1) we used the fact that e < 1 — z + z? for z > 0 and in (2) we defined ¢’/ so
that the previous expression is negative — since ¢t ~9->*+ decreases slower than ¢t ~#+.
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3. If |x,1x(t)| > €2, then we define ¢/ > ¢/ such that ¢/ > exp (min, W' x;,,) [*%2 — 1] —Hn
and therefore Vt > t', we have (1 +t7H+exp (—u+v~vTxn)) em2 < e 002

This implies that V¢ > " we can upper bound eq. 45 by

—nexp (— max WTxn) (1 — 6_0'552) ot L. (48)
n

Second, if x,) r(¢) < 0, we again further divide into cases:

1. If !xlr(t)‘ < Cot 0%~ then, since —¢' <W (t)T xn> > 0, we can upper bound term 7 in
eq. 44 with

nt ! exp (—WTXn> X\ T (t)‘ < nexp (— min v”vTxn> Cot 17051~ (49)
n

2. If ‘x r( ‘ > Cot =%~ | then, using eq. 39 we upper bound term 7 in eq. 44 with
n|=t7e e (w () ) | 30w (0)
<n [—t_le_wa” + <1 — exp (—,u_w OF xn>> exp <—w " xn)] xr(t)
=t~ e~V xn [1 — exp ( r(t)" xn> (1 — [t_le_WTX” exp (—r (t)TxnﬂWﬂ

xir (t)]
(50)

Next, we will show that 3¢’ > ¢_ such that the last expression is strictly negative V¢ > t’ .
n—
Let M > 1 be some arbitrary constant. Then, since [t Lleg=W'xn exp( (t)Txn)] =

exp (—,u_w )" xn> — 0 from Lemma 1, 3t5; > max(f_, Me™™ *n) such that V¢ > £y,
if exp <—r )" xn) > M > 1 then

exp (—r (t)Txn> (1 - [t_le_wa” exp (—r (t)Txn)]Mi) >M >1. (51)

Furthermore, if 3¢ > ¢, such that exp (r O8N xn) < M, then

exp (—r " xn) (1 - [t_le_WTx" exp (—r )" xn)]ui)
> exp <—r Ol xn) (1 - [t_le_wa”M} ”7> . (52)
which is lower bounded by
(1 + Cot™ %) (1 — {e—WTng] ”7>
>1 + Cpt 01— — =K [e—WTXnM] H e [e‘WTXnM} " Co

since |x,r (t)] > Cot™%%~, x r (t) < 0 and €” > 1+ x. In this case last line is strictly
larger than 1 for sufficiently large ¢. Therefore, after we substitute eqs. 51 and 52 into 50, we
find that 3¢ > t,; > t_ such that V¢ > t'_, term k in eq. 44 is strictly negative

n[ fle W X z’( ()Txkﬂxgr(t) <0 (53)
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3. If |x/ r(t)| > ez, which is a special case of the previous case (|x; r (¢)| > Cot~%5-) then
Vt > t’_, either eq. 51 or 52 holds. Furthermore, in this case, 3t” > t’ and M" > 1 such
that V¢ > t” eq. 52 can be lower bounded by

exp (€2) (1 — [t_le_WTka} u—> >M">1.

Substituting this, together with eq. 51, into eq. 50, we can find C{, > 0 such we can upper
bound term k in eq. 44 with
—Cit vt >t . (54)

To conclude, we choose tg = max [t} ]:
1. If |Pir (¢)|| > €1 (as in Eq. 27), we have that

2 (1)

1 22 1
-

S
xnr(t)‘ > |5|T§9

max XEPir ()| > gt (s} 59)

nesS

2 1
XIPlr(t)‘ = E‘

where in (1) we used P{ x,, = x,, ¥n € S, in (2) we denoted by oyin (Xs), the minimal
non-zero singular value of Xs and used eq. 27. Therefore, for some k,

xgr| > g &

\/ IS|7 o2, (Xs)€2. In this case, we denote C as the minimum between C}, (eq. 54) and

min
7 exp (— max,, WTxn) (1 — 6_0‘562) €9 (eq. 48). Then we find that eq. 44 can be upper
bounded by —C{ t™+o (t_l), Yt > to, given eq. 27. Substituting this result, together with
eqs. 41 and 43 into eq. 40, we obtain Vi > g

(rt+1)—r@®) r@t)<-Clt 7 +o(t).

This implies that 3Cy < C{/ and 3ty > to such that eq. 28 holds. This implies also that eq.
26 holds for ||Pyr (¢)]| > €.

2. Otherwise, if | Pyr (t)]| < €1, we find that V¢ > t( , each term in eq. 44 can be upper bounded
by either zero (egs. 47 and 53), or terms proportional to ¢ 1 =15+ (eq. 46) or t ~1 791~ (eq.
49). Combining this together with eqs. 41, 43 into eq. 40 we obtain (for some positive
constants ('3, Cy, C5, and ()

(r(t+1)—r(t) r(t) < Ot 17100 4 Oy 17051 4 Oxt=2 4 Ot

Therefore, Jt1 > tg and C; such that eq. 26 holds. H

Appendix B. Generic solutions of the KKT conditions in eq. 6

Lemma 12 For almost all datasets there is a unique o which satisfies the KKT conditions (eq. 6):
N
W = Z Xy Vn <ozn > 0 and WTxn = 1) OR (an =0 and WTxn > 1)
n=1

Furthermore, in this solution o, # 0 if W' x, = 1, i.e., X, is a support vector (n € S), and there
are at most d such support vectors.
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For almost every set X, no more than d points x,, can be on the same hyperplane. Therefore,
since all support vectors must lie on the same hyperplane, there can be at most d support vectors,
for almost every X.

Given the set of support vectors, S, the KKT conditions of eq. 6 entail that o, = 0if n ¢ S and

1=XIw=X Xsas, (56)

where we denoted s as « restricted to the support vector components. For almost every set X,
since d > |S], XEXS e RISI*IS| is invertible. Therefore, as has the unique solution

(X}XS> 1 as. (57)

This implies that Vn € S, «, is equal to a rational function in the components of Xg, i.e., o, =
pn (Xs) /qn (Xs), where p,, and ¢,, are polynomials in the components of X g. Therefore, if a, = 0,
then p,, (Xs) = 0, so the components of X s must be at a root of the polynomial p,,. The roots of the
polynomial p,, have measure zero, unless VXs : p, (Xs) = 0. However, p,, cannot be identically
equal to zero, since, for example, if X} = [I‘S|X‘S|, O|S|X(d_|5|)], then X}Xs = Iis|x|s|> and so
in this case Vn € S, o, = 1 # 0, from eq. 57.

Therefore, for a given S, the event that "eq. 56 has a solution with a zero component" has a
zero measure. Moreover, the union of these events, for all possible S, also has zero measure, as a
finite union of zero measures sets (there are only finitely many possible sets S C {1,..., N} ). This
implies that, for almost all datasets X, a, = 0 only if n ¢ S. Furthermore, for almost all datasets
the solution « is unique: for each dataset, S is uniquely determined, and given S , the solution eq.
56 is uniquely given by eq. 57. B

Appendix C. Completing the proof of Theorem 3 for zero measure cases

In the preceding Appendices, we established Theorem 4, which only applied when all support vec-
tors are associated with non-zero coefficients. This characterizes almost all data sets, i.e. all except
for measure zero. We now turn to presenting and proving a more complete characterization of the
limit behaviour of gradient descent, which covers all data sets, including those degenerate data sets
not covered by Theorem 4, thus establishing Theorem 3.

In order to do so, we first have to introduce additional notation and a recursive treatment of the
data set. We will define a sequence of data sets P,, X 5, obtained by considering only a subset S
of the points, and projecting them using the projection matrix P,,. We start, for m = 0, with the
full original data set, i.e. Sy = {1,...,N} and Py = I;,4. We then define W, as the max margin
predictor for P,,, 1 X S s le:

W,, = argmin ||W||2 st WP 1X, > 1Vn €Sy (58)
weRd

In particular, w1 is the max margin predictor for the original data set. We then denote S, the indices

of non-support vectors for 58, S, the indices of support vector of 58 with non-zero coefficients for
the dual variables corresponding to the margin constraints (for some dual solution), and S,, the set
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of support vector with zero coefficients. That is:

4

= {TL S Sm_l\vir;f’m_lxn > 1}

; = {’I’L € Sm—1|vAVr—£LPm—1Xn = 1} = Sm \S;L

N
S, = {n €S, |Fa € RZZVO C W, = Zakf’m_lxk,an >0,Vi¢ S, o= 0}
k=1
Sm=38.\Sn. (59)

The problematic degenerate case, not covered by the analysis of Theorem 4, is when there are
support vectors with zero coefficients, i.e., when S,,, # (. In this case we recurse on these zero-
coefficient support vectors (i.e., on S,,), but only consider their components orthogonal to the non-
zero-coefficient support vectors (i.e., not spanned by points in S,,,). That is, we project using:

Py =Pyt (1o - X, Xk ) (60)

where we denoted AT as the Moore-Penrose pseudo-inverse of A. We also denote P,,, = I; — P,,.

