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Silicon-Based Photonics

This paper discusses nonlinear optics in silicon photonics. Because of the tight optical
confinement, very compact nonlinear devices can be made in silicon photonics.
Applications include the generation of octave-spanning optical frequency combs for

making precise clocks.
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ABSTRACT | Integrated silicon photonics is revolutionizing the
field of optical communications as hybrid photonic/electronic
integrated circuits made from this semiconductor material can
seamlessly process signals spanning both the optical and elec-
trical domains. The enormous bandwidth afforded by optical
signaling enables extremely high aggregate data-rate com-
munication signals. Correspondingly, signal processing devices
must employ new mechanisms to keep up with the ever
increasing need for greater capacity in communications. To
this end, parametric nonlinear optical interactions in silicon-
based materials provide a route toward processing and han-
dling signal bandwidths well beyond a THz. These integrated
silicon-based photonic structures also benefit from high optical
confinement, large nonlinear optical responses, and long inter-
action lengths, making them highly suitable for power-efficient
parametric nonlinear optical interactions. In particular, the
parametric nonlinear optical interaction of four-wave mixing
(FWM) in silicon-based photonic devices has enabled a wealth
of devices for next-generation information handling applica-
tions including communications, all-optical computing, metrol-
ogy, and security, which will be highlighted in this review.

KEYWORDS | Four-wave mixing; nonlinear optical devices;

photonic integrated circuits; silicon photonics

I. INTRODUCTION

Light-matter interactions already have a strong foothold
in technologies that shape our daily lives from the high-
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bandwidth long-haul communications links powering our
internet backbone to laser machining in manufacturing
and medical imaging/diagnostics [1]. In the commu-
nications domain, the low cost and high performance
of traditional linear silicon photonic devices is becom-
ing indispensable to address the communication volumes
demanded by today’s short distance communications links.
Beyond linear optics, a great deal of research over the
past two decades has focused on exploiting the unique
technologies developed for silicon photonics for nonlinear
optical interactions [2]-[4]. The high lateral optical con-
finement as well as the ability to propagate over relatively
long interaction lengths makes silicon-based integrated
photonics very desirable for nonlinear optical devices. By
leveraging the efficiency and speed of all-optical process-
ing, the field of nonlinear silicon photonics promises to
have a substantial impact in many areas of information
technology ranging from traditional telecommunications
to some more recently explored areas such as spectroscopy,
optical frequency metrology, and information security.

II. PARAMETRIC NONLINEAR
SILICON PHOTONICS

Nonlinear-optical effects in silicon-based photonics span
a broad range of interactions that can be described as
either parametric (essentially instantaneous where energy
remains in the form of photons) or nonparametric (energy
is transferred to other forms such as heat and sound and
the interaction is noninstantaneous). This paper will focus
on the parametric nonlinear optical processes due to their
speed and versatility of applications.

Parametric nonlinear silicon photonics exploits the ultra-
fast bound electronic response of silicon-based materials.
The parametric nonlinearities of a material arise from
higher order terms of the Taylor expansion of the dielectric
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polarization field
P)=eodVEO+ P20+ VE )+ ()

where yI represents the linear term, y® is the second-
order nonlinearity, and y® is the third-order nonlinearity.
As is typical for such expansions, the coefficients for each
higher order term are many orders of magnitude smaller
than the proceeding term. Thus, a higher electric field
amplitude E(r) is required to provide significant contri-
butions from higher order terms to the overall polariza-
tion field. In centrosymmetric materials (such as typi-
cal silicon-based materials), the second-order term y?
disappears and nonlinear interactions require use of the
third-order term (Kerr effect). As one illustrative example,
from this term we can obtain the nonlinear refractive
index (Kerr coefficient) ny which gives rise to an intensity-
dependent refractive index of the material: nyt = nin+nal,
where nj, represents the linear refractive index and [
corresponds to the intensity of the light in the material.
When comparing ny of various silicon-based materials as
shown in Table 1, we see that the contribution to the
total refractive index from n, itself (given, for example, an
intensity of ~1 W/cm?) is many orders of magnitude lower
than the linear refractive index. However, in silicon-based
waveguide platforms, the tight confinement of light in the
high refractive index contrast device enables very high
intensities of light with modest optical powers. Therefore,
the intensity-dependent refractive index in such platforms
can be significant and exploited for nonlinear optical inter-
actions. For example, for a modest optical power of about
tens of milliwatts in a waveguide with tight confinement,
the intensity can be considerable (> 108 W/cm?), thereby
producing a significant optically induced modification to
the refractive index.

A. Optical Properties of Silicon-Based Platforms

Silicon-based photonic technologies generally make use
of planar fabrication of optical waveguiding structures.
A dielectric optical waveguide is a device that can confine
and propagate light through total internal reflection as a
result of its regions of differing refractive index. Gener-
ally, this is achieved with an increased refractive index
(core) surrounded by a lower refractive index medium
(cladding) [5], [6]. The size of mode area depends on
the waveguide geometry and the refractive index contrast
between the core and cladding material, where a higher
refractive index contrast can result in higher confinement
of light. Another way to guide light is through interfer-
ence effects produced by periodic refractive index changes,
such as photonic crystal structures, where waveguides are
formed by introducing line defects in photonic crystal
lattices [7], [8].

