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We tackle the problem of selecting from among a large number of vari-
ables those that are “important” for an outcome. We consider situations where
groups of variables are also of interest. For example, each variable might be
a genetic polymorphism, and we might want to study how a trait depends on
variability in genes, segments of DNA that typically contain multiple such
polymorphisms. In this context, to discover that a variable is relevant for the
outcome implies discovering that the larger entity it represents is also im-
portant. To guarantee meaningful results with high chance of replicability,
we suggest controlling the rate of false discoveries for findings at the level
of individual variables and at the level of groups. Building on the knock-
off construction of Barber and Candès [Ann. Statist. 43 (2015) 2055–2085]
and the multilayer testing framework of Barber and Ramdas [J. Roy. Statist.
Soc. Ser. B 79 (2017) 1247–1268], we introduce the multilayer knockoff filter
(MKF). We prove that MKF simultaneously controls the FDR at each resolu-
tion and use simulations to show that it incurs little power loss compared to
methods that provide guarantees only for the discoveries of individual vari-
ables. We apply MKF to analyze a genetic dataset and find that it successfully
reduces the number of false gene discoveries without a significant reduction
in power.

1. Introduction.

1.1. A motivating example. During the last 20 years the biotechnology that
allows us to identify the locations where the genome of an individual is differ-
ent from a reference sequence has experienced a dramatic increase in speed and
decrease in costs. Scientists have used the resulting wealth of information to in-
vestigate empirically how variations in our DNA translate into different measur-
able phenotypes. While we still know little about the causal mechanisms behind
many traits, geneticists agree on the usefulness of a multivariate (generalized) lin-
ear model to capture at least as a first approximation the nature of the relation
between genetic variation and complex phenotypes. If y ∈ Rn×1 is the vector col-
lecting the values of a quantitative trait in n subjects, and X ∈ Rn×N the matrix
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storing, column by column, their genotypes at N polymorphic sites in the genome,
a starting model for their relation is

y = Xβ + ε,

where the coefficients β ∈ RN×1 represent the contributions of measured genetic
variations to the trait of interest. We remark on a few characteristics of this moti-
vating genetic application: (1) The adjective “complex” referring to a trait is to be
interpreted as non-Mendelian, that is, influenced by many different genetic vari-
ants, we expect several of the elements of β to be nonzero, and we can exploit
this fact using multiple regression models. (2) The main goal of these studies is
the identification of which βj ≠ 0. In other words the focus is not on developing a
predictive model for y, but on selecting important variables that represent the bi-
ological mechanism behind the trait and whose relevance can be observed across
multiple datasets. (3) Recognizing that βj ≠ 0 corresponds to scientific discover-
ies at multiple levels, each column of X represents a single genetic variant, but
these are organized spatially in meaningful ways and their coefficients also give
us information about coarser units of variation. For example, a number of adjacent
polymorphisms might all map to the same gene, the portion of DNA coding for a
protein. If the coefficient for any of these polymorphisms is different from zero,
then we can conclude that the gene is important for the trait under study. This type
of discovery is relevant to advancing our understanding of the biology behind a
trait. At the same time, knowing which specific variant influences the phenotype
is also relevant; this is the type of information we need for precise clinical testing
and genetic counseling.

In summary, an ideal solution would identify important genetic variants ac-
counting for their interdependence, and provide error control guarantees for the
discovery of both variants and genes. The work in this paper attempts to achieve
this goal. We emphasize that similar problems occur in contexts other than ge-
netics. Modern methods of data acquisition often provide information on an ex-
haustive collection of possible explanatory variables, even if we know a priori that
a large proportion of these are not relevant for our outcome of interest. In such
cases we rely on statistical analysis to identify the important variables in a manner
that facilitates replicability of results while achieving appreciable power. Repli-
cation of findings in separate independent studies is the cornerstone of science
and cannot be substituted by a type of statistical analysis. Furthermore, the extent
to which results replicate depends not only on how the conclusions were drawn
from the original data but also on the characteristics of the follow-up study: Does
it have enough power? Does it target exactly the same “population” of the orig-
inal investigation? etc. . . . Yet, controlling Type-I error is a necessary step toward
replicability, important in order to avoid wasting time and money on confirmatory
follow-up studies of spurious findings. Finally, it is often the case that we measure
variables at a very fine resolution and need to aggregate these measurements for
meaningful interpretation. We consider three examples in addition to our primary
motivating application.
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fMRI studies. Consider, for example, studies that investigate the role of dif-
ferent brain structures. With functional magnetic resonance imaging (fMRI) we
measure on the order of a million voxels at regular time intervals during an experi-
ment. These measurements might then be used in a model of neurocognitive ability.
Usually, measurements from nearby voxels are aggregated and mapped to recog-
nizable larger-scale brain structures called regions of interest [Poldrack (2007)].
With a time dimension also involved, we can group (voxel, time) pairs spatially
or temporally. It then becomes important to make sure that the statistical meth-
ods we adopt guarantee reproducibility with respect to each kind of scientifically
interpretable finding.

Multifactor analysis-of-variance problems with survey data. In social science
multiple choice surveys are frequently employed in order to gather information
about some characteristics of subjects. The results of these surveys can be viewed
as predictor variables for certain outcomes, such as income. Since the different
answer choices for a given question are coded as separate dummy variables, it
makes sense to study the importance of an entire question by considering all the
variables corresponding to the same question. However, if a particular question is
discovered to be significantly associated with an outcome, then it might also be of
interest to know which answer choices are significant. Hence, an analysis at the
level of questions (groups of variables) and answer choices (individual variables)
is appropriate [Yuan and Lin (2006)].

Microbiome analysis. The microbiome (the community of bacteria that pop-
ulate specific areas of the human body, such as the gut or mouth) has gained at-
tention recently as an important contributing factor for a variety of human health
outcomes. By sequencing the bacterial 16S rRNA gene from a specimen collected
from a human habitat, it is possible to quantify the abundances of hundreds of bac-
terial species. Bacteria, like other living organisms, are organized into hierarchical
taxonomies with multiple layers including phylum, class, family and so on. It is of
interest to find associations between health outcomes and the abundances of dif-
ferent types of bacteria, as described with each layer of the taxonomic hierarchy
[Sankaran and Holmes (2014)].

1.2. Statistical challenges. Having motivated our problem with several appli-
cations, we give an overview of the statistical challenges involved and of the tools
we will leverage.

Controlled variable selection in high dimensional regression. In a typical
genome wide association study (GWAS) the number of subjects n is on the or-
der of tens of thousands, and the number N of genetic variants (in this case single
nucleotide polymorphisms, or SNPs) is on the order of a million. To provide fi-
nite sample guarantees of global error, geneticists typically analyze the relation
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between X and y using a series of univariate regressions of y on each of the
columns of X, obtain the p-values for the corresponding t-tests and threshold them
to achieve family wise error rate (FWER) control. This analysis is at odds with the
polygenic nature of the traits, and the choice of FWER as a measure of global error
makes it difficult to recover a substantial portion of the genetic contribution to the
phenotype [Manolio et al. (2009)]. Using a multiple regression model for analy-
sis and targeting false discovery rate (FDR) [Benjamini and Hochberg (1995)] are
promising alternatives.

Unfortunately, in a context where N > n these are difficult to implement. Reg-
ularized regression, including the lasso [Tibshirani (1996)] and various general-
izations, for example, Simon et al. (2013), Yuan and Lin (2006), have proven to
be very versatile tools with nice prediction properties, but they do not come with
model selection guarantees in finite samples [for examples of asymptotic proper-
ties see Knight and Fu (2000), Negahban et al. (2009)]. Recent years have seen
progress on this front. While in general it is difficult to obtain p-values for high-
dimensional regression, Javanmard and Montanari (2014) propose a construction
that is valid under certain sparsity assumptions. Alternatively, conditional infer-
ence after selection [Fithian, Sun and Taylor (2014), Taylor and Tibshirani (2015)]
can also be used in this context. The idea is to first reduce dimensionality by a
screening method and then to apply the Benjamini Hochberg (BH) procedure to
p-values that have been adjusted for selection [Markovic, Xia and Taylor (2017)].
Other approaches have been proposed that bypass the construction of p-values en-
tirely. SLOPE is a modification of the lasso procedure which provably controls the
FDR under orthogonal design matrices [Bogdan et al. (2015)] and has been applied
to GWAS, allowing for a larger set of discoveries which, at least in the analyzed
examples, have shown good replicability properties [Brzyski et al. (2017)]. The
knockoff filter [Barber and Candès (2015), Candès et al. (2018)]—which is based
on the construction of artificial variables to act as controls—guarantees FDR con-
trol for variable selection in a wide range of settings. We will review the properties
of knockoffs in Section 2.2, as we will leverage them in our construction.

