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ABSTRACT: This Article describes a detailed investigation of ligand effects on Ph–CF3 coupling from phosphinoferrocene-ligated 
PdII(Ph)(CF3) complexes. This study reveals that increasing the size of the phosphine substituents results in an enhanced rate of Ph–
CF3 coupling, with (DtBPF)Pd(Ph)(CF3) (DtBPF = 1,1’-bis(di-tert-butylphosphino)ferrocene) being the most reactive complex. The 
mechanism of Ph–CF3 bond formation from both (DtBPF)Pd(Ph)(CF3) and (DiPrPF)Pd(Ph)(CF3) (DiPrPF = 1,1’-bis(di-iso-
propylphosphino)ferrocene) was interrogated experimentally and computationally. These studies implicate a pathway involving con-
certed Ph–CF3 bond-forming reductive elimination from the four-coordinate PdII centers. An alternative pathway involving -fluoride 
elimination and subsequent PhF2C–F coupling from PdII(CF2Ph)(F) intermediates was also evaluated, but was ruled out based on 
DFT as well as the independent synthesis and reactivity studies of (DiPrPF)Pd(CF2Ph)(F). 

INTRODUCTION 

Over the past 20 years, transition-metal catalyzed cross-cou-
pling reactions between aryl halides and trifluoromethyl nucle-
ophiles have received widespread attention.1 While a variety of 
copper-catalyzed methods have been developed,2 analogous Pd-
catalyzed transformations remain much more limited.1,3,4 The 
quest for palladium catalysts for arene trifluoromethylation has 
focused on the identification of ligands that promote the chal-
lenging aryl–trifluoromethyl bond-forming step of the catalytic 
cycle. To date only five ligands, Xantphos (A),5 dfmpe (B),6 
RuPhos,7 BrettPhos (C),3a and tri-tert-butylphosphine (PtBu3, 
D),8 have been identified that promote high-yielding aryl–CF3 
coupling from palladium(II) centers (Figure 1). 

 
Figure 1. Ligands that promote Ph–CF3 coupling at PdII centers. 

The efficacy of these ligands has been rationalized based on 
a combination of steric effects, electronic effects, and ligand 
denticity. For instance, the bidentate Xantphos ligand has an un-
usually wide bite angle (102.07°), which was proposed to be an 

enabling feature for its unique reactivity.5,9 In contrast, biden-
tate dfmpe has a much smaller bite angle (84.12°); however, its 
trifluoromethyl substituents are believed to promote Ph–CF3 
coupling by withdrawing electron density from the PdII center 
as well as by participating in unfavorable electrostatic interac-
tions with the σ-phenyl and CF3 ligands.6,10 BrettPhos and 
RuPhos are hemilabile bidentate ligands that coordinate to PdII 
via a strong Pd–P bond and a weak Pd–O interaction. The 
hemilabile nature of the Pd–O interaction provides facile access 
to reactive three-coordinate PdII centers.11,12,13 Finally, the large 
size of PtBu3 enforces a three-coordinate geometry at PdII, 
which is believed to lower the barrier for Ph–CF3 cou-
pling.8,11,12,13 

The structural diversity of ligands A-D has precluded mean-
ingful comparisons of the relative impact of steric effects, elec-
tronic effects, and ligand denticity/bite angle on aryl–CF3 cou-
pling between these systems. Even within a given ligand class, 
there are only two computational studies that have systemically 
explored the role of ligand properties on the barrier for aryl–
CF3 bond formation. In one example, Schoenebeck probed re-
ductive elimination from LPdII(Ph)(CF3), where L = bidentate 
Xantphos and DPPE (1,2-bis(diphenylphosphino)ethane) deriv-
atives. Her work concluded that the relative barriers for Ph–CF3 
coupling were primarily governed by changes in steric repul-
sions at the ground state relative to the transition state.14 In a 
related theoretical study of Ph–CF3 coupling from 
(Xantphos)PdII(Ph)(CF3), Bakhmutov, Grushin, and Macgregor 
concluded that the presence of sterically large cis ligands was 
important for facilitating reductive elimination in this system.15 



 