Crystalline silicon (c-Si), typically in the form of silicon-
on-insulator (SOI), has been used for integrated elec-
tronic circuits for decades, and is therefore a natural
choice for integrated photonics. Crystalline silicon has
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a high linear refractive index of 3.48 at telecom wave-
lengths (near 1550 nm). The high refractive index contrast
between c-Si and the cladding material (usually silicon
dioxide, which has a linear index around 1.45 at 1550 nm)
allows strong light confinement in submicrometer scale
c-Si waveguides (hundreds of nanometers in both width
and thickness), and hence can provide very high optical
intensities with moderate optical powers; a critical para-
meter for nonlinear optical interactions. In addition, the
nonlinear refractive index of ¢-Si [5], [6] is two orders
of magnitude larger than silica fiber. Due to these merits,
a significant amount of research has explored the poten-
tial use of c-Si devices for nonlinear optical applications.
However, the nonlinear loss of ¢c-Si due to two photon
absorption (2PA) and free carrier absorption (FCA) is also
relatively high, which can impair the nonlinear perfor-
mance of integrated c-Si devices.

Besides c-Si, other silicon-based materials, each with
its own merits, have drawn considerable attention. Sili-
con nitride (SiNx) [3], [9] and closely related high-index
doped silica (Hydex) [3], [10], [11], while possessing non-
linear refractive indices that are one order of magnitude
smaller than c-Si, exhibit much lower linear and nonlinear
loss compared to c¢-Si, and hence can enable resonators
with extremely high-quality factors, showing outstanding
performance as nonlinear optical sources in spectroscopy
and optical frequency metrology applications, as will be
discussed in Section IV. Hydrogenated amorphous silicon
(a-Si:H) [12]-[17], originally used for solar cells, has
recently been explored for nonlinear optical applications.
Despite the large variation of a-Si:H properties (depending
on deposition parameters), the material generally shows
remarkably high nonlinear refractive index (one order of
magnitude higher than c¢-Si) and a linear refractive index
comparable to c-Si, which allows ultralow power nonlinear
interactions. Furthermore, the effect of nonlinear loss in a-
Si:H can be smaller than c-Si, showing a higher nonlinear
figure of merit (FOM). One challenge of a-Si:H devices
is the light-induced degradation (often attributed to the
Staebler-Wronski effect) [18], [19], in which the proper-
ties of a-Si:H devices sometimes degrade over time at high
optical intensities. This effect is not yet well understood
and does not impact all a-Si:H devices, but it is presumably
associated with dangling bond defects [19]. Nevertheless,
it has been shown experimentally that in some cases
the degradation can be reversed through annealing [12].
The properties of waveguides using Si-based materials are
summarized in Table 1; the properties of single-mode fiber
(SMF) [20] and highly nonlinear fiber (HNLF) [21] are
also listed here for comparison. Notably, all of these silicon-
based materials are compatible with the complimentary
metal-oxide-semiconductor (CMOS) fabrication technol-
ogy pervasive in semiconductor electronics.

B. Nonlinear Phase Shift

An informative way to quantify a waveguide’s nonlinear-
ity is to consider the nonlinear phase shift that is induced
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Table 1 Typical Optical Properties of Different Si-Based Waveguides and Fibers at 1550 nm

A SMF P | HNLF N LR ide B0 waveguide £91 |wouagurds 561 [waveguide 121
™
mode profile @ L J @]
5X enlarged 5X enlarged | 5X enlarged 5X enlarged
effective area (um?) 85 12 2 1 0.1 0.1
core index 147 1.48 1.7 2 3.48 3.4-3.7
effective index (n,;) 147 1.46 1.6 1.8 2.3 23
n, (cm?W) ~2 x 10 ~3 x 107 1.15x 107 25x10" |4.3-6x10™ |2.1-74x10"
y (W'm-) ~0.001 0.011 0.23 1 350 - 500 770 - 3000
linear loss (dB/cm) | 1.8x10% 9x10° <0.1 <0.1 3 5
B,ex (CT/GW) 0 0 0 0 0.45-0.87 0.25-7
FOM,p, >>1 >>1 >>1 >>1 0.32-0.86 0.46 -5
Note: In the mode profile plots, the integrated waveguides are enlarged by 5 times in both width and thickness.

with a given optical input power. The nonlinear phase shift
due to the intensity-dependent refractive index is

ONL = yPp Lef 2

where the effective nonlinearity y is dependent on the
nonlinear refractive index n», the effective mode area Actt,
and the free-space wavelength

y =2nna/(AAet). 3)