Controlling the false discovery rate at multiple resolutions. While the standard
GWAS analysis results in the identification of SNPs associated with a trait, geneti-
cists also routinely rely on gene level tests based on the signal coming from multi-
ple variants associated to the same coding region [Santorico and Hendricks (2016)
is a recent review], as well as other forms of aggregate tests based on pathways
[see Wang, Li and Bucan (2007), e.g.]. Unfortunately, each of these approaches
represents a distinct analysis of the data, and the results they provide are not nec-
essarily consistent with each other. We might find association with a SNP, but not
with the gene to which it belongs, or with a gene, but with none of the variants
typed in it. Moreover, multiple layers of analysis increase the burden of multiple
testing, often without this being properly accounted for. Yet, geneticists are very
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interested in controlling type I errors, as follow-up studies are very time consum-
ing and diagnosis and counseling often need to rely on association results before a
thorough experimental validation is possible.

In this context, we want to investigate all the interesting levels of resolution
simultaneously [e.g., Zhou et al. (2010)] and in a consistent fashion, providing
meaningful error control guarantees for all the findings. The fact that we have cho-
sen FDR as a measure of error rate makes this a nontrivial endeavor. Unlike FWER,
FDR is a relative measure of global error, and its control depends crucially on how
one defines discoveries. As we discuss in Section 2.1, a procedure that guarantees
FDR control for the discovery of single variants does not guarantee FDR control
for the discoveries of genes. This has been noted before in contexts where there
is a well defined spatial relationship between the hypotheses, and the discoveries
of scientific interest are at coarser resolution than the hypotheses tested (e.g., MRI
studies [Benjamini and Heller (2007), Poldrack (2007)], genome scan statistics
[Siegmund, Zhang and Yakir (2011)] and eQTL mapping [GTEx Consortium et al.
(2015)]). Proposed solutions to these difficulties vary depending on the scientific
context, the definition of relevant discoveries and the way the space of hypotheses
is explored; Benjamini and Bogomolov (2014), Bogomolov et al. (2017), Heller
et al. (2018), Yekutieli (2008) explore hypotheses hierarchically, while Barber and
Ramdas (2017) and Ramdas et al. (2017) consider all levels simultaneously.

This last viewpoint—implemented in a multiple testing procedure called the p-
filter and reviewed briefly in Section 2.2—appears to be particularly well suited
to our context, where we want to rely on multiple regression to simultaneously
identify important SNPs and genes.

1.3. Our contribution. To tackle problems like the one described in the moti-
vating example, we develop the multilayer knockoff filter (MKF), a first link be-
tween multiresolution testing and model selection approaches. We bring together
the innovative ideas of knockoffs [Barber and Candès (2015), Candès et al. (2018)]
and p-filter [Barber and Ramdas (2017), Ramdas et al. (2017)] in a new construc-
tion that allows us to select important variables and important groups of variables
with FDR control. Our methodology, which requires a novel proof technique, does
not rely on p-values and provides a great deal of flexibility in the choice of the
analysis strategy at each resolution of interest, leading to promising results in ge-
netic applications.

Section 2 precisely describes the multilayer variable selection problem and
reviews the knockoff filter and the p-filter. Section 3 introduces the multilayer
knockoff filter, formulates its FDR control guarantees and uses the new frame-
work to provide a new multiple testing strategy. Section 4 reports the results of
simulations illustrating the FDR control and power of MKF. Section 5 summa-
rizes a case study on the genetic bases of HDL cholesterol, where MKF appears
to successfully reduce false positives with no substantial power loss. The Supple-
mentary Material [Katsevich and Sabatti (2018)] contains the proofs of our results
and details on our genetic findings.
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2. Problem setup and background.

2.1. Controlled multilayer variable selection. We need to establish a formal
definition for our goal of identifying, among a large collection of covariates
X1, . . . ,XN , the single variables and the group of variables that are important for
an outcome Y of interest. Following Candès et al. (2018), we let (X1, . . . ,XN,Y )

be random variables with joint distribution F and assume that the data (X,y) are n

i.i.d. samples from this joint distribution.3 We then define the base-level hypothe-
ses of conditional independence as follows:

(1) Hj : Y ⊥⊥ Xj |X−j .

Here, X−j = {X1, . . . ,Xj−1,Xj+1, . . . ,XN }. This formulation allows us to define
null variables in a very general way. Specifically, we consider two sets of assump-
tions on (X,y):

• Fixed design low-dimensional linear model. Suppose we are willing to as-
sume the linear model

y = Xβ + ε, ε ∼ N
(
0,σ 2In

)
,

where n ≥ N . In this familiar setting the null hypothesis Hj of conditional inde-
pendence is equivalent to Hj : βj = 0 unless a degeneracy occurs. The standard
inferential framework assumes that X is fixed. This is a special case of our gen-
eral formulation, conditioning on X and, indeed, the method we will describe can
provide FDR guarantees conditional on X. This setting was considered by Barber
and Candès (2015).

• Random design with known distribution. Alternatively, we might not be will-
ing to assume a parametric form for y|X, but instead we might have access to (or
can accurately estimate) the joint distribution of each row of X. This corresponds
to a shift of the burden of knowledge from the the relation between y and X to the
distribution of X.

The methodology we develop in this paper works equally well with either as-
sumption on the data. In particular, note that the second setting can accommodate
categorical response variables as well as continuous ones. Note that the random de-
sign assumption is particularly useful for genetic association studies, where n < N

and we can use knowledge of linkage disequilibrium (correlation patterns between
variants) to estimate the distribution of X [see, e.g., Sesia, Sabatti and Candès
(2019)].

3Our convention in this paper will be to write vectors and matrices in boldface. The only exception
to this rule is that the vector of random variables X = (X1, . . . ,XN) will be denoted in regular font
to distinguish it from the design matrix X.
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Our goal is to select S ⊂ [N ] = {1, . . . ,N} to approximate the set of non-null
variables. We consider situations when S is interpreted at M different “resolu-
tions” or layers of inference. The mth layer corresponds to a partition of [N ],
denoted by {Am

g }g∈[Gm] which divides the set of variables into groups representing
units of interest. Our motivating example corresponds to M = 2. In the first parti-
tion each SNP is a group of its own, and in the second SNPs are grouped by genes.
Other meaningful ways to group SNPs in this context could be by functional units
or by chromosomes, resulting in more than two layers. We note that the groups we
consider in each layer are to be specified in advance, that is, without looking at the
data, and that the groups in the same layer do not overlap. These restrictions do
not pose a problem for our primary motivating application, although extensions to
data-driven or overlapping groups are of interest as well; see the conclusion for a
discussion.

For each layer m of inference, then we need a definition of null groups of vari-
ables. Extending the framework above, we define group null hypotheses

(2) Hm
g : Y ⊥⊥ XAm

g
|X−Am

g
,

where XAm
g

= {Xj : j ∈ Am
g } and −Am

g = [N ] \ Am
g . Another natural definition

might be based on the intersection hypotheses
⋂

j∈Am
g

Hj . While in degenerate
cases (e.g., when two variables are perfectly correlated) it might happen that Hm

g ≠⋂
j∈Am

g
Hj , this undesirable behavior often does not occur.

PROPOSITION 2.1. Suppose that (X1, . . . ,XN) ∈ D = D1 × · · · × DN , and
that this joint distribution has nonzero probability density (or probability mass) at
each element of D. Then,

(3) Hm
g =

⋂

j∈Am
g

Hj for all g,m.

We assume for the rest of the paper that (3) holds, that is, a group of variables is
conditionally independent of the response if and only if each variable in that group
is conditionally independent of the response.

The selected variables S induce group selections Sm ⊂ [Gm] at each layer via

Sm = {
g ∈ [Gm] : S ∩ Am

g ≠∅
}
:

that is, a group is selected if at least one variable belonging to that group is selected.
To strive for replicable findings with respect to each layer of interpretation, we seek
methods for which Sm has a low false discovery rate for each m. If H0 = {j ∈ [N ] :
Hj null} is the set of null variables, then the set of null groups at layer m is

Hm
0 = {

g ∈ [Gm] : Am
g ⊂ H0

}

[this is guaranteed by (3)]. Then, the number of false discoveries at layer m is

Vm(S) = ∣∣Sm ∩ Hm
0

∣∣,
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which we abbreviate with Vm whenever possible without incurring confusion. The
corresponding false discovery rate is defined as the expectation of the false discov-
ery proportion (FDP) at that layer:

FDPm(S) = Vm(S)

|Sm| and FDRm = E
[
FDPm(S)

]
,

using the convention that 0/0 = 0 (the FDP of no discoveries is 0). A selection
procedure obeys multilayer FDR control [Barber and Ramdas (2017)] at levels
q1, . . . , qM for each of the layers if

(4) FDRm ≤ qm for all m.