This recursive treatment continues as long as S,,, # (), defining a sequence W, of max margin
predictors, for smaller and lower dimensional data sets P,,,_; X S, We stop when S,, = 0 and
denote the stopping stage M —that is, M is the minimal m such that S,,, = (). Our characterization
will be in terms of the sequence w1,...,wjs. As established in Lemma 12 of Appendix B, for
almost all data sets we will not have support vectors with non-zero coefficients, and so we will have
M = 1, and so the characterization only depends on the max margin predictor W of the original
data set. But, even for the measure zero of data sets in which M > 1, we provide the following
more complete characterization:

Theorem 13 For all datasets which are linearly separable (Assumption 1) and given a [3-smooth
loss function (Assumption 2) with an exponential tail (Assumption 3), gradient descent (as in eq. 2)
with step size n < 237102, (X ) and any starting point w(0), the iterates of gradient descent can
be written as:

M
W ()= > Wi log™ (t) + p(t) , (61)
m=1

m times

——
where log®™ (t) = loglog - - -log (t), Wy, is the Ly max margin vector defined in eq. 58, and the
residual p (t) is bounded.

C.1 Auxiliary notation

We say that a function f : N — R is absolutely summable if Y2, | f ()| < oo, and then we denote
f (t) € Ly. Furthermore, we define

M

m—1 -«
~ ~ Wi.m
r(t)=w(t)— Wi 0g"™ (8) + Wi + ) —g o~
2 2 T s 0

m=1

where w,,, and Wy, ,,, are defined next, and additionally, we denote
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Il
M=
s

We define, Vm > 1, w,,, as the solution of

m
VYm >1: VnESm.nZexp< ZVV;I >15m_1xn:\izm, (62)
nESm
such that
P,,_1w,, = 0and P,,w,, = 0. (63)

The existence and uniqueness of the solution, w, are proved in appendix section C.4.
Lastly, we define, Vm > k > 1, Wy, ,, as the solution of

m—1
Z exp (—VNVTXH) Po_1x, = Z Z exp (—VVTXH) xnxz Wiom (64)
neSm k=1 [n€eSy
such that
Pj_1W = 0and Ppwy,, = 0. (65)

The existence and uniqueness of the solution wy, ,,, are proved in appendix section C.5.
Together, eqs. 62-65 entail the existence of a unique decomposition, Vm > 1 :

m—1
D ST IS i b ol (o) ey BT

neSm k=1 | nESy

given the constraints in eqs. 63 and 65 hold.

C.2 Proof of Theorem 13

In the following proofs, for any solution w(t), we define

ka

M
=) Wi log™™ (t) +
m= m= 1 r:k IOg (t)

M m—1
1 k=

noting that

I+ 1) =7 (0] < s
and
r(t) =w(t) —wilog (t) —w — 7 (t) (67)

where w follow the conditions of Theorem 13. Our goal is to show that ||r(¢)]| is bounded. To show
this, we will upper bound the following equation

le(t + DI* = et + 1) —x(®)]* + 2 (x(t + 1) —x(8) " x(t) + [|e(0)] (68)
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First, we note that 3¢y such that V¢ > ¢, the first term in this equation can be upper bounded by
le(t +1) —x(1)]?
W [w(t+1)—wilog(t+1)— 7 (t+1) — w(t) + Wy log (t) + T (t) ||?
2 .
= || =0V L(w(t)) = Wi(log (t +1) —log (1) — (7 (t +1) — 7 (1))[|”
= P |IVL(w(t))|[* + [[%1]*log® (1 + 1) + |7 (¢t + 1) — 7 (1)
+2pVL(w(t)" (Wilog (1+¢t1) +7(t+1)—7(1))
+ 2%, (T(t+1) — 7 (t)log (L+¢71)
3)
< PIVL(w(D)|[* + [[W1]|* 7% + CFt 2 log ™2 (1) + 20 ||| £ log ™' (£) ,VE > to (69)

where in (1) we used eq. 67, in (2) we used eq. 2 and in (3) weused Vo > 0: = > log (1 + ) > 0,

and also using ¢'(w(t) "x,) < 0 for large enough ¢, we have that
- —1 _ /( - T -1\ _ l[xn|| C7
(wllog(l—l—t )+T(t+1) ‘r(t)) Zé Xp <w1xnlog(1+t ) oz ()
(70)

which is negative for sufﬁciently large to (since log (1 + t‘l) decreases as ¢~!, which is slower
then 1/ (tlog (t))), Vn : W{x, > 1and ¢ (u) < 0.

Also, from Lemma 10 we know that:
IVL (w (t)) > = o(1) and Z IV L(w(w))* < (71)

Substituting eq. 71 into eq. 69, and recalling that ¢t~"* log™"2 (¢) converges for any 1y > 1 and any
V5, and So

ko (1) 2 [[e(t + 1) —x(t)|* € L1 . (72)

Also, in the next subsection we will prove that
Lemma 14 Let k1 (t) and k2 (t) be functions in L, then
(c(t+1) —r(®) r) < r @) r @) +r2(?) (73)
Thus, by combining eqs. 73 and 72 into eq. 68, we find
le(t + 1)1 < ko () + 2k (2) [lr (O] + 262 (2) + [[x(2)]?
(t) = 2k;1 (t), and z (t) =

On this result we apply the following lemma (with ¢ (t) = ||r(t)]],
Ko (t) + 2k2 (t)), which we prove in appendix C.6:

Lemma 15 Ler ¢ (t), h (t), z (t) be three functions from N to R, and Cy, Cy, Cs be three positive
constants. Then, if > ;2 h(t) < Cy < oo, and

P (t+1) < z(t)+h(t)o(t)+¢” (1) (74)
we have .
B (t+1)<Cot+Cs > z(u) (75)
u=1
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and obtain that

t
[t + 1)||> < Co+ Cs Y (ko (u) + 26z (u)) < Cy < 00,
u=1

since we assumed that Vi = 0,1,2 : ; (t) € L;. This completes our proof. ll

C.3 Proof of Lemma 14

Before we prove Lemma 14, we prove the following auxilary Lemma:

Lemma 16 Consider the function f(t) =t~ (log(t))~2(loglog(t)) ™ ... (log®™ (t))~*m+1. If
Imo < M + 1 such that vy, > 1 and for all m’ < mo,v,y = 1, then f(t) € L.

Proof To prove Lemma 16, we will show that the improper integeral ftoo t)dt for any t; > 0 is

bounded, i.e., Vt; > 0, ft t)dt < C. Using the integeral test for convergence (or Maclaurin—
Cauchy test) this in turn 1mphes that Vi, > 0, f(t) < C, and thus f(t) € L.
First, if mg > 1,then vy = va... = Vpy—1 = 1 and vy, = 1+ € for some € > 0. Using change

of variables i = log®(™0 =1 (), we have

mo—2 -1 mo—2
dy = <t 11 logO’“(t)> dt =t J] (log(£))~"+ dt
r=1

r=1

VUm,

and for all m > my, (logo(m_l)(t)> e (log"(m_mO)(y)) < (log(y))""!. Thus, denoting

b= Mt V] and log?™ =V (t;) = y;, we have

00 00 M+1 00 v
fdt= [y [ (log™™ 0 (y)) " d(y) < 7(10%(2 ) dy. (76)
y

t1 Y1 m=mo+1 Y1

—VUm

For mg = 1, we have 1 = 1 + € for some ¢ > 0, and for m > 1, <log°(m_1)(t)> <

(log(#))!"!. Thus, denoting, 7 = S-M*1 |1,,,|, we have I fdt < [ (ligHE) dt.