The other terms in the equation are P,, peak pump
power (intensity ~ power/area), and L., effective length,
including loss, over which the nonlinear interaction occurs.
If a continuous wave laser is used, then peak pump power
P, is the same as the average pump power; while in the
case of a pulsed laser, the effective pump power within
the pulse duration is approximately the peak pump power,
which can be several orders of magnitude higher than
the average power. Thus, pulsed operation can produce
high nonlinear efficiency while maintaining a low average
pump power. Compared to a bulk medium, a waveguiding
structure can greatly increase the interaction length over
which the nonlinear phase can accumulate. Furthermore,
utilizing silicon-based materials with larger (linear) refrac-
tive indices as the waveguide core material can provide a
small effective area of ~ 0.1 xm?, which can, for example,
be about 750 times smaller compared to the effective area
of a standard SMF (75 pm?). In addition, n, of silicon-
based materials can be about three orders of magnitude
larger (e.g., ny of a-Si:H is around 5 x 10~13 cm?/W, while
ny of fiber is around 2 x 107! cm2/W (see Table 1);

however, the linear loss of such waveguides is also six
orders of magnitude higher.

Thus, to compare the overall nonlinearity of optical
waveguides and fibers, we must consider the effective
length, which takes into account the linear propagation
loss. Effective length refers to the length of a waveguide
considering the loss mechanisms. Here we incorporate
linear loss () mechanisms into the effective length and
use the equation

Left = (1 — exp(—al))/a. 4)

To emphasize the benefits of integrating waveguides in a
silicon platform for nonlinear optical interactions, the non-
linear phase shift per watt of optical input power (ignoring
nonlinear-loss mechanisms) is plotted as a function of
length for a variety of silicon-based integrated platforms,
as well as fibers in Fig 1. As shown on this log-log plot,
all waveguide platforms have a length at which the total
nonlinear phase shift will saturate and, if one was only con-
cerned with phase shift with a given power, the larger prop-
agation loss of integrated waveguides would not offset the
benefits of the higher nonlinearity and greater mode con-
finement. However, the most striking trend indicates that
higher confinement, higher nonlinearity platforms, such
as crystalline silicon (c¢-Si) and hydrogenated amorphous
silicon (a-Si:H), benefit from significantly higher nonlinear
phase shifts at short length scales. For example, at a given
power (and assuming no nonlinear loss), a 1-cm-length
a-Si:H waveguide undergoes 10° times more nonlinear
phase shift than the same length of HNLE Thus, it is evi-
dent that such higher confinement platforms enable much
shorter and more compact nonlinear optical devices with
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Fig. 1.
variety of silicon-based integrated platforms and fibers (ignoring
nonlinear loss mechanisms).

Nonlinear phase shift per watt as a function of length for a

a corresponding ability to scale up the number of devices
operating in a system. Such a reduction in device length is
also particularly important for parametric processes where
the operating bandwidth of the nonlinear interaction is
inversely proportional to length [22], and in applications
where the addition of significant latency is undesirable
(the latency for a given nonlinear phase shift/watt can
vary over ~6 orders of magnitude depending on a choice
of a-Si:H over SME as shown in Fig. 1).

Nonlinear loss mechanisms will limit the performance of
a nonlinear optical interaction. Each platform experiences
its own set of nonlinear loss mechanisms that vary with
each demonstration due to differing material deposition
and fabrication conditions as well as device geometries,
and due to the specific operating conditions including
wavelength, pulse duration, and repetition rate. As such,
their effects are excluded from Fig. 1. The general trend
in the platforms discussed here is that higher confinement
platforms suffer from more significant nonlinear losses.
However, at low optical powers, the approximate depiction
of nonlinear phase shift as a function of length as shown in
Fig. 1 is accurate, and the notable trends aforementioned
remain valid. A discussion of the nonlinear loss mecha-
nisms is included in Section II-D and is analyzed for a few
platforms in [23].

C. Dispersion

The dispersion of a waveguiding device is critically
important to the performance of parametric nonlinear
optical processes. Dispersion arises from the dependence
of the phase velocity v, of a lightwave on its frequency
o, and can result, for example, in temporal broadening
of an optical pulse as it propagates along the waveguide.
The ability to control the dispersion of the waveguide
is essential in nonlinear optical processes in which
several lightwaves of differing frequencies are involved.
Efficient interactions usually require that the sum of
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wavevectors k = /v, of the input waves equals the sum
of wavevectors of the generated waves, which is termed
the phase-matching condition and can be achieved by
designing the dispersion of the device [24]. For example,
slightly anomalous group-velocity dispersion is generally
desired for efficient four-wave mixing (FWM), as will be
discussed in details in Section IV.

Here we introduce the group velocity dispersion para-
meter f, (defined as f» = 0%k/6w?) and D (defined as
D= —-p- 2w /A2, where ¢ is the speed of light, and 1
is the wavelength); D < 0 is termed normal dispersion,
and D > 0 is termed anomalous dispersion. Bulk silicon-
based materials typically exhibit large normal dispersion
at telecommunication wavelengths, which is generally not
ideal. Fortunately, strong optical mode confinement in
waveguides can help counteract the material dispersion
and obtain anomalous group-velocity dispersion (GVD).
A great deal of work has been performed to investigate
GVD engineering of waveguides [5], [22], [25]-[28]. Gen-
erally, GVD can be tuned through choice of waveguide
cross-sectional dimensions; as an example, Fig. 2 depicts
how the GVD of a-Si:H waveguides changes with the width
and thickness.

