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1. Introduction

We are very grateful to the editors for the opportunity to expand and deepen the reflection on the possible
advantages of a knockoff approach to genome-wide association studies. The discussants bring up a number
of important points, related to either the knockoffs methodology in general or its specific application to
genetic studies. In this rejoinder we offer some clarifications, mention relevant recent developments, and
highlight a few remaining open problems.

2. Conditional versus marginal hypotheses

The model-X framework of knockoffs (Candès et al., 2018) addresses a general multiple testing problem
in which the jth null hypothesis states that the response Y is independent of the explanatory variable Xj

conditional on all other predictors X−j. In the very special case where the joint distribution of X and Y is
multivariate Gaussian, this is equivalent to testing for the presence of conditional or partial correlations
(Rosenblatt et al., 2019). In general, the nonnull variables in the model-X framework are those belonging
to the Markov blanket of X on Y (Candès et al., 2018).

There is little sense in arguing that, generally speaking, conditional or marginal hypotheses are the right
ones to test: the choice between these two approaches will clearly depend on the problem at hand. For
example, if Y describes the cancer status of a tissue sample and each Xj the expression level of gene j,
one might be interested in testing the hypotheses that Y ⊥⊥ Xj. The rejections of these null hypotheses
would describe all genes whose expression level changes with cancer status. Whenever we think of relating
a response Y with a linear, or generalized linear, model in terms of X , and test the hypotheses that the
regression coefficients vanish, we are testing hypotheses that are of a conditional flavour. These hypotheses
correspond exactly to the conditional ones in the case where the response follows a generalized linear model;
see Candès et al. (2018).

In a genome-wide association study, we find ourselves precisely in a situation of the latter type. The
traits of interest are polygenic, i.e., they are influenced by the contribution of many genetic variants,
and the models most commonly used in the scientific community are either linear or log-linear. Testing
conditional hypotheses corresponds to trying to identify those genetic variants whose coefficients are
nonzero in these models. As we pointed out in our paper, researchers have attempted to apply multivariate
models since the very beginning; see, for example, Hoggart et al. (2008). While the scientific interest of the
conditional hypotheses was never in question, the genetic community encountered a number of challenges
in the application of multivariate methods that we have only recently begun to be able to address. A
fundamental difficulty has been the inability to couple the findings of procedures such as the lasso with
precise reproducibility guarantees: in order to be able to associate a p-value with each of the genetic variants
in the study, researchers resorted to marginal analysis. The knockoffs approach, by guaranteeing control
of the false discovery rate over the selected variants, bypasses this difficulty and therefore opens up the

©c 2019 Biometrika Trust

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article-abstract/106/1/35/5318371 by Stanford U
niversity user on 02 August 2019



36 M. Sesia, C. Sabatti AND E. J. Candès

possibility of analysing the data with those models that geneticists have always thought provided a more
accurate description of reality.

Rather than repeating ourselves, we wish to use the occasion to augment the discussion of this topic
with some additional references. Firstly, let us point out that, as underscored by Marchini (2019), the
standard methods of analysis of genome-wide association data already depart from an entirely marginal
framework. By relying on linear mixed models (Kang et al., 2010; Zhang et al., 2010) with a covariance
matrix estimated from the entire genotype data, geneticists effectively try to estimate the contribution of a
specific variant Xj in addition to the contribution of the rest of the genome X−j. While this approach has
proven to be a step forward, it still suffers from some important limitations; for example, it relies on fairly
restrictive distributional assumptions, and it requires the researcher to postulate a different model relating
the phenotype Y to the genotype X for every variable that is analysed. Possibly one of its most important
limits is that it is unable to resolve the contribution of multiple variants in linkage disequilibrium, a topic
that we shall discuss in greater depth in § 4.

