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Abstract

We study the question of learning an adversarially robust predictor. We show that any hypothesis

class H with finite VC dimension is robustly PAC learnable with an improper learning rule. The

requirement of being improper is necessary as we exhibit examples of hypothesis classes H with

finite VC dimension that are not robustly PAC learnable with any proper learning rule.
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1. Introduction

Learning predictors that are robust to adversarial perturbations is an important challenge in con-

temporary machine learning. There has been a lot of interest lately in how predictors learned

by deep learning are not robust to adversarial examples (Szegedy et al., 2013; Biggio et al., 2013;

Goodfellow et al., 2014), and there is an ongoing effort to devise methods for learning predictors

that are adversarially robust. In this paper, we consider the problem of learning, based on a

(non-adversarial) i.i.d. sample, a predictor that is robust to adversarial examples at test time. We

emphasize that this is distinct from the learning process itself being robust to an adversarial training

set.

Given an instance space X and label space Y = {+1,−1}, we formalize an adversary we

would like to protect against as U : X 7→ 2X , where U(x) ⊆ X represents the set of perturbations

(adversarial examples) that can be chosen by the adversary at test time. For example, U could be

perturbations of distance at most γ w.r.t. some metric ρ, such as the ℓ∞ metric considered in many

applications: U(x) = {z ∈ X : ‖x− z‖∞ ≤ γ}. Our only (implicit) restriction on the specification

of U is that U(x) should be nonempty for every x. For a distribution D over X × Y , we observe m
i.i.d. samples S ∼ Dm, and our goal is to learn a predictor ĥ : X 7→ Y having small robust risk,

RU (ĥ;D) := E(x,y)∼D

[

sup
z∈U(x)

1[ĥ(z) 6= y]

]

.

The common approach to adversarially robust learning is to pick a hypothesis class H ⊆ YX

(e.g. neural networks) and learn through robust empirical risk minimization:

ĥ ∈ RERMH(S) := argmin
h∈H

R̂U (h;S)

where R̂U(h;S) = 1
m

∑

(x,y)∈S supz∈U(x) 1[h(z) 6= y]. Most work on the problem has focused

on computational approaches to solve this empirical optimization problem, or related problems of
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minimizing a robust version of some surrogate loss instead of the 0/1 loss (Madry et al., 2017;

Wong and Kolter, 2018; Raghunathan et al., 2018a,b). But of course our true objective is not the

empirical robust risk R̂U (h;S), but rather the population robust risk RU(h;D).
How can we ensure that RU (h;D) is small? All prior approaches that we are aware of for ensur-

ing adversarially robust generalization are based on uniform convergence, i.e. showing that w.h.p.

for all predictors h ∈ H, the estimation error |RU (h;D)− R̂U (h;S)| is small, perhaps for some sur-

rogate loss (Bubeck et al., 2018; Cullina et al., 2018; Khim and Loh, 2018; Yin et al., 2018). Such

approaches justify RERM, and in particular yield M-estimation type proper learning rules: we are

learning a hypothesis class by choosing a predictor in the class that minimizes some empirical func-

tional. For standard supervised learning we know that proper learning, and specifically ERM, is

sufficient for learning, and so it is sensible to limit attention to such methods.

But it has also been observed in practice that the adversarial error does not generalize as well

as the standard error, i.e. there can be a large gap between RU (h;D) and R̂U(h;S) even when their

non-robust versions are similar (Schmidt et al., 2018). This suggests that perhaps the robust risk

does not concentrate as well as the standard risk, and so RERM in adversarially robust learning

might not work as well as ERM in standard supervised learning. Does this mean that such problems

are not adversarially robustly learnable? Or is it perhaps that proper learners might not be sufficient?

In this paper we aim to characterize which hypothesis classes are adversarially robustly learn-

able, and using what learning rules. That is, for a given hypothesis class H ⊆ YX and adversary

U , we ask whether it is possible, based on an i.i.d. sample to learn a predictor h that has population

robust risk almost as good as any predictor in H (see Definition 1 in Section 2). We discover a stark

contrast between proper learning rules which output predictors in H, and improper learning rules

which are not constrained to predictors in H. Our main results are:

• We show that there exists an adversary U and a hypothesis class H with finite VC dimension

that cannot be robustly PAC learned with any proper learning rule (including RERM).

• We show that for any adversary U and any hypothesis class H with finite VC dimension,

there exists an improper learning rule that can robustly PAC learn H (although with sample

complexity that is sometimes exponential in the VC dimension).

Our results suggest that we should start considering improper learning rules to ensure adversar-

ially robust generalization. They also demonstrate that previous approaches to adversarially robust

generalization are not always sufficient, as all prior work we are aware of is based on uniform con-

vergence of the robust risk, either directly for the loss of interest (Bubeck et al., 2018; Cullina et al.,

2018) or some carefully constructed surrogate loss (Khim and Loh, 2018; Yin et al., 2018), which

would still justify the use of M-estimation type proper learning. The approach of Attias et al. (2018)

for the case where |U(x)| ≤ k (i.e. finite number of perturbations) is most similar to ours, as it uses

an improper learning rule, but their analysis is still based on uniform convergence and so would ap-

ply also to RERM (the improperness is introduced only for computational, not statistical, reasons).

Also, in this specific case, our approach would give an improved sample complexity that scales only

roughly logarithmically with k, as opposed to the roughly linear scaling in Attias et al. (2018)—see

discussion at the end of Section 4 for details.

A related negative result was presented by Schmidt et al. (2018), where they showed that there

exists a family of distributions (namely, mixtures of two d-dimensional spherical Gaussians) where

the sample complexity for standard learning is O(1), but the sample complexity for adversarially
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robust learning is at least Ω(
√
d

log d ). This an interesting instance where there is a large separation in

sample complexity between standard learning and robust learning. But distribution-specific learning

is known to be less easily characterizable, with the uniform convergence not being necessary for

learning, and ERM not always being optimal, even for standard (non-robust) supervised learning. In

this paper we focus on “worst case” distribution-free robust learning, as in standard PAC learnability.

A different notion of robust learning was studied by Xu and Mannor (2012). They use empirical

robustness as a design technique for learning rules, but their goal, and the guarantees they establish

are on the standard non-robust population risk, and so do not inform us about robust learnability.

2. Problem Setup

We are interested in studying the sample complexity of adversarially robust PAC learning in the

realizable and agnostic settings. Given a hypothesis class H ⊆ YX , our goal is to design a learning

rule A : (X × Y)∗ 7→ YX such that for any distribution D over X × Y , the rule A will find a

predictor that competes with the best predictor h∗ ∈ H in terms of the robust risk using a number

of samples that is independent of the distribution D. The following definitions formalize the notion

of robust PAC learning in the realizable and agnostic settings:1

Definition 1 (Agnostic Robust PAC Learnability) For any ε, δ ∈ (0, 1), the sample complexity

of agnostic robust (ε, δ)−PAC learning of H with respect to adversary U , denoted MAG(ε, δ;H,U),
is defined as the smallest m ∈ N ∪ {0} for which there exists a learning rule A : (X × Y)∗ 7→ YX

such that, for every data distribution D over X × Y , with probability at least 1− δ over S ∼ Dm,

RU (A(S);D) ≤ inf
h∈H

RU (h;D) + ε.

If no such m exists, define MAG(ε, δ;H,U) = ∞. We say that H is robustly PAC learnable in the

agnostic setting with respect to adversary U if ∀ε, δ ∈ (0, 1), MAG(ε, δ;H,U) is finite.