Inspired by these computational studies, we sought to exper-
imentally interrogate steric effects on Ph–CF3 coupling using 
the highly modular and readily available phosphinoferrocene 
class of ligands. Phosphinoferrocene-ligated PdII complexes are 
well known to participate in numerous challenging reductive 
elimination reactions, including the formation of aryl–NR2

16 
and aryl–OR17 bonds. We report herein that phosphinoferro-
cene-ligated PdII(Ph)(CF3) complexes participate in Ph–CF3 
coupling reactions, and that the rates of these reactions vary dra-
matically as a function of the ligand structure. The mechanism 
of these transformations and origin of these ligand effects are 
studied in detail using a combination of experiment and DFT 
calculations. Ultimately, this work offers insights that can aid 
the design of new ligands for Pd-catalyzed aryl–trifluoromethyl 
cross-coupling reactions. 

RESULTS AND DISCUSSION 

Synthesis of Phosphinoferrocene-Ligated PdII(Ph)(CF3) 

Complexes. The phosphinoferrocene complexes 1-3 were pre-
pared by the reaction of the appropriate phosphine ligand with 
(TMEDA)Pd(Ph)(CF3) (TMEDA = N,N,N’,N’-tetramethyleth-
ylenediamine).18 As shown in equation 1, the phosphines 1,1’-
bis(diethylphosphino)ferrocene (DEtPF), 1,1’-bis(diphe-
nylphosphino)ferrocene (DPPF), and 1,1’-bis(diiso-
propylphosphino)ferrocene (DiPrPF) displace TMEDA quanti-
tatively upon heating at 80 °C to afford 1-3 in isolated yields 
ranging from 45-67%. 

 
In contrast, the 1,1’-bis(di-tert-butylphosphino)ferrocene 

DtBPF complex 4 could not be isolated under these conditions. 
Instead, the major product detected by 19F NMR spectroscopy 
from the reaction between (TMEDA)Pd(Ph)(CF3) and DtBPF 
was PhCF3. This result suggests that initial ligand exchange to 
generate 4 is followed by rapid Ph–CF3 coupling at the temper-
ature required for TMEDA ligand substitution (80 °C). To fa-
cilitate ligand exchange at lower temperature, we next exam-
ined a PdII precursor bearing labile monodentate 3-fluoro-
pyridine ligands.6 The reaction of DtBPF with (3-fluoro-
pyridine)2Pd(Ph)(CF3) at room temperature initially afforded an 
equilibrium mixture of 4 and (3-fluoropyridine)2Pd(Ph)(CF3). 
However, removal of the free 3-fluoropyridine under vacuum 
drove this equilibrium to afford analytically pure 4 in 90% iso-
lated yield (eq. 2). 

 
The X-ray crystal structures of complexes 1-4 are shown in 

Figure 2, and selected bond distances and angles are presented 
in Table 1. In all cases the Pd–P1 bond distance is 0.0126-
0.0855 Å longer than the Pd–P2 bond distance, consistent with 
the larger trans influence of the -phenyl relative to the CF3 lig-
and.19 The C1–Pd–C2 bond angle becomes more acute with in-
creasing size of the substituents at phosphorus, ranging from 
84.83º in 1 to 79.36º in 4. Complexes 1-3 are all square planar, 
with angles between the P1–Pd–P2 and C1–Pd–C2 planes be-
tween 0.67° and 2.09°. In contrast, the DtBPF ligand imparts a 
significant distortion to the square plane in 4, with an angle of 

27.46° between the P1–Pd–P2 and C1–Pd–C2 planes.20 Addi-
tionally, the P–Pd bond distances in 4 are approximately 0.1-
0.2 Å longer than those in 1-3. At 2.478 Å and 2.564 Å, respec-
tively, these represent the longest P–Pd bonds reported for a 
mononuclear bidentate phosphine-ligated PdII species.21 Fur-
thermore, the C1–Pd–C2 bond angle (79.36°) is the most acute 
C–Pd–C bond angle reported for a PdII species containing two 
independent carbon ligands.21 Finally, the bite angle of DtBPF 
(103.15°) is among the widest for PdII complexes bound to two 
independent carbon ligands.21 Overall, these features suggest a 
relatively destabilized ground state structure for 4.  