Secondly, we would like to refer the reader to two recent contributions to the literature of genome-
wide association studies, Buzdugan et al. (2016) and Klasen et al. (2016), who present methods which
are in a direction similar to ours: that is to say, enabling a multivariate analysis with some reproducibility
guarantees. While these authors attempt to control the familywise error rate, Buzdugan et al. (2016)
in particular has interesting remarks on the conditional versus marginal hypotheses; they observe how,
under appropriate assumptions, if ‘the coefficient [for the single nucleotide polymorphism (SNP) j] in the
multivariate linear regression is different from zero, [. . .] there exists a non-zero direct causal effect from
SNP j to the phenotype Y . This statement is not true with marginal associations (i.e., if SNP j is only
marginally associated with Y ) since adjusting for all other SNPs (different from SNP j) is crucial for causal
statements’. Since the ultimate scientific goal is to identify causal variants (Edwards et al., 2013; Visscher
et al., 2017), this is a strong argument in favour of conditional hypotheses.

Finally, we want to underscore another sense in which marginal hypotheses are becoming less interesting
in genome-wide association studies. Polygenic traits are influenced by a very large number of genetic
variants (Boyle et al., 2017). Taking this together with the presence of linkage disequilibrium and the fact
that large sample sizes allows one to detect even small departures from independence, one realizes that
soon we will be in the position to reject the marginal null Y ⊥⊥ Xj for every Xj in the genome, an utterly
uninteresting result.

3. False discovery rate versus familywise error rate

Even though the familywise error rate is still the most commonly used measure of Type I error in genome-
wide association studies (Rosenblatt et al., 2019), we feel quite strongly that the false discovery rate is more
appropriate. As modern studies of complex traits often lead to the discovery of several hundreds of loci
(Boyle et al., 2017; Visscher et al., 2017), it seems excessive to worry about the probability of reporting a
single false finding, especially when large leaps of faith are involved in the traditional postulation of the null
hypotheses and in the assumptions of the linear models. Among the statistical genetics community there is
already widespread acceptance of the concept of false discovery rate for the analysis of gene expression and
other genomic measurements (GTEx Consortium, 2017). It is more plausible that the adoption of the false
discovery rate in genome-wide association studies has been hindered by the methodological difficulties
arising from the correlations between the variants, rather than any fundamental objections to its principle.
Therefore, as new statistical methods are developed, we expect that the use of the false discovery rate in
genome-wide association studies will keep on expanding.

4. Resolution of conditional testing

In a genome-wide association study, each explanatory variable Xj can naturally be chosen to represent
a single nucleotide polymorphism, so that feature selection will be performed at the highest possible
resolution allowed by the genotyped data. However, unless the signals are sufficiently strong, conditional
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testing could be a hopeless task and different hypotheses should be analysed instead. For example, if X1 and
X2 are nearly identical within the collected sample, it may be wiser to ask whether Y ⊥⊥ (X1, X2) | X−{1,2}
than whether Y ⊥⊥ X1 | X2, X−{1,2} and Y ⊥⊥ X2 | X1, X−{1,2}. Consequently, if knockoffs are applied to the
individual hypotheses, X̃1 and X̃2 will certainly almost be equal to X1 and X2, and thus powerless (Rosenblatt
et al., 2019). It is important to underline that this is not a limitation of our method. Instead, it is an inevitable
reflection of the fundamental undecidability of the question that was asked, as conditional testing can only
be performed at the resolution allowed by the data.

The solution adopted in our paper is that suggested by Candès et al. (2018): the variants are grouped
based on their empirical correlations, and knockoffs are constructed only for a set of promising prototypes
identified through a suitable data-carving scheme. Even though the choice of resolution may be somewhat
arbitrary in our paper, our methods can easily be applied with different values of the clumping correlation
threshold. It is left to future research to determine whether an optimal choice exists and how to combine the
results obtained at different resolutions. As correctly pointed out by Jewell & Witten (2019), our approach
formally amounts to asking whether Y ⊥⊥ X ∗

j | X ∗
−j, where X ∗

j indicates the prototype for the jth group.
Alternatively, one could directly test groupwise hypotheses of the type Y ⊥⊥ (X1, X2) | X−{1,2} by extend-

ing the notion of group knockoffs (Dai & Barber, 2016; Katsevich & Sabatti, 2018) to our methods. This
approach arguably offers a more elegant interpretation, as it completely avoids the pruning of any markers
(Marchini, 2019), at some additional computational cost. Along this line we have already developed new
efficient algorithms that will be presented as part of our follow-up work.

