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An interacting quantum system that is subject to disorder may cease to thermalize due to lo-
calization of its constituents, thereby marking the breakdown of thermodynamics. The key to our
understanding of this phenomenon lies in the system’s entanglement, which is experimentally chal-
lenging to measure. We realize such a many-body-localized system in a disordered Bose-Hubbard
chain and characterize its entanglement properties through particle fluctuations and correlations.
We observe that the particles become localized, suppressing transport and preventing the ther-
malization of subsystems. Notably, we measure the development of non-local correlations, whose
evolution is consistent with a logarithmic growth of entanglement entropy - the hallmark of many-
body localization. Our work experimentally establishes many-body localization as a qualitatively
distinct phenomenon from localization in non-interacting, disordered systems.

INTRODUCTION

Isolated quantum many-body systems, undergoing uni-
tary time evolution, maintain their initial global purity.
However, the presence of interactions drives local ther-
malization: the coupling between any subsystem and its
remainder mimics the contact with a bath. This causes
the subsystem’s degrees of freedom to be ultimately de-
scribed by a thermal ensemble, even if the full system
is in a pure state [1–5]. A consequence of thermaliza-
tion is that local information about the initial state of
the subsystem gets scrambled and transferred into non-
local correlations that are only accessible through global
observables [4–6].

Disordered systems [7–16] can provide an exception to
this paradigm of quantum thermalization. In such sys-
tems, particles can localize and transport ceases, which
prevents thermalization. This phenomenon is called
many-body localization (MBL) [6, 7, 17–22]. Experi-
mental studies have identified MBL through the persis-
tence of the initial density distribution [22–25] and two-
point correlation functions during transient dynamics
[24]. However, while particle transport is frozen, the pres-
ence of interactions gives rise to slow coherent many-body
dynamics that generate non-local correlations, which are
inaccessible to local observables [26–28]. These dynamics
are considered to be the hallmark of MBL and distinguish
it from its non-interacting counterpart, called Anderson
localization [7–12]. Their observation, however, has re-
mained elusive.

We study these many-body dynamics by probing the
entanglement properties of an MBL system with fixed
particle number [26–30]. We distinguish two types of
entanglement that can exist between a subsystem and
its complement (Fig. 1A): Number entanglement implies
that the particle number in one subsystem is correlated
with the particle number in the other. It is generated
through tunneling across the boundary between the sub-
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FIG. 1. Entanglement dynamics in non-equilibrium
quantum systems. (A) Subsystems A and B of an iso-
lated system out of equilibrium entangle in two different ways:
number entanglement stems from a superposition of states
with different particle numbers in the subsystems and is gen-
erated through particle motion across the boundary; config-
urational entanglement stems from a superposition of states
with different particle arrangement within the subsystems and
requires both particle motion and interactions. (B) In the ab-
sence of disorder, both types of entanglement rapidly spread
across the entire system due to delocalization of particles (left
panel). The degree of entanglement and the timescales change
drastically when applying disorder (central panel): particle
localization spatially restricts number entanglement, yet in-
teractions allow configurational entanglement to form very
slowly across the entire system. A disordered system with-
out interactions shows only local number entanglement while
the slow growth of configurational entanglement is completely
absent (right panel).

systems. Configurational entanglement implies that the
configuration of the particles in one subsystem is corre-
lated with the configuration of the particles in the other.
It arises from a combination of particle motion and in-
teraction. The formation of particle and configurational
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FIG. 2. Site-resolved measurement of thermalization breakdown. (A) One-dimensional Aubry-André model with
particle tunneling at rate J/~, on-site interaction energy U and quasi-periodic potential with amplitude W . (B) We prepare
the initial state of eight unentangled atoms by projecting tailored optical potentials on a two-dimensional Mott insulator at
45Er lattice depth, where Er/h = 1.24 kHz is the recoil energy. (C) We create a non-equilibrium system by abruptly enabling
tunneling dynamics. Following a variable evolution time, we project the many-body state back onto the number basis by
increasing the lattice depth, and obtain the site-resolved atom number from a fluorescence image (SI). (D) We compute the

single-site von Neumann entropy S
(1)
vN from the site-resolved atom number statistics (inset) after different evolution times (scaled

with tunneling time τ = ~/J) in the presence of weak and strong disorder. (E) Probability p1 to retrieve the initial state