Definition 2 (Realizable Robust PAC Learnability) For any ε, δ ∈ (0, 1), the sample complexity

of realizable robust (ε, δ)-PAC learning of H with respect to adversary U , denoted MRE(ε, δ;H,U),
is defined as the smallest m ∈ N ∪ {0} for which there exists a learning rule A : (X × Y)∗ 7→ YX

such that, for every data distribution D over X ×Y where there exists a predictor h∗ ∈ H with zero

robust risk, RU (h∗;D) = 0, with probability at least 1− δ over S ∼ Dm,

RU (A(S);D) ≤ ε.

If no such m exists, define MRE(ε, δ;H,U)) = ∞. We say that H is robustly PAC learnable in the

realizable setting with respect to adversary U if ∀ε, δ ∈ (0, 1), MRE(ε, δ;H,U) is finite.

Definition 3 (Proper Learnability) We say that H is properly robustly PAC learnable (in the ag-

nostic or realizable setting) if it can be learned as in Definitions 1 or 2 using a learning rule

A : (X × Y)∗ 7→ H that always outputs a predictor in H. We refer to learning using any learning

rule A : (X × Y)∗ 7→ YX , as in the definitions above, as improper learning.

1. We implicitly suppose that the hypotheses h in H and their losses supz∈U(x) 1[h(z) 6= y] are measurable, and that

standard mild restrictions on H are imposed to guarantee measurability of empirical processes, so that the stan-

dard tools of VC theory apply. See Blumer, Ehrenfeucht, Haussler, and Warmuth (1989); van der Vaart and Wellner

(1996) for discussion of such measurability issues, which we will not mention again in the remainder of this article.
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We also denote er(h;D) = P(h(x) 6= y), the (non-robust) error rate under the 0-1 loss, and

êr(h;S) = 1
|S|

∑

(x,y)∈S 1[h(x) 6= y] the empirical error rate. These agree with the robust vari-

ant when U(x) = {x}, and so robust learnability agrees with standard supervised learning when

U(x) = {x}. For more powerful adversaries, robust learnability is a special case of Vapink’s “Gen-

eral Learning” (Vapnik, 1982), but can not, in general, be phrased in terms of supervised learning

of some modified hypothesis class or loss. We recall the Vapnik-Chervonenkis dimension (VC

dimension) is defined as follows,

Definition 4 (VC dimension) We say that a sequence {x1, . . . , xk} ∈ X is shattered by H if

∀y1, . . . , yk ∈ Y,∃h ∈ H such that ∀i ∈ [k], h(xi) = yi. The VC dimension of H (denoted vc(H))
is then defined as the largest integer k for which there exists {x1, . . . , xk} ∈ X that is shattered by

H. If no such k exists, then vc(H) is said to be infinite.

In the standard PAC learning framework, we know that a hypothesis class H is PAC learnable if

and only if the VC dimension of H is finite (Vapnik and Chervonenkis, 1971, 1974; Blumer et al.,

1989; Ehrenfeucht et al., 1989). In particular, H is properly PAC learnable with ERMH and there-

fore proper learning is sufficient for supervised learning. A natural question to ask, based on the

definition of robust PAC learning, is what is a necessary and sufficient condition on H that implies

that it is robustly PAC learnable with respect to adversary U . We can easily obtain a sufficient con-

dition based on Vapink’s “General Learning” (Vapnik, 1982). Denote by LU
H the robust loss class

of H,

LU
H =

{

(x, y) 7→ sup
z∈U(x)

1[h(z) 6= y] : h ∈ H

}

.

If the robust loss class LU
H has finite VC dimension (vc(LU

H) < ∞), then H is robustly PAC

learnable with RERMH and sample complexity that scales linearly with vc(LU
H). One might then

wish to relate the VC dimension of the hypothesis class (vc(H)) to the VC dimension of the robust

loss class (vc(LU
H)). But as we show in Sections 3 and 5, there can be arbitrarily large gaps between

them.

As mentioned earlier, for supervised learning finite VC dimension of the loss class (which is

equal to the VC dimension of the hypothesis class) is also necessary for learning. For general learn-

ing, unlike supervised learning, the loss class having finite VC dimension, and uniform convergence

over this class, is not, in general, necessary, and rules other than ERM might be needed for learning

(e.g. Vapnik, 1982; Shalev-Shwartz et al., 2009; Daniely et al., 2015). In the following Sections, we

show that this is also the case for robust learning. We show that vc(LU
H) can be arbitrarily larger,

we might not have uniform convergence, RERM might not ensure learning, while the problem is

still learnable with a different (improper, in our case) learning rule.

3. Sometimes There are no Proper Robust Learners

We start by showing that even for hypothesis classes with finite VC dimension, indeed even if

vc(H) = 1, robust PAC learning might not be possible using any proper learning rule. In particular,

even if there is a robust predictor in H, and even with an unbounded number of samples, RERM
(or any other M-estimator or other proper learning rules), will not ensure a low robust risk.

Theorem 1 There exists a hypothesis class H ⊆ YX with vc(H) ≤ 1 and an adversary U such

that H is not properly robustly PAC learnable with respect to U in the realizable setting.
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This result implies that finite VC dimension of a hypothesis class H is not sufficient for robust

PAC learning if we want to use proper learning rules. For the proofs in this section, we will fix

an instance space X = R
d equipped with a metric ρ, and an adversary U : X 7→ 2X such that

U(x) = {z ∈ X : ρ(x, z) ≤ γ} for all x ∈ X for some γ > 0. First, we prove a lemma that

shows that there exists a hypothesis class H where there is an arbitrarily large gap between the VC

dimension of H and the VC dimension of the robust loss class of H,

Lemma 2 Let m ∈ N. Then, there exists H ⊆ YX such that vc(H) ≤ 1 but vc(LU
H) ≥ m.

Proof Pick m points x1, . . . , xm in X such that for all i, j ∈ [m],U(xi) ∩ U(xj) = ∅. In other

words, we want the perturbation sets U(x1), . . . ,U(xm) to be mutually disjoint.

We will construct a hypothesis class H in the following iterative manner. Initialize set Z =
{x1, . . . , xm}. For each bit string b ∈ {0, 1}m, initialize Zb = ∅. For each i ∈ [m], if bi = 1 then

pick a point z ∈ U(xi) \ Z and add it to Zb, i.e. Zb = Zb ∪ {z}. Once we finish picking points

based on all bits that are set to 1, we add Zb to Z (i.e. Z = Z ∪ Zb). We define hb : X → Y as:

hb(x) =

{

+1 if x /∈ Zb

−1 if x ∈ Zb

Then, let H = {hb : b ∈ {0, 1}m}. We can think of each mapping hb as being characterized by a

unique signature Zb that indicates the points that it labels with −1. These points are carefully picked

such that, first, they are inside the perturbation sets of x1, . . . , xm; and second, no two mappings

label the same point with −1, i.e. for any b, b′ ∈ {0, 1}m, where b 6= b′, Zb ∩ Z ′
b = ∅. Also, we

make sure that all mappings in H label the set {x1, . . . , xm} with +1.