It might be surprising that the guarantee of FDR control for the selection of
individual variables X1, . . . ,XN does not extend to the control FDRm. Figure 1
provides an illustration of this fact for the simple case of M = 2, with one layer
corresponding to the individual variables (denoted below by the subscript “ind”)
and one group layer (denoted by the subscript “grp”). We generate a matrix X
(n = 1200, N = 500) sampling each entry independently from a standard normal
distribution. The 500 variables are organized into 50 groups of 10 elements each.
The outcome y is generated from X using a linear model with 70 nonzero coef-
ficients evenly spread across 10 groups. The middle panel of Figure 1 shows the
results of applying the knockoff filter [Barber and Candès (2015)] with a target
FDR level of 0.2. While the false discovery proportion for the individual layer is
near the nominal level (FDPind = 0.21), the FDP at the group layer is unacceptably
high (FDPgrp = 0.58). The middle panel of Figure 1 guides our intuition for why
this problem occurs. False discoveries occur roughly uniformly across null vari-
ables and are then dispersed across groups (instead of being clustered in a small
number of groups). When the number of null groups is comparable to or larger than
the number of false discoveries, we have Vgrp ≈ Vind, and we can write roughly

FDPgrp = Vgrp

|Sgrp|
≈ Vind

|Sgrp|
= |Sind|

|Sgrp|
Vind

|Sind|
= |Sind|

|Sgrp|
FDPind.

Hence, the group FDP is inflated roughly by a factor of |Sind|/|Sgrp| compared
to the individual FDP. This factor is high when we make several discoveries per

FIG. 1. Demonstration that small FDPind does not guarantee small FDPgrp. Each square repre-
sents a variable and columns contain variables in the same group. The left-most panel illustrates the
true status of the hypotheses—a black square corresponds to non-null and a white square to a null
variable. In the second and third panels black squares represent selected variables by KF and MKF
respectively with qind = qgrp = 0.2. The KF has FDPind = 0.21 and FDPgrp = 0.58, while MKF has
FDPind = 0.05 and FDPgrp = 0.17.
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group, as we expect when a non-null group has a high number of non-null elements
(high saturation).

To summarize, if we want to to make replicable discoveries at M layers, we need
to develop model selection approaches that explicitly target (4). The multilayer
knockoff filter precisely achieves this goal, as is illustrated in the third panel of
Figure 1, where much fewer variable groups (depicted as columns) have spurious
discoveries compared to the results of the regular knockoff filter in the middle
panel.

2.2. Background. To achieve multilayer FDR control in the model selection
setting, we capitalize on the properties of knockoff statistics [Barber and Candès
(2015), Candès et al. (2018)] within a multilayer hypothesis testing paradigm de-
scribed in the paper introducing the p-filter [Barber and Ramdas (2017)]. Here we
briefly review these two methods.

Knockoff statistics: An alternative to p-values for variable selection. The
knockoff filter [Barber and Candès (2015)] is a powerful methodology for the
variable selection problem that controls the FDR with respect to the single layer
of individual variables. This method is based on constructing knockoff statistics
Wj for each variable j . Knockoff statistics are an alternative to p-values; their
distribution under the null hypothesis is not fully known but obeys a sign sym-
metry property. In particular, knockoff statistics W = (W1, . . . ,WN) ∈ RN for any
set of hypotheses H1, . . . ,HN obey the sign-flip property if conditional on |W |;
the signs of the Wj ’s corresponding to null Hj are distributed as i.i.d. fair coin
flips. This property allows us to view sign(Wj ) as “one-bit p-values” and paves
the way for FDR guarantees. Once Wj are constructed, the knockoff filter proceeds
similarly to the BH algorithm, rejecting Hj for those Wj passing a data-adaptive
threshold.

In the variable selection context the paradigm for creating knockoff statistics
Wj is to create an artificial variable for each original to serve as a control. These
knockoff variables X̃ ∈ Rn×N are defined to be pairwise exchangeable with the
originals but are not related to y. Then, [X X̃] are assessed jointly for empirical
association with y (e.g., via a penalized regression), resulting in a set of variable
importance statistics (Z, Z̃) = (Z1, . . . ,ZN, Z̃1, . . . , Z̃N). Each knockoff statis-
tic Wj is constructed as the difference (or any other antisymmetric function) of
Zj and Z̃j . Hence, large positive Wj provides evidence against Hj . Note that the
sign of Wj codes whether the original variable or its knockoff is more strongly
associated with y. The sign-flip property is a statement that when Xj is not as-
sociated with y, swapping columns Xj and X̃j does not change the distribution
of (Z, Z̃). In its original form the knockoff filter applied only to the fixed de-
sign low-dimensional linear model. Recently, Candès et al. (2018) have extended
it to the high-dimensional random design setting via model-X knockoffs. Model-X
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knockoffs greatly expand the scope of the knockoff filter and make it practical to
apply for genetic association studies. Additionally, group knockoffs statistics have
been proposed by Dai and Barber (2016) to test hypotheses of no association be-
tween groups of variables and a response. Since determining whether a group con-
tains non-null variables is usually easier than pinpointing which specific variables
are non-null, group knockoff statistics are more powerful than knockoff statistics
based on individual variables. This is due mainly to increased flexibility in con-
structing X̃ (since only group-wise exchangeability is required), which allows Xj

and X̃j to be less correlated, which in turn increases power.
Rather than detailing here the methodology to construct knockoffs, variable im-

portance statistics and knockoff statistics, we defer these details to Section 3 where
we describe our proposed method.

p-filter: A paradigm for multilayer hypothesis testing. The p-filter [Barber and
Ramdas (2017), Ramdas et al. (2017)] provides a framework for multiple testing
with FDR control at multiple layers. This methodology, which generalizes the BH
procedure, attaches a p-value to each group at each layer. Group p-values are de-
fined from base p-values via the (weighted) Simes global test [though the authors
recently learned that this can be generalized to an extent, Ramdas (2017), personal
communication]. Unless specified otherwise, in this paper “p-filter” refers to the
methodology as described originally in Barber and Ramdas (2017). For a set of
thresholds t = (t1, . . . , tM) ∈ [0,1]M , base-level hypotheses are rejected if their
corresponding groups at each layer pass their respective thresholds. A threshold
vector t is “acceptable” if an estimate of FDP for each layer is below the corre-
sponding target level. A key observation is that the set of acceptable thresholds
always has an “upper right hand corner” which allows the data adaptive thresholds
t∗ to be chosen unambiguously as the most liberal acceptable threshold vector,
generalizing the BH paradigm.

3. Multilayer knockoff filter. As illustrated in the next section, the multilayer
knockoff filter uses knockoff statistics—uniquely suited for variable selection—
within the multilayer hypothesis testing paradigm of the p-filter. The p-filter
paradigm was intended originally for use only with p-values, so justifying the
use of knockoff statistics in this context requires a fundamentally new theoreti-
cal argument. Moreover, unlike the p-filter, statistics at different layers need not
be “coordinated” in any way, and indeed our theoretical result handles arbitrary
between-layer dependencies. See Section 3.3 for more comparison of MKF with
previous approaches.

3.1. The procedure. We first provide a high-level view of MKF in Frame-
work 1 and then discuss each step in detail.
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Framework 1: Multilayer knockoff filter
Data: X, y, partitions {Am

g }g,m with g = 1, . . . ,Gm and m = 1, . . . ,M , FDR
target levels q1, . . . , qM

1 for m = 1 to M do
2 Construct group knockoff variables X̃

m;
3 Construct group knockoff statistics

Wm = (Wm
1 , . . . ,Wm

Gm
) = wm([X X̃

m],y) satisfying the sign-flip
property;

4 end
5 For t = (t1, . . . , tM) ∈ [0,∞)M , define candidate selection set

S(t) = {
j : Wm

g(j,m) ≥ tm ∀m
}
,

where g(j,m) is the group at layer m to which hypothesis j belongs;
6 For each m, let V̂m(tm) be an estimate of Vm(S(t)) and define

F̂DPm(t) = V̂m(tm)
|Sm(t)| ;

7 Find t∗ = min{t : F̂DPm(t) ≤ qm ∀m};
Result: Selection set S = S(t∗).

Constructing knockoffs for groups. To carry out our layer-specific inference,
we need to construct knockoffs for groups of variables.

Within the fixed design framework, we can rely on the recipe described in Dai
and Barber (2016). These group knockoffs have the property that the first two
sample moments of the augmented design matrix [X X̃

m] are invariant when any
set of groups is swapped with their knockoffs. To be more precise, let Cm ⊂ [Gm]
be a set of groups at the mth layer, and let

(5) C =
⋃

g∈Cm

Am
g

be the variables belonging to any of these groups. Let [X X̃
m]swap(C) be the re-

sult of swapping the columns Xj and X̃j in the augmented design matrix for
each j ∈ C. Invariance of empirical first moments to swapping can be achieved by
centering all variables and their knockoffs, while invariance of empirical second
moments requires that for each Cm,

(6)
[
X X̃

m]T
swap(C)

[
X X̃

m]
swap(C) = [

X X̃
m]T [

X X̃
m]

.