Complexes 1-4 were also characterized by 1H, 31P, and 19F 
NMR spectroscopy in C6D6 or CD2Cl2. At room temperature, 
the 31P NMR spectra of 1-3 show a doublet of quartets and a 
quartet of doublets (Figure 3a). The observed signals implicate 
the presence of two inequivalent phosphine ligands that are cou-
pled to one another as well as to the CF3 ligand. The 19F NMR 
spectra of 1-3 show a doublet of doublets for the CF3 ligand, 
consistent with coupling to the two inequivalent phosphine lig-
ands (Figure 3b). These solution spectroscopic data are con-
sistent with the solid-state structures of 1-3. 

 
Figure 2. ORTEP diagrams for PdII complexes 1-4. Hydrogen 
atoms have been omitted for clarity and ellipsoids are shown at 
50% probability. 

Table 1. Selected bond distances (Å) and selected bond angles 
(°) for 1-4.  

complex Pd–P1 Pd–P2 P1–Pd–P2 C1–Pd–C2 

1 2.3732(8) 2.3309(8) 101.03(3) 84.83(13) 

2 2.3670(5) 2.3370(5) 97.23(2) 83.40(8) 

3 2.3959(6) 2.3833(6) 100.00(2) 80.90(10) 

4 2.5639(7) 2.4784(8) 103.15(3) 79.36(12) 

 

In contrast, complex 4 is fluxional at room temperature on the 
NMR timescale.22 At 25 ºC, the 31P NMR spectrum of 4 shows 
two broad resonances (Figure 3c), while the 19F NMR spectrum 
shows an apparent triplet (Figure 3d). Upon cooling the solution 
to –50 °C, the 31P NMR spectrum sharpens significantly (alt-
hough the expected doublet of quartets and quartet of doublets 
do not completely resolve), and the 19F NMR spectrum shows 
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the expected doublet of doublets. These data suggest that ex-
change between the two phosphines in 4 is fast on the NMR 
timescale at room temperature. A proposed mechanism for this 
exchange involves initial dissociation of one phosphine to af-
ford intermediate 4T (i, Scheme 1), isomerization through a Y-
complex (4Y) to afford 4T’, and recoordination of the free phos-
phine (iv, Scheme 1).23  

 
Figure 3. (a) 31P NMR spectrum for complex 3 at room temper-
ature. (b) 19F NMR spectrum for complex 3 at room tempera-
ture. (c) Variable temperature (VT) 31P NMR spectrum of 4. (d) 
VT 19F NMR spectrum of 4. 

Scheme 1. Proposed mechanism for phosphine exchange at 4. 

 
Reductive Elimination from 1-4. Complexes 1-4 all partic-

ipate in Ph–CF3 coupling upon heating to 130 °C in p-xylene. 
Notably, 1 equiv of the phosphinoferrocene ligand was added 
to each reaction, to trap the Pd0 product and limit side reac-
tions.24 As shown in Figure 4, increasing the size of the phos-
phine substituent from ethyl (DEtPF) to phenyl (DPPF) to iso-
propyl (DiPrPF) to tert-butyl (DtBPF) results in a significant in-
crease in the reaction rate. The least reactive DEtPF complex 1 
afforded <5% of PhCF3 after 50 min at 130 °C. The initial rate 
of reductive elimination from 2 (3.11 x 10-7 M/s) was approxi-
mately 1.3 times slower than that for 3 (3.98 x 10-7 M/s). Fi-
nally, the most reactive DtBPF complex 4 afforded complete 
conversion (and 75% yield of benzotrifluoride) after just 2 min 
under analogous conditions. 

Further investigations were conducted to determine the opti-
mal temperatures and times for PhCF3 formation from 1-4. As 

summarized in Table 2, the DEtPF complex 1 afforded 24% 
yield of PhCF3 after 7 d at 130 °C. At this time, 57% of the 
starting material was consumed, suggesting that competing de-
composition pathways are occurring in this system. In contrast, 
DPPF complex 2 yielded 89% of PhCF3 after 36 h at 130 °C, 
while the DiPrPF complex 3 afforded 99% of PhCF3 after 24 h 
at the same temperature. Finally, 4 produced benzotrifluoride in 
82% yield after heating at 80 °C for 35 min.25,26,27,28  

 

 
Figure 4. Time study of PhCF3 formation from 1-4. 