Next, we proceed with proving two claims about H. First, that vc(H) ≤ 1. Pick any two points

z1, z2 ∈ X . Consider the following cases. In case z1 or z2 is in X \ Z . Suppose W.L.O.G that

z2 ∈ X \ Z . Then we know that all mappings label z2 in the same way with label +1, because for

all b ∈ {0, 1}m, z2 /∈ Zb. Therefore, we cannot shatter z1, z2 with H. In case z1 and z2 are both

in Z . Since by our construction, Z = ∪b∈{0,1}mZb and Zb ∩ Z ′
b = ∅ for any b 6= b′, we have two

sub-cases. Either z1, z2 ∈ Zb for some b ∈ {0, 1}m, which means that the only labelings we can

obtain are (−1,−1) with hb, and (+1,+1) with h′b for any b′ 6= b. Second case is that z1 ∈ Zb and

z2 ∈ Zb′ for b 6= b′, b, b′ ∈ {0, 1}m. By our construction, we know that we cannot label both points

z1 and z2 with (−1,−1), because they don’t belong to the same set. Therefore, in both subcases,

we cannot shatter z1, z2 with H. This concludes that vc(H) ≤ 1.

Second, we will show that vc(LU
H) ≥ m. Consider the set S = {(x1,+), . . . , (xm,+)}. We

will show that LU
H shatters S. Pick any labeling y ∈ {0, 1}m. Note that by construction of H,

∃hb ∈ H such that b = y. Then, for each i ∈ [m], supz∈U(xi) 1[hb(z) 6= +1] = bi = yi. This shows

that LU
H shatters S, and therefore vc(LU

H) ≥ m.

The following lemma (proof provided in Appendix A) establishes that for any sample size m ∈
N, there exists a hypothesis class H with vc(H) ≤ 1 such that any proper learning rule will fail in

learning a robust classifier if it observes at most m samples but not more.

Lemma 3 Let m ∈ N. Then, there exists H ⊆ YX with vc(H) ≤ 1 such that for any proper

learning rule A : (X × Y)∗ 7→ H,

• ∃ a distribution D over X × Y and a predictor h∗ ∈ H where RU (h∗;D) = 0.

• With probability at least 1/7 over S ∼ Dm, RU(A(S);D) > 1/8.
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We now proceed with the proof of Theorem 1.

Proof [of Theorem 1] Let (Xm)m∈N be an infinite sequence of sets such that each set Xm contains

3m distinct points from X , where for any xi, xj ∈ ∪∞
m=1Xm such that xi 6= xj we have U(xi) ∩

U(xj) = ∅. Foreach m ∈ N, construct Hm on Xm as in Lemma 3. We want to ensure that predictors

in Hm are non-robust on the points in Xm′ for all m′ 6= m, by doing the following adjustment for

each hb ∈ Hm (recall from Lemma 2 that each predictor has its own unique signature Zb),

hb(x) =

{

−1 if x ∈ Zb or x ∈ Xm′ for m′ 6= m
+1 otherwise

Let H = ∪∞
m=1Hm. We will show that vc(H) ≤ 1. Pick any two points z1, z2 ∈ X . There are

six cases to consider. In case both z1 and z2 are in Xm for some m ∈ N, then we only obtain the

labelings (+1,+1) (by predictors from Hm) and (−1,−1) (by predictors from Hm′ with m′ 6= m).

In case both z1 and z2 are in U(Xm)\Xm, then they are not shattered by Lemma 2. In case z1 ∈ Xi

and z2 ∈ Xj for i 6= j, then we can only obtain the labelings (+1,−1) (by predictors in Hi),

(−1,+1) (by predictors in Hj), and (−1,−1) (by predictors in Hk for k 6= i, j). In case z1 ∈ Xi

and z2 ∈ U(Xj)\Xj for j 6= i, then we can’t obtain the labeling (+1,−1). In case z1 ∈ U(Xi)\Xi

and z2 ∈ U(Xj) \Xj for i 6= j, then we can’t obtain the labeling (−1,−1). Finally, if either z1 or

z2 is in X but not in ∪∞
m=1Xm and not in ∪∞

m=1U(Xm), then all predictors label z1 or z2 with +1,

and so we can’t shatter them. This shows that vc(H) ≤ 1.

By Lemma 3, it follows that for any proper learning rule A : (X × Y)∗ 7→ H and for any

m ∈ N, we can construct a distribution D over Xm × Y where there exists a predictor h∗ ∈ Hm

with RU (h∗;D) = 0, but with probability at least 1/7 over S ∼ Dm, RU (A(S);D) > 1/8. This

works because classifiers from classes Hm′ where m′ 6= m make mistakes on points in Xm and so

they are non-robust. Thus, rule A will do worse if it picks predictors from these classes. This shows

that the sample complexity to properly robustly PAC learn H is infinite. This concludes that H is

not properly robustly PAC learnable.

4. Finite VC Dimension is Sufficient for (Improper) Robust Learnability

In the previous section we saw that finite VC dimension is not sufficient for proper robust learn-

ability. We now show that it is sufficient for improper robust learnability, thus (1) establishing that

if H is learnable, it is also robustly learnable, albeit possibly with a higher sample complexity; and

(2) unlike the standard supervised learning setting, to achieve learnability we might need to escape

properness, as improper learning is necessary for some hypothesis classes.

We begin, in Section 4.1 with the realizable case, i.e. where there exists h∗ ∈ H with zero

robust risk. Then in Section 4.2 we turn to the agnostic setting, and observe that a version of

a recent reduction by David, Moran, and Yehudayoff (2016) from agnostic to realizable learning

applies also for robust learning. We thus establish agnostic robust learnability of finite VC classes

by using this reduction and relying on the realizable learning result of Section 4.1.

4.1. Realizable Robust Learnability

We will in fact establish a bound in terms of the dual VC dimension. Formally, for each x ∈ X ,

define a function gx : H → Y such that gx(h) = h(x) for each h ∈ H. Then the dual VC

dimension of H, denoted vc∗(H), is defined as the VC dimension of the set G = {gx : x ∈ X}. This

quantity is known to satisfy vc∗(H) < 2vc(H)+1 (Assouad, 1983), though for many spaces it satisfies

vc∗(H) = O(poly(vc(H))) or even, as is the case for linear separators, vc∗(H) = O(vc(H)).

6
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Theorem 4 For any H and U , ∀ε, δ ∈ (0, 1/2),

MRE(ε, δ;H,U) = O

(

vc(H)vc∗(H)
1

ε
log

(

vc(H)vc∗(H)

ε

)

+
1

ε
log

(

1

δ

))

,

Since Assouad (1983) has shown vc∗(H) < 2vc(H)+1, this implies the following corollary.

Corollary 5 For any H and U , ∀ε, δ ∈ (0, 1/2),

MRE(ε, δ;H,U) = 2O(vc(H)) 1

ε
log

(

1

ε

)

+O

(

1

ε
log

(

1

δ

))

.

Our approach to this proof is via sample compression arguments. Specifically, we make use of a

lemma (Lemma 11 in Appendix 4.2), which extends to the robust loss the classic compression-based

generalization guarantees from the 0-1 loss. We now proceed with the proof of Theorem 4.

Proof [of Theorem 4] The learning algorithm achieving this bound is a modification of a sample

compression scheme recently proposed by Moran and Yehudayoff (2016), or more precisely, a vari-

ant of that method explored by Hanneke, Kontorovich, and Sadigurschi (2019). Our modification

forces the compression scheme to also have zero empirical robust loss. Fix ε, δ ∈ (0, 1) and a

sample size m > 2vc(H), and denote by P any distribution with infh∈HRU (h;P ) = 0.