The technique of tailoring the waveguide dispersion has
enabled a wide range of highly efficient parametric non-
linear optical processes, including wavelength conversion
[14], [22], [26], [28], parametric amplification [5], [28],
[29], soliton generation [27], supercontinuum generation
[30]-[32], and frequency combs [9], [11], [33] in sub-
micrometer waveguides and resonators. In addition, tech-
niques like quasi-phase matching have been explored to
further enhance the efficiency and extend the operational
bandwidth of the nonlinear processes [34]-[36].

D. Nonlinear Loss

An additional consideration for parametric processes
in silicon-based photonic devices is loss arising from the
presence of large optical intensities. Typically, a photon at
telecommunications wavelength (around 1550 nm) cannot
be absorbed directly by silicon-based materials; crystalline
silicon, for example, has a bandgap of 1.1 €V, which is
higher than the photon energy at 1550 nm (corresponding
to 0.8 eV). However, multiple photons in combination
can exceed the bandgap energy and be absorbed simul-
taneously, resulting in loss of photons. These multiphoton
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Fig. 2. Dispersion of a-Si:H waveguides (a) with varying widths
and (b) with varying thicknesses.
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absorption processes, such as two photon absorption (2PA)
and three photon absorption (3PA), can cause significant
loss when operating with high optical intensities. Charac-
terization of the nonlinear optical performance of a mate-
rial can be quantified to some degree using the nonlinear
FOM, which is typically defined as (considering 2PA only)

ny
Popa - A

where Bopa is the 2PA coefficient and / is the wavelength.

In addition to the absorption of multiple photons
directly, carriers (electrons and holes) are generated as
a byproduct in multiphoton absorption processes. The
generated carriers can then be excited to a higher energy
state by consuming other photons through single-photon
absorption, leading to additional loss; this process is
named free carrier absorption (FCA). Besides absorption,
free carriers also limit the operational speed of optical
devices due to their long lifetime (on the order of
nanoseconds) [37]. Additionally, defects such as surface
states and material defects (for example, dangling bonds
in a-Si:H) create mid-gap localized states, which aid
sequential one-photon absorption by the so-called two-
state absorption (TSA) process [38]-[40]. The presence
of free carriers also results in a refractive index change
and resulting phase shift, which is termed free carrier
dispersion (FCD). The phase shift induced by FCD opposes
that induced by the Kerr effect, thus the total achievable
nonlinear phase shift is reduced [41]. The nonlinear losses
due to multiphoton, defect state, and FCA as well as
FCD hamper nonlinear processes and limit the maximum
achievable efficiency [26], [41]-[44].

A variety of techniques have been developed to allevi-
ate the effects of nonlinear loss. Generally, multiphoton
absorption cannot be easily reduced in crystalline mate-
rials, which have a fixed band structure; on the contrary,
band structures can be tuned in noncrystalline materials
like a-Si:H [45], providing an opportunity to increase the
bandgap energy and hence reduce multiphoton absorption
[42]. Furthermore, structures such as reverse-biased p—i-n
junctions [37], [46] and metal-semiconductor-metal junc-
tions [47], [48] have been utilized to remove generated
free carriers, and experimental demonstrations show great
reduction of the free-carrier lifetime (from 3 ns to 12.2
ps), improved conversion efficiency in nonlinear processes
[49]-[51], and increased operational speed [52] due to
rapid free carrier removal. To reduce surface defects, a
thin layer of dielectric films (such as aluminum oxide)
can be grown on the top to passivate the surface of c-Si
devices [53]-[55]. To reduce the material defect states in
a-Si:H, deposition parameters must be carefully chosen to
facilitate the formation of Si-H bonds, which helps reduce
the defects arising from dangling bonds [42], [56], [57].

FOMpa =

®)

III. SELF-PHASE AND CROSS-PHASE
MODULATION

When a high-intensity pulse (intensity is varying in time)
propagates through a nonlinear medium, it experiences a

2200 PROCEEDINGS OF THE IEEE | Vol. 106, No. 12, December 2018

80 T T T T T T T

60r N
il 15.1W
40 Nv“ y  Higher order

Higher order
20 sidebands ¥

sidebands Dispersive

wave

Power (dBm)

0.28W

100 | | | I | I
1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 1850
Wavelenoth (nm)

Fig. 3. Supercontinuum generation in an a-Si:H waveguide: output
spectra with varying on-chip peak pump powers. Figure reproduced
with permission from [32], ©2014 OSA.

time-dependent phase shift with the same temporal shape
as the pulse intensity due to the intensity-dependent non-
linear refractive index An(r) = nyI (¢). This effect is known
as self-phase modulation (SPM). As a consequence of this
time-dependent phase shift, the pulse typically broadens
in the spectral domain. In one respect, SPM presents
an efficient way to characterize the nonlinear refractive
index n, of materials, as studied in [40], [58]. In the
extreme case, SPM can be employed to achieve supercon-
tinuum generation (an extremely wide spectral spanning
light source). Reports have shown wide spectral-spanning
supercontinuum generation in c-Si [30], [59]-[62], SiNy
[63]-[67], and a-Si:H waveguides [31], [32], [68]. As
one example, 550-nm spectral broadening at telecommu-
nication wavelengths is obtained in a-Si:H waveguides of
different widths [32]; output spectra with varying peak
powers in one sample waveguide are shown in Fig. 3,
denoting the various mechanisms contributing to super-
continuum generation. Such broadband supercontinuum
sources have applications in optical frequency metrology,
optical coherence tomography, and wavelength division
multiplexing.