To put this in the context of the genetics literature, the standard analysis of genome-wide association
studies allows only the identification of loci that are marginally associated with the trait of interest, without
discriminating between the many variants that are present at these loci. To increase the resolution of the
findings, one resorts to what are known as fine-mapping methods (Hormozdiari et al., 2014; Spain &
Barrett, 2015). These invariably rely on a multivariate model, and are also faced with the impossibility
of resolving the signal beyond the level of information present in the data. For example, the method of
Hormozdiari et al. (2014) outputs a causal set of variants that is guaranteed to contain the truly causal
ones, but will also include others which are practically indistinguishable from these. An interesting feature
of the knockoff-based approach to genome-wide association studies is that, effectively, it simultaneously
performs locus identification and fine mapping.

5. Confounders

The confounding effect of an inhomogeneous population is a major source of concern in the marginal
analysis of genome-wide association studies (Pritchard et al., 2000), so it is not surprising that the discus-
sants should bring this up (Bottolo & Richardson, 2019; Marchini, 2019). Let us explain the issue through
a stylized example. Imagine that a statistician has available genotypes of individuals blindly sampled from
the European and African populations, which have substantially different diets. Suppose further that our
statistician is interested in the genetic determinants of blood lipid levels, which are influenced by dietary
intake and hence have different mean levels in the European and African populations. Then all the vari-
ants Xj that differ in frequency across the two populations, of which there are many, will show a strong
association with the response Y and may get picked up. However, they may have no direct genetic link
to blood lipid levels. Rather, a strong signal might be observed simply because the value of a marker is
correlated with the population an individual belongs to, and different populations have different diets, and
diets influence blood lipid levels.

As recognized previously (Klasen et al., 2016), conditional testing already implicitly accounts for any
population structure. To quote from Klasen et al. (2016), ‘testing of markers with a high-dimensional
variable selection procedure, which can account for the correlations between the markers, does not require
any population structure correction at all’. This is simply because we are asking whether a particular variant
Xj provides information about the phenotype in addition to anything that can already be inferred from the
value X−j of all the other hundreds of thousands of variables. Conditioning on X−j implies conditioning on
the different ancestries of the individuals. To return to our example, if we get to see hundreds of thousands
of genetic variants about an individual, then we already know which population this individual belongs to.
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In our analysis of the Northern Finland 1966 Birth Cohort study (Sabatti et al., 2009), the first five principal
components of the genotype matrix are therefore included mainly to increase power.

The real issue here concerns the validity of the sampling mechanism. As observed in Bottolo & Richard-
son (2019), the hidden Markov model of Scheet & Stephens (2006) is better suited to describing populations
that are homogeneous and unrelated, or that contain known patterns. If the structure of the subpopulations
is unknown, more complex models (Falush et al., 2003; Delaneau et al., 2012; O’Connell et al., 2014,
2016) should be used to generate knockoffs. Since the modelling of inhomogeneous populations typically
relies on more refined hidden Markov models, we can say in response to Bottolo & Richardson (2019)
that the extension of our work is, at least conceptually, rather straightforward; it merely involves some
novel computational challenges, which will be addressed in future work. Meanwhile, our current approach
can be further justified by observing that knockoffs tend to be quite robust against some degree of model
misspecification (Barber et al., 2018; Candès et al., 2018; Romano et al., 2018).

6. Case-control studies

Marchini (2019) asks about the effect of the artificial inflation on the frequency of the haplotypes
surrounding the causal variants in case-control studies. There are two populations we might want to think
about: a prospective population GXY of individuals having certain characteristics, such as all adult males
living in the UK; and a retrospective population FXY in which cases are usually more prevalent (Marchini,
2019). In the retrospective population, the proportion of cases versus controls takes on an arbitrary value,
which is typically higher than that in the prospective population. Formally, the relationship between the
prospective and retrospective populations is as follows:

GX |Y = FX |Y , GY |= FY .

The equality follows directly from the assumption that cases and controls in the study are randomly sampled
from the prospective population of diseased and healthy individuals. The inequality is due to the fact that
the proportions of cases typically differ. Consequently, the marginals are different as well, i.e., GX |= FX .