By classic PAC learning guarantees (Vapnik and Chervonenkis, 1974; Blumer et al., 1989), there

is a positive integer n = O(vc(H)) with the property that, for any distribution D over X × Y with

infh∈H er(h;D) = 0, for n iid D-distributed samples S′ = {(x′1, y
′
1), . . . , (x

′
n, y

′
n)}, with nonzero

probability, every h ∈ H satisfying êr(h;S′) = 0 also has er(h;D) < 1/3.

Fix a deterministic function RERMH mapping any labeled data set to a classifier in H robustly

consistent with the labels in the data set, if a robustly consistent classifier exists (i.e., having zero

R̂U on the given data set). Suppose we are given training examples S = {(x1, y1), . . . , (xm, ym)}
as input to the learner. Under the assumption that this is an iid sample from a robustly realizable

distribution, we suppose R̂U (RERMH(S);S) = 0, which should hold with probability one. Denote

by I(x) = min{i ∈ {1, . . . ,m} : x ∈ U(xi)} for every x ∈
⋃

i≤m U(xi). Before we can apply the

compression approach, we first need to inflate the data set to a (potentially infinite) larger set, and

then discretize it to again reduce it back to a finite sample size. Denote by Ĥ = {RERMH(L) :
L ⊆ S, |L| = n}. Note that |Ĥ| ≤ |{L : L ⊆ S, |L| = n}| =

(

m
n

)

≤
(

em
n

)n
. Define an inflated

data set SU =
⋃

i≤m{(x, yI(x)) : x ∈ U(xi)}. As it is difficult to handle this potentially-infinite

set in an algorithm, we consider a discretized version of it. Specifically, consider a dual space

G: a set of functions g(x,y) : H → {0, 1} defined as g(x,y)(h) = 1[h(x) 6= y], for each h ∈ H
and each (x, y) ∈ SU . The VC dimension of G is at most the dual VC dimension of H: vc∗(H),
which is known to satisfy vc∗(H) < 2vc(H)+1 (Assouad, 1983). Now denote by ŜU a subset of

SU which includes exactly one (x, y) ∈ SU for each distinct classification {g(x,y)(h)}h∈Ĥ of Ĥ
realized by functions g(x,y) ∈ G. In particular, by Sauer’s lemma (Vapnik and Chervonenkis, 1971;

Sauer, 1972), |ŜU | ≤
(

e|Ĥ|
vc∗(H)

)vc∗(H)
, which for m > 2vc(H) is at most

(

e2m/vc(H)
)vc(H)vc∗(H)

.

In particular, note that for any T ∈ N and h1, . . . , hT ∈ Ĥ, if 1
T

∑T
t=1 1[ht(x) = y] > 1

2 for every

(x, y) ∈ ŜU , then 1
T

∑T
t=1 1[ht(x) = y] > 1

2 for every (x, y) ∈ SU as well, which would further

imply R̂U (Majority(h1, . . . , hT );S) = 0. We will next go about finding such a set of ht functions.

By our choice of n, we know that for any distribution D over ŜU , n iid samples S′ sampled

from D would have the property that, with nonzero probability, all h ∈ H with êr(h;S′) = 0

7
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also have er(h;D) < 1/3. In particular, this implies at least that there exists a subset S′ ⊆ ŜU
with |S′| ≤ n such that every h ∈ H with êr(h;S′) = 0 has er(h;D) < 1/3. For such a set

S′, note that {(xI(x), y) : (x, y) ∈ S′} ⊆ S, and therefore there exists a set L with |L| = n and

{(xI(x), y) : (x, y) ∈ S′} ⊆ L ⊆ S. Furthermore, since x ∈ U(xI(x)) for every (x, y) ∈ S′, we

know êr(RERMH(L);S′) = 0, and hence er(RERMH(L);D) < 1/3. Altogether, we have that,

for any distribution D over ŜU , ∃hD ∈ Ĥ with er(hD;D) < 1/3.

We will use the above hD as a weak hypothesis in a boosting algorithm. Specifically, we run

the α-Boost algorithm (Schapire and Freund, 2012, Section 6.4.2) with ŜU as its data set, using the

above mapping to produce the weak hypotheses for the distributions Dt produced on each round of

the algorithm. As proven in (Schapire and Freund, 2012), for an appropriate a-priori choice of α in

the α-Boost algorithm, running this algorithm for T = O(log(|ŜU |)) rounds suffices to produce a

sequence of hypotheses ĥ1, . . . , ĥT ∈ Ĥ s.t.

∀(x, y) ∈ ŜU ,
1
T

∑T
i=1 1[hi(x) = y] ≥ 5

9 .

From this observation, we already have a sample complexity bound, only slightly worse than the

claimed result. Specifically, the above implies that ĥ = Majority(ĥ1, . . . , ĥT ) satisfies R̂U (ĥ;S) =
0. Note that each of these classifiers ĥt is equal RERMH(Lt) for some Lt ⊆ S with |Lt| = n.

Thus, the classifier ĥ is representable as the value of an (order-dependent) reconstruction function

φ with a compression set size

nT = O(vc(H) log(|ŜU |)) = O(vc(H)2vc∗(H) log(m/vc(H))). (1)

Thus, invoking Lemma 11, if m > cvc(H)2vc∗(H) log(vc(H)vc∗(H)) (for a sufficiently large

numerical constant c), we have that with probability at least 1− δ,

RU (ĥ;P ) ≤ O
(

vc(H)2vc∗(H) 1
m log(m/vc(H)) log(m) + 1

m log(1/δ)
)

,

and setting this less than ε and solving for a sufficient size of m to achieve this yields a sample com-

plexity bound, which is slightly larger than that claimed in Theorem 4. We next proceed to further

refine this bound via a sparsification step. However, as an aside, we note that the above intermediate

step will be useful in a discussion below, where the size of this compression scheme in the second

expression in (1) offers an improvement over a result of Attias, Kontorovich, and Mansour (2018).

Via a technique of (Moran and Yehudayoff, 2016) we can further reduce the above bound.

Specifically, since all of ĥ1, . . . , ĥT are in H, classic uniform convergence results of Vapnik and Chervonenkis

(1971) imply that taking N = O(vc∗(H)) independent random indices i1, . . . , iN ∼ Uniform({1, . . . , T}),

we have sup
(x,y)∈X×Y

∣

∣

∣

∣

∣

1
N

N
∑

j=1
1[hij(x) = y]− 1

T

T
∑

i=1
1[hi(x) = y]

∣

∣

∣

∣

∣

< 1
18 . In particular, together with

the above guarantee from α-Boost, this implies that there exist indices i1, . . . , iN ∈ {1, . . . , T}
(which may be chosen deterministically) satisfying

∀(x, y) ∈ ŜU ,
1
T

∑N
j=1 1[hij (x) = y] ≥ − 1

18 +
1
T

∑T
i=1 1[hi(x) = y] > − 1

18 +
5
9 = 1

2 ,

so that the majority vote predictor ĥ′(x) = Majority(ĥi1 , . . . , ĥiN ) satisfies êr(ĥ′; ŜU ) = 0, and

hence R̂U (ĥ′;S) = 0. Since again, each ĥij is the result of RERMH(Lij ) for some Lij ⊆ S

of size n, we have that ĥ′ can be represented as the value of an (order-dependent) reconstruction

function φ with a compression set size nN = O(vc(H))vc∗(H)). Thus, Lemma 11 implies that,

for m ≥ cvc(H)vc∗(H) (for an appropriately large numerical constant c), with probability at least

1− δ, RU (ĥ′;P ) ≤ O
(

vc(H)vc∗(H) 1
m log(m) + 1

m log(1/δ)
)

. Setting this less than ε and solving

for a sufficient size of m to achieve this yields the stated bound.
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4.2. Agnostic Robust Learnability

For the agnostic case, we can establish an upper bound via reduction to the realizable case, following

an argument from David, Moran, and Yehudayoff (2016). Specifically, we have the following result.