Table 2. Reductive elimination of benzotrifluoride from 1-4. 

 
complex solvent temp time yield PhCF3 

1 p-xylene 130 ºC 168 h 24% 

2 p-xylene 130 ºC 36 h 89% 

3 p-xylene 130 ºC 24 h 99% 

4 C6D6 80 ºC 35 min 82% 

 

Eyring plots were generated by evaluating the initial reaction 
rate of PhCF3 formation from 3 and 4 at different temperatures. 
As summarized in Table 3, reductive elimination from complex 
3 proceeds with a ΔH‡ of 29.7 kcal/mol, a ΔS‡ of –5.8 eu, and a 
ΔG‡

298 of 31.4 kcal/mol. The analogous reaction at 4 proceeds 
with a ΔH‡ of 28.0 kcal/mol, a ΔS‡ of +9.0 eu, and a ΔG‡

298 of 
25.3 kcal/mol.29 The comparable ΔH‡ values and relatively 
large difference in ΔS‡ observed between 3 and 4 suggest that 
the faster rate of reductive elimination from 4 is largely entrop-
ically controlled. 
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Table 3. Activation parameters for Ph–CF3 coupling from com-
plexes 3 and 4. 

 
Experimental DFT 

complex 
ΔG‡

298 

(kcal/mol) 

ΔH‡ 

(kcal/mol) 
ΔS‡ (eu) 

ΔG‡
298 

(kcal/mol) 

ΔH‡ 

(kcal/mol) 

3 31.4 ± 0.6 29.7 ± 0.6 –5.8 ± 0.2 33.6 33.8 

4 25.3 ± 0.2 28.0 ± 0.1 +9.0 ± 0.1 25.2 26.3 

 

DFT Study of Ph–CF3 Coupling from Phosphinoferro-

cene-Ligated PdII(Ph)(CF3) Complexes. We next turned to 
DFT to investigate the mechanism of Ph–CF3 coupling in these 
systems.30,31,32,33,34,35,36 The literature suggests three possible 
pathways for this reaction.13,15 The first (Scheme 2, pathway a) 
involves concerted coupling of the -phenyl and -CF3 ligands 
from the bis-phosphine PdII starting material. The second in-
volves pre-equilibrium dissociation of one arm of the bidentate 
phosphine followed by concerted reductive elimination from 
the three-coordinate intermediate B (Scheme 2, pathway b). Fi-
nally, the third involves -fluoride elimination from 3-coordi-
nate intermediate B to form difluorocarbene complex D, fol-
lowed by -phenyl migration to generate intermediate E 
(Scheme 2, pathway c). This PdII (difluorobenzyl)(fluoro) com-
plex could then undergo PhF2C–F coupling via either a 3- or 4-
coordinate pathway.  

Our initial DFT studies focused on the DtBPF complex 4, and 
we first evaluated pathway a. Importantly, this pathway has 
been implicated in the literature for (Xantphos)Pd(Ph)(CF3).15 
As shown in red in Figure 5, this mechanism involves the three-
membered transition structure TS-4/A. The calculated barrier 
(ΔG‡

298) is 25.2 kcal/mol, which is in excellent agreement with 
that determined experimentally (25.3 kcal/mol, Table 3). The 
Pd–CF3 bond lengthens significantly in the transition state (by 
0.26 Å) relative to the ground state, whereas the Pd–Ph bond 

elongates only slightly (by 0.03 Å). This is consistent with pre-
vious proposals that Pd–CF3 bond breaking is the major con-
tributor to the overall barrier for Ph–CF3 coupling at PdII cen-
ters.3a 

Scheme 2. Pathways for formation of PhCF3. 