Thus, for any mg, we only need to show that for all £, > 0,e > 0 and 7 > 0, ft (lotgl(fz) dt <

.
Let us now look at [, (ligl(fz)udt using u = (log(t))” and dv = i, we have du =

=1 (log(t))” " and v = — 2. Using integration by parts, [ udv = uv — [ vdu, we have

/(log(t))’;dt: ~ (log(1))” +z/ (log(t)"""

tl-i—s €te tl-i—s
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Recursing the above equation K times such that 7 — K < 0, we have positive constants
co,C1,- .- cx > 0 independent of ¢, such that

0 v K-1 =k 0 —K
/tl LoB(@)” y; _ [_Z% (og(0) e / (log(t)"* |,

s ) =t tlte
K-1 -k 0o —K
€y ek (log(t1)) e (log(t)) gt
- t€ K tlte
k=0 i =t
@ = i (log(t1))” " 1
< + CK/ 3)
kzzo Eti =t tl+e
K-1 _
¢, (log(t c
_ 3 alog(t)™ B 7 L K o (77)
P €tg €tg

—k
where (1) follows as ZK L en(log®)” — 1700 (2) follows as K is chosen such that 7 — K < 0

€t

and hence for all t > 0, (log(t))” ™ < 1. This completes the proof of the lemma. [ |

Lemma 14 Let k1 (t) and k2 (t) be functions in L, then
(c(t+1) —r () v () < r (@) [ O] + 2 (2) (73)

Proof Recall that we defined

r(t) = w(t) — q(t) (78)
where
M
q(t) = > [y log™™ (t) + hy, (1)] - (79)
m=1
m—1 .
By (1) = Wi + 3 i (80)

with W,,,, W,,, and Wy, ,,, defined in eqgs. 58, 62 and 64, respectively. We note that

la(t+1)—aq(t) —qt)| <Cyi?e Ly (81)
where
M 1 )
qt)=> Wm———— +hy (1) . (82)
0= 2 Som iy + B

Additionally, we define C,, C}, so that

B (O] < Wl + > 1 Whmll < Ch (83)
k=1
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and
C/
h S Ll . (84)

(108 (1)) (loem ) (1))

] <-

We wish to calculate
(r(t+1) —r(t) " x(t)

=[wt+1) —w(t)—lat+1) —a@®)] @)
VL (w(®) —a®)] (@)~ [at+1) —a(t)—a®)] r (@)

—~
—_
~—

(85)

—
Nl

where in (1) we used eq. 78 and in (2) we used the definition of GD in eq. 2. We can bound the

second term using Cauchy-Shwartz inequality and eq. 81:

[a(t+1) —a(®) —a®) r#) <llat+1) —a) —a@)l @)l < Ct~|lr (@) -
Next, we examine the second term in eq. 85

[=nVL (w (1)) = a ()] r ()

N T

= [—T] Zf/(w(t)—rxn) Xp —q (t) r (t)

. Mn 1 "

P LICIIORS DD SRICOERERID

m=1 m=1pest
M - M 1 i

—0'(w Xn)Xn — Wi r ’ 86

+ n;n;:m ( (t) ) mZ::l tH;rL:—ll logor (t) (t) (86)

where in (1) recall from eq. 59 that S,,,, S,}, are mutually exclusive and UM_,S,,, U S} = [NV].

Next we upper bound the three terms in eq. 86.
To bound the first term in eq. 86 we use Cauchy-Shartz, and eq. 84.

S CETIEDS B )] e (1)1 < M, 5 r ()]
e e ¢ (H;'”j log®" (t)) (1og°<m—1> (t))

In bounding the second term in eq. 86, note that for tight exponential tail loss, since w (t) = x,, —
o0, for large enough tg, we have —¢'(w (t) " x,,) < (1+exp(—pusw (1) xp)) exp(—w ()| x,) <
2exp(—w (t) " x,,) for all £ > to. The first term in eq. 86 can be bounded by the following set of
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inequalities, for ¢ > %,

M M
Yy > Aw®) x)xr@)<nd Y —L(w(t) x)xr ()

m=1pest m=1peSt:x r(t)>0

o, u T T T
<2 Z Z exp Z [Wl xp log® (t) + x,) hl(t)} —x,r(t) | x,r(t)
)=0

m=1peSh:x r(t I=1

@ & u T ol T
2> > e =) [Wixlog™ (6)+ x b (1)]
)20

m=1peSt:xTr(t I=1

3)
<2n Z St max
m—1 nesy,
M .

9 | 2m=1 . if M > 1

<4 T o) o 0) " (T o ) €L (87
277‘5?’exp(maxn||xn||C';L)

th

exp (M [[x] Cr) exp< 3w )

2n’8$’ exp (M max_ o+ ||xn||C';L>

—

ifM=1

where in (1) we used egs. 78 and 79, in (2) we used that Yz : ze™* < 1 and x,/r () > 0, (3) we

used eq. 83 and in (4) we denoted 6, = min, sk W, %, > 1 and the last line is integrable based
on Lemma 16.

Next, we bound the last term in eq. 86. For exponential tailed losses (Assumption 3), since
w(t)"x,, — 0o, we have positive constants s, puy > 0, ¢_ and ¢ such that ¥n

Vit >ty =0 (W O8N xn) < (1 + exp <—,u_|_w )" xn)) exp <—w OF xn)
V>t =t (w (t)Txn) > (1 — exp (—,u_w )" xn)) exp (—W (t)Txn)

We define 7, (t) as

n(t) = { (L+exp(~

o
(1 —exp(—p_w(t)Tx,) ifr(t) x, <0 (33)

This implies ¢ > max (t4,t_), —'(w(t) 'x,) x} v (t) < v (t) exp (—w ' (£)x5,) X
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From this result, we have the following set of inequalities:

M M
n Z Z _el(w(t)—l—xn) X;er (t) < n Z Z ’Yn(t) exXp (_W (t)T Xn> X;er (t)
m=1neS,, m=1neS,,
& - - . r ol S XTVVkl LT T
n Z Z Tn(t) exp Z w; xp log® () +x, W+ Y ——————| —x,r(t) | x,r (%)
m=1neSm =1 k= 1II ]Og (t)
M
@) Ny (t) exp (— % ) exp ( X, r (t)) X, r( ex < X, Wi )
22 T g 0 (L3 e
M M
® min(t) exp (X W) exp (xyr (O) xyr (8) (_ xz Wi )
mzz:lnesm tHr Hlog® (t) g l—%;-l [1,2, log®" () v )
&l M (t) exp (—x,) & )exp( x,r (1)) x,r (t) K & X W )
m 1— —
Py I og” (1) O 2 e

= I1._,, log" (t)

+ exp <_ Ail X Wi 141 ) - <1 _J\il X Win 141 >] (89)
[T, log® (t) I=m

where in (1) we used eqs. 78 and 79, and in (2) we used Pj,_; Wy, ,, = 0 fromeq. 65 (so X,Iv'vk,l =0
if m < k) and in (3) defined

Yom (¢ —exp( ZZ Xw“()>. (90)

k=1 I=k+1 log™
Note 3t such that V¢ > t,,, we can bound 1), (t) by

—M max, ||x,|| C
exp O(m_‘l') 1) <ty <1 oD
log (t)
Thus, the third term in 86 is given by
M M T
w,,r ()

U (W) xn) xp 1 (1) = Y
7nZ:1n€ZSm m= ltHr 1 IOg ()

(Ehpd M (t) exp (—x,) W) exp (—x1r (1) %) r(t) [ < = Xy Win 141 )
< m (1) |[exp | — —_—
a mZ:1 nEZSm tHr 1 1Og ( ) 1/1 ( ) P

M—-1 XTW .
1= _ A Wil
(-S|
+§: [ 3 MY (t) exp (—x,) & )exp( x,r (1)) x

nNESm tHr 1 1Og (t)

S
—
~—~
-
S~—
<
3
—~
N
VR
[
|
=
| =
b
b
3
<
3
JG
—~
)
~—

where (1) follows from the bound in eq. 89.
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We examine the first term in eq. 92

M -
Z Z 7Yn () exp (—XIW) exp (—x,)Tlr (t)) x,)r(t) o (1)

—1
m=1neS,, t H;n:1 log®" (t

-[exp (_ MX? X, Won 141 ) _ <1 _ Iwil X Won 141 ) ]
S T, log™ (1) S Tl log®" (1)

Vt >ty > ty, where we will determine ¢; later. We have the following for all m € [M]

Z Nyn (t) exp (—x;l'—v~v) exp (—x;l'—r (t)) x!r(t)
e ¢TI log™ (¢

M-—1 XTW M-—1 XTW

S T, log (1) 5o T =y log™ (1)

D 77’Yn(t) eXp (_XIVNV) Y (1) _ — XIWm,l+1 _ _ = XIWm,l+1
= Z ¢ Hm—l 1Ogor (t) [exp ( Z 1 Z

5 Tl log™ (t) =TT, log™ (1)

$m ()

—

nESm: r=1
x;r(t)zo
- M—1 . 2
(i) Z 17 (t) exp (—x, W) (1) (Z X, Wi 141 ) €L, ©93)
— —1 l o ’
S S o v () \ 5 Tl o2 (1)
X, r(t)=0

where we set £; > 0 such that V¢ > ¢; the term in the square bracket is positive and