In our work, we obtain independent samples from the retrospective population FXY . Thus, as long as
the hidden Markov model provides a good approximation for the marginal FX , the method applies and the
inference is valid. Since we estimate FX by relying on the genotypes of the cases and controls contained in
our sample, we control the false discovery rate for testing Y ⊥⊥ Xj | X−j whenever (X , Y ) ∼ F . Although
we do not prove this here, the definition of a null does not change regardless of whether (X , Y ) ∼ G or
(X , Y ) ∼ F . We can loosely say that the definition of conditional independence does not depend on the
distribution of the covariates. We believe this answers Marchini’s comment on Type I error control.

There is a broader issue of interest as well. To be sure, we often claim that one attractive feature of
the knockoffs approach is that we may want to use lots of unlabelled data to learn the distribution of the
covariates X . If this were the case, we would learn GX , not FX . We would then construct features that are
exchangeable when X ∼ GX , but perhaps not when X ∼ FX . What is the implication of this? Despite the
apparent mismatch, knockoffs constructed in this way provide valid inference also when X ∼ FX ! This
fact will be rigorously established in a future publication. Our intent here is merely to explain that our
approach allows for considerable flexibility in the way we construct knockoff variables in case-control
studies.

Marchini (2019) also asks about power. In light of our discussion, we might ask whether we should
build knockoffs based on GX or on FX so as to maximize power. This is an interesting but delicate question,
which requires more analysis than we can offer here.

7. What makes good negative control variables?

The idea of using pseudo-variables to guide the selection of important features is not new and goes back
at least to Miller (1984), as remarked in Barber & Candès (2015). Having said that, there is a profound
distinction between a vague programme and an operational procedure that achieves clearly stated goals.
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This is best explained by focusing our remarks on the work of Wu et al. (2007), which is brought up by
Rosenblatt et al. (2019), and on permutation techniques discussed in Bottolo & Richardson (2019).

Wu et al. (2007) stated that ideal pseudo or phony variables should have two properties, which were
recalled in Rosenblatt et al. (2019): (A1) real unimportant variables and phony unimportant variables
have the same probability of being selected on average; and (A2) real important variables have the same
probability of being selected whether or not phony variables are present. This is a wishful list that their
paper does not show how to implement. In contrast, the knockoffs framework gives us some precise rules
for constructing synthetic features which can be safely used as negative controls, as well as providing
a concrete selection procedure, a filter, which sifts through variable and knockoff scores computed via
any method the statistician suspects to be powerful while rigorously controlling the false discovery rate
(Barber & Candès, 2015); this filter is unlike anything we have seen in the literature. We expand on these
two novelties below.

Knockoff variables are entirely different from existing pseudo-variables, including variables obtained via
permutations, and we make this clear through the simplest possible example. Imagine we have n independent
and identically distributed samples (X (i)

1 , X (i)
2 , Y (i)) (i = 1, . . . , n), drawn from a population in which

(X1, X2) ∼ N (0, �), Y | X1, X2 ∼ N (X1, 1),

so that the first variable belongs to the linear model while the second does not.We assume that X1 and X2 have

unit variance and that cor(X1, X2) = 1/2. By definition, knockoff variables satisfy (X̃1, X̃2)
d= (X1, X̃2)

d=
(X1, X2), so that a knockoff feature correlates with a true feature in exactly the same way as a pair of true
features, i.e., cor(X1, X̃2) = 1/2. How do the four pseudo-variable proposals of Wu et al. (2007) compare? In
the first case, the pseudo-variables X ∗

1 and X ∗
2 are independent standard normal and independent of anything

else. The proposal would be the same if the covariates were not Gaussian, as long as each marginal has
mean 0 and variance 1. Clearly, (X ∗

1 , X ∗
2 ) is not at all distributed as (X1, X2) and, moreover, cor(X1, X ∗

2 ) = 0.
In the second proposal, the pseudo-variables (X ∗

1 , X ∗
2 ) are obtained by applying a random permuta-

tion (see also Bottolo & Richardson, 2019); concretely, the pseudo-variables for the ith observation are

{(X (π(i))
1 , X (π(i))

2 )}, where π is a random permutation of {1, . . . , n}. By construction, we now have (X ∗
1 , X ∗

2 )
d=

(X1, X2). However, a simple calculation shows that whereas cor(X1, X̃2) = 1/2, cor(X1, X ∗
2 ) = 1/2n.

