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SUMMARY

The goal of expression quantitative trait loci (eQTL) studies is to identify the genetic variants that influence
the expression levels of the genes in an organism. High throughput technology has made such studies
possible: in a given tissue sample, it enables us to quantify the expression levels of approximately 20 000
genes and to record the alleles present at millions of genetic polymorphisms. While obtaining this data
is relatively cheap once a specimen is at hand, obtaining human tissue remains a costly endeavor: eQTL
studies continue to be based on relatively small sample sizes, with this limitation particularly serious
for tissues as brain, liver, etc.—often the organs of most immediate medical relevance. Given the high-
dimensional nature of these datasets and the large number of hypotheses tested, the scientific community
has adopted early on multiplicity adjustment procedures. These testing procedures primarily control the
false discoveries rate for the identification of genetic variants with influence on the expression levels.
In contrast, a problem that has not received much attention to date is that of providing estimates of the
effect sizes associated with these variants, in a way that accounts for the considerable amount of selection.
Yet, given the difficulty of procuring additional samples, this challenge is of practical importance. We
illustrate in this work how the recently developed conditional inference approach can be deployed to
obtain confidence intervals for the eQTL effect sizes with reliable coverage. The procedure we propose is
based on a randomized hierarchical strategy with a 2-fold contribution: (1) it reflects the selection steps
typically adopted in state of the art investigations and (2) it introduces the use of randomness instead of
data-splitting to maximize the use of available data. Analysis of the GTEx Liver dataset (v6) suggests that
naively obtained confidence intervals would likely not cover the true values of effect sizes and that the
number of local genetic polymorphisms influencing the expression level of genes might be underestimated.

Keywords: Conditional inference; Confidence intervals; Effect size estimation; eQTL; Randomization; Selection bias;
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2 S. PANIGRAHI AND OTHERS

1. INTRODUCTION

The goal of an expression quantitative trait loci (eQTL) study is to identify the genetic variants that
regulate the expression of genes in different biological contexts and quantify their effects. Using statistical
terminology, the outcome variables (typically on the order of 20 000) are molecular measurements of the
gene expression and the predictors are genotypes for single nucleotide polymorphisms (SNP; typically
on the order of 1 000 000). The variants that are discovered to regulate gene expression are referred as
eVariants and careful estimation of their effect sizes is often deferred to follow-up studies. One commonly
studied sub-type of eVariants are those referred to as cis-eQTL: the DNA variants in the neighborhood
of a gene that influence its expression directly. The majority of eQTL investigations have focused on
detecting these cis variants owing to their simple biological interpretation as well as the fact that restricting
attention to this subset of gene and variant pairs reduces the number of tested hypotheses and leads to
improved power. Still, when concentrating on cis regulation, eQTL studies face a formidable multiplicity
problem and also, a subsequent winner’s curse during effect size estimation of discovered associations,
with approximately 20 000 genes and an average of 7500 variants in each cis region.

Since the first studies (Schadt and others, 2003), the eQTL research community has recognized the
false discovery rate (FDR) as a relevant global error rate and adopted corresponding controlling strate-
gies. As the density of SNP genotyping increased over time, it became apparent that naive application of
FDR controlling strategies (Benjamini and Hochberg, 1995; Storey, 2003) might lead to excessive false
discoveries. To address this difficulty, more recent works (Ongen and others, 2015; Lonsdale and others,
2013) adopt a hierarchical strategy. First, for each gene one tests the null hypothesis of no association
with any local variants and the p-values corresponding to these tests are passed to an FDR controlling
procedure. Second, for those genes for which this null is rejected (eGenes), scientists proceed to identify
which among the cis variants have an effect (eVariants). To this end, both marginal testing and multivariate
regression models have been used to report the cis variants with significant association with eGenes.

Once eVariants have been detected, the logical next step is to attempt to estimate their effect sizes;
and given the scarcity of biological samples, it is tempting to do so using the data at hand. However,
since these discoveries have been selected out of a large number of possible associations, naive estimators
based on the same data used for selection would result in inaccurate estimates. Indeed, this is a situation
similar to that of genome-wide association study, where this problem of “winner’s curse” has been noted
before (Zhong and Prentice, 2008). One clear way out, of course, is offered by the classical concept of
data-splitting. However, in settings where the sample size is already small, reserving a hold-out data set
for inference is beyond affordability. This is often the case in human eQTL studies: for tissues other
than the easily accessible blood and skin, the relations between 20 000 genes and millions of SNPs are
typically studied with a number of specimens in the hundreds at best. The same difficulties that lead to
small sample sizes, make it unrealistic to simply defer the task of estimating effects to a new dataset.
In this work, we explore the potential for this problem in light of recent developments in the statistical
literature: specifically, the notion of conditional inference after selection and the power of randomization
strategies. We offer a pipeline for the identification of eVariants and estimation of their effect sizes that
mimics the hierarchical analysis, representing the state of the art in eQTL studies. Comparing the results
of our pipeline with alternative strategies in simulations and real data analysis helps us understand the
severity of the challenges of inference after selection in the context of eQTL. Our contribution supports
investigators in their choice of optimal use of limited samples in a single study, balancing the need to
efficiently discover relations with that of making inference on the effect sizes of the discoveries.

1.1. Approach: a randomized conditional perspective

Our methods build upon a conditional inference perspective, introduced in Lee and others (2016). The
central idea is that, to counter selection bias, inference on the parameters (effect sizes, in the case of
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Estimates of cis-eQTL effect sizes 3

eQTL analysis) should be based on an adjusted likelihood, obtained by conditioning the data generative
model on the selection event. Conditioning has the effect of discarding the information in the data used
in selecting the eVariants, so that effect sizes are estimated on “unused data.” In addition, we capitalize
on the observation that it is possible to generalize data-splitting in a manner that allows one to make a
more efficient use of the information in the sample by introducing randomization during selection (Tian
and others, 2018).