Theorem 6 For any H and U , ∀ε, δ ∈ (0, 1/2),

MAG(ε, δ;H,U) = O
(

vc(H)vc∗(H) log(vc(H)vc∗(H)) 1
ε2

log2
(

vc(H)vc∗(H)
ε

)

+ 1
ε2
log

(

1
δ

)

)

.

As above, since Assouad (1983) has shown vc∗(H) < 2vc(H)+1, this implies the following corollary.

Corollary 7 For any H and U , ∀ε, δ ∈ (0, 1/2),

MAG(ε, δ;H,U) = 2O(vc(H)) 1

ε2
log2

(

1

ε

)

+O

(

1

ε2
log

(

1

δ

))

.

We establish the theorem via a reduction to the realizable case, following an approach used

by David, Moran, and Yehudayoff (2016), except here applied to the robust loss. The reduction is

summarized in the following Theorem, whose proof can be found in Appendix C:

Theorem 8 Denote MRE = MRE(1/3, 1/3;H,U). Then

MAG(ε, δ;H,U) = O

(

MRE

ε2
log2

(

MRE

ε

)

+
1

ε2
log

(

1

δ

))

.

From this, Theorem 6 follows immediately by combining Theorem 8 with Theorem 4.

Bounded cardinality confusion sets: As noted in the proof of Theorem 4, the compression size

(1) further implies an improvement over a theorem of Attias, Kontorovich, and Mansour (2018).

Specifically, Attias et al. considered the case maxx∈X |U(x)| ≤ k for some fixed k ∈ N, and

presented a learning rule establishing the sample complexity gurantee:

MAG(ε, δ;H,U) = O
(

vc(H)k log(k)
ε2

+ 1
ε2

log
(

1
δ

)

)

. (2)

Their analysis proceeds by bounding the Rademacher complexity of the robust loss class of the

convex hull of H, which implies the sample complexity (2) can also be achieved by RERMH (they

propose an alternative, improper, learning rule for computational reasons). But when max |U(x)| ≤
k, the second expression in our (1) would be at most O(vc(H) log(mk)). Thus, following the

compression argument as in the proof of Theorem 4 would yield the following sample complexity

for our improper rule:

MRE(ε, δ;H,U) = O
(

vc(H) log(k)
ε log

(

vc(H) log(k)
ε

)

+ vc(H)
ε log2

(

vc(H)
ε

)

+ 1
ε log

(

1
δ

)

)

,

and hence by Theorem 8:

MAG(ε, δ;H,U) = O
(

vc(H) log(k)
ε2

polylog
(

vc(H) log(k)
ε

)

+ 1
ε2

log
(

1
δ

)

)

.

In particular, our approach reduces the dependence on k from k log(k) in (2) as obtained by

Attias, Kontorovich, and Mansour (2018), to log(k)(log log(k))3. To do so, our approach does rely

on improper learning, and our arguments are not valid for RERMH. We do not know whether

improperness is required to obtain this improvement, or whether in this case a polylogk dependence

is possible even with RERM or some other proper learning rule. It follows from the construction

of our negative result for proper learning in Theorem 1, that at least a log(k) factor is sometimes

necessary for proper learning (regardless of the VC dimension), whereas our Corollary 7 implies

that improper learning can achieve a sample complexity that is entirely independent of k (albeit with

a worse dependence on the VC dimension).

9
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5. Necessary and Sufficient conditions for Robust Learnability

In the previous section, we saw that having finite VC dimension is sufficient for robust learnabil-

ity. But a simple construction shows that it is not necessary: consider an infinite domain X , the

hypothesis class of all possible predictors H = {−,+}X , and an all-powerful adversary specified

by U(x) = X . In this case, the hypothesis minimizing the population robust risk RU(h;D) would

always be the all-positive or the all-negative hypothesis, and so these are the only two hypothesis

we should compete with. And so, even though vc(H) = ∞, a single example suffices to inform the

learner of whether to produce the all-positive or all-negative function.

Can we then have a tight characterization of robust learnability? Is there a weaker notion that is

both necessary and sufficient for learning? A simple complexity measure one might consider is the

maximum number of points x1, . . . , xm such that the entire perturbation sets U(x1), . . . ,U(xm) are

shattered by H. That is, such that ∀y1, . . . , ym ∈ {+1,−1},∃h ∈ H,∀i∀x′ ∈ U(xi), h(x
′) = yi.

We denote this as dimU×(H). When U(x) are balls around x, which is the typical case in metric-

based robustness, this can be thought of shattering with a margin in input space. Indeed, for linear

predictors and when U(x) = {x′|‖x− x′‖2 ≤ γ} is a Euclidean ball around x, dimU×(H) exactly

agrees with the fat shattering dimension at scale γ (or the V Cγ dimension).

While it is fairly obvious that dimU×(H) provides a lower bound on the sample complexity

of robust learning, and thus its finiteness is necessary for learning, we construct an example in

Appendix D showing that it is not sufficient. Specifically, there are classes where no points can be

shattered in this way, and yet the classes are not robustly learnable. Formally,

Proposition 9 There exist X , H, U such that dimU×(H) = 0 but MRE(ε, δ;H,U) = ∞.

We now attempt to refine the above measure, and introduce a weaker notion of robust shattering

that that can still be used to lower bound the sample complexity for robust learnability. Given an

adversary U and a hypothesis class H, consider the following notion of U -robust shattering,

Definition 5 (Robust Shattering Dimension) A sequence x1, . . . , xm∈ X is said to be U -robustly

shattered by H if ∃z+1 , z
−
1 , . . . , z

+
m, z−m ∈ X with xi ∈ U(z+i )∩U(z−i ) ∀i ∈ [m], and ∀y1, . . . , ym ∈

{−,+}, ∃h ∈ H with h(z′) = yi, ∀z
′ ∈ U(zyii ), ∀i ∈ [m]. The U -robust shattering dimension

dimU(H) is defined as the largest m for which there exist m points U -robustly shattered by H.

We have that dimU×(H) ≤ dimU (H) ≤ vc(H), where the first inequality follows since disjoint

robust shattering is a special case of robust shattering with zyi = xi, and so dimU (H) is a plausible

candidate for a necessary and sufficient dimension of robust learnability. The following theorem

(proof provided in appendix D) establishes that the sample complexity of robust learnability is

indeed lower bounded by the U -robust shattering dimension dimU(H),

Theorem 10 For any X , H, and U ,

MRE(ε, δ;H,U) = Ω
(

dimU (H)
ε + 1

ε log
(

1
δ

)

)

and MAG(ε, δ;H,U) = Ω
(

dimU (H)
ε2

+ 1
ε2

log
(

1
δ

)

)

.