Thus, in the limit of large samples, the correlation between X1 and X ∗
2 vanishes; so it is, once again,

completely different. The remaining proposals in Wu et al. (2007) are refinements of the first two and
involve projecting the above pseudo-variables onto the orthogonal complement of the space spanned by
the original covariates.

Consider now what happens when we compute statistics for testing whether variables are in the model
or not. Here, the sample correlation between X2 and Y has mean 1/2 whereas that between X ∗

2 and Y
vanishes; it is equal to 0.5/n. Hence, the permutation X ∗

2 cannot serve in any way as a negative control.
To serve as a negative control, a phony variable needs to have the same explanatory power as the null
variable being tested; colloquially, we might say that it needs to have the same R2. A phony variable
generated by a random permutation, however, is essentially independent of the response and therefore has
no explanatory power whatsoever. These arguments also apply to the forward selection method of Wu et al.
(2007), as it is easy to imagine examples in which true nulls have a much higher chance of being selected
than permuted features. In summary, permutation methods may be useful for testing the existence of any
relationship between a response and a family of covariates, but they generally cannot be used to provide
any finer-grained information (DiCiccio & Romano, 2016). It is, therefore, impossible to understand how
the insights of Wu et al. (2007) could ‘later be formalized in the knockoff conditions’ as suggested by
Rosenblatt et al. (2019).

A slightly more sophisticated example of the same principle is shown in the numerical experiment of
Fig. 1. Here, the performance of knockoffs is compared with that of permuted variables and independent
Gaussian pseudo-features, and the results provide a striking visual representation of why such phony
variables cannot be used for calibration.
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Fig. 1. Measures of feature importance computed with ridge regression on n = 1000 independent realizations of
p = 1000 variables sampled from a hidden Markov model and augmented with different types of artificial covari-
ates. The response is simulated from a linear model with 60 nonzero coefficients. The 60 truly important variables,
i.e., those whose coefficients in the linear model are nonzero, are not shown. (a) Knockoffs can be safely used as
negative controls because they are as likely to be selected as the unimportant original variables. (b) Permuted vari-
ables cannot be used as negative controls because they are less likely to be selected than the unimportant original
variables. (c) White-noise dummy variables cannot be used as negative controls because they are less likely to be

selected than the unimportant original variables.
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Fig. 2. Simulation with p = 1000 covariates distributed as a Markov chain and exact knockoffs generated using the
approach in Sesia et al. (2019), as well as approximate Gaussian knockoffs obtained by applying the method of Candès
et al. (2018). The experiment is the same as that of Fig. 1 in Jewell & Witten (2019), although the covariance matrix
for the Gaussian knockoffs is estimated differently. Each panel displays the pairwise correlations of the covariates,
cor(Xj , Xj−1), versus the pairwise correlations of the knockoffs, cor(X̃j , X̃j−1), for j ∈ {2, . . . , p}: (a) exact knockoffs
for the Markov chain; (b) approximate Gaussian knockoffs. Both knockoff constructions generate synthetic features

whose second moments are exchangeable with the original variables.

Turning to the second novelty, we live in an age in which researchers have powerful and extremely
complex data-fitting strategies at their fingertips; think of deep learning methods, sophisticated Bayesian
computations, or a combination thereof. Knockoffs are designed to work with any feature-importance
measures the statistician would like to use, not just the time of entry in a forward selection algorithm.

8. Modelling the distribution of the explanatory variables

Generating valid knockoffs requires, in principle, perfect knowledge of the distribution FX of the
explanatory variables. Fortunately, this goal is not unrealistic, and a good degree of approximation can be
achieved in practice for genome-wide association studies by leveraging the large amounts of available data
and the prior knowledge encoded in the hidden Markov models of genetic variation (Li & Stephens, 2003).
It is, nevertheless, natural to wonder about the behaviour of knockoffs under model misspecification in
practice. The numerical results in Fig. 2 of Jewell & Witten (2019) are consistent with our experience that
knockoffs are typically quite robust. In fact, requiring that the joint distribution of X̃ and X be exchange-
able in the sense of Candès et al. (2018) is much stronger than asking for false discovery rate control at
a nominal level for a specific choice of importance statistics. However, concrete examples can be found
where an incorrect sampling mechanism leads to an inflation of the Type I errors (Romano et al., 2018).