(inset) and S
(1)
vN for different W , measured after 100τ evolution. The deviation from the thermal ensemble prediction for strong

disorder signals the breakdown of thermalization in the system. All lines in (C-D) show the prediction of exact diagonalization
calculations without any free parameters. Each data point is sampled from 197 disorder realizations (SI). Error bars denote
the s.e.m.

entanglement changes in the presence or absence of in-
teractions and disorder in the system (Fig. 1B). In ther-
mal systems without disorder, interacting particles de-
localize and rapidly create both types of entanglement
throughout the entire system. Contrarily, for Anderson
localization, number entanglement builds up only locally
at the boundary between the two subsystems. Here the
lack of interactions prevents the substantial formation of
configurational entanglement. In MBL systems, number
entanglement builds up in a similarly local way as for
Anderson localization. However, notably, the presence
of interactions additionally enables the slow formation of
configurational entanglement throughout the entire sys-
tem.

In this work, we realize an MBL system and character-
ize these key properties: breakdown of quantum thermal-
ization, finite localization length of the particles, area-law
scaling of the number entanglement, and slow growth of
the configurational entanglement that ultimately results
in a volume-law scaling. Each property shows a contrast-
ing behavior when the system is prepared at weak disor-
der in a thermalizing state. While the former three prop-
erties are also present for an Anderson localized state,
the slowly growing configurational entanglement qualita-
tively distinguishes our system from a non-interacting,

localized state.

EXPERIMENTAL SYSTEM

In our experiments, we study MBL in the interacting
Aubry-André model for bosons in one dimension [31, 32],
which is described by the Hamiltonian

Ĥ =− J
∑
i

(
â†i âi+1 + h.c.

)
+
U

2

∑
i

n̂i (n̂i − 1) +W
∑
i

hin̂i,
(1)

where â†i (âi) is the creation (annihilation) operator for

a boson on site i, and n̂i = â†i âi is the particle number op-
erator on that site. The first term describes the tunneling
between neighboring lattice sites with the rate J/~, where
~ is the reduced Planck constant. The second term rep-
resents the energy shift U when multiple particles occupy
the same site. The last term introduces a site-resolved
potential offset, which is created with an incommensurate
lattice hi = cos (2πβi+ φ) of period β ≈ 1.618 lattice
sites, phase φ, and amplitude W . In our experiment, we
achieve independent control over J , W , and φ (Fig. 2A).
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Our experiments begin with a Mott-insulating state in
the atomic limit with one 87Rb atom on each site of a
two-dimensional optical lattice (Fig. 2B). The system is
placed in the focus of a high-resolution imaging system
through which we project site-resolved optical potentials
[33]. We first isolate a single, one-dimensional chain from
the Mott insulator and then add the site-resolved poten-
tial offsets Wi with the incommensurate lattice. At this
point, the system remains in a product state of one atom
per lattice site. We abruptly switch on the tunneling by
reducing the lattice depth within a fraction of the tun-
neling time (Fig. 2C). This quench brings the system to
a non-equilibrium state and initializes the unitary time
dynamics corresponding to the above Hamiltonian. The
tunneling time τ = ~/J = 4.3(1) ms and the interaction
strength U = 2.87(3)J remain constant in all our experi-
ments. Following a variable evolution time, we abruptly
increase the lattice depth to project the many-body state
back onto the number basis, which consists of all possible
distributions of the particles within the chain. Finally, we
image the system in an atom-number-sensitive way with
single-site resolution (SI).

In some realizations, particle loss during the time evo-
lution and imperfect readout reduce the number of de-
tected atoms compared to the initial state, thereby inject-
ing classical entropy into the system. We eliminate this
entropy by post-selecting the data on the intended atom
number, thereby reaching a fidelity of 99.1(2)% unity fill-
ing in the initial state, which is limited by the fraction of
doublon-hole pairs in the Mott insulator. The result is a
highly pure state, in which all correlations are expected
to stem from entanglement in the system.