When two or more optical waves with different wave-
lengths are launched simultaneously into a waveguide,
they can interact through cross-phase modulation (XPM),
in which one optical wave induces a phase shift on another
wave. Such phase shift induced by XPM can find a range
of applications such as spectral broadening [69], optical
switching [70], [56], and signal regeneration [71].

IV. FOUR-WAVE MIXING

The Kerr nonlinearity also gives rise to the most frequently
studied parametric nonlinear optical interaction in silicon-
based photonics: four-wave mixing (FWM). In essence,
FWM is simply the spectral representation of self-phase
modulation. In FWM, two photons are annihilated to pro-
duce two new photons, with no energy lost to nonradiative
processes thereby making it a parametric process. The
relationship between the waves is represented by: w; +
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Fig. 4. Schematic energy level diagrams (top) and spectra
(bottom) of different FWM configurations, the arrows show the
energy transfer directions: (a) nondegenerate FWM;

(b) pump-degenerate FWM; and (c) FWM-BS.

w; = w3 + w4, where w; denotes the frequency of each
involved wave. This interaction can be realized in several
different configurations such as those depicted in Fig. 4.
As dispersion is critical to efficient FWM, the approximate
zero group velocity dispersion (zGVD) locations that would
enable ideal phase matching are indicated for each inter-
action.

Shown in Fig. 4(a) is the conventional nondegener-
ate FWM configuration, in which four waves at differ-
ent wavelengths are involved; as depicted in the optical
spectrum with solid lines, two high power waves (pump1l
and pump2) and a relatively low power wave (signal)
are input into the nonlinear element, and an idler (red
dashed line) is generated due to the nondegenerate FWM
process. In this case, a pump1 photon and a pump2 photon
are converted to a signal photon and an idler photon,
and hence wp| + wpy = wy + w;. A specific FWM case
is depicted in Fig. 4(b) when the two pumps are at the
same wavelength (degenerate); this configuration is called
pump-degenerate FWM. In this configuration, two pump
photons at the same frequency can be used to create a
signal and idler photon at different wavelengths: wp; +
wp1 = ws + ;. In both processes, the energy is transferred
from the pump waves to the signal and idler waves, and
these processes have enabled a variety of applications
such as broadband signal amplification [5], [28], [29],
[35], [72] and wavelength conversion [14], [22], [26],
[28], [49], [51], [52], as well as quantum applications
including photon-pair generation [73]-[82]. For example,
through proper phase matching of a highly nonlinear a-
Si:H waveguide, signal amplification is achieved over a
500-nm bandwidth in the telecommunications wavelength
range and beyond as shown in Fig. 5(a) and (b) [83]. Plac-
ing this broad-bandwidth gain device within a dispersive
optical cavity then enables optical parametric oscillation
(OPO) and thus a coherent source whose output can be
tuned over a range of wavelengths comparable to the
amplification bandwidth, as shown in Fig. 5(c).

The FWM process can also be used for wavelength
conversion, where light at one wavelength is converted
to another wavelength. In c¢-Si photonic devices broad
bandwidth (837 nm) wavelength conversion with modest
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oscillator using an a-Si:H waveguide: (a) scanning electron
microscopy image of the a-Si:H waveguide; (b) on/off amplification
of the a-Si:H waveguide using a 1.5-ps pump with peak power

of 2.5 W and 6.1-ps pump with peak power of 3.6 W; and c) overlaid
tuning spectra of the oscillation mode of the OPO at short
wavelength side (1370 nm ~ 1515 nm), and long wavelength side
(1600 nm ~ 1810 nm) for a 1558-nm pump laser. Figure reproduced
with permission from [83], ©2015 OSA.

CW conversion efficiencies of -20 dB [84], and CW con-
version efficiencies up to -1 dB with active carrier removal
structures (p—i-n diodes) over modest bandwidths ~12 nm
[49] or -4.4 dB with a similar bandwidth [51] have been
achieved at telecommunications wavelengths.

The third FWM configuration shown in Fig. 4(c) is
FWM-Bragg scattering (FWM-BS). In this configuration,
a photon from a high-power pump wave and a photon
from a low power signal wave are annihilated to create an
idler photon and a pump photon at a different frequency:
wpy + s = wp1 + wi. Since the power in the signal is
lower than a typical pump would be, depletion of the
signal wave can be significant, and can be exploited for
various applications including optical isolation [85] and
logic gates [86]. Additionally, this process is attractive for
low-noise applications, such as quantum signal processing
[13], [87]-[91], since the wavelength conversion that
occurs does not amplify any vacuum fluctuations as the
power in the sideband (including the signal and idlers)
remains constant.