For hidden Markov models, the approximate knockoffs of Candès et al. (2018) based on the Gaussian
assumption are not rigorously guaranteed to control the false discovery rate and are often less powerful
than our exact construction. To illustrate this point with an example, we have replicated the experiment
of Fig. 1 in Jewell & Witten (2019), with a small technical modification, and displayed the results in
Figs. 2 and 3. Since the empirical covariance matrix of X is almost singular in this simulation, Gaussian
knockoffs based on the second-order approximation in Candès et al. (2018) have no power. The reason for
our results in Fig. 2 being different is that the empirical covariance matrix was shrunk in Jewell & Witten
(2019) in the attempt to generate nontrivial Gaussian knockoffs. On the other hand, our algorithm supplied
with knowledge of the hidden Markov model structure can generate powerful knockoffs without violating
exchangeability.
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Fig. 3. Histogram of the pairwise correlations between variables and knockoffs,
cor(Xj , X̃j) for j ∈ {1, . . . , p}, for the same experiment as in Fig. 2. The approximate
Gaussian knockoffs, Gaussian (grey), Markov chain, black, are almost identical to the

original variables and will therefore have very little power in practice.

9. Sampling knockoffs

The conditional distribution of knockoffs X̃ given the observed X is not uniquely defined for any fixed
data distribution FX (Rosenblatt et al., 2019). For example, X̃ = X satisfies the required exchangeability
properties, despite having no practical use. A continuous family of conditional knockoff distributions is
known for Gaussian variables, in which case one distribution is typically chosen by solving a semidefinite
program to minimize the pairwise correlations between Xj and X̃j, in order to maximize power (Candès
et al., 2018). Even though a similar optimization problem does not arise as naturally in the context of
hidden Markov models, different constructions are available. For instance, the suggestion of Rosenblatt
et al. (2019) to set Z̃ = Z in Algorithm 2 of Sesia et al. (2019) would also generate exact knockoffs, albeit
more correlated with X .

The recent work of Romano et al. (2018) proposes an alternative machinery that can produce approximate
knockoffs in great generality, without making modelling assumptions on FX (Bottolo & Richardson, 2019;
Rosenblatt et al., 2019). The approach of Romano et al. (2018) is based on deep generative models and can
be powerful because it is driven by the effort to make X̃ as uncorrelated with X as possible, in the spirit
of Barber & Candès (2015). However, deep knockoffs are more computationally expensive and are not
exactly exchangeable when applied to hidden Markov models. Whether the ideas from our paper can be
combined with those in Romano et al. (2018) to obtain an improved knockoff sampler is an open question.
In any event, deep knockoffs may offer a practical solution for the analysis of other types of data for which
a reliable model of FX is either unavailable or intractable.

10. Computational efficiency

We believe that a multivariate analysis with knockoffs is in principle feasible even for very large datasets
(Rosenblatt et al., 2019), although some computational aspects of our pipeline can be improved. The
computational cost of the algorithms for sampling knockoff copies of hidden Markov models described
in our paper is O(npK2), where K is the number of latent states. Even though this is not exorbitant
compared to the cost of estimating FX and evaluating multivariate measures of feature importance, it can
become important when K is large (Bottolo & Richardson, 2019; Marchini, 2019; Rosenblatt et al., 2019).
Moreover, all three of the aforementioned major steps in our variable selection procedure can become
expensive when many samples must be considered. A solution mitigating this limitation will be presented
soon, as we have developed a significantly faster implementation of our methods and are in the process of
applying it to genetic analysis of the UK Biobank data (Bycroft et al., 2018). We will be excited to share
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the genotype knockoffs for this resource, as soon as we are able to generate them with all the properties we
have discussed here (Marchini, 2019). In any case, knockoffs are already more computationally efficient in
our paper than the existing alternatives for high-dimensional conditional testing, such as the randomization
test (Rosenblatt et al., 2019) discussed in Candès et al. (2018).