BREAKDOWN OF THERMALIZATION

We first investigate the breakdown of thermalization
in a subsystem that consists of a single lattice site. The
conserved total atom number enforces a one-to-one cor-
respondence between the particle number outcome on
a single site and the number in the remainder of the
system—entangling the two during tunneling dynam-
ics. Ignoring information about the remaining system
puts the subsystem into a mixed state of different num-
ber states. The associated number entropy is given by

S
(1)
n = −

∑
n pn log(pn), where pn is the probability of

finding n atoms in the subsystem (SI). Since the atom
number is the only degree of freedom of a single lattice

site, S
(1)
n captures all of the entanglement between the

subsystem and its complement, and is equivalent to the

single-site von Neumann entanglement entropy S
(1)
vN .

Counting the atom number on an individual lattice
site in different experimental realizations allows us to

obtain the probabilities pn and compute S
(1)
vN . We per-

form such measurements for various evolution times. At

low disorder depth (W = 1.0(1)J), the entropy grows
over a few tunneling times and then reaches a station-
ary value (Fig. 2D). The stationary value is reduced for
deep disorder (W = 8.9(1)J) and remains constant over
two orders of magnitude, up to several hundred tunneling
times. The lack of entropy increase indicates the absence
of heating in the system. The excellent agreement of the
measured entropy with ab initio calculations up to the
longest measured evolution times suggests a highly uni-
tary evolution of the system.

We perform measurements of S
(1)
vN at different disorder

strengths following an evolution of one hundred tunneling
times (Fig. 2E). To evaluate the degree of local thermal-
ization, we compare the results with the prediction of a
thermal ensemble for our system (SI). For weak disorder,
the measured entropy agrees with the predicted value,
whereas the entropy is significantly reduced for strong
disorder—signaling the absence of thermalization in the
system. As a consequence, the system retains some mem-
ory of its initial conditions for arbitrarily long evolution
times. We indeed find that the probability to retrieve
the initial state of one atom per site increases for strong
disorder (inset Fig. 2E).

SPATIAL LOCALIZATION

The breakdown of thermalization is expected to be a
consequence of the spatial localization of the particles.
Previous experiments have determined the decay length
of an initially prepared density step into empty space [25].
We measure the localization by directly probing density-
density correlations within the system. These correla-
tions are captured by G(2)(d) = 〈nini+d〉 − 〈ni〉〈ni+d〉,
where 〈...〉 denotes averaging over different disorder real-
izations as well as all sites i of the chain. The particle
numbers on two sites at distance d > 0 are uncorrelated
for G(2)(d) = 0. If a particle moves a distance d, the sites
become anti-correlated, and the correlator decreases to
G(2)(d) < 0.

We measure the density-density correlations G2(d)
for different disorder strengths in the stationary regime
(Fig. 3A). For low disorder, we find the correlations to
be independent of distance and below zero. This indi-
cates that the particles tunnel across the entire system
and hence are delocalized. On the other hand, at strong
disorder, only nearby sites show significant correlations,
signaling the absence of particle motion across large dis-
tances. We thus conclude that the particles are localized.
We extract the correlation length by fitting an exponen-
tially decaying function to the data (Fig. 3B) (SI). For
increasing disorder, the correlation length decreases from
the entire system size down to around one lattice site
(Fig. 3C).