M—1 T

Xy Win 41
Z ln - > -1,

l=m Hr:m logOT’ (t)

in (1) we used that since e=* > 1 — z, and also from using e %z < 1 and in (2) we use that
Va > —1 we have that e™* < 1 — = + 2% and 1, (t) < 1 from eq. 91.
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We examine the second term in eq. 92 using the decomposition of W, from eq. 66
i Z 7Yn (1) exp (—XI\X/) exp (—xzr (t)) Ir (t) b () (1 B Ail X:;VVVmJJ’,l ) B x;l'—vAvm ]
m=1 [neS,, tHT:;l 1Og0T (t) l=m Hi:m 1Og07“ (t) t HT:711 1Og°T (t)
(1)

M nexp (—x, W) x, r (t)
Z1 nESm 115 10g (t) (

(B exp (=x,x (1)) ¥ (1) = 1)

i 3 1y () exp (=%, W) exp (=%, 1 (t)) X, ¥ (1) P (t) Mijl X Wn, 141
s T e S T log™ ()
+im 12 nexp (—x, W) x, 1 (t) X, W,
=1 k=1 neSy Hr:l tlog®" (1)

—

M x!'w)xr
@5 5 BRI () e (< (1) () — 1)

—1 or
m=1nesS,, tHr 1 1Og (t)

m

]Z”: Z M (t) exp (—x) W) exp (=%, 1 (£)) X} 1 (£) P (£)X,) Wi 141

S nes t115— log™ (1)
N M 77 exp (—X,TLW) x, r(t) xZwk7m+1
Pt [, tlog™ (t)
M
(3) X Wm ~
= Z - Z ¢ 7 exp (—XIW) (”yn(t)d)m (t) exp (—er (t)) — 1) XII‘ (t)
m=1nesS,, = 10 tHr 1 ( )
M
=33 Toalt (94)
m=1nesS,,

where in (1) we used eq. 66, in (2) we re-arranged the order of summation in the last term, and in
(3) we just use a change of variables.
Next, we examine I',, ,(¢) for each m and n € S, in eq. 94. Note that, It > t, such that

YVt > to we have
M—1

T
Z Xn Wi, k+1
k or

k=m tHr:l IOg (t)

0.5
T log® (1)

In this case, Vt > to

Ln(t) %) Ui [th (1n1 1) o (¢ )] exp <_XT—L|—W) (’Yn(t)l/}m(t) exp <_XT—L|—I. (t)> - 1) XT—er (t),
(95)

where in (1) follows from the definition of ¢2, wherein

mt)={ 53 if rm e imar )~
' 05 i (3 (1) (t) exp (—xr (8) — 1) x\r

1. First, if x| v (£) > 0, then v, () = (1 + exp(—p;sw(t) 'x,)) > 0.
We further divide into two cases. In the following Cj, C are some constants independent of ¢.

T
n
T
TL
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(a) If ‘X;l;l‘ (t)| > Cot~0-5%+ | then we have the following

0O () exp (—xx (1))

W M

< (1 + exp <—,u+ Z [vAvlTxn log®!(t) + hl—rxn} )) exp <—X;er (t))
=1

(2)

21y exp(p4Ch HXn”)/H exp(—C’ot_O'5“+)

(117" tog (1))
3

< (1401t ) (1= Cot™ "2+ 4 0.5CGt 1) Wt > )

—
=

@)
< 1= Cot " (1+ Ot H) + 0.5C5tH+ (1+ Ot 7++) < 1,V > ], (96)

where in (1), we use 1, (t) < 1 from eq. 91 and using eq. 78, in (2) we used bound on h,,
exp(p4 Callxnll) Cy, and

H:n;ll logor(t))u+
for the second term we used the inequality e < 1 — z + 0.522 for # > 0, and (4) holds
asymptotically for ¢ > t" for large enough t/ > ¢ as Cot 051+ converges slower than
0.5C3t=H+ to 0.

Thus, using eq. 96 in eq. 95, Vt > max (t2, ), we have

from eq. 83, in (3) for some large enough ¢/, > t, we have (

nk(n,t) exp (—x, W)
Tima(t)< [ =" 1os™ (& ] (3@ exp (—x7x (1) = 1) x[r (8) <0
.

(b) If0 < x,, r () < Cot =%+, then we have the following: t,,(t) < 1fromeq. 91, exp (—x, 1 (t)) <
lasx, r(t) > 0, and since w(t) ' x,, — oo, for large enough t > ¢, v,,(t) = (1 + exp (—ppw(t) Tx,)) <
2
This gives us, (7, (t)¥m(t) exp (—x, 1 (1)) — 1) x,) r (t) < x,) 1 (t) < Cot %%+, and using
this in eq. 95, V¢ > max (t2,t/,)

nk(n,t) exp (—x, W)

117 log® (t)

2. Second, if x,) r (t) < 0, then 7, (t) = (1 — exp(—p_w(t) x,)) € (0,1). We again divide
into following special cases.

()< [ ] Cot™ 921+ e L.

—0.50—
(a) If ‘er )| < Co (logo(m_l)(t)> : , where fi_ = min (u—, 1), then we have

T

Loalt) < |28 C0 %)
t1[, log® (t)

@) [1.577 exp (—x,, W)

X r (t)‘

] (1=t (W) exp (—x]x (1)) )

e L.

g ~1-0.5i—
T log (1) )

where in (1) we used that (1 — ’yn(t)wm (t)exp (—x,r(t))) < 1and
xx (0] < Co (1og (1)

] Co (1og°™ V(1)
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(b) If ¢, (t) exp (—x, 1 (t)) < 1, then, from eq. 91

—M max,, [|x,|| Ch
logo(m—l) (t)

< log by (1) < x,7 (1) 97)

In this case, since 7, () = 1—exp(—w(t) 'x,,) < 1, we also have 7, (¢, ( )exp( Tr(t) <
1, and hence (7,,(t)t, (t) exp (—x, 1 (t)) — 1) x,) r(t) > 0. Thus, V¢ > t5, in 95, /ﬁ:n( ) =
1.5, and we have

Fm,n(t) <

[1 .on exp( X, W x;ll—r (t)‘

AT ())]( — altym () exp (—x[x (1))

(2 [1.577 exp (—x,, W)] M max,, [|x,| Ch - Cy
LIS e () | o™ T2 1ogr (1) (logt ) (1)

2€L1,

where (1) follows from (1 — 7, ()¢, (t) exp (—x,, 1 (t))) < 1 and the bound on |x) r(t)| =
—x, r(t) from eq. 97.
—0.5/_

(©) Ifthy, (t) exp (—x,x (¢)) > 1,and |x, 1 ()| > Cy (logo(m_l)(t)> , where fi— min (1, ).
Since, x,! w(t) — oo and 1, (t) — 1 from eq. 90, for large enough ¢’ > t_, we have V¢ > t’_,
P (t) > 0.5 and v, (t) = (1 —exp(—pu_x, w(t))) > 0.5. Let 7 > max (4,¢"_) be an arbitrar-
ily large constant. Forallt > 7, ifexp (—x,r (t)) > 7 > 4, then v, (¢)¢h, (t) exp (—x, 1 ()) >
0.257 > 1.
On the other hand, if there exists ¢ > 7 > 4, such that exp (—x; r (t)) < T, then for some
constants C'y, C5 we have the following

(i) exp(—xTr (t)) = exp(|xTr (£) |) > <1 +Co (1og°<m—1>(t)>_0'5ﬁ > since ¢ > 1+
x for all x,
—1 —1
(i) Y (t) > exp (—C’l (logo(m_l)(t)> > > <1 - <logo(m_1)(t)) > from eq. 91

and again using e” > 1 + z for all =,

(iii)

t11, log "(
eXp(_C ||xTLH)T o(m— TH- "
ZG_LHE&ﬁ%J )20_GM%(”@) )it

op(=Cullzall)r
I log® (1) =

B exp(—hy(t )T )exp( x;l;r (t)) a
’7n(t) - (1 - [ t) ]

where the last inequality follows as for large enough t” > t'_, we have

Cs.
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Using the above inequalities, we have
Y () 1m (t) exp (_x;ll'r (t))
0.5/ —1 —p
> <1 +C (logo(m—l)(t)) M > (1 —c (logO(M—l)(t)) ) (1 — Oy (1Og0(m—1)(t)) 12 )

—0.56- o (1Og°(m*1>(t))7 — Oy (1Og m— 1)(t)) —H-

—1-0.50_ (2)
N (1og°(m_1)(t)) S v s (98)

(1)
> 1+ Co (1og0<m*1>(t))
—pu—0.501_

— CyCy (1og°(m_1) (t))

where in (1) we dropped the other positive terms, and (2) follows for large enough ¢ > t”
—0.5/i—
as the Cj log <10g°(m_1) (t)) converges to 0 more slowly than the other negative terms.