Based on Corollary 5 and Theorem 10, for any adversary U and any hypothesis class H, we have

Ω
(

dimU (H)
ε + 1

ε log
(

1
δ

)

)

≤ MRE(ε, δ;H,U) ≤ 2O(vc(H)) 1
ε log

(

1
ε

)

+O
(

1
ε log

(

1
δ

))

. (3)

That is, the VC dimension is sufficient, and the robust shattering dimension is necessary for robust

learnability. As discussed at the beginning of the Section, we know the VC dimension is not nec-

essary and there can be an arbitrary large, even infinite, gap in the second inequality. We do not

know whether the robust shattering dimension is also sufficient for learning, or whether there can

also be a big gap in the first inequality. Establishing a complexity measure that characterizes robust

learnability thus remains an open question.
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6. Discussion and Future Directions

Perhaps one of the most interesting takeaways from this work is that we should start considering

improper learning algorithms for adversarially robust learning. Even though our improper learning

rule might not be practical, our results suggest to consider departing from robust empirical risk min-

imization and M-estimation (as in almost all published work), and considering improper learning

rules such as bagging or other ensemble methods.

Although we settled the question of robust learnability of VC classes, there remains a large

gap in the question of what is the optimal sample complexity for robust learning. Can the expo-

nential dependence on vc(H) in Corollaries 5 and 7 be improved to a linear dependence? Per-

haps this is possible with a new analysis of our learning rule or a different improper learning rule.

Since our learning rule and analysis stem from recent progress on compression schemes for VC

classes (Moran and Yehudayoff, 2016), it is certainly possible that further progress on the cele-

brated open problem regarding the existence of vc(H) compression schemes (Floyd and Warmuth,

1995; Warmuth, 2003) could also assist in progress on adversarially robust learning.

Our results demonstrate that there exist hypothesis classes with large gaps between what can be

done with proper vs. improper robust learning. This means that when studying a particular class,

such as classes corresponding to neural networks, one should consider the possibility that there

might be such a gap and that improper learning might be necessary. It remains open to establish

whether such gaps actually exist for specific interesting neural net classes (e.g., functions repre-

sentable by a specific architecture, possibly with a bounded weight norm).

Throughout the paper we ignored computational considerations. Our learning rule can be

viewed as an algorithm with black-box access to RERMH, but making order mvc(H) such calls,

and additionally requiring order mvc(H)vc∗(H) time and space to represent and update the distribu-

tions used by the boosting algorithm. Without significantly increasing the sample complexity, is

it possible to robustly learn with an algorithm making only a polynomial (in vc(H), vc∗(H),m)

number of calls to RERMH or even ERMH, plus polynomial additional time and space? What

about poly(vc(H),m)? This question becomes even more interesting if there is such an algo-

rithm that also only requires sample size m = poly(vc(H), 1/ε, log(1/δ)), rather than the m =
poly(vc(H), vc∗(H), 1/ε, log(1/δ)) sufficient for our algorithm. Would another type of oracle be

useful? For example, can one devise efficient methods that rely on black-box access to ERM on

the dual of the hypothesis class (i.e. finding an example that is correct for the largest number of hy-

potheses in a given finite set of hypotheses)? More ambitiously, one may ask whether efficient PAC

learnability implies efficient robust PAC learnability, roughly translating to asking whether access

to any (non-robust) learning rule is sufficient for efficient robust learning.

As a final remark, we note that our results easily extend to the multiclass setting (|Y| > 2).

In that case, by essentially the same algorithms and proofs, Theorems 4 and 6 (and Corollaries 5

and 7) will hold with vc(H) replaced by the graph dimension (Natarajan, 1989; Ben-David et al.,

1995; Daniely et al., 2015). The lower bound in Theorem 10 also holds, by the same arguments,

but with dimU(H) generalized analogous to the Natarajan dimension (Natarajan, 1989): that is, in

the definition of robust shattering, after “and”, we now require ∀i∃yi,−, yi,+ ∈ Y s.t. ∀b1, . . . , bm ∈

{−,+}, ∃h ∈ H with h(z′) = yi,bi , ∀z
′ ∈ U(zbii ), ∀i. We leave as an open question whether one

can also express an upper bound controlled by this quantity.
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Appendix A. Auxilliary Proofs Related to Proper Robust Learnability

Proof [of Lemma 3] This proof follows standard lower bound techniques that use the probabilistic

method (Shalev-Shwartz and Ben-David, 2014, Chapter 5). Let m ∈ N. Construct H0 as before,

according to Lemma 2, on 3m points x1, . . . , x3m. By construction, we know that LU
H0

shatters the

set C = {(x1,+1), . . . , (x3m,+1)}. We will only keep a subset H of H0 that includes classifiers

that are robustly correct only on subsets of size 2m, i.e. H = {hb ∈ H0 :
∑3m

i=1 bi = m}. Let

A : (X ×Y)∗ 7→ H be an arbitrary proper learning rule. The main idea here is to construct a family

of distributions that are supported only on 2m points of C , which would force rule A to choose

which points it can afford to be not correctly robust on. If rule A observes only m points, it can’t do

anything better than guessing which of the remaining 2m points of C are actually included in the

support of the distribution.

Consider a family of distributions D1, . . . ,DT where T =
(

3m
2m

)

, each distribution Di is uni-

form over only 2m points in C . For every distribution Di, by construction of H, there exists a

classifier h∗ ∈ H such that RU (h∗;Di) = 0. This satisfies the first requirement. For the second

requirement, we will use the probabilistic method to show that there exists a distribution Di such

that ES∼Dm
i

[

RU (A(S);Di)
]

≥ 1/4, and finish the proof using a variant of Markov’s inequality.

Pick an arbitrary sequence S ∈ Cm. Consider a uniform weighting over the distributions

D1, . . . ,DT . Denote by ES the event that S ⊂ supp(Di) for a distribution Di that is picked

uniformly at random. We will lower bound the expected robust loss of the classifier that rule A
outputs, namely A(S) ∈ H, given the event ES ,

EDi
[RU(A(S);Di)|ES ] = EDi

[

E(x,y)∼Di

[

sup
z∈U(x)

1[A(S)(z) 6= y]

]∣

∣

∣

∣

∣

ES

]

. (4)

We can lower bound the robust loss of the classifier A(S) by conditioning on the event that (x, y) /∈
S denoted E(x,y)/∈S ,

E
(x,y)∼Di

[

sup
z∈U(x)

1[A(S)(z) 6= y]
]

≥ P
(x,y)∼Di

[E(x,y)/∈S ] E
(x,y)∼Di

[ sup
z∈U(x)

1[A(S)(z) 6= y]|E(x,y)/∈S ].

Since |S| = m, and Di is uniform over its support of size 2m, we have P(x,y)∼Di
[E(x,y)/∈S ] ≥

1/2. This allows us to get a lower bound on (4),

EDi

[

RU (A(S);Di)|ES

]

≥
1

2
EDi

[

E
(x,y)∼Di

[

sup
z∈U(x)

1[A(S)(z) 6= y]
∣

∣

∣
E(x,y)/∈S

]

∣

∣

∣

∣

∣

ES

]

. (5)

14



ADVERSARIALLY ROBUST LEARNABILITY

Since A(S) ∈ H, by construction of H, we know that there are at least m points in C where

A(S) is not robustly correct. We can unroll the expectation over Di as follows

EDi

[

E
(x,y)∼Di

[

sup
z∈U(x)

1[A(S)(z) 6= y]|E(x,y)/∈S
]∣

∣

∣
ES

]

≥
1

m

∑

(x,y)/∈S
EDi

[1(x,y)∈supp(Di)|ES ] sup
z∈U(x)

1[A(S)(z) 6= y] ≥
1

m

∑

(x,y)/∈S

1

2
sup

z∈U(x)
1[A(S)(z) 6= y] ≥

1

2
.