Our observation of localized particles is consistent with
the description of MBL in terms of local integrals of mo-



4

Distance (sites)

t = 100τ

Thermal (W ≃ 1.0J)

1 2 3 4 5 6 7

-0.2

-0.1

0.0

0.1
G
(2
)

Distance (sites)

t = 100τ

MBL (W ≃ 7.9J)

1 2 3 4 5 6 7

Distance (sites)

t = 100τ

Thermal (W ≃ 1.0J)

1 2 3 4 5 6 7

-0.2

-0.1

0.0

0.1

G˜
(2
)

Distance (sites)

t = 100τ

MBL (W ≃ 7.9J)

1 2 3 4 5 6 7

4 5 6 7 8 9 10 11
0

2

4

6

8

Disorder strength W (J)

C
or
re
la
tio
n
le
ng
th

ξ
(s
ite
s)

ξ

system size limit

t = 100τ

A

B

C

FIG. 3. Spatial localization of particles. (A) The

density-density correlations G(2)(d) as a function of distance
d at weak and strong disorder after an evolution time of 100τ .
The alternating nature of the density-density correlations
stems from the autocorrelation function of the quasiperiodic
potential. (B) Subtracting the influence of the quasiperiodic
potential (SI) reveals the exponential decay of the correlation
function. (C) Particle motion is confined within the correla-
tion length ξ. We use a fit to extract ξ for different disorder
strengths. The fit function is a product of an exponential
decay with the autocorrelation function of the quasiperiodic
potential (SI). Each measurement is sampled from 197 disor-
der realizations (SI). The solid lines show the prediction of
exact diagonalization—calculated without any free parame-
ters. Error bars denote the s.e.m in (A-B), and the fit error
in (C).

tion [26–28]. This model was initially formulated for
MBL in a spin system, but can be extended to lattice
bosons. It describes the global eigenstates as product
states of exponentially localized orbitals. The corre-
lation length extracted from our data is a measure of
the size of these orbitals. Since the latter form a com-
plete set of locally conserved quantities, this picture con-
nects the breakdown of thermalization in MBL with non-

thermalizing, integrable systems.

DYNAMICS AND SPREADING OF
ENTANGLEMENT

We now turn to a characterization of the entanglement
properties of larger subsystems, starting with a subsys-
tem covering half the system size. As for the case of a sin-
gle lattice site, the particle number in the subsystem can
become entangled with the number in the remaining sys-
tem through tunneling dynamics, resulting in the num-
ber entropy Sn = −

∑
n pn log (pn). However, subsys-

tems which extend over several lattice sites, with a given
particle number, offer the particle configuration as an
additional degree of freedom for the entanglement. Con-
figurational entanglement only builds up substantially in
interacting systems, since configurational correlations re-
quire several particles. The associated configurational
entropy Sc, together with the number entropy, forms the
von Neumann entropy, SvN = Sn + Sc (SI). An analo-
gous relation exists for spin systems with conserved total
magnetization instead of the particle number.

The dynamics of Sn and Sc in the MBL regime can be
understood in the picture of localized orbitals. Since the
localized orbitals restrict the particle motion, the number
entropy can only develop within the localization length
and hence Sn saturates at a lower value than for the
thermal case. In the MBL regime, disorder suppresses
the tunneling. Therefore, saturation is reached at a later
time. However, the dynamics of Sc are strikingly dif-
ferent. The bare on-site interaction and particle tun-
neling combine into an effective interaction among local-
ized orbitals, which decays exponentially with the dis-
tance between them. As a consequence, entanglement
between distant orbitals forms slowly, causing a logarith-
mic growth of Sc, even after Sn has saturated [26–30].

In our experiment, we can independently probe both
types of entanglement. We obtain the number entropy
Sn through the probabilities pn by counting the atom
number in the subsystem in different experimental real-
izations. The configurational entropy Sc, in contrast, is
challenging to measure in a many-body system since it
requires experimental access to the coherences between a
large number of quantum states [34, 35]. Here we choose
a complementary approach to probe the configurational
entanglement in the system. It exploits the configura-
tional correlations between the subsystems, quantified by
the correlator (SI):