A construction of group knockoffs X̃
m satisfying this property is given in Dai

and Barber (2016). It is based on the observation that (6) is equivalent to
(
X̃

m)T X̃
m = # = XT X; (

X̃
m)T X = #m − Sm;

Sm ≽ 0 group block diagonal.
(7)
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For a fixed block diagonal matrix Sm, X̃
m satisfying (7) can be constructed via

X̃
m = X

(
IN − #−1Sm) + ŨCm,

where Ũ is an n × N orthonormal matrix orthogonal to the span of X and Cm

is a Cholesky square root of 2Sm − Sm#−1Sm. The latter expression is positive
semidefinite, if Sm ≼ 2#. While there are several ways to construct a block di-
agonal Sm satisfying 0 ≼ Sm ≼ 2#, the equicorrelated knockoff construction is
defined via

(8) Sm = diag
(
Sm

1 , . . . ,Sm
Gm

)
, Sm

g = γ m · #Am
g ,Am

g
,

where

γ m = min
(
1,2 · λmin

(
Dm#Dm))

and

(9) Dm = diag
(
#

−1/2
Am

1 ,Am
1
, . . . ,#

−1/2
Am

Gm
,Am

Gm

)
.

Note that throughout this paper, all numerical experiments are based on the fixed
design linear model and will thus use this construction.

Within the random design framework, the most natural way to define group
knockoffs is to generalize the definition in Candès et al. (2018). For a set of random
variables (X1, . . . ,XN) and a set of groups {Am

g }g∈[Gm], a set of model-X group
knockoffs (X̃m

1 , . . . , X̃m
N) is such that

(10)
(
X1, . . . ,XN, X̃m

1 , . . . , X̃m
N

)
swap(C)

d= (
X1, . . . ,XN, X̃m

1 , . . . , X̃m
N

)

for any C of the form (5). Note that for regular model-X knockoffs, (10) must hold
for all C. Hence, less exchangeability is required of model-X group knockoffs
which allows for them to be less similar to the original variables.

The sequential conditionally independent pairs (SCIP) procedure, proposed
in Candès et al. (2018) to prove the existence of model-X knockoffs, general-
izes straightforwardly to model-X group knockoffs. In particular the group SCIP
procedure proceeds as follows: for each g = 1, . . . ,Gm, we sample X̃m

Am
g

from

L(XAm
g
|X−Am

g
, X̃m

Am
1 ,...,Am

g−1
). The more explicit second-order knockoffs construc-

tion (exact for normally distributed variables) also carries over fairly directly. Sup-
pose that X is distributed as N(0,#). Then, sampling

X̃m|X ∼ N(µ,V ), µ = X − X#−1Sm, V = 2Sm − Sm#−1Sm

yields a valid group model-X knockoff construction, where Sm is as defined in
(8), (3.1) and (9). Note that X and µ are treated as row vectors of dimension
1 × N . Recently, an HMM-based model-X knockoff construction has been pro-
posed by Sesia, Sabatti and Candès (2019) tailored specifically for genetic design
matrices. This construction can be generalized to the group setting as well [Matteo
Sesia (2018), personal communication], though we do not discuss the details in the
present work.
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Constructing group importance statistics. Once group knockoffs are con-
structed for each layer m, the next step is to define group importance statistics
(Zm, Z̃

m
) = (Zm

1 , . . . ,Zm
Gm

, Z̃m
1 , . . . , Z̃m

Gm
) = zm([X X̃

m],y), one for each group
and each knockoff group. Here zm is a function that assesses the association be-
tween each group (original and knockoff) and the response.

The function zm must be group-swap equivariant, that is,

zm([
X X̃

m]
swap(C), y

) = (
Zm

1 , . . . ,Zm
Gm

, Z̃m
1 , . . . , Z̃m

Gm

)
swap(Cm)

for each Cm ⊂ [Gm] and corresponding C defined in (5). In words this means that
swapping entire groups in [X X̃

m] translates to swapping the entries of (Zm, Z̃
m
)

corresponding to those groups. For fixed design knockoffs, zm must also satisfy
the sufficiency property; zm must operate on the data only through the sufficient
statistics [X X̃

m]T y and [X X̃
m]T [X X̃

m]. Taken together, these steps lead to a
function wm mapping the augmented design matrix and response vector to a vector
of knockoff statistics Wm = (Wm

1 , . . . ,Wm
Gm

).
There are many possible choices of zm, and any choice satisfying group-swap

equivariance (and sufficiency, for fixed design knockoffs) is valid. However, differ-
ent choices will lead to procedures with different power. Generalizing the proposal
of Dai and Barber (2016)—based on the group lasso—we consider a class of group
importance statistics (Zm, Z̃

m
) obtained by first solving for each λ the penalized

regression

b⋆(λ), b̃⋆(λ) = arg min
b,̃b

1
2

∥∥∥∥∥y − [
X X̃

m]
(
b

b̃

)∥∥∥∥∥

2

+ λ

(Gm∑

g=1

ℓm
g (bAm

g
) +

Gm∑

g=1

ℓm
g (̃bAm

g
)

)

,

(11)

where ℓm
g are arbitrary penalty functions [the group lasso corresponds to ℓm

g (u) =√
|Am

g |∥u∥2]. The group importance statistics Zm
g (Z̃m

g ) are then defined as the

value of λ for which the group XAm
g

(X̃Am
g

) first enters the lasso path:

Zm
g = sup

{
λ : b⋆

Am
g
(λ) ≠ 0

}
, Z̃m

g = sup
{
λ : b̃⋆

Am
g
(λ) ≠ 0

}
.(12)

For each m the regularization in (11) is defined on subsets of b corresponding to
groups at the m layers, and it is separable with respect to the mth partition {Am

g }.
While this guarantees group-swap equivariance and sufficiency, other construc-
tions are certainly possible.

Different choices of ℓm
g allow us to adapt to the available information on signal

structure and potentially gain power. The 2-norm defining the group lasso leads to
entire groups entering the regularization path at the same time, so each variable in
a group contributes equally to the corresponding group importance statistic. Draw-
ing an analogy to global testing, this definition is similar to the Fisher combination
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test or the chi-squared test which are known to be powerful in regimes when the
signal is weak and distributed. In our case, we should apply group lasso based
statistics if we suspect that each group has many non-nulls. Taking this analogy
further, we can also construct a Simes-like statistic that is more suited to the case
when we believe each group has a few strong signals. This test statistic is defined
by letting ℓm

g (u) = ∥u∥1, that is, running a regular lasso regression. This will al-
low for each variable to come in on its own, and the knockoff statistic Wm

g will be
driven by the strongest predictor in the corresponding group.

Constructing group knockoff statistics. Finally, group knockoff statistics are
defined via Wm

g = f m
g (Zm

g , Z̃m
g ), where f m

g is any antisymmetric function (i.e.,
swapping its arguments negates the output), such as the difference f (Zm

g , Z̃m
g ) =

Zm
g − Z̃m

g or the signed-max f (Zm
g , Z̃m

g ) = max(Zm
g , Z̃m

g ) · sgn(Zm
g − Z̃m

g ). Hence,
Wm

g quantifies the difference in how significantly associated XAm
g

and X̃Am
g

are
with y.

Definition of V̂m(tm). The FDR guarantee for the method depends crucially
on the estimate V̂m(tm) of Vm(S(t)). Intuitively, the larger V̂m(tm) is, the stronger
the FDR guarantee. For the original knockoff filter [Barber and Candès (2015)],
two choices of V̂ (t) were considered: V̂ (t) = |{j : Wj ≤ −t}| (which leads to a
procedure we abbreviate KF, for knockoff filter) and V̂ (t) = 1 + |{j : Wj ≤ −t}|
(leading to a procedure we abbreviate KF+). Note that these are defined in terms of
the size of the set obtained from S(t) = {j : Wj ≥ t} by reflection about the origin.
These definitions are motivated by the sign-flip property, and it can be easily shown
that V̂ (t) = |{j : Wj ≤ −t}| is a conservative estimate for V (S(t)) = |{null j :
Wj ≥ t}|. The reason for also considering V̂ (t) = 1 + |{j : Wj ≤ −t}| is that the
extra 1 is needed for exact FDR control. The KF procedure, defined without this
extra 1, controls a weaker criterion called the mFDR, which is defined as follows:

mFDR = E
[ |S ∩ H0|
|S| + q−1

]
.

Similarly, we consider methods MKF and MKF+ based on two definitions of
V̂m(tm). However, we shall also consider the effect of adding a constant multiplier
c to this estimate as well; see Procedures 1 and 2.

Procedure 1: MKF(c)
1 Framework 1, with V̂m(tm) = c · |{g : Wm

g ≤ −tm}|.

Procedure 2: MKF(c)+
1 Framework 1, with V̂m(tm) = c · (1 + |{g : Wm

g ≤ −tm}|).
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Definition and computation of t∗. Note that the last step in Framework 1 needs
clarification, since the minimum of a set in M dimensions is not well defined in
general. However, the following lemma resolves the issue.

LEMMA 1. Consider the set of valid thresholds

(13) T = T (q1, . . . , qM) = {
t : F̂DPm(t) ≤ qm for all m

}
.

For any definition of V̂m(·) in Framework 1 depending only on tm (as opposed to
the entire vector t ), the set T will possess the “lower left-hand corner property”
which means that it contains the point t∗ = (t∗1 , . . . , t∗M) defined by

t∗m = min
{
tm : (t1, . . . , tM) ∈ T for some t1, . . . , tm−1, tm+1, . . . , tM

}
.