The 100 × (1 − α)% selection-adjusted confidence intervals are such that the probability with which
each of them does not cover its target population parameter is at most α, conditional on selection. This
guarantee is first described in Lee and others (2016), where it is called selective false-coverage rate control.
As a point estimator, we employ the maximum likelihood estimator (MLE) calculated from the conditional
law, introduced in Panigrahi and others (2016). We call this estimator the selection-adjusted MLE: this
serves as a quantification of the strengths of the discovered associations.

We follow the introduction with examples of the challenges presented by selection and of how the
conditional inference approach addresses them in Section 2: this gives us the opportunity to introduce
terminology as well as to discuss the concepts of randomization, target of inference, and statistical model
in this context. The rest of the article deals with the more complicated hierarchical setting of eQTL
research, which requires novel methodological results and is organized as follows. Section 3 describes
the randomized selection pipeline that we employ as the eQTL identification strategy; Section 4 presents
our proposal for selection-adjusted inference; Section 5 contains the results of a simulation study and the
concluding section presents the analysis of data from GTEx.

2. MOTIVATING EXAMPLES

While the substantial contribution of the present work is to design a selection and inference pipeline that
adapts to the hierarchical strategy typically adopted in eQTL studies, we start by considering a couple of
“cartoon” examples that illustrate the effect of selection bias and motivate the overall sprit of our strategy,
bypassing the complications associated to eGene selection. We focus on one gene, and imagine that the
entire goal of the study is to find which of its cis variants influence its expression and with what effect
sizes. We consider two selection strategies: the first (1) consists in choosing the DNA variant that is most
strongly associated with the gene (see Ongen and others 2015); the second (2) uses the LASSO to identify
a set of variants. In both cases, we are interested in inferring the effect sizes of the selected variants.

Introducing some notation, let y ∈ R
n be the response and X ∈ R

n×p be a matrix collecting the values of
predictors. Assume, without any loss of generality, that X is both centered and scaled to have columns of
norm 1. Strategy (1) identifies the variant with the greatest marginal t-statistic. Let this variant correspond
to the j0th column of X , denoted as Xj0 which satisfies |X T

j0
y/σ | ≥ |X T

j y/σ | for j ∈ {1, 2, . . . , p}\j0; σ

being the noise-variance in the outcome variable, here assumed known. For strategy (2), we consider a
LASSO selection with a small ridge penalty ε > 0 (for numerical stability) given by minimizeβ

1
2‖y −

X β‖2
2 + λ‖β‖1 + ε

2‖β‖2
2. We choose the tuning parameter as λ = E[‖X T �‖∞], � ∼ N (0, σ 2I ), a

theoretical value adopted from Negahban and others (2009).
We will be introducing randomization schemes for both strategies, which perturb the selection with

the addition of some Gaussian noise ω ∈ R
p ∼ N (0, τ 2Ip). Specifically, the randomized version of

strategy (1) leads to the identification of variant j0 when it satisfies: |X T
j0

y/σ + ωj0 | ≥ |X T
j y/σ + ωj| for

j ∈ {1, 2, . . . , p}\ j0, and the randomized version of strategy (2) solves the following modified optimization
problem: minimizeβ

1
2‖y − X β‖2

2 − ωT β + λ‖β‖1 + ε

2‖β‖2
2.

2.1. Model and target

For the problem of inference following these selections, we note that we need to (a) specify a model for
the data with respect to which evaluate the properties of estimators and (b) we need to formally identify
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4 S. PANIGRAHI AND OTHERS

the target parameters. Of course, (a) is challenging in a context of model selection, where by definition we
do not know what is the “true” model. Nevertheless it makes sense to work with what we might term the
“full model,” where mean of response variable Y is parameterized by a R

n vector μ, without specifying
a relation with X and Y ∼ N (μ, σ 2I ): this is also the choice made in Berk and others (2013); Lee and
others (2016).

While this full model allows us to talk precisely about the distribution of Y , the target of inference (b)
in both these examples is not μ, but depends on the outcome of selection. This adaptive target can be
described as the projection of μ on the space spanned by the selected variables. For the marginal example,
the adaptive target is given by X T

j0
μ. Denoting XE as the selected sub-matrix, this target for the LASSO is

given by (X T
E XE)−1X T

E μ, the partial regression coefficients that are obtained by fitting a linear model to
the selected set of variables E.

2.2. Methods

We are now ready to explore via simulations the performance of four different inferential methods. The
first (i) is “Vanilla” inference that ignores selection and relies on the estimates for the adaptive targets that
one would use if these were specified in advance: in the first example, this is simply the largest t-statistic,
and for the second example, this is the least squared estimator with the corresponding intervals centered
around these point estimates. Second, (ii) we consider the adjusted inference described in Lee and others
(2016) (“Lee et al.”) which corrects for selection bias based on a screening without randomization [note
that Lee and others (2016) does not provide a selection-adjusted point estimate, but gives a recipe for
confidence intervals]. The third approach (iii) is in the spirit of the methods we develop in the rest of the
article: we condition on the outcome of randomized selection and provide adjusted confidence intervals
and point estimates (“Proposed”). Finally, to provide a benchmark comparison with a more well-adopted
practice of data-splitting, and (iv) we include the method of splitting (“Split”) that computes selection on
a random fraction of the data and uses the remaining samples for inference.

2.3. Simulations

In our simulations, X is fixed and a response vector y ∈ R
n is generated in each round from Y ∼ N (0, σ 2In),

σ 2 = 1, independently of X . The perturbation ω ∈ R
p is generated from 
 ∼ N (0, τ 2Ip); τ 2 = 0.5,

independently of Y . We simulate 100 such instances and compare the inferential procedures in terms of
coverage, length of the confidence intervals, and risk of the point estimates. The risk metric we use is
the averaged squared error deviation of the point estimates from the respective adaptive targets, described
above for the two selection strategies. To implement splitting, we consider a split of data that is directly
comparable to our randomization scheme. Formalized in Panigrahi (2018), data-splitting is equivalent to
a randomized selection with the randomization variance τ 2 corresponding to σ 2 · n2/n1, where n2 and
n1 are the number of samples used for inference and selection, respectively; n1 + n2 = n. Thus, in the
comparisons that follow, we choose the splitting ratio for “Split” as n2/n1 = τ 2/σ 2 = 0.5; τ 2 = 0.5 and
σ 2 = 1.