V. APPLICATIONS

Nonlinear silicon-based photonics are impacting several
important application domains. Similar to traditional sil-
icon photonics, the most prevalent applications relate to
communications. Additionally, nonlinear silicon photonic
devices are being demonstrated with applications in all-
optical computing, metrology, and security. Some notable
works in these areas are highlighted below.

A. Communications

Nonlinear optical interactions have the ability to manip-
ulate extremely high capacity data signals for communica-
tions. In silicon-based waveguides, demonstrations of all-
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optical signal processing have included wavelength conver-
sion of high-data-rate communication signals [52], [92],
[93]. For example, wavelength conversion is achieved on
wavelength division multiplexed (WDM) signals up to
1.024 Tb/s with efficiencies of —8.5 dB in c-Si waveguides
that exploit reverse-biased p-i-n junctions for carrier
removal [52]. This demonstration is highlighted in Fig. 6
where the spectrum of the waves as well as the bit-error-
rate plots are shown.

Optical time division multiplexing (OTDM) is another
approach to exploiting the large bandwidth afforded
through the use of optical signals. In such a communication
scheme, the high data rate signal must be demultiplexed
into multiple, lower data-rate optical channels for parallel
detection at these lower rates. In a-Si:H, 160-to-10-Gb/s
OTDM demultiplexing was achieved with ~50 mW of
peak pump powers [94] and in c-Si with ~500 mW of
peak pump powers [95]. As highlighted in Fig. 7, OTDM
of extremely high data rate signals (1.28-Tb/s-10-Gb/s
OTDM) has been achieved in c¢-Si with error-free opera-
tion [96].

As a signal transmits in the optical channel, distortions
can be induced by dispersion, nonlinearity, and noise.
Therefore, high-speed and broadband signal regenera-
tion techniques are highly desired in a communication
system. As the FWM process is naturally dependent on
the phase relationship between the signals, the process
is often exploited in a technique called phase sensitive
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Fig. 7. (a) Clear eye diagrams of 1.28-Tb/s waveform from the
Si-based optical sampling. (b) BER performance of 1.28-Tb/s-10-Gb/s
demultiplexing. Figure reprinted with permission from [96], ©2011
IEEE.
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amplification (PSA) where signals can be regenerated to
overcome the quantum noise limit. PSA utilizing either a
pump- or signal-idler-degenerate FWM scheme has been
demonstrated in a number of silicon-based platforms
including net gain of 10.4 dB and extinction ratio (ER)
of 24.6 dB in Hydex at repetition rates of ~17 MHz [97]
as shown in Fig. 8. In other silicon-based platforms, up
to 20 dB of ER at CW operation in c¢-Si with p-i-n [50]
and ER of 11.7 dB at 90 MHz operation and 1.6 dB at CW
operation in a-Si:H waveguides [98]. Phase regeneration
of a 10-Gb/s DPSK signals has been proven based on
PSA in a c-Si waveguide [50]. Besides FWM-based PSA,
other nonlinear techniques like SPM [99] and XPM [71]
can also be utilized for signal regeneration, as mentioned
previously.

In addition to WDM, OTDM and signal regeneration
applications, FWM-based wavelength conversion has been
utilized in silicon platforms for communications applica-
tions such as multicasting [100]-[102], tunable delays
through optical phase conjugation [103], [104], as well
as signal regeneration [105].

B. All-Optical Computing

The utilization of all-optical signal processing is not
limited to the analog domain, and recent demonstrations
have shown the ability to achieve high data-rate digital
logic operations. However, today’s electronics operate at
extremely low power, making it difficult to envision sce-
narios where optics could find a place in computation.
Although nonlinear optical interactions are being pushed
to lower and lower powers (approximately a milliwatt),
such powers are still quite large compared to electronics.
However, all-optical logic gates can operate at significantly
higher serial rates than electronics. Thus integrated nonlin-
ear optical computing is better suited to applications where
high-speed serial information already exists in the optical
domain and can be processed at the native data rate with-
out conversion between the optical and electrical domains.
In such preprocessing applications, computational blocks
such as flip-flops, adders, and logic blocks for encryption
are of significant interest.
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A number of research efforts in the direction of all-
optical computing have been demonstrated in silicon-
based platforms utilizing ultrafast parametric nonlinear
interactions [106]-[110]. In [106], an all-optical XOR
logic operation for 40-Gb/s differential phase-shift keyed
(DPSK) data signals in the telecom C-band is demonstrated
in a ¢-Si nanowire based on FWM, with a system penalty
of ~3.0 dB and ~4.3 dB at 10~° BER, as shown in Fig. 9.
In [110], 1.25-Gb/s all-optical NAND/AND logic functions
are realized for optical waves encoded in ON/OFF keying
(OOK) format, utilizing FWM-BS in an a-Si:H waveguide,
as depicted in Fig. 10. These demonstrations represent
a further step toward the realization of integrated high-
speed all-optical computing via silicon photonics.