Finally, using eq. 98 in eq. 95, we have for all ¢ > max (t2, 7, ty, t"”)

L) < ["*‘fﬁ” Xf; e )] (1= exp (e 1)) e )] <0
99)

Collecting all the terms from the above special cases, and substituting back into eq. 85, we note
that all terms are either negative, in L1, or of the form f (¢) ||r (¢)|], (t) € Ly, thus proving
the lemma. |

C.4 Proof of the existence and uniqueness of the solution to eqs. 62-63

We wish to prove that Vm > 1 :

> exp< iwg > P 1Xy = Wi, (100)
=1

’fLGSm

such that
P,,_1W,, = 0and P,,w,, =0, (101)

we have a unique solution. From eq. 101, we can modify eq. 100 to
m
I O o L
neESm k=1

To prove this, without loss of generality, and with a slight abuse of notation, we will denote S,,, as

Si, Py_1%, as X, and (3, = exp ( Zk 1 W P_ 1xn> so we can write the above equation as

> xuBuexp (—x,Ww1) = Wi

neSy

In the following Lemma 17 we prove this equation V3 & R‘Sl‘.
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Lemma 17 V3 € leél we can find a unique W such that
Z X Bn €Xp <—X;Lrv~v1> =Wy (102)
neSy

and for ¥z € R? such that z" X s, = 0 we would have w{ z = 0.

Proof Let K = rank (Xs,). Letand U = [uy,...,uy] € R be a set of orthonormal vectors
(i.e., UUT = UTU = I) such that u; = W/ ||W;]|, and
Vz£0,Yn €Sz [ug,...,ug]’ x, #0, (103)
while
Vi>K:VneS:ux,=0. (104)
In other words, u; is in the direction of W1, [uy, ..., ux] are in the space spanned by the columns
of Xs,,and [ug41,...,uy| are orthogonal to the columns of X, .

We define v,, = U'x,, and s = U ;. Note that Vi > K : Vi = 0Vn € &1 from eq. 104,
and Vi > K : s; = 0, since for Vz € R? such that z' X5, = 0 we would have W{ z = 0. Lastly,
equation 102 becomes

K
Z XpBnexp | — Z 5jVjn | = Wi1. (105)
neS; 7j=1

Multiplying by U from the left, we obtain

K
Vi< K : g VinBnexp | — g 5jVjn | = uiT\izl.
neS) 7=1

Since u; = w1/ ||[W1]|, we have that

K
Vi< K : Z VinBnexp | — Zsjvj,n = ||W1] di1 - (106)
neS 7j=1
We recall that v1 ,, = W{ x,,/ ||W1]| = 1/ ||%1], ¥n € S1. Given {sj}JKzz, we examine eq. 106 for

1 =1,

[ K
S1 ~
eXp(‘A > > Buexp | =D sjoin | | = Il
[[Wra | =

neSy

This equation always has the unique solution

K
s1= [[Willog |[%1] 7> > Brexp [ =D sjvjm | | - (107)
neS; =2

given {sj }][(:2 Next, we similarly examine eq. 106 for 2 < ¢ < K as a function of s;

K
Z Bnvinexp [ —s1/ || Wi — Zsjvj,n =0. (108)

neS j=2
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multiplying by exp (s1/ ||W1]|) we obtain

K
0
0= Z ani,nexp —ZSjUjm :_8_&[E(827.”7$K)] ,
Jj=2

neS)

where we defined

K
E(s2,...,5K) = Z Br, exp —Zsjvjm
i=2

neSy
Therefore, any critical point of F (so,...,sk) would be a solution of eq. 108 for 2 < i < K,
and substituting this solution into eq. 107 we obtain s;. Since 3, > 0, E'(sg,..., Sk ) is a convex

function, as positive linear combination of convex function (exponential). Therefore, any finite
critical point is a global minimum. All that remains is to show that a finite minimum exists and that
it is unique.

From the definition of S1, Ja € leé‘ such that wy = S, QnXp . Multiplying this equation
by UT we obtain that 3o € R'fé‘ suchthat 2 <i < K
> vinan =0. (109)

neS1
Therefore, V (sa, ..., sk) # 0 we have that

K
Z Zsjvj,n a, =0. (110)

neSy \j=2

Recall, from eq. 103 that V(s2 ...,sx) # 0,3In € S; : Zf:z 5jVjn # 0, and that o, > 0.
Therefore, eq. 110 implies that dn € Sy such that Z]K:2 5jVjn > 0 and also 3m € S; such that
Zf:2 S$iVim < 0.

Thus, in any direction we take a limit in which |s;] — oo V2 < ¢ < K, we obtain that
E (s2,...,sKx) — o0, since at least one exponent in the sum diverge. Since E (sa,...,Sk), is
a continuous function, it implies it has a finite global minimum. This proves the existence of a finite
solution. To prove uniqueness we will show the function is strictly convex, since the hessian is
(strictly) positive definite, i.e., that the following expression is strictly positive:

K K 9 9
ZZQZnggE (82, . ,SK) .
=2 k=2 1 9%k
K K K
Sy s, (zq> (z q> oo [ 3 sy
nes: i=2 k=2 j=2
K 2 K
— Z ﬁn (Z (Ji’l}i’n> exXp — Z Sj'UjJL
nesS 1=2 Jj=2

the last expression is indeed strictly positive since Vq # 0,dn € S : Z]KZQ qjvjn # 0, from eq.
103. Thus, there exists a unique solution wi. |
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C.5 Proof of the existence and uniqueness of the solution to eqs. 64-65

Lemma 18 For Vm > k > 1, the equations

m—1
Z exp (—VNVTXH) P_1x, = Z Z exp (—VVTXH) xnxz Wiom (111)
neSm k=1 [neSy
under the constraints
Pj_1Wg 1, = Oand Ppwy ,, = 0 (112)

have a unique solution Wy, p,.

Proof For this proof we denote X, as the matrix which columns are {x,|n € Sj}, the orthogonal
projection matrix Q; = P, Pj_;where Q. Q,,, = 0 Vk # m, Q,P,,, = 0 Vk < m, and

¥m:1=Pp +Pp=> Qi+Py (113)
k=1

We will write Wy, ,, = Wy, puy,, , where ug ,,, € R% and Wim € R4k s a full rank matrix
such that Q, Wy, ,,, = Wy, 1, 50

Wim = QeWim = Qe Wi mUg o, - (114)

and, furthermore,
rank ngQkam} — rank (X}ka> —dy . (115)

Recall that Vm : P,,P,, = 0 and Vk > 1,Vn € S,, PyirX, = 0. Therefore, Vv € RY |
P,_1Quv =0, P,Q.v = 0. Thus, Wi m €q. 114 implies the constraints in eq. 112 hold.

Next, we prove the existence and uniqueness of the solution Wy, ,,, for each & = 1,...,m
separately. We multiply eq. 111 from the left by the identity matrix, decomposed to orthogonal
projection matrices as in eq. 113. Since each matrix projects to an orthogonal subspace, we can
solve each product separately.

The product with P,,, is equal to zero for both sides of the equation. The product with Q, is
equal to

Z exp <—\7VTxn) QP —1x, = Z exp <—\7VTxn) Qixnx, Wiom -

neESm neSy

Substituting eq. 114, and multiplying by W,Im from the right, we obtain

=T T - T T T
Z exp <—w xn> Wi QePm—1x, = Z exp (—W xn> Wi mQexnX, Qe Wi m | Wk m -
nESm neSy,

(116)
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T

Denoting E;, € RISkI*ISk] g diagonal matrix for which E,,,, ;. = exp (—%W xn), the matrix in the

square bracket in the left hand side can be written as
Wi QiXs EvEr XS QeWi o, (117)
Since rank (AAT) = rank (A) for any matrix A, the rank of this matrix is equal to

1 2
rank [EXs, Qr Wy, ] ) rank [Xs, Qx W ] ) dy

where in (1) we used that Ej, is diagonal and non-zero, and in (2) we used eq. 115. This implies
that the dj, X dj, matrix in eq. 117 is full rank, and so eq. 116 has a unique solution uy, ,,,. Therefore,
there exists a unique solution Wy, ,. |

C.6 Proof of Lemma 15

Lemma 15 Ler ¢ (t),h (t), z (t) be three functions from N to R, and Cy, Cy, Cs be three positive
constants. Then, if > ;2 h(t) < Cy < 0o, and