2.4. Results and insights

The results are summarized in Figure 1. As expected, the unadjusted intervals based on “Vanilla” infer-
ence fall way short of coverage highlighting the extent of “winner’s curse.” The adjusted intervals from
“Split” inference and in the form described in Lee and others (2016) and in the present work, based
on randomization, all achieve the target coverage. These adjusted methods, however, differ in terms of
interval length: while the “Proposed” intervals are 1.5 times longer than the unadjusted intervals (a price
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Estimates of cis-eQTL effect sizes 5

Fig. 1. The left most panel compares the coverages of the confidence intervals, where the dotted black line represents
the target 90% coverage. The central panel in the plot gives an indication of the power of statistical inference through
lengths of these intervals. Finally, the right most panel compares the empirical risks of the adjusted and unadjusted point
estimates with respect to a squared error loss. On the x-axes, “Marginal” denotes the inference following selection
strategy (1): a marginal screening analysis based on a marginal t-statistic; and “LASSO” indicates the inferential
results following selection strategy (2): screenings by LASSO. The performances of the four inferential strategies
compared are indicated using different colors, as in the legend.

we pay for selection), they are much shorter than the exact intervals post non-randomized screenings in
Lee and others (2016) and the “Split” intervals. This is the advantage of randomization at the selection
stage: there is more “left-over” information available at the time of inference. The risks of the “Vanilla”
and “Split” point-estimate post a non-randomized screening is also seen to be higher than the adjusted
MLE, considered as a point estimate for effect sizes in this article.

Additionally, we provide in Figure 1 of supplementary material available at Biostatistics online compar-
isons between an equivalent “Split” and “Proposed” at different scales of randomization and an equivalent
split proportion. The critical take-away from this analysis is a uniform domination in inferential powers
in adopting our proposal over the prevalent approach of splitting. In inferring about the adaptive target
post-selection, “Proposed” interval estimates are shorter than “Split” by roughly 12%, 17%, 26% at split
proportions n2/n1 = 1, 0.5, 0.25, respectively. Consistent with expectations of an efficient utilization of
left-over information from the selection stage, this gain in inferential power becomes more pronounced
as more data are used for selection, leaving lesser information for inference.

3. RANDOMIZED HIERARCHICAL SCREENING TO IDENTIFY INTERESTING EQTL EFFECTS

Our data will include measurements on the expression levels of G genes and V variants in n subjects.
We denote the outcome variables using Y : Y (g) ∈ R

n is the vector of gene-expression levels for gene
g ∈ {1, 2, . . . , G}. Let Vg be the number of variants measured within a defined cis window around gene g:
we indicate the matrix of the corresponding potential explanatory variables with X (g) ∈ R

n×Vg . We assume,
without loss of generality, that X (g) is centered and the columns are scaled to have norm 1. Denote the
variance in gene-expression response Y (g) by σ 2. In this section, we are going to outline a randomized
selection procedure that mimics the hierarchical strategy often adopted in the literature (Lonsdale and
others, 2013) and specify the derived “target of inference.”

3.1. A hierarchical randomized selection

Following the practice in eQTL studies, we want to first identify a set G of genes that appear likely to be
cis regulated, and then, for each of the genes g ∈ G identify a set of potential e-variants E(g) belonging
to the cis region and appearing to have an effect on the expression of gene g. In order to both use the
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6 S. PANIGRAHI AND OTHERS

entire sample n to guide our selection and, at the same time, reserve enough information for the following
inference on the effect size, we explore the potential of a selection strategy that includes randomization
in both these stages. The “cartoon” examples with which we concluded the previous section illustrate the
advantages of randomization. For a more comprehensive discussion, please see Tian and others (2018)
and Dwork and others (2015), which place this into the context of data re-use.

Stage-I: Randomized selection of eGenes To discover promising genes, we test the global nulls that
the expression of gene g is not influenced by any of the cis variants V (g): G collects the set of genes for
which we reject this null controlling FDR at level q. The p-values for these global null hypotheses are
calculated with randomization.

Step 1. Compute for each gene g ∈ {1, 2, . . . , G}, a univariate t-test statistic based on marginal correla-
tion of local variant X (g)

j , j ∈ {1, 2, . . . , Vg} with gene expression Y (g) and added Gaussian randomization

ω
(g)

j . The perturbed t-statistic (z-statistic for a known σ ) is given by

T (g)

j = X (g)

j

T
y(g)/σ + ω

(g)

j , (3.1)

where ω
(g)

j is a realization of a Gaussian random variable 

(g)

j ∼ N (0, γ 2) with γ 2 controlling the amount

of perturbation. Further, perturbations 

(g)

j are independent for j ∈ {1, 2, . . . , Vg} and also, independent
across all genes g ∈ {1, 2, . . . , G}. For settings where σ is unknown, we use a marginal estimate of σ ; see
Remark 3.2.

Step 2. Compute a global p-value based on Bonferroni p̃(g) = Vgp(g)

(1) , where

p(g)

j = 2 ·
(

1 − �
(
|T (g)

j |/√1 + γ 2
))

for j ∈ {1, 2, . . . , Vg}, g ∈ {1, 2, . . . , G}.

Step 3. We apply a Benjamini–Hochberg (BH-q) procedure at level q to the global p-values
{p̃(1), p̃(2), . . . , p̃(G)}. Based on the rejection set of BH, we report K0 eGenes with the number of rejec-
tions calculated as K0 = maxk∈{1,2,...,G}

{
p̃(j) ≤ j

G q for at most k many p-values
}
. This set of identified

genes is denoted as G. The analogous non-randomized selection procedure is based on t-statistics in (3.1)
with no added perturbation.