C. Metrology

Mid-infrared (mid-IR) optical systems promise to have
applications in industrial and environmental monitoring
[111], explosives detection [112], as well as chemical and
biomolecular sensing [113]. However, room temperature
low-noise mid-IR detection is a substantial challenge due
to the narrow bandgap of the semiconductors required
for photodetection. To this end, mid-IR to telecom-band
frequency translation is a technique that can avoid such
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issues. In [114], efficient FWM in a silicon waveguide is
accomplished with discrete band phase-matching to facil-
itate the conversion of a signal at 2440 nm (mid-IR) to
an idler at 1620 nm (telecom band). This demonstration
shows spectral translation across a span of 62 THz with
simultaneous parametric translation gain as high as 19 dB
(see Fig. 11). A variety of other work on mid-IR photonics
in silicon-based devices has been reported [31], [113],
[115], [116], indicating that silicon photonics can play
an important role in both the telecom-band and mid-IR
regimes.

Parametric nonlinear optical interactions in resonant
cavities with the proper gain and dispersion conditions
can be utilized to achieve optical frequency comb gen-
eration. An optical frequency comb is a coherent source
consisting of a series of discrete, equally spaced fre-
quencies (comb teeth) in its spectrum. Frequency combs
have significant applications in various areas of metrol-
ogy including optical clockwork [117], [118] and pre-
cision spectroscopy (using optical frequency synthesiz-
ers) [117], [119]. Recently, a highly precise optical
frequency synthesizer utilizing two integrated combs
(a SiNy microresonator and a SiOy microresonator), a
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heterogeneously integrated III-V/Si tunable laser as well
as other controlling and monitoring components have
been reported [120], representing an important step
toward fully integrated frequency synthesizers. Further-
more, creating frequency combs with compact, low-
power integrated photonic devices makes them acces-
sible to a broad array of classical applications such
as remote chemical/biological sensing [113], dual-comb
spectroscopy [121], RF and microwave signal processing
[122], and optical coherent communications [123], as
well as quantum applications including the generation
of photon pairs [82], [124] and multiphoton entangled
quantum states [125].

Silicon-based photonic devices such as SiNx and Hydex
where nonlinear interactions can occur with net CW gain,
and dispersion engineering provide an ideal platform for
frequency comb generation, and a wealth of research has
been focused on developing and studying these devices
[82], [113], [122]-[129]. The first integrated octave-
spanning frequency comb generation was demonstrated in
a SiNx microring resonator, showing a wide spectral output
spanning 128 THz with a line spacing of 226 GHz [127], as
depicted in Fig. 12(a). Recently, integrated phase-coherent
frequency combs have been realized in the soliton regime
[130], as shown in Fig. 12(b). Due to the reduced non-
linear loss in the mid-IR range, c-Si microresonator-based
combs have also been demonstrated [113] and employed
for spectroscopy [121]. These investigations pave the way
for the realization of stable phase-locked frequency combs
on-chip. Research on frequency combs has been compre-
hensively reviewed in [4] and [131].

D. Security

Information security is always of great concern in both
communication and data storage systems. Ever since the
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early days of communication, the necessity of protecting
the confidentiality of correspondence and detecting tam-
pering has been critical. Today, with the growth of the
Internet of Things, it is increasingly important to develop
reliable methods to guarantee the security and privacy of
information [132]. In this section, we will briefly discuss
some promising methods for secure optical communica-
tions and authentication employing silicon photonics.

1) Quantum Communications: If information is commu-
nicated in as small an information carrying unit as phys-
ically possible (e.g., at the single photon level), detecting
the presence of eavesdroppers is feasible. This concept of
quantizing communication signals into individual particles
has given rise to the field of quantum communications.
Many such proposed schemes also rely upon the quantum
concept that once a signal is measured, its properties are
altered in some way (a particle which statistically existing
in one basis is forced onto the basis of the measurement
technique) and therefore eavesdropping can be detected
through the statistical likelihood of errors.

A quantum communication network for secure commu-
nications requires more than just interconnects by which
signals are sent. The first pivotal element for quantum
communication systems is efficient sources of photons
satisfying the requirements of anti-bunching (individual
photons separated in time without overlap) and/or entan-
glement (the quantum state of one photon is depen-
dent on the states of others). A great deal of work has
demonstrated the potential of generating single and pho-
ton pair sources utilizing parametric nonlinear effects in
silicon-based photonic devices [76]-[82], [124], [125],
[133]-[135]. As a recent example, photons generated
via FWM in a silicon waveguide from four temporal
modes have been multiplexed temporally to achieve
100% enhancement to the single-photon output probabil-
ity [134], as shown in Fig. 13(a); and photon indistin-
guishability is confirmed by a fourfold Hong—Ou-Mandel
(HOM) quantum interference with a 91+ 16% visibility
after subtracting multiphoton noise due to high pump
power [see Fig. 13(c)].