Hence, the point t∗ is the lower left-hand corner of T and is the minimum in
the last step of Procedure 1. The p-filter enjoys this same property, and in fact the
proof of this lemma is the same as that of Theorem 3 in Barber and Ramdas (2017).
In addition to being well defined, the threshold t∗ can be computed efficiently
using the same iterative coordinate-wise search algorithm proposed in Barber and
Ramdas (2017).

Figure 2 provides an illustration of the multilayer knockoff filter on simulated
data. The 2000 variables are broken into 200 groups, each of size 10. (More details
about this example are in Section 4.1; it corresponds to the high saturation setting,
with SNR = 0.5 and variable correlation 0.1.) The multilayer knockoff filter for
the individual layer and the group layer results in the selection region in the upper
right-hand corner and enjoys high power. For comparison the (single layer) knock-
off filter selects all points to the right of the broken line; among these there are
several nulls not selected by MKF as their group signal is not strong enough. In
this simulation MKF reduces false positives without losing any power.

Computational complexity. Computationally, both the multilayer knockoff fil-
ter and the original knockoff filter can be broken down into three distinct parts:
constructing knockoff variables, computing knockoff statistics and then filtering
those statistics to obtain a final selection set. Usually, the bottleneck is the second
step; computing knockoff statistics involves solving a regularized regression of
size n× 2N , which costs O(nN2) (assuming for the moment n > 2N ). Construct-
ing knockoff variables, which for the genetic application at hand is best done using
HMM knockoffs [Sesia, Sabatti and Candès (2019)], only costs O(nN). Finally,
the filtering costs O(N). The same computational costs apply to the multilayer
knockoff filter, except the first two steps must be done M times. In summary, the
computational cost of the multilayer knockoff filter is equivalent to that of solv-
ing M regularized regressions. Solving regularized regressions is a standard com-
putational task, and optimized solvers exist for these purposes such as glmnet
[Friedman, Hastie and Tibshirani (2010)] or SparSNP [Abraham et al. (2012)],
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FIG. 2. Illustration of one run of the multilayer knockoff filter. Each point represents an individu-
al-layer hypothesis j , with coordinates W1

j and W2
g(j,2): circles indicate nulls, asterisks non-nulls.

The solid black lines are the thresholds for multilayer knockoff filter, while reflected gray lines are
used in the definition of V̂m. The broken black line represents the threshold for knockoff filter. The
darkly shaded upper right corner represents the selection set of the multilayer knockoff filter, and the
lightly shaded left half-plane represents the area used to define V̂ind.

the former being general purpose and the latter being specialized for genetics ap-
plications. Indeed, the feasibility of knockoff analysis of GWAS data has been
already illustrated in Candès et al. (2018) and Sesia, Sabatti and Candès (2019).
Moreover, computations of the knockoff statistics for the M layers are independent
and thus can be run in parallel, ensuring that the multilayer knockoff filter scales
well to genome-wide data sets.

3.2. Theoretical guarantees. Our main theoretical result guarantees that the
MKF(ckn)+ has multilayer FDR control at the target levels and that MKF(ckn)
has multilayer mFDR control at the target levels, where ckn = 1.93.

THEOREM 1. Suppose Wm obeys the sign-flip property for all m. Then, the
MKF(c)+ method satisfies

FDRm ≤ ckn

c
qm for all m,

where ckn = 1.93. The MKF(c) method satisfies

mFDRm ≤ ckn

c
qm for all m.



MULTILAYER KNOCKOFF FILTER 17

In particular, the MKF(ckn)+ and MKF(ckn) methods have multilayer FDR control
and multilayer mFDR control, respectively, at the target levels.

While deferring technical lemmas to the Supplementary Materials [Katsevich
and Sabatti (2018)], we outline here the essential steps of the proof as they differ
fundamentally from those of KF and p-filter. The proof of FDR control for the
knockoff filter relies on a clever martingale argument that depends heavily on the
fact that the threshold t is one-dimensional; the cutoff t∗ can be viewed as a stop-
ping time with respect to a certain stochastic process. Instead, we are dealing with
an M-dimensional threshold t∗ whose entries depend on the values of Wm for
all m. As the knockoff statistics have complex dependencies with each other, we
cannot represent tm as a stopping time with respect to a process that depends only
on Wm. The p-filter being a multilayer method, the proof of FDR control deals
with the complex nature of the threshold t∗. However, by defining the p-values
at each layer from the individual hypotheses p-values with a set rule, Barber and
Ramdas (2017) have a good handle on the dependencies between pm

g across layers
and use this crucially in the proof. In contrast we intentionally avoid specifying
the relations between Wm for different m.

PROOF. We prove FDR control for MKF(c)+; the result for MKF(c) follows
from a very similar argument. We start introducing the following quantities:

V +
m (tm) = ∣∣{g : Wm

g ≥ tm
} ∩ Hm

0
∣∣, V −

m (tm) = ∣∣{g : Wm
g ≤ −tm

} ∩ Hm
0

∣∣.

Note that both V +
m (tm) and V −

m (tm) are defined in terms of the mth layer only and
that V +

m (tm) = Vm(S(0, . . . ,0, tm,0, . . . ,0)), while V −
m (tm) is similar to V̂m(tm).

It is easy to verify that these two quantities satisfy

V +
m (tm) ≥ Vm

(
S(t)

)
, V̂m(tm) ≥ c

(
1 + V −

m (tm)
)
.

Then, for each m, we have

FDRm = E
[
FDPm

(
t∗)] = E

[
Vm(S(t∗))
|Sm(t∗)|

]

= E
[
Vm(S(t∗))
|Sm(t∗)| I

(
t∗ < ∞)]

= E
[
Vm(S(t∗))

V̂m(t∗m)

V̂m(t∗m)

|Sm(t∗)|I
(
t∗ < ∞)]

≤ qm · 1
c
E

[
V +

m (t∗m)

1 + V −
m (t∗m)

]

≤ qm · 1
c
E

[
sup
tm

V +
m (tm)

1 + V −
m (tm)

]
.

(14)
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Hence it suffices to show that

(15) E
[

sup
tm≥0

V +
m (tm)

1 + V −
m (tm)

]
≤ ckn.

The introduction of the supremum over tm in the last equation is a key step in
the proof. It makes the random variables in the expectation (15) depend only on
the knockoff statistics at the mth layer, decoupling the problem across layers and
allowing any type of dependence between statistics for different values of m.

Given that we are working with quantities defined in one layer only, we can drop
the subscript m and consider (15) as a statement about any set of knockoff statis-
tics (W1, . . . ,WG) satisfying the sign-flip property. Hence, Wm

g ,V +
m (tm),V −

m (tm)

become Wg,V
+(t),V −(t), respectively, and so on. We are left with

E
[
sup
t≥0

V +(t)

1 + V −(t)

]
= E

[
sup
t≥0

|{g : Wg ≥ t} ∩ H0|
1 + |{g : Wg ≤ −t} ∩ H0|

]

= E
[
E

[
sup
t≥0

|{g : Wg ≥ t} ∩ H0|
1 + |{g : Wg ≤ −t} ∩ H0|

∣∣∣|W |
]]

.

(16)

Now, consider ordering {Wg}g∈H0 by magnitude: |W(1)| ≥ · · · ≥ |W(G0)|, where
G0 = |H0|. Let σg = sgn(W(g)). By the sign-flip property σg are distributed as
i.i.d. coin flips independently of |W |. Moreover, note that the quantity inside the
expectation is constant for all t except t ∈ {|W(1)|, . . . , |W(G)|}, and for t = |W(k)|,
we have

|{g : Wg ≥ t} ∩ H0|
1 + |{g : Wg ≤ −t} ∩ H0|

= |{g : Wg ≥ |W(k)|} ∩ H0|
1 + |{g : Wg ≤ −|W(k)|} ∩ H0|

= |{g ≤ k : σg = +1}|
1 + |{g ≤ k : σg = −1}| .

Putting these pieces together, we have

E
[
sup
t≥0

V +(t)

1 + V −(t)

]
= E

[
max
k≤G0

|{g ≤ k : σg = +1}|
1 + |{g ≤ k : σg = −1}|

]
.

We can think of σg as the increments of a simple symmetric random walk on Z.
The numerator above represents the number of steps to the right this walk takes,
and the denominator the number of steps to the left. The quantity we are bounding
is essentially the maximum over all steps in the walk of the ratio of steps right to
steps left, averaged over all realizations of the random walk. Let Sk = |{g ≤ k :
σg = +1}| be the number of steps right and k − Sk = |{g ≤ k : σg = −1}| the
number of steps left. It suffices to show that

(17) E
[
sup
k≥0

Sk

1 + k − Sk

]
≤ 1.93.

This is the content of Lemma 3, which is proved in the Supplementary Material
[Katsevich and Sabatti (2018)]. !
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3.3. Relations with other methods.