Stage-II: Randomized selection of potential eVariants The second stage identifies promising variants
E(g) for each of the eGenes g in G. We use a randomized version of penalized regression (Zou and Hastie,
2005), where the 
1 penalty induces sparsity (selection) and a small 
2 penalty is used to regularize the
problem. The set E(g) is identified by solving:

minimizeβ

1

2
‖y(g) − X̃ (g)β‖2

2 − ζ (g)T
β + λ‖β‖1 + ε

2
‖β‖2

2, (3.2)

where X̃ (g) ∈ R
n×pg , pg ≤ Vg indicate a pruned set of cis variants. The value of ε is small, with the

only goal of ensuring the existence of a well-defined solution, while λ is set to be the theoretical value
considered in Section 2. In the same spirit as the randomized screening of eGenes, ζ (g) is based on a
Gaussian variable Z ∼ N (0, τ 2I ).

Note that E(g) indicates the set of active variants for the problem (3.2) for gene g: this is the result of our
selection step. However, the final results of our analysis will consist of a set Q(g) ⊂ E(g), corresponding
to the subset of variants with significant selection-adjusted p-values at a chosen level of selective Type-I
control α.
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Estimates of cis-eQTL effect sizes 7

REMARK 3.1 We noted that problem (3.2) is defined on pruned set of variants. The variants in the cis region
of a gene can be highly correlated in the sample. This makes it hard for any multi-regression analysis
like the LASSO to recover the set of variables truly associated and hence, pruning becomes essential;
prior works Hastie and others (2000) and Reid and Tibshirani (2016) have recognized these challenges.
We give details of an unsupervised pruning of variants using a hierarchical clustering scheme, based on
the empirical correlations between variants as a distance measure in Section A of supplementary material
available at Biostatistics online.

REMARK 3.2 In real data analysis, the variance of gene expressions is not known: we use a plug-in estimate
and refer to Tian and others (2018) that justifies this choice through a consistency result. For the marginal
screening step, we consider a marginal estimate of variance to compute a t-statistic for the association
between variant j and outcome. For the randomized LASSO screening, we use an estimate of σ from a
refitted least squared regression post the LASSO.

REMARK 3.3 The variation of perturbation controls the amount of randomization in the selection pipeline
and determines the tradeoff between selection quality and inferential performance. We choose the
perturbation-to-noise ratio γ 2/σ̂ 2, τ 2/σ̂ 2 = 0.5, σ̂ being an estimate of the noise level, in both stages
of eGene and eVariant selections. To see that this is a reasonable choice for the perturbation variance,
we point our readers to the GTEx Liver data analysis in Section 5.2, where we select 90% of the eGenes
and subsequently, 74% of the eVariants for these eGenes discovered by (a closely replicated version of)
the GTEx pipeline (Lonsdale and others, 2013). Further, at this scale of randomization variance, we
observe a significant reduction of average lengths of the “Proposed” intervals by 40% in comparison to
non-randomized selective inference by Lee and others (2016)—thus achieving high inferential power at
a satisfactory selection performance.

3.2. Model and adaptive target

To proceed with inference post a hierarchical screening, we assume a full Gaussian model for gene
expression, as in the motivating examples:

Y (g) = μ(g) + ε(g), ε(g) ∼ N (0, σ 2I ). (3.3)

The generative law in this framework parameterizes the Gaussian mean as μ(g) ∈ R
n, g ∈ {1, 2, . . . , G}.

In addition, we assume that errors ε(g) are independent across genes.

REMARK 3.4 Gene-expression measurements and genotype data often are affected by confounding factors,
including gender, demography, platform etc. For the purposes of this article, we assume that the data
have undergone preprocessing that eliminates the effects of hidden confounding factors and measured
covariates. This allows us to assume that the noise is approximately independent across genes. Details on
how these confounding factors are regressed out from the real data we analyze is provided in Section C
of supplementary material available at Biostatistics online.

Having described a model, we define the adaptive target of inference as the projection of the model
parameters onto the space spanned by E(g) for each gene g:

bE(g) =
(

X̃ T
E(g) X̃E(g)

)−1
X̃ T

E(g)μ ∈ R
E(g)

. (3.4)
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8 S. PANIGRAHI AND OTHERS

Denoting the jth component of the adaptive partial regression coefficient bE(g) as bj;E(g) = eT
j bE(g) ,

we note that unadjusted inference for bj;E(g) would be based on the jth least squared estimator:

b̂j;E(g) = eT
j

(
X̃ T

E(g) X̃E(g)

)−1
X̃ T

E(g)Y
(g). Under an independent Gaussian noise model, b̂j;E(g) is the MLE

for bj;E(g) and naive confidence intervals for the same target are centered around b̂j;E(g) with a length of

2 · z1−α/2 · (X̃ T
E(g) X̃E(g) )

−1
j,j ; z1−α/2 being the standard normal quantile. In the next section, we will describe

alternative point and interval estimates for these quantities that take into account the selection we have
described.

4. SELECTION-ADJUSTED INFERENCE FOR EVARIANTS EFFECTS

We outline a recipe to provide selection-adjusted inference for the adaptive partial regression coefficients
in (3.4) in a coordinate-wise manner. That is, we provide the steps to get a tractable selection-adjusted
law: L(b̂j;E(g) |g ∈ G, Ê(g) = E(g)), the conditional law of the jth component of the least squared estimator
conditioned upon the event that gene g was screened marginally in Stage-I and E(g) was screened by
randomized LASSO in Stage-II. We start again by listing the notation and terminology we will use. Then,
we give an outline of the steps that provide a practical selection adjustment for inference.

• Data and randomization At the core of the adjustment for selection is the calculation of
a conditional likelihood. Because of the randomization we introduced, the relevant likelihood
includes both the original data and the outcome of the randomization. The observed data y(g) and
randomizations (ω(g) ∈ R

Vg , ζ (g) ∈ R
pg ) are realizations of the random variables (Y (g), 
(g), Z (g)),

respectively; (
(g), Z (g)) represent the random variables for Gaussian randomizations used in both
stages of selection. The entire data across all genes are denoted by (y, ω, ζ ), where y = {y(g) : g ∈
G}, ω = {ω(g) : g ∈ G}, ζ = {ζ (g) : g ∈ G}.