Thus, it follows by (5) that EDi

[

RU (A(S);Di)|ES

]

≥ 1
4 . Now, by law of total expectation,

EDi

[

ES∼Dm
i
[RU (A(S);Di)]

]

= ES∼Dm
i
[EDi

[RU(A(S);Di)|ES ]] ≥
1
4 .

Since the expectation over D1, . . . ,DT is at least 1/4, this implies that there exists a distribution Di

such that ES∼Dm
i

[

RU (A(S);Di)
]

≥ 1/4. Using a variant of Markov’s inequality, for any random

variable Z taking values in [0, 1], and any a ∈ (0, 1), we have P[Z > 1 − a] ≥ E[Z]−(1−a)
a . For

Z = RU (A(S);Di) and a = 7/8, we get PS∼Dm
i

[

RU (A(S);Di) >
1
8

]

≥ 1/4−1/8
7/8 = 1

7 .

Appendix B. Auxilliary Proofs Related to Realizable Robust Learnability

The following lemma extends the classic compression-based generalization guarantees from the 0-1
loss to also hold for the robust loss. It is used in the proof of Theorem 4. Generally, it is also

possible to extend other generalization guarantees for compression schemes to the robust loss, such

as improved bounds for permutation-invariant compression schemes, or convergence guarantees for

the agnostic case (as discussed in Section 4.2).

Lemma 11 For any k ∈ N and fixed function φ : (X × Y)k → YX , for any distribution P over

X ×Y and any m ∈ N, for S = {(x1, y1), . . . , (xm, ym)} iid P -distributed random variables, with

probability at least 1− δ, if ∃i1, . . . , ik ∈ {1, . . . ,m} s.t. R̂U (φ((xi1 , yi1), . . . , (xik , yik));S) = 0,

then

RU (φ((xi1 , yi1), . . . , (xik , yik));P ) ≤
1

m− k
(k ln(m) + ln(1/δ)).

Proof For completeness, we include a brief proof, which merely notes that the classic argument of

(Littlestone and Warmuth, 1986; Floyd and Warmuth, 1995) establishing generalization guarantees

for sample compression schemes under the 0-1 loss remains valid under the robust loss.

For any indices i1, . . . , ik ∈ {1, . . . ,m},

P

(

R̂U (φ({(xij , yij )}
k
j=1);S) = 0 and RU (φ({(xij , yij )}

k
j=1);P ) > ε

)

≤ E

[

P

(

R̂U (φ({(xij , yij )}
k
j=1);S \ {(xij , yij )}

k
j=1) = 0

∣

∣

∣
{(xij , yij )}

k
j=1

)

×

1

[

RU(φ({(xij , yij)}
k
j=1);P ) > ε

]]

< (1− ε)m−k,

and a union bound over all mk possible choices of i1, . . . , ik implies a probability at most mk(1 −
ε)m−k ≤ mke−ε(m−k) that there exist i1, . . . , ik with RU (φ({(xij , yij )}

k
j=1);PXY ) > ε and yet

R̂U (φ({(xij , yij )}
k
j=1);S) = 0. This is at most δ for a choice of ε = 1

m−k (k ln(m) + ln(1/δ)).
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Appendix C. Proof of Agnostic Robust Learnability

Proof [of Theorem 8] The argument follows closely a proof of an analogous result by David, Moran, and Yehudayoff

(2016) for non-robust learning. Denote by A the optimal realizable-case learner achieving sample

complexity MRE(1/3, 1/3;H,U), and denote MRE = MRE(1/3, 1/3;H,U), as above.

Then, in the agnostic case, given a data set S ∼ Dm, we first do robust-ERM to find a maximal-

size subsequence S′ of the data where the robust loss can be zero: that is, infh∈H R̂U (h;S′) = 0.

Then for any distribution D over S′, there exists a sequence SD ∈ (S′)MRE such that hD := A(SD)
has RU (hD;D) ≤ 1/3; this follows since, by definition of MRE(1/3, 1/3;H,U), there is a 1/3
chance that Ŝ a random draw from DMRE yields RU (A(Ŝ);D) ≤ 1/3, so at least one such SD

exists. We use this to define a weak robust-learner for distributions D over S′: i.e., for any D, the

weak learner chooses hD as its weak hypothesis.

Now we run the α-Boost boosting algorithm (Schapire and Freund, 2012, Section 6.4.2) on data

set S′, but using the robust loss rather than 0-1 loss. That is, we start with D1 uniform on S′.2 Then

for each round t, we get hDt as a weak robust classifier with respect to Dt, and for each (x, y) ∈ S′

we define a distribution Dt+1 over S′ satisfying

Dt+1({(x, y)}) ∝ Dt({(x, y)}) exp
{

−2α1[∀x′ ∈ U(x), hDt(x
′) = y]

}

,

where α is a parameter we can set. Following the argument from Schapire and Freund (2012, Sec-

tion 6.4.2), after T rounds we are guaranteed

min
(x,y)∈S′

1

T

T
∑

t=1

1[∀x′ ∈ U(x), hDt(x
′) = y] ≥

2

3
−

2

3
α−

ln(|S′|)
2αT

,

so we will plan on running until round T = 1 + 48 ln(|S′|) with value α = 1/8 to guarantee

min
(x,y)∈S′

1

T

T
∑

t=1

1[∀x′ ∈ U(x), hDt(x
′) = y] >

1

2
,

so that the classifier ĥ(x) := 1

[

1
T

∑T
t=1 hDt(x) ≥

1
2

]

has R̂U (ĥ;S′) = 0.

Furthermore, note that, since each hDt is given by A(SDt), where SDt is an MRE-tuple of

points in S′, the classifier ĥ is specified by an ordered sequence of MRET points from S. Al-

together, ĥ is a function specified by an ordered sequence of MRET points from S, and which

has

R̂U (ĥ;S) ≤ min
h∈H

R̂U (h;S).

Similarly to the realizable case (see the proof of Lemma 11), uniform convergence guarantees for

sample compression schemes (see Graepel, Herbrich, and Shawe-Taylor, 2005) remain valid for the

robust loss, by essentially the same argument; the essential argument is the same as in the proof of

Lemma 11 except using Hoeffding’s inequality to get concentration of the empirical robust risks for

each fixed index sequence, and then a union bound over the possible index sequnces as before. We

2. We ignore the possibility of repeats; for our purposes we can just remove any repeats from S′ before this boosting

step.
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omit the details for brevity. In particular, denoting Tm = 1 + 48 ln(m), for m > MRETm, with

probability at least 1− δ/2,

RU (ĥ;D) ≤ R̂U (ĥ;S) +

√

MRETm ln(m) + ln(2/δ)

2m− 2MRETm
.

Let h∗ = argminh∈HRU (h;D) (supposing the min is realized, for simplicity; else we could

take an h∗ with very-nearly minimal risk). By Hoeffding’s inequality, with probability at least

1− δ/2,

R̂U(h
∗;S) ≤ RU(h

∗;D) +

√

ln(2/δ)

2m
.

By the union bound, if m ≥ 2MRETm, with probability at least 1− δ,

RU(ĥ;D) ≤ min
h∈H

R̂U (h;S) +

√

MRETm ln(m) + ln(2/δ)

m

≤ R̂U (h
∗;S) +

√

MRETm ln(m) + ln(2/δ)

m

≤ RU (h
∗;D) + 2

√

MRETm ln(m) + ln(2/δ)

m
.