Comparison to other structured testing methods. When scientific hypotheses
have a complex structure, even formulating inferential guarantees is nontrivial;
the multilayer hypothesis testing approach proposed in Barber and Ramdas (2017)
and used in our work is one of several options. Approaches to testing hypothe-
ses at multiple levels vary in two key features: the way the space of hypotheses
is traversed and the way families to be tested are defined. We illustrate the dif-
ferent approaches using the two-layer setup considered in the Introduction. If the
hypotheses have a nested (i.e., tree) structure, then it is common to traverse them
hierarchically; one starts by testing groups and then proceeds to test individual
hypotheses within rejected groups. The procedures described in Benjamini and
Bogomolov (2014), Bogomolov et al. (2017), Yekutieli (2008) follow this hierar-
chical approach. An alternative to hierarchical hypothesis traversal is to consider
the multiple testing problem from the point of view of individual-level hypothe-
ses. Rejecting a set of individual-level hypotheses induces the rejections of the
groups that contain them at each layer of interest. This is the approach taken by
the p-filter [Barber and Ramdas (2017)]. By testing hypotheses only if their cor-
responding groups were rejected, hierarchical approaches have the advantage of a
smaller multiplicity burden. On the other hand, defining selections at each layer
via the individual-level hypotheses has the advantage that it applies equally well
to non-hierarchical ways of grouping hypotheses. The second dichotomy in based
on how one defines families to be tested. Either each group is a family of its own,
or each resolution is a family of its own. For instance, the former corresponds to
SNPs being tested against other SNPs in the same gene, and the latter corresponds
to testing all SNPs against each other as one family. The methods of Benjamini
and Bogomolov (2014) and Bogomolov et al. (2017) take the former approach,
while those of Yekutieli (2008) and Barber and Ramdas (2017) take the latter.
Both choices can be meaningful, depending on the application. In this work, we
define discoveries using individual-level hypotheses as this marries well with the
multiple regression framework and does not limit us to nested groups. We treat
each resolution (instead of each group) as a family because discoveries are often
reported by type (e.g., as a list of SNPs or a list of genes), so FDR guarantees for
each type are appropriate. These two choices align our testing framework with that
of the p-filter.

The multiplier ckn: Its origins and impact. In addition to using knockoff statis-
tics instead of p-values, the multilayer knockoff filter differs from the p-filter
[Barber and Ramdas (2017)] in that it does not start from a set of individual-level
statistics and construct group-level ones using specific functions of these. Instead
the statistics Wm are constructed starting directly from the original data. This deci-
sion involves a trade-off; we get a more general procedure (and theoretical result)
at the cost of a looser bound.
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By making no assumptions on the between-layer dependencies of Wm
g , the mul-

tilayer knockoff filter allows extra flexibility that can translate into greater power.
For example, there might be different sources of prior information at the SNP
and the gene levels. The analyst can use each source of information at its respec-
tive layer to define more powerful knockoff statistics (based on specific penalties)
without worrying about coordinating these statistics in any way. Even if the same
penalization is used in all layers, there is a potential power increase due to the
fact that we can use group knockoff variables rather than individual ones. This
advantage is especially pronounced if none of the layers consists of singletons.

The price we pay for this generality is the multiplier ckn = 1.93 in Theorem 1.
To understand its effect, note that in Procedures 4 and 5, by analogy with KF,
the natural choice is c = 1 and define MKF = MKF(1) and MKF+ = MKF(1)+.
Then Theorem 1 states that MKF+ (MKF) has an FDR (mFDR) that is bounded
by cknqm. Compare this to the theoretical result for the p-filter, which is shown to
have exact multilayer FDR control, by explicitly leveraging the joint distribution of
pm

g ; Barber and Ramdas (2017) get a handle on the complicated thresholds t∗m and
get a tight result. Meanwhile, our constant multiplier comes from the introduction
of the supremum in (14); this amounts to a worst-case analysis which for most
constructions of Wm

g will not be tight.
Indeed, across all our simulations in Section 4, we find that MKF+ has multi-

layer FDR control at the target levels (i.e., the constant is not necessary). Hence,
we recommend that practitioners apply the MKF or MKF+ methods without wor-
rying about the correction constants. We view our theoretical result as an assurance
that even in the worst case, the FDRs of MKF at each layer will not be much higher
than their nominal levels qm.

Generalized p-filter. On the heels of the above discussion, we define the gen-
eralized p-filter, a procedure that is the same as the p-filter, except that the p-
values pm

g are any valid p-values for the hypotheses in layer m.

THEOREM 2. Suppose for each m, the null p-values among {pm
g } are inde-

pendent and uniformly distributed. Then, the generalized p-filter satisfies

mFDRm ≤ cpf(Gm) · qm for all m,

where cpf(G) = 1 + exp(G−1/2 + 1
2G−1)0.42 + eG−1/4.

REMARK 3.1. Unlike for the multilayer knockoff filter, note that we do not
have one universal constant multiplier cpf. Instead, we get a bound cpf(Gm) that
depends on the number of groups at each layer. However, strong numerical evi-
dence suggests that in fact we can replace cpf(Gm) in the theorem with its limiting
value 1.42. See Remark C.1 in the Supplementary Material [Katsevich and Sabatti
(2018)] for additional comments. Moreover, the assumption of independent null p-
values can potentially be relaxed to a PRDS assumption, but we have not explored
this avenue.
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PROOF. By similar logic as in the proof of Theorem 1, it suffices to verify the
sufficient condition

E
[

sup
tm∈[0,1]

|{g ∈ Hm
0 : pm

g ≤ tm}|
1 + Gmtm

]
≤ cpf(Gm).

Again, note that the problem decouples across layers, and we may drop the sub-
script m. Now, let p1, . . . , pG be a sequence of i.i.d. uniform random variables,
and let FG(t) be their empirical CDF. Then, it suffices to show that

E
[

sup
t∈[0,1]

FG(t)

G−1 + t

]
≤ 1 + exp

(
G−1/2 + 1

2
G−1

)
0.42 + eG−1/4.

This is the content of Lemma 4 which is proved in the Supplementary Material
[Katsevich and Sabatti (2018)]. !

Recently [Ramdas et al. (2017)], the p-filter methodology has been general-
ized to allow for more general constructions of group p-values but must use re-
shaping [a generalization of the correction proposed by Benjamini and Yekutieli
(2001)] to guarantee FDR control. Hence, both generalizations must pay for ar-
bitrary between-layer dependencies—our method with the constant cpf and the
p-filter with reshaping.

Power of multilayer methods. By construction, the multilayer algorithms we
propose are at most as powerful as their single-layer versions. For our purposes
groups of variables function as inferential units, and not as prior information used
to boost power [e.g., as in Li and Barber (2016)], although there is no reason
groups cannot serve both functions within our framework. So while our methods
are designed to provide more FDR guarantees, it is relevant to evaluate the cost in
terms of power of these additional guarantees.

Consider controlling FDR for individual variables and for groups, compared to
just controlling FDR for individual variables. When adding a group FDR guaran-
tee, power loss depends on the group signal strength, the power of group statistics
and the desired group FDR control level qgrp. Power will decrease to the extent
that the signal strength at the group layer is weaker than the signal strength at the
individual layer. Assuming for simplicity that non-null variables have comparable
effect sizes, group signal is weak when saturation is low (recall from the Intro-
duction that saturation is the average number of non-null variables per non-null
group). Also, if the sizes of the groups vary, then group signal will be weaker if
the non-null hypotheses are buried inside very large groups. Even if group signal
is not too weak, the power of multilayer procedures will depend on the way group
statistics are chosen. In particular, power will be better if Simes (or Simes-like)
statistics are used if groups have a small number of strong signals, and if Fisher
(or Fisher-like) statistics are used in the case of weak distributed effects. Finally, it
is clear that lowering qgrp will lower power.
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As a final note, all of the multilayer methods discussed so far have a fea-
ture that might unnecessarily limit their power. This feature is the definition of
V̂m = V̂m(tm) in terms of only the threshold tm. Since the selection set S(t) is
defined with respect to the M-dimensional vector of thresholds t , a definition of
V̂m depending on this entire vector would be a better estimate of Vm(S(t)). In
some situations the procedures proposed might overestimate Vm(S(t)) and thus
pay a price in power. For a graphical illustration of this phenomenon, we revisit
Figure 2. Note that we are using the number of points in the entire shaded left
half-plane to estimate the number of false positives in just the shaded upper right
quadrant. Unfortunately, this issue is not very easy to resolve. One challenge is that
if we allow V̂m to depend on the entire vector t , then the definition of t∗ would be
complicated by the fact that the lower left-hand corner property would no longer
hold. Another challenge is that the dependencies between statistics across layers
make it hard to come up with a better and yet tractable estimate of Vm(S(t)). De-
spite this flaw, the multilayer knockoff filter (and the p-filter) enjoys very similar
power to its single-layer counterpart, as we shall see in the next section.

4. Simulations. We rely on simulations to explore the FDR control and the
power of the multilayer knockoff filter and the generalized p-filter across a range
of scenarios, designed to capture the variability described in the previous section.
All code is available at http://web.stanford.edu/~ekatsevi/software.html.