• Parameters in model In providing coordinate-wise inference, we note that the target param-
eter in our case is bj;E(g) = cT

j μ; cj = X̃E(g) (X̃ T
E(g) X̃E(g) )−1ej. Based on (3.3), there are nuisance

parameters that are given by n(g)

j = (μ − bj;E(g)cj/‖cj‖2). In a nutshell, n(g)

j are parameters that we
are not interested in inferring about while providing inference for bj;E(g) .

• Target and null statistic A target statistic is a statistic that can be used to make inference on
the target parameter bj;E(g) . Specifically, we will consider the jth coordinate of the least squared

estimator, denoted by b̂j;E(g) as the target statistic for target parameter—bj;E(g) . Note that b̂j;E(g)

also, serves as the target statistic for naive (unadjusted) inference for bj;E(g) . Except now, the law
of this target statistic is no longer a Gaussian distribution centered around bj;E(g) : the goal of the

remaining section is to provide a tractable selection-adjusted law for b̂j;E(g) .
The null statistic according to model (3.3) is a data vector that is orthogonal to bj;E(g) based on

decomposition y(g) = b̂j;E(g)cj/‖cj‖2 + U (g)

j . In model (3.3), the mean of the null statistic is the

nuisance parameter, defined as n(g)

j . Conditioning out the null statistics in the selection-adjusted
law eliminates the nuisance parameters in the model.

• Variance of target and null statistic Finally, denote as σ 2
j;E(g) = (X̃ T

E(g) X̃E(g) )
−1
j,j , the variance of

b̂j;E(g) and the variance of U (g)

j as �
(g)

U under (3.3).
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Estimates of cis-eQTL effect sizes 9

4.1. An outline of conditional inference after randomized selection in eQTL

In order to successfully apply conditional inference, we need to be able to efficiently compute with the
selection-adjusted law. To achieve this goal in the eQTL inference problem that we have described, we
take the following steps.

I. A selection-adjusted law across the genome The randomized selection Ĝ(y, ω) of eGenes and

of promising variants for each eGene Ê(g)(y(g), ζ (g)) define a selection event
{
(y, ω, ζ ) : Ĝ(y, ω) =

G, Ê(g)(y(g), ζ (g)) = E(g) for g ∈ G
}

. Conditioning on this event modifies the law of data and randomiza-

tions:
∏

g∈G L(y(g); μ)×L(ω(g); γ )×L(ζ (g); τ)1{g∈G, Ê(g)=E(g)}, where L(y(g); μ)×L(ω(g); γ )×L(ζ (g); τ)

is the unadjusted law of (Y (g), 
(g), Z (g)).
The above conditional law results from the fact that we infer about target (3.4) for a gene g only if it

has been screened in the set of eGenes and the set E(g) of variants are chosen by a randomized version of
LASSO. We point out to our readers that the selection of gene g as an eGene depends not only on the data
specific to gene g, but also on data for all other genes. This leads to a complicated selection event, which
simplifies to a great extent when we condition additionally on some more information beyond knowing
the set of eGenes: G and the respective active variants E(g), chosen in the next stage. This extra information
includes signs of t-statistics for the selected genes, the signs of Lasso coefficients, the total number of
eGenes K0, etc.

II. A simplified adjusted law across eGenes We obtain a simplified selection event {Ĥ(y(g), ω(g),
ζ (g)) = H} by conditioning on some additional information together with the selection of eGene g
and variants E(g) selected by LASSO. Such an event is easier to handle in the sense that it is described
only in terms of data specific to gene g and thereby, allows a decoupling of the joint law above into
an adjusted law for each gene in G. A full description of the conditioning event, a superset of the event
{g ∈ G, Ê(g) = E(g)} is available in Section B.1 of supplementary material available at Biostatistics
online.

Under (3.3) and Gaussian randomizations, the simplified selection-adjusted density for each eGene g
in terms of target and null statistic (b̂j;E(g) , U (g)

j ), randomizations (ω(g), ζ (g)), and an observed selection H,
is given by

exp
(
−(b̂j;E(g) − bj;E(g) )

2/2σ 2
j;E(g)

)
· exp

(
−‖�−1/2

U (U (g)

j − n(g)

j )‖2
2

)

× exp
(−‖ω(g)‖2

2/2γ 2
) × exp

(−‖ζ (g)‖2
2/2τ 2

) × 1{Ĥ(y(g) ,ω(g) ,ζ (g))=H}. (4.5)

III. Selection-adjusted interval and point estimates Since, we are interested in the selection-adjusted
law of the target statistic b̂j;E(g) , we marginalize over the randomizations in the joint law in (4.5) and

condition on nuisance statistics U (g)

j in order to eliminate nuisance parameters n(g)

j . This finally, leads to

a selection-adjusted density for the target statistic b̂j;E(g) , proportional to

exp
(
−(b̂j;E(g) − bj;E(g) )

2/2σ 2
j;E(g)

)
PH(b̂j;E(g) ), (4.6)

where PH(t) = P((b̂j;E(g) , 
(g), Z (g)) ∈ H|b̂j;E(g) = t) is the conditional probability of selection given

b̂j;E(g) = t. This is the adjusted density to carry out inference on the effect sizes of eVariants.
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Using the corrected law of the target statistic to define T (b̂j;E(g) ; bj;E(g) , σj;E(g) ) that equals

∫ ∞

b̂
j;E(g)

exp
(
−(t − bj;E(g) )

2/2σ 2
j;E(g)

)
PH(t)dt

/∫ ∞

−∞
exp

(
−(t − bj;E(g) )

2/2σ 2
j;E(g)

)
PH(t)dt,

an adjusted (two-sided) p-value can be computed as:

p(b̂j;E(g) ; bj;E(g) , σj;E(g) ) = 2 · min(T (b̂j;E(g) ; bj;E(g) , σj;E(g) ), 1 − T (b̂j;E(g) ; bj;E(g) , σj;E(g) )).