Other essential components for a quantum network
include signal repeaters and processors. In order for such
devices to be practical, processing must be achieved with
low power and low noise. Integrated silicon photonics pro-
vides a means toward scalable quantum communication
networks since it can reduce the power requirement of
optical processing interactions. For example, researchers
have demonstrated efficient low-noise frequency conver-
sion at single-photon level in a SiNy microring resonator
via FWM-BS [90]. In addition, silicon photonics also shows
great potential for high-speed quantum key distribution
[136]. These reports indicate the potential for integrated
silicon-based photonic devices for quantum communica-
tion networks.

2) Photonic Physically Unclonable Functions: The manner
in which light can interact with a material can be attributed



(a) t, t, ty t, t t, ty t, t,
’ Pump

b e pulses

generation

/
, o oJ Photon pair
. /

/@

. and heralding
7 ¥ "
o '@ Multiplexed

. / photon output

’ /

’ ‘

Earlier Later "
Time
(b) © . R —
» + . 100 5 —— Fitting ( Fourfold )
Q 800 A5 AR S g a 5
o e N A g0y £9%0
o & ¥ Visibilty =24x1.9% 8 & S
o 600 Q @ 40 . k3
e 1460 § 8 . *
2 400 s 1 3 2 3 it ¢
2 { 40 £ e
8 1 8 8 20 1
= 4 4 o <
2 200 f Visibilty=69:34% 1 59 3 kS . Visibilty = 91216%
° Y > 310
& & I
0 0

4
-60 40 -20 0 20 40 60

Delay (ps) Delay (ps)

Fig. 13. D -al multiplexing of
indistinguishable single photons. (a) Principle of operation. (b)
Visibility of twofold and fourfold measurements. (c) Fourfold HOM

tration of temp

dip visibility after subtracting muitiphoton noise. Figure reproduced
from [133].

to many different processes, both linear and nonlinear.
Linear interactions include refraction, scattering, diffrac-
tion, absorption, etc., and can occur due to nanometer-
scale perturbations in materials or interfaces. Although we
have focused on only a few, there are also a great deal of
nonlinear interactions available in an integrated photonic
platform. This rich array of phenomena can be exploited
to create very information-dense optical interactions in
integrated photonic devices. Devices with such complex
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Li and Foster: Parametric Nonlinear Silicon-Based Photonics

behavior can serve as physical keys for security applica-
tions such as authentication and encryption. In [137], a
silicon photonic physical unclonable function based on
ultrafast nonlinear optical interactions in a chaotic c-Si
microcavity is demonstrated. Due to the complex nonlinear
interactions in the cavity, the device presents a highly
unpredictable, yet deterministic and ultrafast response to
data encoded optical pulses. This response behavior can
serve as a unique “fingerprint” of the device and as a
source of private information for the device’s holder. The
potential of using this device for information security is
demonstrated via the challenge-response authentication
experiments, in which the device serves as an authenti-
cation token (a hardware device that is used to prove
an identity and authorize access to a protected resource),
as shown in Fig. 14. Furthermore, the device is experi-
mentally demonstrated to be unclonable due to unavoid-
able fabrication variations. These devices have also more
recently been extended to serve as sources of key material
for data encryption [138].

VI. CONCLUSION

In this review, we have discussed recent progress in non-
linear silicon-based photonic devices. As shown in Table 1,
the versatility of silicon-based materials provides a suite
of material options to choose from while engineering
the optimal device for a specific application. Crystalline
silicon’s relatively high nonlinearity as well as the ability
to incorporate loss-reduction techniques (such as p-i-n
diodes) have enabled a number of exciting demonstrations
in both the telecommunication and mid-IR regimes. Silicon
nitride and Hydex have extremely low linear losses and
negligible nonlinear losses, however with a tradeoff of
significantly lower nonlinearities compared to their semi-
conductor counterparts. Still, the low loss properties of
silicon nitride and Hydex provide a powerful platform
to create microresonators with extremely high quality
factors, thereby producing remarkably efficient nonlinear
interactions such as frequency conversion, optical para-
metric oscillation, and frequency comb generation. Hydro-
genated amorphous silicon has been demonstrated with
the highest nonlinear refractive index that is one order
of magnitude larger than c-Si and an improved nonlinear
FOM. These properties allow hydrogenated amorphous
silicon devices to operate at very low power and high
efficiencies.

In addition to the materials discussed in this paper,
great effort has been made to develop other silicon-based
materials such as silicon-rich nitride [66], [139]-[141]
and silicon germanium (SiGe) [142]-[146], mainly due
to their flexibility to tune the refractive index, bandgap,
and other optical properties by varying the element con-
centrations. Research on silicon-rich nitride is aimed to
increase the refractive index and nonlinearity of silicon
nitride while maintaining low 2PA; reports have shown its
potential applications in wavelength conversion [140]
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and supercontinuum generation [66]. Silicon germanium
alloys have attracted tremendous attention for near- and
mid-IR applications [143], [145], owing to their larger
refractive index and nonlinear coefficient than c-Si in the
near- and mid-IR wavelength ranges.

To date, the silicon-based platform for nonlinear optics
has enabled a variety of exciting applications in areas
such as communications, all-optical computing, metrol-
ogy, and security and in both the classical and quantum
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