4.1. Performance of the multilayer knockoff filter.

Simulation setup. We simulate data from the linear model with n > N . This
also allows us to calculate p-values for the null hypotheses βj = 0 and plug these
into BH and p-filter; these two methods, in addition to KF, serve as points of
comparison to MKF.

We simulate

y = Xβ + ε, ε ∼ N (0, I ),

where X ∈ Rn×N , with n = 4500 observations on N = 2000 predictors. X is con-
structed by sampling each row independently from N(0,#ρ), where (#ρ)ij =
ρ|i−j | is the covariance matrix of an AR(1) process with correlation ρ. There are
M = 2 layers: one comprising individual variables and one with G = 200 groups,
each of 10 variables. The vector β has 75 nonzero entries. The indices of the non-
null elements are determined by firstly selecting k groups uniformly at random,
and then choosing, again uniformly at random, 75 elements of these k groups.
Here, k controls the strength of the group signal. We considered three values: low
saturation (k = 40), medium saturation (k = 20) and high saturation (k = 10). We
generated these three sparsity patterns of β once and fixed them across all sim-
ulations; see Figure 3. In all cases the nonzero entries of β are all equal, with a
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FIG. 3. Simulated sparsity patterns for the three saturation regimes. Each square corresponds to
one variable, and each column to one group. Non-null variables are indicated with filled squares.

magnitude that satisfies

SNR = ∥Xβ∥2

n

for a given SNR value. For each saturation setting we vary ρ ∈ {0.1,0.3, . . . ,0.9}
while keeping SNR fixed at 0.5 and vary SNR ∈ {0,0.1, . . . ,0.5} while keep-
ing ρ fixed at 0.3. Across all experiments we used nominal FDR levels qind =
qgrp = 0.2.

This choice of simulation parameters captures some of the features of genetic
data. The AR(1) process for the rows of X is a first approximation for the local
spatial correlations of genotypes, and the signal is relatively sparse, as we would
expect in GWAS. A notable difference between our simulations and common ge-
netic data is the scale; a typical GWAS involves N ≈ 1,000,000 variables. Previ-
ous studies [Candès et al. (2018), Sesia, Sabatti and Candès (2019)] have already
demonstrated the feasibility of knockoffs for datasets of this scale, and the MKF
does not appreciably differ in computational requirements. However, given our
interest in exploring a variety of sparsity and saturation regimes, we found it con-
venient to rely on a smaller scale. Moreover, working in a regime where n > 2N
allows us to leverage the fixed design construction of knockoff variables, which
does not require knowledge of the distribution of X.

Methods compared. We compare the following four methods on this simulated
data:

(a) KF+ with fixed design knockoffs, lasso-based variable importance statistics
combined using the signed-max function, targeting qind.

(b) MKF+ with fixed design group knockoffs, “Simes-like” group importance
statistics based on the penalty ℓm

g (u) = ∥u∥1, combined using the signed-max
function, targeting qind and qgrp. We find that this choice of penalty has better
power across a range of saturation levels than the group lasso based construction
of Dai and Barber (2016).
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(c) Benjamini Hochberg procedure (BH) on the p-values based on t-statistics
from linear regression, targeting qind.

(d) p-filter (PF) on the same set of p-values, targeting qind and qgrp.

Note that the first two methods are knockoff based, the last two are p-value based
and that methods (a) and (c) target only the FDR at the individual layer while
methods (b) and (d) target the FDR at both layers.

Results. Figure 4 illustrates our findings. First, consider the FDR of the four
methods. The multilayer knockoff filter achieves multilayer FDR control across
all parameter settings; the constant ckn = 1.93 from our proof does not appear to
play a significant role in practice. The p-filter also has multilayer FDR control,
even though the PRDS assumption is not satisfied by the two-sided p-values we
are using. On the other hand, the knockoff filter and BH both violate FDR control
at the group layer as the saturation level and power increase.

FIG. 4. Simulation results. From left to right, the saturation regime changes. The top panel varies
signal-to-noise ratio while fixing ρ = 0.3. The bottom panel varies ρ while fixing SNR = 0.5. Each
point represents the average of 50 experiments.
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We also note that both the multilayer knockoff filter and regular knockoff filter
have, on average, a realized FDP that is smaller than the target FDR. This is partly
because we use the “knockoffs+” version of these methods which is conservative
when the power is low. In addition we find that the multilayer knockoff filter is
conservative at the individual layer even in high-power situations if the saturation
is high. This is a consequence of our construction of V̂m, an estimate of the number
of false discoveries that, as we have discussed, tends to be larger than needed. We
see similar behavior for the p-filter, since it has an analogous construction of V̂m.

Next, we compare the power of the four methods. As expected, the power of all
methods improves with SNR and degrades with ρ. We find that the knockoff-based
approaches consistently outperform the p-value based approaches with higher
power despite having lower FDRs and the gap widening as saturation increases.
This power difference is likely caused by the ability of the knockoff-based ap-
proaches to leverage the sparsity of the problem to construct more powerful test
statistics for each variable. Finally, we compare the power of the multilayer knock-
off filter to that of the regular knockoff filter. In most cases the multilayer knockoff
filter loses little or no power, despite providing an additional FDR guarantee. This
holds even in the low saturation setting, where the groups are not very informative
for the signal.

4.2. Performance of the generalized p-filter. We explore the possible advan-
tages of the generalized p-filter in a setup when signals are expected to be weak
and common within non-null groups, so one would want to define group p-values
via the Fisher test instead of the Simes test. We consider two partitions of inter-
est, both with groups of size 10 (thus no singleton layer). A situation similar to
this might arise when scientists are interested in determining which functional ge-
nomic segments are associated with a trait. There exist several algorithms to split
the genome into functional blocks [e.g., ChromHMM by Ernst and Kellis (2012)],
and segments in each of these can be partially overlapping.

Simulation setup. We simulated N = 2000 hypotheses, with M = 2 layers.
Each layer had 200 groups, each of size 10. The groups in the second layer
were offset from the those in the first layer by five. Hence, the groups for
layer one are {1, . . . ,10}, {11, . . . ,20}, . . . , while the groups for layer two are
{6, . . . ,15}, {16, . . . ,25}, . . . . The nonzero entries of β are {1, . . . ,200}. Hence,

this is a “fully saturated” configuration. We generate Xj
ind∼ N (µj ,1), where

µj = 0 for null j and µj = µ for non-null j . We then derive two-sided p-values
based on the z test. In this context, we define SNR = ∥µ∥2/N . The SNR varied in
the range {0,0.1, . . . ,0.5}, and we targeted qind = qgrp = 0.2.

Methods compared. (a) The regular p-filter, which is based on the Simes test.
(b) The generalized p-filter with p-values based on the Fisher test.
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FIG. 5. Performance of the generalized p-filter: comparison of Fisher and Simes combination
rules.

Results. Figure 5 shows how both versions of the generalized p-filter have
multilayer FDR control, with the Fisher version being more conservative. As with
the multilayer knockoff filter, we see that the extra theoretical multiplicative factor
is not necessary (at least in this simulation). In this case Fisher has substantially
higher power than Simes due to the weak distributed effects in each group.

5. Case study: Variants and genes influencing HDL. To understand which
genes are involved in determining cholesterol levels and which genetic variants
have an impact on its value, Service et al. (2014) carried out exome resequenc-
ing of 17 genetic loci identified in previous GWAS studies as linked to metabolic
traits in about 5000 subjects. The original analysis is based on marginal tests for
common variants and burden tests for the cumulative effect of the rare variants in
a gene [Li and Li (2008), Wu et al. (2011)]. Furthermore, to account for linkage
disequilibrium and to estimate the number of variants that influence cholesterol
in each location, Service et al. (2014) uses model selection based on BIC. The
original analysis, therefore, reports findings at the gene level and variant level, but
these findings derive from multiple separate analyses and lack coordination. Here
we deploy MKF to leverage multiple regression models, obtaining a coherent set
of findings at both the variant and gene level with approximate multilayer FDR
control.

Data. The resequencing targeted the coding portion of 17 genetic loci, dis-
tributed over 10 chromosomes and containing 79 genes. This resulted in the iden-
tification of a total of 1304 variants. We preprocessed the data as in Stell and
Sabatti (2016), who reanalyzed the data in a Bayesian framework. In particular,
we removed variants with minor allele counts below a threshold and pruned the set
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of polymorphisms to assure that the empirical correlation between any pair is of at
most 0.3 [this is a necessary step in multiple regression analysis to avoid collinear-
ity; see Brzyski et al. (2017) and Candès et al. (2018)]. After preprocessing, the
data contained 5335 individuals and 768 variants. Since the study design was ex-
ome resequencing, every variant could be assigned to a gene. A special case is that
of 18 SNPs that were typed in a previous study of these subjects and that were
included in the final analysis as indicators of the original association signal; 12 of
these are located in coding regions, but six are not.

While Service et al. (2014) studies the genetic basis of several metabolic traits,
we focus our analysis here on HDL cholesterol. From the original measurement
we regressed out the effects of sex, age and the first five principal components of
genomewide genotypes representing population structure.