Confidence intervals for bj;E(g) with target coverage 100(1 − α)% are constructed as

{b ∈ R : p(b̂j;E(g) ; b, σj;E(g) ) ≤ α}. (4.7)

And, a MLE is obtained solving

minimize
b

j;E(g)

(b̂j;E(g) − bj;E(g) )2/2σ 2
j;E(g) + log

∫
exp

(
−(t − bj;E(g) )

2
2/2σ 2

j;E(g)

)
PH(t)dt. (4.8)

IV.Approximate and tractable inference Even though, we derived a selection-adjusted law in (4.6), the
term PH(b̂j;E(g) ), the conditional selection probability in (4.6), lacks a tractable closed form expression.
This contributes to the computational bottleneck in constructing intervals or solving a MLE problem
based on the adjusted law of b̂j;E(g) . For a single selection query cast on the data, an approximation
for the adjusted law is proposed in Panigrahi and others (2017). To offer tractable inference based on
(4.6), we provide an approximation for PH(·). Details on the approximation are given in Section B.2 of
supplementary material available at Biostatistics online. Approximate inference in the form of interval
and point estimates is based on plugging P̂H(·) in (4.7) and (4.8). We make precise the steps involved in
obtaining the simplified conditional law (II) and the approximation of the marginal adjusted law (IV) in
Section B of supplementary material available at Biostatistics online.

5. PERFORMANCE IN A cis-EQTL STUDY

In this section and the next, we examine the properties of the proposed pipeline by testing its performance
on data collected in one eQTL study (Lonsdale and others, 2013) and comparing its results with those
of two other “benchmark” procedures. We first rely on simulations of the outcome variables according to
a known model based on genotype data in order to evaluate a number of performance metrics and then
turn to the analysis of the real data. The dataset we analyze is the collection of liver samples in V6p of
the GTEx study (Lonsdale and others, 2013). It comprises 97 individuals, with genotypes for 7 207 740
variants (these variants are obtained as the output of the default imputation pipeline implemented in
Lonsdale and others (2013)) and expression quantification for 21 819 genes. Details on data acquisition
and preprocessing are provided in the Section C of supplementary material available at Biostatistics online.

In studying the performance of the proposed pipeline, we compare it with (i) a slightly modified version
of the analysis strategy in the original GTEx paper, followed by a naive construction of the confidence
interval for the effect sizes of the identified eVariant (GTEx+vanilla); (ii) a strategy that uses “out-of-the-
box” selective inference tools and employs no randomization during the selection steps (Bonf+Lasso+Lee
et al.). Specifically,
GTEx+vanilla (G.V.) The selection of eGenes is done controlling FDR at level 0.1 with the BH procedure
applied to p-values for the global null obtained via the Simes’ combination rule Simes (1986). We note
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that this differs from the original GTEx paper in two minor ways: the p-values for the global null for
eGene discoveries are obtained via Simes rather than permutations in Lonsdale and others (2013), and
the adopted FDR controlling procedure at this stage is BH rather than Storey’s procedure referred in the
GTEx paper. In the second stage, the eVariants are selected by an adaptive forward–backward selection: a
variable is added to the regression only if it p-value is lower than the largest p-value for global nulls in the
set of discovered eGenes [with details given in Lonsdale and others (2013)]. To estimate effect size, we
fit the least squared estimator on the selected model for the point estimate and use the normal quantiles to
construct intervals, thereby “naively” ignoring the selection in the two screening stages.
Bonf+Lasso+Lee et al. (B.L.L.) The screening is conducted in a two-stage procedure similar to our
proposed pipeline, with the exception that there is no randomization in the t-statistics or in the second
stage selection of eVariants. The confidence intervals for effect sizes are constructed using the adjustments
for the LASSO detailed in Lee and others (2016). We note that this approach only accounts for the eVariant
selection the second stage, but not for eGene selection in the first stage. Further, Lee and others (2016)
does not give a selection-adjusted point estimate, so we report the unadjusted least squared estimator on
the selected variants as a point-estimate.

Comparing our proposed procedure with these two alternatives, therefore, enables us to study how its
performance relates to that of (i) a state-of-the-art method for the identification of eVariants that does not
take into account at all the effect of selection at the inferential stage, and to that of (2) an approach to correct
for selection that relies on out-of-the-box tools, without fully capturing the hierarchical identification of
eVariants and not capitalizing on the possible power increases due to randomization.

5.1. Simulation study

We start with a simulation study to explore the performance of the different procedures: using the genotypes
from the GTEx liver sample, we generate artificial gene-expression values and investigate how the three
approaches reconstruct the effect sizes of eVariants.

5.1.1. Data generation In choosing a strategy to simulate gene-expression values, we followed the
following principles: (i) the selection strategy in G.V. should lead to a number of eGene and eVariant
discoveries similar to those detected in the real data in Lonsdale and others (2013); (ii) there should be
some genes that are not true eGenes, so that it is sensible to consider “false discoveries”; (iii) there should
be eGenes regulated by multiple eVariants; and (iv) the model should be as simple as possible, to make the
interpretation of the results straightforward. After experimenting with a few models, that satisfied criteria
(ii)–(iv), we found the following to be the one that gave results closer to those in Lonsdale and others
(2013) and adopted it. For each gene g for which gene expression is available in the real data, and for
which Vg cis variants have been genotyped, we generate a vector Y (g) ∈ R

n of synthetic gene expression
as follows.

i. We randomly set the number of causal variants |S (g)| from {0, 1, 2, . . . , 9} according to the distribu-
tion in Figure 2 of supplementary material available at Biostatistics online, so that approximately
a third of genes contain at least one true signal.

ii. A set S (g) of causal variants of the selected size is drown randomly from the variants in the cis region.
To assure, however, that the desired number of “independent” signals is present, we want to make
sure that S (g) does not contain variants that are closely correlated and whose contribution to the
gene-expression value would be indistinguishable. To achieve this goal, we subject the genotyped
variants to hierarchical clustering with minimax linkage (an unsupervised pruning technique detailed
in Section A of supplementary material available at Biostatistics online): we randomly select |S (g)|
clusters, and randomly assign an element in the cluster to be a causal variant. We also rely on this
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same clustering to identify a “pruned” set of variants that will constitute the input of the penalized
regression, which needs to work on non-collinear variables. From each of these clusters, we choose
a representative, correlated by at least ρ0 = 0.5 with all members of that cluster. We remark that
the cluster representative and the possible causal variant residing in the cluster do not necessarily
coincide.

iii. The expression values Y (g) are generated according to the following model Y (g) =
∑

k∈S(g)

X (g)

k βk +

ε(g), ε(g) ∼ N (0, I ), where the noise vector ε(g) ∈ R
n is independently sampled for each gene, each

X (g)

k is standardized with mean zero and unit variance, and true effect sizes are βk = 3.