¢ (t+1) < z(t)+h(t)o(t)+¢* (1) (74)
we have
t
S (t+1)<Coa+Csy 2 (u) (75)
u=1

Proof We define v (t) = z (t) + h (t), and start from eq. 74

P (t+1)

<z(t)+h(t)o(t)+¢* (1)

< z(t) + h(t)max [1,¢” ()] + ¢ (¢)

<z (t)+h(t)+h(t)¢* () + 6 (t)

<Y () + (1+h(1) 6" (1)

<Y+ (T+h@)YE—1)+(1+h(t) (1+h(t—1)¢* (t—1)
<YW +A+h@)YE-1)+A+0@)A+h(t-1)¢(t—2)
+ 1A+ +ht—1)1+h(t—-2)¢*(t—2)
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we keep iterating eq. 74, until we obtain

t—1 t—t1 [k—1
< [H (Hh(t—m))] o)+ > |11 (Hh(t—m))] b (t— k)
e t—1 k:to—lm_o k-1
< [exp <Z h(t—m))] é(t)+ > |exp <Z h(t—m))] b (t— k)
m=1 k=0 m=1

B t—1
< exp (C) ¢<1>+Zw<t—k>]
L k=0

< exp (C) ¢><1>+Zw<u>]

u=1

<exp(C) [¢(1)+ Y (=(u) + h(U))]

u=1

<exp (C) ¢(1)+C+Zz(u)]

u=1

Therefore, the Lemma holds with Co = (¢ (1) + C) exp (C') and C5 = exp (C).
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Appendix D. Calculation of convergence rates

In this section we calculate the various rates mentioned in section 3.

D.1 Proof of Theorem 5

From Theorems 4 and 13, we can write w (t) = wlog ¢+ p (t), where p (¢) has a bounded norm for
almost all datasets, while in zero measure case p (t) contains additional O(loglog(¢)) components
which are orthogonal to the support vectors in S7, and, asymptotically, have a positive angle with
the other support vectors. In this section we first calculate the various convergence rates for the
non-degenerate case of Theorem 4, and then write the correction in the zero measure cases, if there
is such a correction.

First, we calculated of the normalized weight vector (eq. 8), for almost every dataset:

w (t)
lw ()]

p(t)+wlogt

\/p )" p(t)+wTwlog?t +2p (t) wlogt

B p(t)/logt+w
11 2007w (19 logt)+up 0 / (] 108 )
1 1 3 W 2 le®I*] 1 1
. P
= — t)—+w]) [1—- — — -|-O< >
[l (p( )logt > \WH logt 2 w 2||w|? | log?t log3 t

(118)

~ ~ T A
t t 1 1
L (o0 ) 1 (L)
(W] W Wl ||w| log ¢ log”t
W 1 1
(Y Lo (L)),
(W] W]/ lIw] logt log“t

where to obtain eq. 118 we used \/ﬁ =1- %w + %x2 + 0 (m?’) and in the last line we used the

fact that p (¢) has a bounded norm for almost every dataset. Thus, in this case

H\Izgg IWHH <10gt>

For the measure zero cases, we instead have from eq. 61, w(t) = Z%:l w log®™ (t) + p(t),
where ||p(¢)]| is bounded (Theorem 3). Let 5(t) = S°M_ wlog®™(t) + p(t), such that w(t) =
wlog(t) + p(t) with p(t) = O(loglog(t)). Repeating the same calculations as above, we have for

the degenerate cases,
H w () w H <loglogt>
T aon =l = O
w @l [Iw log ¢
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Next, we use eq. 118 to calculate the angle (eq. 9)
w(t) w

[[w @O Il
2
W' 1 Lp®'w 3 p®M W\ le®l*| 1 1
=0 )— +W | |1 +|-12 - +0 < >
w1 <p( ot > logt[[w]] A 2||w|* | log”t log® ¢

N2
L 2e@IP (e W 1) 1 +0< 1 >
| W[l (2]l 4| log?t log® ¢

for almost every dataset. Thus, in this case

w(t)'w 1
nwwmwn‘OQ%%>

Repeating the same calculation for the measure zero case, we have instead

wt) w B log log ¢\ 2
uw@mmu‘0<<by >>

Next, we calculate the margin (eq. 10)

nxTW(t) 1
W)l wll
Tl (e®) p(t) 1 ( 1 >
— — o ——
@P%[Qmu|muwm\>by+ log?
= minx! (t)—m L+O<L> (119)
T wl \ Iw|? ) logt log? ¢

for almost every dataset, where in eq. 119 we used eq. 19. Interestingly the measure zero case has
a similar convergence rate, since after a sufficient number of iterations, the O(log log(t)) correction
is orthogonal to x, where k = argmin,,x,! w(t). Thus, for all datasets,

1 1
minx, w(t) — —— =0 (—) (120)
oW (= 57 = O \loge

Calculation of the training loss (eq. 11):

L(w

[ﬁ

1+ exp < e w (t )Txn)) exp (—w O8N xn>

S
I
—_

I
M=

3
Il
—

(
(1 + exp ( L (p(t)+wlogt)" xn>> exp (— (p(t) +wlogt)" xn>
(

I
] =

14 W X exp (—,u+p )" xn)> exp (—p )" xn) g xn

3
Il
—

~ | =

AT (t‘ max(9,1+ﬂ+)> .
S

n

m
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Thus, for all datasets £ (w (t)) = O(t!). Note that the zero measure case has the same behavior,
since after a sufficient number of iterations, the O(loglog(t)) correction has a non-negative angle
with all the support vectors.

Next, we give an example demonstrating the bounds above, for the non-degenerate case, are
strict. Consider optimization with and exponential loss ¢ (u) = e~ *, and a single data point x =
(1,0). In this case w = (1,0) and ||Ww|| = 1. We take the limit  — 0, and obtain the continuous
time version of GD:

w (t) = exp (—w (1)) ; w2 (t) = 0.
We can analytically integrate these equations to obtain
wy (t) = log (t + exp (w1 (0))) 5 wa (t) = w2 (0).
Using this example with ws (0) > 0, it is easy to see that the above upper bounds are strict in
the non-degenerate case. l
D.2 Validation error lower bound

Lastly, recall that V is a set of indices for validation set samples. We calculate of the validation
loss for logistic loss, if the error of the Lo max margin vector has some classification errors on the
validation, i.e., 3k € V: w'xy < 0:

Lo (w (1) = Y log (14 exp (~w () x, )

ney
> log (1 + exp <—w O8N xk))
= log (1 + exp (— (p(t) +wlogt)" xk>)
= log (exp (— (p(t) +wlogt)" xk> (1 + exp ((p (t) 4+ wlogt)" xk>>)
)" x; + log (1 + exp ((p (t) + wlogt)" xk))
> —logtw x4+ p () %
Q(log(t)).

== (p(t) +wlogt

Thus, for all datasets Ly, (w (1)) =

Appendix E. Softmax output with cross-entropy loss

We examine multiclass classification. In the case the labels are the class index y,, € {1,..., K} and
we have a weight matrix W € R¥*? with w), being the k-th row of W.

Furthermore, we define w = vec (WT) a basis vector e; € RY so that(ey);, = O, and
the matrix A, € R >4 g0 that A;, = e; ® I, where ® is the Kronecker product and I is the
d-dimension identity matrix. Note that Ak W = Wp.

Consider the cross entropy loss with softmax output

_i:llog< exp (W), %n) )

Zk:l exp (Wk Xn)
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Using our notation, this loss can be re-written as

N T
B Zlog < (;‘{Xp (W Aynxn) >
n=1

Yo exp (Wl Agxy,)

N K
= Zlog <Z exp (wT (A —Ay,) xn>> (121)
n=1

Therefore

N
_ 1 exp (Ak —A,) xn) (Ar—Ay,)xp
2:: Zr 1 €Xp (W (w (Ar - Ayn) Xp)
N

K 1
ZZ (Ak— Ay,) %o .
(= SF exp (W (Ar — Ay)x,)

3

If, again, we make the assumption that the data is linearly separable, i.e., in our notation

Assumption 4 3w, such that w] (Ap — A,,) x, < 0VEk # yp.
then the expression

N
w, VL (w) = Ak_A n) X .
[VL (w) ZZ A AT

n=1 k=1 1 exp (W

is strictly negative for any finite w. However, from Lemma 10, in gradient descent with an appropri-
ately small learning rate, we have that VL (w (t)) — 0. This implies that: ||w (¢)|| — oo, and Vk #
Yn, 3 : w(t) (A, — Ap)x, — 0o, which implies Vk # y,, max;, w (£) (Aj — A, )x, —
—o00. Examining the loss (eq. 121) we find that £ (w (¢)) — 0 in this case. Thus, we arrive to an
equivalent Lemma to Lemma 1, for this case:

Lemma 19 Ler w (t) be the iterates of gradient descent (eq. 2) with an appropriately small learn-
ing rate, for cross-entropy loss operating on a softmax output, under the assumption of strict linear
separability (Assumption 4), then: (1) limy_,oo L (W (t)) = 0, (2) limy—, |W (t)]| = oo, and (3)
Vi, k # gy limy_eo w (1) (Ay, — Ap)x, = 00.