Note that the small size of the dataset is due to the design of the study, which
relies on targeted resequencing as opposed to an exome-wide or genome-wide re-
sequencing. Working with a small set of variables that have been quite extensively
analyzed already allows us to better evaluate the MKF results, which is useful in a
first application. The analysis with MKF of a new exome-wide data set comprising
tens of thousands of individuals and hundreds of thousands of variants is ongoing.

Methods compared. To focus on the effect of adding multilayer FDR guaran-
tees (rather than on the consequences of different methods of analysis), we com-
pare the results of the multilayer knockoff filter (MKF) and the knockoff filter
(KF). The multilayer knockoff filter used a variant layer and a gene layer. We chose
MKF and KF instead of MKF+ and KF+ for increased power but otherwise used
the same method settings as in Section 4. Each variant from the sequencing data
and the 12 exonic GWAS SNPs were assigned to groups based on gene. The six
intergenic GWAS SNPs are considered single members of six additional groups.
Hence, our analysis has 85 (= 79 + 6) “genes” in total.

Results. Table 1 summarizes how many genes and SNPs each method dis-
covers. KF has about twice as many discoveries at each layer, but how many of
these are spurious? Unfortunately, the identity of the variants truly associated with
HDL is unknown, but we can get an approximation to the truth using the existing
literature and online databases. At the variant level, this task is difficult because

TABLE 1
Summary of association results on resequencing data

Method # SNPs found # genes found

KF 23 11
MKF 13 6
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TABLE 2
Comparison of MKF and KF at the gene layer.

False positives are highlighted in italics

Supported in
Gene Discovered by literature

ABCA1 KF, MKF Yes
CETP KF, MKF Yes
GALNT2 KF, MKF Yes
LIPC KF, MKF Yes
LPL KF, MKF Yes
PTPRJ KF, MKF No
APOA5 KF Yes
NLRC5 KF No
SLC12A3 KF No
DYNC2LI1 KF No
SPI1 KF No

(1) linkage disequilibrium (i.e., correlations between nearby variants) makes the
problem ill-posed and (2) rare variants, present in this sequencing dataset, are less
well studied and cataloged. Instead, we focus on an annotation at the gene level.
Comparing the two methods at the gene level is also meaningful because this is the
layer at which the multilayer knockoff filter provides an extra FDR guarantee. See
Appendix D for references supporting our annotations.

Table 2 shows the gene layer results: there are five true positive genes (ABCA1,
CETP, GALNT2, LIPC, LPL) found by both methods, one false positive shared by
both methods (PTPRJ), one true positive for KF that is missed by MKF (APOA5)
and four false positives (NLRC5, SLC12A3, DYNC2LI1, SPI1) for KF that MKF
correctly does not select. Hence, MKF reduced the number of false positives from
five to one at the cost of one false negative.

Figure 6 shows a more detailed version of these association results, illustrating
the signal at the variant level. Notably, the one extra false negative (APOA5) in-
curred by MKF just barely misses the cutoff for the gene layer. Aside from the
extra false negative and the one false positive shared with KF, the additional hori-
zontal cutoff induced by the need to control FDR at the gene level does a good job
separating the genes associated with HDL from those that are not.

6. Conclusions. With the multilayer knockoff filter, we have made a first step
to equip model selection procedures with FDR guarantees for multiple types of re-
ported discoveries. This bridges results from the multiresolution testing literature
[Barber and Ramdas (2017), Benjamini and Bogomolov (2014), Peterson et al.
(2016), Yekutieli (2008)] with controlled selection methods [Barber and Candès
(2015), Candès et al. (2018), Dai and Barber (2016)]. When tackling high dimen-
sional variable selection, researchers have at their disposal several methods based
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FIG. 6. Scatterplot of variant level and gene level knockoff statistics. Solid blue lines are the thresh-
olds for MKF while the cyan broken line is the threshold for KF. Each dot corresponds to a variant,
and variants selected by at least one of the methods are in color: dark green indicates selected vari-
ants that belong to genes that are true positives for both methods, light green a true positive found
by KF but missed by MKF, red is for false positives of KF but true negatives of MKF and magenta
for the false positive shared by both methods. To facilitate comparison with Table 2, we indicate the
names of the genes representing false positives or false negatives for at least one of the methods.

on regularized regression with penalties that can reflect an array of sparse struc-
tures [see, e.g., Jalali et al. (2010), Kim and Xing (2009), Rao et al. (2013)], cor-
responding to a multiplicity of possible resolutions for discoveries. While several
of them have been implemented in the context of genetic association studies [Xing
et al. (2014), Zhou et al. (2010)], their application has been hampered by the lack
of inferential guarantees on the selection. It is our hope that the approach put for-
ward with MKF will allow scientists to leverage these computationally attractive
methods to obtain replicable discoveries at multiple levels of granularity.

In the process of developing a framework for multilayer FDR control for vari-
able selection, we have also generalized the p-filter multiple testing procedure.
Our approach places no restrictions on the relations between the p-values used
to test the hypotheses at different layers. By contrast theoretical results for the p-
filter rely heavily on the specific way in which p-values for individual hypotheses
are aggregated to obtain p-values for groups. The constant cpf can be viewed as
the price we pay for allowing these arbitrary dependencies. Nevertheless, simula-
tions show that both cpf and the corresponding constant ckn for MKF appear to be
inconsequential in practice.
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Finally, the uniform bound (15) can be reinterpreted as stating that the maximum
amount by which the FDP of the knockoff filter can exceed F̂DP over the entire
path has bounded expectation. Moreover, the same proof yields a high-probability
uniform bound on FDP. This interpretation is pursued by Katsevich and Ramdas
(2018), who also prove the corresponding bound for BH conjectured here and
extend the proof to a variety of other FDR methodologies.

Extensions. There are many directions, of varying degrees of difficulty, in
which it seems appropriate to extend the results we have so far. We list some below.

We have constructed the multilayer framework so that it would not require the
groups in different layers to be hierarchically nested. However, in certain applica-
tions, such a hierarchical structure exists and could be exploited to increase power,
relaxing the consistency requirements we have for discoveries across layers. This
is the case, for example, in the relation between SNPs and genes that partially
motivated us. It is scientifically interesting to discover that a gene is implicated
in a disease, even if we are unable to pinpoint any specific causal variant within
that gene. Formally, the selection sets allowed in this paper at each layer must be
“two-way consistent,” that is, selecting an individual variable implies selecting the
group to which it belongs, and selecting a group implies selecting at least one vari-
able in the group. In a hierarchical setting a less stringent “one-way consistency”
requirement can be formulated; selecting an individual variable implies selecting
the group to which it belongs. In fact it can be easily shown that MKF can be modi-
fied to enforce this relaxed consistency requirement, and the same proof technique
shows that multilayer FDR control still holds. This modified MKF is currently
being used to analyze data from an exome-wide resequencing study.

In the genetic application motivating this work, SNPs are grouped according to
the genes to which they belong. This is adequately described with nonoverlapping
groups, but there are extensions in which it makes sense to consider groups that are
overlapping within the same layer. For example, biological pathways are groups
of genes known to work together to carry out a certain biological function. It is
often desired for inference to be carried out at the pathway level, as this gives a
direct biological interpretation of the results. However, genes often participate in
multiple pathways, which leads to large group overlaps. This brings new statistical
challenges, starting from a meaningful description of the null hypothesis for each
group, to the construction of valid knockoff variables for overlapping groups.

We have focused on situations where the researcher, prior to looking at the data,
can specify meaningful groups of variables corresponding to discoveries at coarser
resolutions. While this is the case in many settings where it makes sense to pur-
sue FDR control at multiple layers, it is also true that there are problems where
the groupings of predictors are most meaningful when based on the data. For ex-
ample, in our own case study, we grouped predictors as individual variables that
are too correlated with each other. While we did so in a fairly arbitrary manner
and without looking at the outcome variable, choosing groups based on the data
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could have helped us to choose a “resolution” appropriate for the signal strength
and correlation structure in the data. Even in a single-layer setup, selecting groups
and then carrying out valid inference with respect to these groups is a challenging
new problem; we hope that some of the ideas developed here can contribute to its
solution.

Another promising extension of the MKF is to multitask regression, the study
of the impact of a set of predictor variables on multiple outcome variables. The
multitask regression problem is often reshaped into a larger single-task regression
problem in which the predictors have group structure based on the task to which
they correspond. For example, Dai and Barber (2016) take this approach to mul-
titask regression alongside its development of the group knockoff filter. MKF can
then provide a framework for FDR control in this setting, where group discover-
ies correspond to finding variables important for at least one of the outcomes, and
individual discoveries correspond to the identification of variables important for a
specific outcome. In the context of the linear model with N ≤ n and independent
errors, the MKF as described here provides the desired FDR guarantee. However,
the general case is more challenging and will require substantial modifications.
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SUPPLEMENTARY MATERIAL

Proofs of technical results and evidence for gene annotations (DOI: 10.1214/
18-AOAS1185SUPP; .pdf). We provide proofs of technical results (in particular,
Proposition 2.1 and lemmas supporting Theorems 1 and 2) and evidence for the
gene annotations from Section 5.
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