5.1.2. Evaluation metrics Because of the computational costs associated to the analysis methods, we
do not repeat the data generating process multiple times for a given gene, rather we interpret our results
by aggregating across genes with the same number of causal variants. The focus of this work is to provide
methods that allow correct inference for the adaptive target defined in (3.4), dependent on the selection
of variants associated with each eGene. To evaluate the performance of the three approaches with this
respects, we rely on three quantities: the coverage of the confidence intervals, their lengths, and the
average empirical risk of the point estimate computed with respect to a quadratic loss function. Note that
the parameters to be estimated in the loss metric for risk evaluation are the adaptive targets.

At the same time, given that the three procedures differ in their selection steps, to interpret appropriately
the results, it is useful to also compare them at the level of selection. In keeping with the hierarchical
structure of the selection, there are two levels at which it makes sense to talk about FDR and power: the
eGene level and the eVariant level, for selected eGenes. FDR and power are easily defined for eGenes.
To explore the performance at the level of eVariants, we are going to focus on the eVariants for selected
eGenes (therefore, eVariants for erroneously missed eGenes are not going to be considered in our power
evaluation). Our proposed pipeline and B.L.L. receive as input only cluster representative SNPs and
therefore can only identify these as eVariants: we consider their discoveries correct if they correspond
to a cluster that contains a true causal variants; likewise we consider a causal variant discovered if the
cluster that contains it has been selected. We further note that the selection-adjusted confidence intervals
can be used to refine the selection of eVariants: while regularized regression might estimate a coefficient
as different from zero, if the corresponding adjusted confidence interval covers zero, it make sense to
discard the eVariant from the discovery set. Therefore, it seems appropriate to evaluate FDR and power
on the basis of this final post-inference set.

5.1.3. Results and insights Figures 2 and 3 summarize the results of the simulations, the first focusing
on the inference on effect sizes, which is the object of the present article, and the second anchoring these
results in the context of FDR and Power. Figure 2 clearly illustrates that our pipeline succeeds in producing
confidence intervals with the correct empirical coverages, and that the lengths of these confidence intervals
are not unduly large. The failure of G.V. to produce confidence intervals with the right coverage is expected:
the interest of our results is in showing the extent of the departure. While adjusting for eVariant selection
as in B.L.L. improves coverage, the approach still falls short of the target for variances in erroneously
selected eGenes and for eGenes with a small number of causal variants. Moreover, the lengths of these
adjusted confidence intervals are substantially longer than the ones we propose, which are just 1.5 times
longer than the naive—this is the advantage of randomization.

Figure 3 puts these results in context of the selection outputs of the three different methods. Looking
at eGene selections, we can see that B.L.L. is unduly conservative at the eGene level as its FDR is much
lower than that of our procedure. It is reassuring to note that Proposed has slightly higher power than the
benchmark G.V. at the eGene selection level, while controlling for FDR at the level of 0.1. At the eVariant
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Estimates of cis-eQTL effect sizes 13

Fig. 2. Comparison of coverages (a) and lengths (b) of confidence intervals and risk (c) of the MLE for the adaptive
targets resulting from three different methods: GTEx+vanilla (G.V., red), Bonf+Lasso+Lee et al. (B.L.L., purple),
and our proposed pipeline (blue). The values are averaged across all the selected genes with the same true number of
causal variants, reported on the x-axis. The target coverage is 0.9, corresponding to the dotted horizontal line in the
first panel. The dots represent the averages across all eGenes within a signal regime, and the vertical bars represent
one standard deviation in both directions.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Summary of FDR (at level 0.1) and power for eGene and eVariants. The top row refers to eGenes and reports
(a) the total number of discovered eGenes, (b) the FDR, and (c) power. The bottom row, (d), (e), and (f) refers to
eVariants and focuses only on the eVariants relative to the discovered eGenes for each method. (d) It calculates FDR
for each of the gene categories on the basis of the results of the selection procedures; (e) it shows how these results
change once parameters whose adjusted confidence intervals cover zero are eliminated; and (f) it illustrates the power
corresponding to the selection in (e). (a), (c), (d), (e), and (f) These are tabulated for each of the ten categories of
genes, defined by their true number of causal variants.
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selection stage, we report the FDR of the screening procedure standard (used in B.L.L.) and randomized
regularized regression (used in Proposed) and the forward–backward selection (used in G.V.). The average
number of eVariants per eGenes reported by the methods are shown in Table 1 of supplementary material
available at Biostatistics online. Because the number of declared eVariants (post-inference) are determined
by whether their intervals cover 0 or not among the screened evariants (pre-inference) for both B.L.L. and
Proposed, we see the decrease in the average number of reported variants with the exception of forward–
backward selection. In G.V., the eVariants (reported variants) are selected by an adaptive forward–backward
selection and this report is not impacted by inference; thereby, the false discovery proportion (FDP) curve
is the same both pre- and post-inference for G.V. Both the standard and randomized regularized regression
do not appear to control the FDR (Figure 3(d)): correction based on the adjusted confidence intervals (see
Figure 3(e)) reduces false discoveries from (d) by about 20–45%. Note that the FDR level with the proposal
is significantly better for genes that have 0 signals, but declared as eGenes, which G.V. does not redeem
for at all in the second stage of screening. The performance at eGenes, however still is inferior to the one
of G.V. It is rather reassuring that the selections of G.V., which practically coincide with those reported in
Lonsdale and others (2013), have low FDR at eGenes: this documents the efforts of a large community of
scientists whose focus was precisely the selection of eVariants. The overall worse FDR control with the
proposed pipeline is ascribable to the property of the selection procedure itself, in this case the LASSO
which does not have screening guarantees in terms of FDR. Still, evident from Figure 3(e), our results are
encouraging as the inference step contributes to decreasing the FDP considerably, mitigating the worse
performance of the selection step to some extent. See an example in Section D of supplementary material
available at Biostatistics online on the discrepancy between FDR control and selective false coverage rate
control.