 

We next examined concerted reductive elimination via a 
three-coordinate transition structure involving a monodentate 
DtBPF ligand (Scheme 2, b and Figure 5, blue pathway). Nota-
bly, this pathway has been implicated in the literature from 
PdII(Ph)(CF3) complexes bearing the BrettPhos ligand.13 DFT 
predicts that dissociation of one arm of DtBPF to form B is ther-
modynamically unfavorable (G = +6.5 kcal/mol). The barrier 
for this dissociation is estimated from potential energy scans as 
E‡ ~10 kcal/mol). This is consistent with the dynamic behav-
ior of 4 observed by NMR spectroscopy (Figure 3 and Scheme 
1). However, concerted reductive elimination from B has a sig-
nificantly higher barrier than that from the 4-coordinate species 
(G‡ = +5.9 kcal/mol, respectively). As such, the calculations 
suggest that this is not a competitive pathway to the formation 
of PhCF3. 

 

Finally, we explored the pathway involving C–F coupling 
from a PdII (difluorobenzyl)(fluoro) intermediate (Scheme 2, 
pathway c). Importantly, this pathway has been implicated in 

Figure 5. Energy profile for computed reactivity of (DtBPF)Pd(Ph)(CF3) (4), illustrating pathway a (in red), pathway b (in 
blue), and pathway c (in black). A and F are conformers. Energies ∆G(∆H) in kcal/mol. 
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our recent studies of Ph–CF3 coupling from three-coordinate 
PdII(Ph)(CF3) complexes of PtBu3

8 and has also been calculated 
as a feasible pathway for (Xantphos)Pd(Ph)(CF3).15 As shown 
in black in Figure 5, this pathway starts with dissociation of one 
arm of DtBPF to form B. -Fluoride elimination then occurs to 
generate the difluorocarbene intermediate D. Subsequent mi-
gratory insertion of the phenyl group into the Pd=CF2 bond af-
fords 3-coordinate complex E, which can traverse a very small 
barrier to give the four-coordinate analogue 5. Notably, the cal-
culations indicate that 5 is 16 kcal/mol more stable than 4. Both 
E and 5 can participate in PhCF2–F bond-forming reductive 
elimination, but reaction from the 3-coordinate complex has a 
higher transition state (G‡ = +2 kcal/mol). Overall, the high-
est energy transition structure along this pathway is that for the 
initial -fluoride elimination (+26.4 kcal/mol). This is 1.2 
kcal/mol higher than that for concerted Ph–CF3 coupling from 
4, suggesting that this is not the major pathway operating for 
complex 4. 

We next examined analogous pathways for the DiPrPF com-
plex 3 (Figure 6). In this system, concerted Ph–CF3 coupling 
from the 4-coordinate complex (pathway a) has a calculated 
barrier of 33.6 kcal/mol. This is similar to that observed exper-
imentally (31.4 kcal/mol, Table 3). The dissociation of one arm 
of the DiPrPF ligand to form a three-coordinate intermediate in-
volves a large energetic penalty, as Bi is 21.4 kcal/mol uphill 
from the starting material 3. Furthermore, concerted Ph–CF3 
coupling from Bi (pathway b) does not appear to be feasible in 
this system. Instead, all attempts to locate a transition structure 
for this reaction resulted in recoordination of the pendant phos-
phine arm. 

Finally, the transition state for -fluoride elimination from Bi 
(the first step of pathway c) is at 36.1 kcal/mol. This is 2.5 
kcal/mol higher than that for concerted reductive elimination 
from 3, suggesting that pathway c is unlikely to be a major con-
tributor to the reactivity of the DiPrPF complex. Additionally, 
this step leads to a very stable 4-coordinate (Di-

PrPF)Pd(CF2Ph)(F) complex 6. This complex appears to be a 
thermodynamic sink in this system, as it is at considerably lower 
energy than both the starting material 3 (-24.5 kcal/mol relative 
to 3) and the reductive elimination product Fi (-15.9 kcal/mol 
relative to Fi).  

Overall, these calculations implicate concerted reductive 
elimination from the 4-coordinate starting materials as the ma-
jor pathways for PhCF3 formation in these systems. Addition-
ally, they suggest that PdII(CF2Ph)(F) complexes should be sta-
ble species that can be independently isolated, characterized, 
and evaluated. 