11. Aggregating dependent discoveries

We have observed in several numerical experiments that the results obtained from different realizations
of the knockoffs can often be combined while empirically controlling the false discovery rate, for example
by keeping only those variables that are selected at least 50% of the times. Whether more stable procedures
and rigorous results can be derived is still under investigation, since it is plausible that such simple heuristics
may fail in certain cases.We are optimistic that future work will bring further improvements in this direction,
even though aggregating the results of different dependent tests is a problem that goes well beyond the
scope of knockoffs (Jewell & Witten, 2019). Most statistical findings are more or less randomized, as they
involve some form of data splitting, resampling, crossvalidation, or simply discretion of the practitioner to
choose a model, use prior knowledge or tune hyperparameters.

12. Statistical power of knockoffs

Methods based on knockoffs may enjoy substantial power as a result of the flexibility afforded by
the choice of the importance statistics. In fact, a variety of sparse estimators, crossvalidation techniques,
Bayesian models and very complex machine learning tools can be used to evaluate importance measures
for the augmented set of original predictors and knockoffs. Of course, the choice of the most appropriate
importance statistics for the problem is left to the user, who has to balance power and computational cost,
and is not dictated by the knockoff procedure. With this in mind, we find the suggestion of Marchini (2019)
particularly useful: it certainly seems promising to leverage the advantages of linear mixed model methods
for the analysis of genome-wide association studies. For example, one can imagine using a screening
procedure based on the results of linear mixed models on original and knockoff genotypes to obtain a
smaller set of variables to pass on to a lasso estimation. We plan to invest some effort in identifying which
importance statistics are most effective and would be happy to see other scientists contribute to this effort.

The argument made by Rosenblatt et al. (2019) in their hypothetical example to illustrate the potential
lack of power of knockoffs rests on the assumption that knockoffs must rely on linear regression. Although
this assumption is unjustified, knockoffs can be very successful even in the adversarial setting that they
describe. To test this claim, we implemented the experiment outlined in Rosenblatt et al. (2019), using
p = 500 variables divided into blocks of size two with internal correlations equal to ρ = 0.9. The number
of nonnull variables is |S| = 20, and their signal amplitude is equal to βj = 0.25. The performance
of knockoffs with lasso statistics is compared with that of the linear regression method suggested by
Rosenblatt et al. (2019) combined with the Benjamini–Hochberg procedure (Benjamini & Hochberg,
1995) at a nominal level of q = 0.1. This choice is intended to make the comparison with knockoffs as fair
as possible, although the Benjamini–Hochberg procedure is not theoretically guaranteed to control the false
discovery rate in this multivariate regression problem. The results reported in Fig. 4 show that knockoffs
are much more powerful than the proposed alternative, even though the experiment was designed to be
clearly unfavourable, according to Rosenblatt et al. (2019).

The presence of strong correlations among the covariates always makes the variable selection problem
harder, but it has no more effect on knockoffs than it would have on any other procedure, as shown in Fig. 4.
In general, knockoff methods perform well for essentially two reasons: they can exploit powerful measures
of variable importance, and they can leverage prior information on the structure of the predictors. We
leveraged predictor information in the experiment, as X̃ was generated using knowledge of the covariance
of X . As long as this information is available, at least approximately, knockoff methods can prove powerful
while controlling the false discovery rate. This justifies deployment of these methods in genome-wide
association studies, since a great deal of prior information is available about the structure of the explanatory
variables.
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Fig. 4. Numerical experiment comparing the performance of knockoffs ( ) and of linear regression ( )
for variable selection with p = 500 variables, in the adversarial setting designed by Rosenblatt et al. (2019) to be
unfavourable to knockoffs. The (a) false discovery rate and (b) power are averaged over 1000 independent experiments;
both methods are applied at the nominal false discovery rate level q = 0.1, although only knockoffs are rigorously

guaranteed to control it.

Supplementary material

The code to reproduce the numerical simulations described in this discussion is available online at
https://bitbucket.org/msesia/gene_hunting_discussion/.
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