To highlight the power associated exclusively with the randomized conditional strategy to inference, we
include a power metric for the proposed approach that computes the proportion of true signals discovered
divided by the number of true signals screened. The broken line in Panel (f) depicts the conditional power,
recording as high as 60–65% success rate of detecting a signal post our proposed inference, conditional
on the signal being screened by the selection procedure. Thus, adopting selection strategies that mimic
more closely the eVariant screening in the second stage in GTEx will lead to improved and comparable
FDR metrics while deploying our inferential pipeline post such a selection will provide reliable effect size
estimates for the identified eVariants with a promisingly high power of detection.

We conclude this analysis section by providing the link to the code developed for our methods in a simu-
lation prototype at https://github.com/snigdhagit/selective-inference/tree/simulation_prototype/selection/
simulation_prototype. Details of the simulation setting and the coding pipeline are provided in Section E
of supplementary material available at Biostatistics online.

5.2. Effect sizes in GTEx liver data

We now turn to the analysis of the real expression data available for liver in Lonsdale and others (2013).
We analyze the data using the three procedures we compared via simulation, reporting the eVariants whose
adjusted-interval estimates does not cover 0.

Our pipeline identified 2216 eGenes, with 1663 in common with the G.V., which detects 1831 eGenes in
all. The B.L.L. selects 1395 eGenes, 1341 of which are also identified by our proposal. Figure 4 illustrates
the eVariants results: the number of detected eVariants and distribution of the lengths of their confidence
intervals. The pipeline we have constructed detects an average of 4–5 eVariants per gene, while B.L.L.
reports 2–3 eVariants on an average and G.V. 1 eVariant on average per eGene. Our simulations indicate
that both our proposed procedure and B.L.L. tend to have higher FDR than G.V., so that we cannot assume
all the additional discoveries to be valid ones. Nevertheless, even assuming a false discovery rate as high
as 50%, the number of extra discoveries is such that we can expect that B.L.L. and our proposed method
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Fig. 4. Left panel gives the distribution of the number of eVariants per eGene as reported by the three methods of
inference. Right panel plots average lengths of intervals using the interval estimates based on the same.

Table 1. Comparison of total number of reported eVariants between two methods

Across common eGenes

Proposed

+ − Total

G
T

E
x

be
nc

hm
ar

k + 1224 439 1663

− 4584

Total 5808

Across all eGenes

Proposed

+ − Total

G
T

E
x

be
nc

hm
ar

k + 1224 837 2061

− 8175

Total 9399

do allow the identification of a considerable number of additional true discoveries, or, in other words, that
G.V underestimates the number of eVariants. In fact, this is corroborated by Table 1 that compares the
total number of eVariant findings between G.V. and the proposed pipeline. The table in the left panel gives
the number of common and exclusive eVariants reported by each procedure across the common eGenes;
a total of 1663 eGenes are reported by both. The table in the right panel compares the eVariant findings
across all eGenes reported by any of these proposals.

6. DISCUSSION

In many genomic studies, the first step of data analysis identifies interesting associations between variables.
Inference of parameters governing these associations is attempted only in a second stage. Naive estimates,
that rely on standard methods using the same data that suggested importance of these associations, do not
enjoy reliable statistical properties. When the studies, however, rely on scarce biological samples, data-
splitting (or deferring to a new sample for inference) is not a viable option. The studies of genetic regulation
of gene expression in hard-to-access human tissues are a perfect exemplification of these challenges. In
this work, we have explored the extent to which the conceptual framework of conditional inference after
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selection can be brought to provide researchers with reliable tools to estimate the effect size associated to
DNA variants, associated with variation in gene expression. Following the standard practice in the eQTL
community, we have described a two-stage process for the selection of relevant cis variants: first genes
under cis regulations are identified, and then the subset of important variants in their vicinity.

Deriving appropriate conditional inference in this setting presented a number of challenges. In addition
to accounting for a two-staged selection process, calculation of interval and point estimates is more involved
post-randomization unlike the easy computation of intervals based on a truncated Gaussian law in Lee and
others (2016). To bypass the fact that the exact selection-adjusted law lacks a closed form expression, we
introduce an approximation strategy that is likely to be useful in other contexts. A simulation study on the
scale of real data underscored the dangers of ignoring selection at the inferential stage: naive confidence
intervals for effect sizes of variants identified with a published strategy missed the target coverage by
a wide margin. The offered pipeline leads to confidence intervals with correct coverage and lengths,
appreciably shorter than those obtained with out-of-the-box tools for conditional inference. While these
results are encouraging, we also noted that the selection procedure in our pipeline has appreciably worse
performance that state-of-the-art variant selection strategies in terms of FDR. Specifically, we observe that
the regularized regression we adopted does not enjoy FDR control. In fact, we realize that the techniques
in this work are amenable to a more general framework of convex learning programs, with the proposed
mining pipeline as a specific example in this broader class of selection schemes. This paves way for
interesting future directions to study if computation for conditional inference can be carried out for other
selection strategies with better FDR control, as SLOPE, the knockoffs, etc. We conclude with the hope to
take on these challenges in other biological contexts with this work as a first attempt of tractably addressing
the issue of selection bias in effect size estimation in eQTL.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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