Since Tm = O(log(m)), the above is at most ε for an appropriate choice of sample size m =

O
(

MRE
ε2

log2
(

MRE
ε

)

+ 1
ε2

log
(

1
δ

)

)

.

Appendix D. Auxilliary Proofs Related to Necessary Conditions for Robust

Learnability

Proof [of Proposition 9] Let X = R
d equipped with a metric ρ, and U : X 7→ 2X such that

U(x) = {z ∈ X : ρ(x, z) ≤ γ} for all x ∈ X for some γ > 0. Consider two infinite sequences of

points (xm)m ∈ N and (zm)m ∈ N such that for any i 6= j, U(xi)∩U(xj) = ∅, U(xi)∩U(zj) = ∅,

U(xj) ∩ U(zi) = ∅, but U(xi) ∩ U(zi) = ui. In other words, we want the γ-balls of pairs with

different indices to be mutually disjoint, and the γ-balls for a pair with the same index to intersect

at a single point (this is possible because we are considering closed balls).

Next, we proceed with the construction of H. For each bit string b ∈ {0, 1}N, we will define a

predictor hb : X 7→ Y just on the γ-balls of the points x1, z1, x2, z2, . . . (it labels the rest of the X
space with +1). Foreach i ∈ N, if bi = 0, set

hb

(

U(xi)
)

= +1 and hb

(

U(zi) \ U(xi)
)

= −1

and if bi = 1, set

hb

(

U(xi) \ U(zi)
)

= −1 and hb

(

U(zi)
)

= +1

Let H = {hb : b ∈ {0, 1}N}. Notice that dimU×(H) = 0, because there is no single γ-ball that

is labeled in both ways (+1 and −1). By construction of H, all classifiers hb ∈ H behave the same

way on all points in X , except at points in the intersections u1, u2, . . . which get shattered. However,
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the U -robust shattering dimension (see definition 5) is infinite in this construction (dimU (H) = ∞),

which by Theorem 10 (see below) implies that MRE(ε, δ;H,U) = ∞.

Proof [Sketch of Theorem 10] We first start with the realizable case. The proof follows a standard

argument from (Mohri et al., 2018, Chapter 3). Let d = dimU (H), and fix x1, . . . , xd a sequence

U -robustly shattered by H, and let z+1 , z
−
1 , . . . , z

+
d , z

−
d ∈ X be as in definition 5; in particular, note

that any y, y′ and any i 6= j necessarily have zyi 6= zy
′

j . For each y = (y1, . . . , yd) ∈ {+1,−1}d,

let hy ∈ H be such that ∀i ∈ [m], ∀z′ ∈ U(zyii ), hy(z′) = yi. Let D be a distribution over

{1, 2, . . . ,d} such that Pi∼D[i = 1] = 1 − 8ε and Pi∼D[i = 1] = 8ε/(d − 1) for 2 ≤ i ≤ d. Now

choose y ∼ Uniform({+1,−1}d), and let Dy be the induced distribution over X × Y such that

P(x,y)∼Dy
[(x, y) = (zy11 , y1)] = 1− 8ε and P(x,y)∼Dy

[(x, y) = (zyii , yi)] = 8ε/(d − 1)

for 2 ≤ i ≤ d.

Note that by construction we have RU (hy;D) = 0. Now, consider an arbitrary learning rule

A : (X × Y)∗ 7→ YX . We will assume that A always gets the prediction of zy11 correct. Let

I = {2, . . . , d} and let S be the set of all sequences of size m containing at most (d − 1)/2
elements from I . Fix an arbitrary sequence S ∈ S . Denote by Sy = ((zyii , yi) : i ∈ S) the

sequence of examples induced by the indices sequence S. Then,

Ey [RU(A(Sy);Dy)] ≥ Ey

[

∑

i/∈S
PDy

(zyii ) sup
z′∈U(z

yi
i )

1[A(Sy)(z
′) 6= yi]

]

≥
d− 1

2
×

8ε

d− 1
× Ey

[

sup
z′∈U(z)

1[A(Sy)(z
′) 6= y]

]

=
d− 1

2
×

8ε

d− 1
×

1

2

= 2ε

Since the inequality above holds for any sequence S ∈ S , it follows that

ES∼Dm[Ey [RU (A(Sy);Dy)1S∈S ]] = Ey[ES∼Dm [RU (A(Sy);Dy)|ES∈S ]] ≥ 2ε

Which implies that there exists y0 such that ES∼Dm [RU (A(Sy0);Dy0)|ES∈S ] ≥ 2ε. Since PD[i ∈
I] ≤ 8ε, the robust risk RU (A(Sy0));Dy) ≤ 8ε. Then, by law of total expectation, we have

2ε ≤ ES∼Dm [RU (A(Sy0);Dy0)|ES∈S ]

≤ 8εPS∼Dm [RU (A(Sy0);Dy) ≥ ε|ES∈S ] + ε(1− PS∼Dm [RU (A(Sy0);Dy0) ≥ ε|ES∈S ])

By collecting terms, we obtain that PS∼Dm [RU (A(Sy0);PXY ) ≥ ε|ES∈S ] ≥ 1/7. Then, by

law of total probability, the probability over all sequences (not necessarily in S) can be lower

bounded,

PS∼Dm [RU (A(Sy0);Dy0) ≥ ε] ≥ P[ES∈S ]PS∼Dm [RU (A(Sy0);Dy0) ≥ ε|ES∈S ] ≥
1

7
P[ES∈S ]
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By a standard application of Chernoff bounds, for ε = d−1
32m and δ ≤ 1/100, we get that

P[ES∈S ] ≥ 7δ and by the above this concludes that PS∼Dm [RU (A(Sy0);Dy0) ≥ ε] ≥ δ. This

establishes that

MRE(ε, δ;H,U) ≥ Ω

(

d

ε

)

To finish the proof, we need to show that

MRE(ε, δ;H,U) ≥ Ω

(

1

ε
log

(

1

δ

))

For this just consider a distribution P1 with mass 1−ε on (z+1 ,+1) and mass ε on (z+2 ,+1), and

another distribution P2 with mass 1−ε on (z+1 ,+1) and mass ε on (z−2 ,−1). If m ≤ (1/2ε) ln(1/δ),
with probability at least δ, we will only observe m samples of (z+1 ,+1), and thus learning rule A
will make a mistake on x2 (which is in U(z+2 ) ∩ U(z−2 )) with probability at least 1/2, therefore

having error at least ε/2. By combining both parts, we arrive at the theorem statement.

For the agnostic case, we briefly describe the construction. The remainder of the proof more or

less follows a standard argument, for instance see Anthony and Bartlett (1999, Chapter 5). Let d =
dimU(H), and fix x1, . . . , xd a sequence U -robustly shattered by H, and let z+1 , z

−
1 , . . . , z

+
d , z

−
d ∈

X be as in definition 5; in particular, note that any y, y′ and any i 6= j necessarily have zyi 6= zy
′

j .

For b ∈ {0, 1}d, define distribution Db as follows, for i ∈ [d]:

• If bi = 0, then set PDb
((z+i ,+1)) = (1− α)/(2d) and PDb

((z−i ,−1)) = (1 + α)/(2d).

• If bi = 1, then set PDb
((z+i ,+1)) = (1 + α)/(2d) and PDb

((z−i ,−1)) = (1− α)/(2d).

where ) < α < 1 is appropriately chosen based on ε and δ.
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