Using Lemma 10 and Lemma 19, we prove the following Theorem (equivalent to Theorem 3) in the
next section:

Theorem 7 For almost all multiclass datasets (i.e., except for a measure zero) which are linearly
separable (i.e. the constraints in eq. 15 below are feasible), any starting point w(0) and any small
enough stepsize, the iterates of gradient descent on 13 will behave as:

wy(t) = Wy, log(t) + pi(t), (14)

where the residual py,(t) is bounded and Wy, is the solution of the K-class SVM:

K
argming, o Z |[wi||? 5.2.¥n, Yk # yp, : w;nxn > w]x, + 1. (15)
k=1
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E.1 Notations and Definitions

To prove Theorem 7 we require additional notation. we define x,, = (Ay, — Ap)x,. Using this
notation, we can re-write eq. 15 (K-class SVM) as

arg min ||w]|? s.t. Vn, Vk # v, : WTin’k >1 (122)
w

From the KKT optimality conditions, we have for some a, ;, > 0,

N K
W= > anrZnilines,) (123)
n=1k=1

In addition, for each of the K classes, we define S, = argmin,, (W, — \izk)Txn (the k’th class
support vectors).
Using this definition, we define X5, € RISkl a5 the matrix which columns are Xpk, VN € Sk.
K K
We also define S 2 |J Sy and X5 2 Xs,-
k=1 k=1
We recall that we defined W € RX*? with wy, being the k-th row of W and w = vec(W ).
Similarly, we define:
1. W € RE*4 with wy, being the k-th row of W
2. P € REX4 with p, being the k-th row of P
3. W € RE*4 with Wy, being the k-th row of W
and w = vec(WT), p = vec(PT),w = vec(W ).
Using our notations, eq. 14 can be re-written as w = wlog(¢) + p(t) when p(t) is bounded.
For any solution w(t), we define

r(t) =w(t) —wlogt —w, (124)

where W is the concatenation of w1, ..., Wy, which are the K-class SVM solution, so

Vk, Vn € S, : fc;ll—k\?v =1; 0 =min [min izkv?/] >1 (125)
b k n%sk b

and w satisfies the equation:

Vk, Vn € Sy, 1 nexp((Wg — Wy, ) X,) = ani (126)

This equation has a unique solution for almost every data set according to Lemma 12.

For each of the K classes, we define P'f € R%*4 as the orthogonal projection matrix to the subspace
spanned by the support vector of the k’th class, and f"f =1- Plf as the complementary projection.
Finally, we define P € REAxKd gnd Py € REXKd o5 follows:

P, = diag(P1,P?, .., PK) P, = diag(P],P?,...,P)

(Pl + f_’l =I¢ RKdXKd)

In the following section we will also use 14y, the indicator function, which is 1 if A is satisfied
and 0 otherwise.
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E.2 Auxiliary Lemma

Lemma 20 We have
30t Yt >t (e(t+1) —r(t) e(t) < Cit7? + Cot 2 (127)
Additionally, Ve > 0, 3Cs, ty, such that ¥t > ts, such that if
[P1r(t)]] > e (128)
then we can improve this bound to
(x(t+1)—r@) rt) < —Cst™ ' <0 (129)

We prove the Lemma below, in appendix section E.4

E.3 Proof of Theorem 7

Our goal is to show that ||r(¢)|| is bounded, and therefore p(¢) = r(t) + w is bounded.
To show this, we will upper bound the following equation

I+ D2 =t +1) —r @ +2(c(t+1) —r &) v @)+ [r @) (130)
First, we note that first term in this equation can be upper-bounded by
e (¢ +1) == ()]
D iw(t+1) — wlog (t + 1) — % — w (t) + wlog (£) + w]|?
2 .
2 =nVL (w (1)) — ¥ [log (¢ + 1) — log (1))
=2 VL (w (1)]]* + ||W]? log? (1+ t_l) + 2w ' VL (w (1)) log (1+ t_l)
)
< P IVL W O + Iw]* 2, (131)

where in (1) we used eq. 124, in (2) we used eq 2.2, and in (3) we used Vo > 0 : > log(1+z) > 0,
and also that

N K ~ T . Ak)X
W VL(w) = ZZ n <0 (132)
P 1exp WT(A — Ap)xy)

since W' (A, — Ap)x, = (W, — Wy, )X, < 0,Vk # y, (we recall that Wy, is the K-class SVM
solution).
Also, from Lemma 10 we know that

IVL (w (#)]]* = 0(1) and Y [VL (w (1))|* < oo. (133)

Substituting eq. 133 into eq. 131, and recalling that a t~" power series converges for any v > 1, we
can find C{ such that

lr(t+1) —r@)|* =o(1) and Y [r(t+1) —x(t)]* = Co < o0. (134)
t=0
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Note that this equation also implies that Ve
Jtg:VEt>to:|[[r(t+ D) =[x (t)]]] < eo- (135)

Next, we would like to bound the second term in eq. 130. From eq. 127 in Lemma 20, we can find
t1, Cy such that Vt > tq:

(x(t+1)—r®)r(t) < Crt70 + Cot™2 (136)
Thus, by combining egs. 136 and 134 into eq. 130, we find:
()17 = [[r(ty)]?

- Z_: [l (w + DI = [r(w)]]?]

u=t1
t—1
<Cy+2 Z [C’lu_e + CQ’LL_Z}
u=ty
r(t)|| is bounded.
E.4 Proof of Lemma 20
Lemma 20 We have
30t Yt >t (e(t+1) —r(t) e(t) < Cit7? + Cot 2 (127)

Additionally, Yeq > 0, 3Cs, ty, such that ¥t > ts, such that if
[IPir(®)]] > e (128)
then we can improve this bound to
(x(t+1) —r(t) r(t) < —Cst™' <0 (129)
We wish to bound (r(t + 1) — r(t)) "r(t). First, we recall we defined X,, . = (A, — Ag)Xy.
(r(t+1) — (1) "x(t) = (~nVL(w(t)) — Wllog(t + 1) —log(t)]) "r(t)
( 5o g 0wl Xuiluk 1oy t‘1>> o

n=1 zr lexp( (t)Tin,T’)

v ()t —log(14t71)] (137)
f: [exp ( (t)Timk) i;’kr(t)

> 1 €xp (— w(t) %)

—tTexp (_wTimQ %L (6) 1 e Sk}] . (138)

where in the last line we used eqs. 123 and 126 to obtain

W= nzzan KXnkl{nes,} = UZZGXP( W%, )) Xnkl{nes,}

n=1k=1 n=1k=1

where 14y is the indicator function which is 1 if A is satisfied and 0 otherwise.
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The first term can be upper bounded by

wir(t) [t 10g(1—|—t Y]

< ma { Tr ] —log (1+t71)]
< max [ Pir(t) } 0t
2
S [Wllet=2 ?f [Pir ()] < e (139)
o(t™)) L [Pir(0)]| >«

where in (1) we used that Pow = 0, and in (2) we used that W ' r (t) = o (¢), since

wir(t)=w' <w (0)—n> VL (w(u)—wlog (t) — w)
u=0

< W' (w(0) — % — wwlog (1)) — nt min & VL (w () = o (1

where in the last line we used that VL (w (t)) = o (1), from Lemma 10.
Next, we wish to upper bound the second term in eq. 137:

77% [exp( w(t) Zn i) X, r(t)
n=1k=1

— 7 exp (=W Rk ) Ky (1)1 140
Sy exp (—w(t) "Xy, ;) p( k) k(1) {eSk}] (140)
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We examine each term n in the sum:

ilkr(t) L

T

i [exp )Tink)

k=1

-1 exXp ( (t)Tin,r)

— 1t exp (—VV ink) iz,kr(t)l{nesk}]

T

_ i exp (—w(t)Timk) >~c;kr(t)

K
LT+ YD exp(—

r#yn

— ¢! exp (—\7V ink> i;,kr(t)l{nesk}

w(t) " %pr)

k=
3 e (w0 500) | 1- 3 e (w075

r=
r#yn

1 exp <—V~VT}~(n,k) 1{n€Sk}) 1{izykr(t)<0}izvkr(t)