 
Figure 6. Energy profile for computed reactivity of (Di-

PrPF)Pd(Ph)(CF3) (3), illustrating pathway a and key steps of 
pathway c (in black). Pathway b is not feasible in this system, 
as efforts to find a TS for Ph–CF3 coupling from Bi led to reco-
ordination of the phosphine ligand. Ai and Fi are conformers. 
Energies ∆G(∆H) in kcal/mol. 

Synthesis of (DiPrPF)PdII(CF2Ph)(F) (6). A final set of in-
vestigations focused on the synthesis and reactivity studies of 
(DiPrPF)Pd(CF2Ph)(F) (6). As discussed above, such PdII 
difluorobenzyl fluoride intermediates have been proposed (but 
not detected or isolated) in other PhCF3 couplings at PdII cen-
ters.8,15 However, in the current system our calculations indicate 
that the barrier for PhF2C–F coupling from 6 is >50 kcal/mol 
(Figure 6). Baker has recently shown that the reaction of CoIII–
CF3 complexes with trimethylsilyl trifluoromethanesulfonate 
(TMSOTf) results in the abstraction of a fluoride to yield trime-
thylsilyl fluoride (TMSF) and CoIII=CF2

+.37 We hypothesized 
that the treatment of 3 with TMSOTf would afford the difluoro-
carbene complex (7), which could undergo fast phenyl migra-
tion to produce (DiPrPF)Pd(CF2Ph)(OTf) (8). The addition of 
CsF to 8 should then form product 6. Indeed, as summarized in 
Scheme 3, this reaction sequence yielded 6 in 50% isolated 
yield after recrystallization. Complex 6 was characterized by X-
ray crystallography (Figure 7) as well as 1H, 19F, and 31P NMR 
spectroscopy. 

Scheme 3. Independent synthesis of complex 6. 
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Figure 7. ORTEP diagram for 6. Hydrogen atoms have been 

omitted for clarity and ellipsoids are shown at 50% probability. 

Studying the thermolysis of 6 required a change of solvent, 
as this complex is insoluble in p-xylene even at 130 °C. How-
ever, 6 does dissolve in N-methyl-2-pyrrolidone (NMP) after 5 
min of heating at 130 °C. After heating at 130 °C for 2.25 h, no 
starting material remained as determined by 19F NMR spectro-
scopic analysis. Additionally, no trace of benzotrifluoride was 
detected, suggesting that 6 decomposes by unproductive path-
ways under these conditions (Scheme 4).38 This result is con-
sistent with the DFT calculations showing an extremely high 
barrier (54.7 kcal/mol) for PhF2C–F bond-forming reductive 
elimination from 6. 

Scheme 4. Thermolysis of complex 6. 

 

CONCLUSION 

Phosphinoferrocenes (P~P) have been identified as an effec-
tive ligand scaffold for promoting Ph–CF3 coupling from PdII 
centers. Systematic studies revealed that increasing the size of 
the phosphine substituents dramatically increases the rate of re-
ductive elimination of PhCF3. The mechanism of the reductive 
elimination to form PhCF3 was explored computationally. The 
lowest energy pathway appears to involve concerted Ph–CF3 
bond-forming reductive elimination from four-coordinate 
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(P~P)Pd(Ph)(CF3) complexes. There is excellent agreement be-
tween experimental and DFT-derived activation parameters for 
this pathway. Reductive elimination from a three-coordinate 
complex, formed upon dissociation of one arm of the bidentate 
ligand, is a higher energy pathway in all cases examined. Addi-
tionally, DFT analysis suggests that pathways involving -flu-
oride elimination are not competitive in these systems. This pre-
diction was validated through the synthesis of (Di-

PrPF)Pd(CF2Ph)(F) and the demonstration that this complex 
does not form PhCF3 upon thermolysis at temperatures up to 
130 °C. Overall, the results of these studies are consistent with 
many of the computational findings of Schoenebeck14 as well 
as Bakhmutov, Grushin, and Macgregor.15 Specifically, they 
show experimentally that the use of sterically large and wide 
bite angle bidentate phosphine ligands can be highly effective 
for promoting Ph–CF3 bond forming reductive elimination from 
PdII centers.  
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