= EK: <exp <—W(t)T>~(n,k) — ¢! exp <—V~VT7~( > l{nESk}) Xp, kr(t)
k=1

K K
=D exp <_W(t)—r(>~(n,k + >~<n,r)> iz,kf(t)l{i;kr(tko}
k=

k=1

< f: (exp (—W(t)Tf(n,k> —t lexp <—V~VT>~< ) l{nESk}> X, 0]

— K*exp <—W(t)T(>~<n,k1 + in,rl)) iz,klf(t)l{i;klr(t)w},

where in (1) we used Vax > 0 :

(k1,r1) = argmax

k,r

1—z< H—L:v < 1 and in (2) we defined:
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‘exp (—W(t)—r(f{mk + in,r)) X, kr( )1{x r(t)<0}
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Recalling that w(t) = Wwlog(t) + W + r(t), eq. 141 can be upper bounded by

Zt‘w X"kexp( W%, k) exp (-r(t)TXn k) %, r(t JLET 1920 , ngsi}
K

+ Z t~Lexp (—VVTin,k) [exp (—r(t)TanJc) 1] X, kr( )1{5J17kr(t)20 , neS,}
k=1

W% ~ T~ ~ ~
+ Z +~W Xnk exp <_WTXn,k‘> exp <_r(t)TXn,k‘) X;l;kr(t)l{i;:kr(t)<0  ngSp}
k=1

+ Zt Lexp < W%, ) [exp <—I'(t)—r7~(n,k> - 1] il—,kr(t)l{i;kr(t)<0 , nESK}

~ - ~ T~ ~ ~
e exp(=w(t) K ) exp (< R ) exp (—2(0) Ry ) LT 0L, <0y

(1)
< Kt_eexp< mll?W Xnk) + 6(1),

where in (1) we used xe™® < 1, Vo : (e7% —
and denoted:

— W T ~ ~ ~ ~
= Zt W Xnok exp (_WTxn,k) exp (—r(t)Txn_,k) Xz,kr(t)l{i;kr(tko, ngSk}

+ Z ttexp (—W Knk) [exp (—r(t) Knk) — 1] % Xp, S kE(t )l{iz,kr(t)<0,n€$k}
— K? exp(—w(t)—rfcn)n)t_WT’Z"’kl exp (=W X, ) exp (-1

We use the fact that Vo : (e™ — 1)z < 0 and therefore V(n, k):

W Rk ox ( W%, k) exp (—r(t)Txn k) nkr( )1{x r(t)y<o} <0

tLexp < & | % ,k) [exp <—r(t)T5(n7k) — 1] in,kr(t)l{i;kr(tko} <0,

to show that ¢(¢) is strictly negative. If i; k, T = 0 then from the last two equations:

Z t—w X,k exp ( W X 7k> exp (_r(t)—l—in,k) )22;7kr(t)1{}~(zkr(t)<07 néSi}

K
+3 texp <_V~VT5<H,,€) [eXp <—r(t)T§(n7k> _ 1] K (D157 <o, nesy) <0
k=1 ’

Ifx" b r < 0 then we note that —x,) . r(t) < —ig’klr(t) since:
1. Ifx n ., T(t) > 0 then this is immediate since —x,} . () <0< —x] ().
2.1f %, ,,x(t) < O then from (k,71) definition:

()" R,k ) X g, (E JLixT, x()<0}-

(142)

1)z < 0,6 = ming, [minn¢ s, x;kw] > 1 (eq. 125)

(143)

(144)

(exp <—w(t)T(§<n7k1 n iml)) iz,mr(t)‘ < (exp <—w(t)T(5<n,k1 n iml)) ilklr(t)‘ :
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and therefore

We divide into cases:
1. If n ¢ S, then we examine the sum

—W % ~ T~ ~ ~
t W Xn,kq exp (_WTXTLJfl) exp <_r(t)TXn,k1> XrTL,klr(t)l{iI,klr(t)<0}
~ W ~ T~ ~ ~
B2 exp(—w(t) TS )t exp (<9 R ) exp (2 () R ) Zh P (O1s7, w0

The first term is negative and the second is positive. From Lemma 19 w(t)T§<n7T1 — oo. Therefore
3tz so that V¢ > t3: exp(—w(t) %X, ) < K2 and therefore this sum is strictly negative since

T

K2 exp(—W(t)Tf(nﬂnl)t_w in,kl exp (_WTin,kl)) exp (—i;';klr(t)) )~(7—Lr7k1r(t)1{>~<;£kll‘(t)<0}

¥ Fnk exp (=W TRy, 1, ) exp (—1(8) TR ,) X, 1, D) 1zT o, 7(H)<0)

= ‘Kz exp(—w(t) %) < 1, Vt > t3

2. If n € &, then we examine the sum

t*l exp (—VNVT}N(nJﬁ) [exp (—I‘(t)Timkl) — 1] i;lr,klr(t)l{i;hl‘(t)<0}
~ W% ~ T~ ~ ~
- K? exp(—w(t)Txn)rl)t ™k exp (—WTxn,kl) exp (—r(t)TXn,kl) Xz,klr(t)l{i;klr(tko}
a. If ]5(; ), T(t)] > Co then 3ty such that V¢ > ¢4 this sum can be upper bounded by zero since

T

K2 eXp(—W(t)T)zn7T1)t_w Xn.k1 exp (—V~VT>~<n,k1)) exp <—>~(;|;k1r(t)> i;l;klr(t)l{i;klr(t)<0}

t~Lexp (_WTin,kl) [eXp (_r(t)—rimkl) - 1] i;zr,klr(t)l{i;kl r(t)<0}

K2exp(—w(t) %p.r K2 exp(—w(t) "X,
_ exp(—w( )T~X ) < exp(~w(t) Xnr) <1, Vt>ty (145)
1 —exp (I'(t) Xn,/ﬂ) 1 —exp (_CO)

where in the last transition we used Lemma 19.
b. If \5{1 1, T(t)] < Co then we can find constant C5 so that eq. 145 can be upper bounded by

K2 Gy %) oy (-va(in,kl + in,m)> exp (2Cy) Co < Cst ™2, (146)

since —%,! . r(t) < —izklr(t) < Cy and by definition, ¥(n, k) : W' X, > 1.

n,T1

Therefore, eq. 141 can be upper bounded by

Kt~ %exp <— min wank> + C5t™2 (147)
If, in addition, 3k,n € Sy, : \i;kr(t)] > € then
tLexp <—v~vT>~<n,k) [exp <—r(t)T§(n7k) — 1] iz’kr(t) (148)
- {—t_l exp (— max, \X/'Tf(mk) [1 —exp(—e)]ex ,ifr(t) %, >0 (149)
T |t exp (—max, p WKy p) [exp (€2) — 12, ifr(t) X <0
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and we can improve this bound to

"t <o, (150)

where C” is the minimum between exp (— max;,, ; W' X, ;) [1 — exp (—€2)] €2 and
exp (— max, j VVT}NCn’k) [exp (€2) — 1] €2. To conclude:
1. If |Pir (¢)]| > €1 (as in Eq. 139), we have that

~ 2 2@ 1
&1 P (1) = 5 xEPir ()| = 5] (Xs) e 15D

max
k,neSy

‘2 @ 1

zﬁz

k,neSy

T
Xn,kr (t)

where in (1) we used P{ X, . = X, 4 Vk, n € Sy, in (2) we denoted by oyyin (Xs), the minimal
non-zero singular value of Xs and used eq. 128. Therefore, for some (n, k), ‘5(; kr‘ > €9
IS|7 02, (Xs) €. If ||Pyr(t)|| > €1, then combining eq. 139 with eq. 150 we find that eq. 137
can be upper bounded by:

(r(t+1) —r(t) r(t) < —C"t7 4+ o(t™1)
This implies that 3Cy < C” and 3ty > 0 such that eq. 129 holds. This implies also that eq. 127
holds for ||Pyr(t)|| > €.
2.If ||P17(t)|| < €1, we obtain (for some positive constants C's, Cy):

(r(t+1) —rt) r(t) < Cst™0 + Cyt 2

Therefore, 3¢; > 0 and C1 such that eq. 127 holds.

Appendix F. An experiment with stochastic gradient descent

=

Normalized [[w(t)| &
(=]
L(w(t))
S

o 10' 100 100 10' 10 10° 100 100 100 10" 10
_ t t
™ ®
0.06
Q..3 &
s 1)
;02 E0.04
=0 2
=
g1 S 002
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Figure 4: Same as Fig. 1, except stochastic gradient decent is used (with mini-batch of size 4),
instead of GD.
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