C =
N∑
n=0

pn
∑

{An},{Bn}

|p(An ⊗Bn)− p(An)p(Bn)| , (2)

where {An} ({Bn}) is the set of all possible configu-
rations of n particles in subsystem A (N − n in B),
and N is total number of particles in the system. All
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FIG. 4. Dynamics of number and configurational entanglement. (A) In the thermal regime, both the number entropy
Sn and the configurational correlator C quickly rise and reach a stationary value after thermalization. (B) We observe different
time scales in the MBL regime. Sn increases for a longer time and reaches a stationary value that is suppressed compared to
the thermal one. C shows a persistent slow increase that is consistent with a logarithmic growth, until the longest evolution
times covered by our measurements. The solid lines show the prediction of exact diagonalization calculations without any free
parameters. The above data was taken on a six-site system and averaged over four disorder realizations. Error bars denote the
s.e.m. and are smaller then the markers if hidden.

probability distributions are normalized within the sub-
spaces of n particles in A and the remaining N − n par-
ticles in B. The configuration An ⊗ Bn is separable if
p(An ⊗ Bn) = p(An)p(Bn). The correlator therefore
probes the entanglement through the deviation from sep-
arability between A and B. In the MBL regime, for suf-
ficiently small amounts of entanglement, we numerically
find C to be proportional to Sc, and hence it inherits its
scaling properties (SI). Our measurements lie within the
numerically verified parameter regime.

We study the time dynamics of Sn and C with and
without disorder (Fig. 4). Without disorder, both Sn

and C rapidly rise and reach a stationary value within a
few tunneling times. In the presence of strong disorder,
we find a qualitatively different behavior for both quanti-
ties. Again, Sn reaches a stationary state, although after
longer evolution time due to reduced effective tunneling.
Additionally the stationary value is significantly reduced,
indicating suppressed particle transport through the sys-
tem. The correlator C, in contrast, shows a persistent
slow growth up to the longest evolution times reached by

our measurements. The growth is consistent with loga-
rithmic behavior over two decades of time evolution. We
conclude that we observe interaction-induced dynamics
in the MBL regime, which are consistent with the phe-
nomenological model [26–28]. The agreement of the long-
term dynamics of Sp and C with the numerical calcula-
tions in the MBL regime confirms the unitary evolution
of the system.

Considering the entropy in subsystems of different size
gives us insights into the spatial distribution of entangle-
ment in the system: in a one-dimensional system, locally
generated entanglement results in a subsystem size inde-
pendent entropy, whereas entanglement from non-local
correlations causes the entropy to increase in proportion
to the size of the subsystem. In reference to the sub-
system’s boundary and volume, these scalings are called
area law and volume law. We find almost no change in Sn

for different subsystems of an MBL system (Fig. 5A)—
indicating an area law scaling due to localized particles
and confirming that particle transport is suppressed. In
contrast, the configurational correlations C increase un-
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other. Hence, the configurational correlator C increases al-
most linearly with the subsystem size, showing a volume-law
behavior. The solid lines show the prediction of exact di-
agonalization calculations without any free parameters. The
above data was averaged over four disorder realizations. Er-
ror bars denote the s.e.m. and are smaller then the markers
if hidden.

til the subsystem reaches half the system size (Fig. 5B).
Such a volume-law scaling is also expected for the en-
tanglement entropy and demonstrates that the observed
logarithmic growth indeed stems from non-local correla-
tions across the entire system.

CONCLUSION

Investigating the growth of non-local quantum corre-
lations has been a long-standing experimental challenge
for the study of MBL systems. In addition to achieving
exceptional isolation from the environment and local ac-
cess to the system, such a measurement requires access
to the entanglement entropy [34]. Our work provides a
novel technique to characterize the entanglement proper-
ties of MBL systems, based on measurements of the par-
ticle number fluctuations and their configurations. The
observation of slow coherent many-body dynamics along
with the breakdown of thermalization allows us to un-
ambiguously identify and characterize the MBL state in
our system.

In future, experiments at different system sizes will be
of interest to shed light on the critical properties of the
thermal-to-MBL phase transition, which are the subject
of ongoing studies [36–39]. In our system, it is experimen-
tally feasible to continue scaling the system size at unity
filling to a numerically intractable regime. Additionally,
we have full control over the disorder potential on every
site, which opens the way to studying the role of rare
regions and Griffiths dynamics as well as the long-time
behavior of an MBL state with a link to a thermal bath
[40–42]. Ultimately, these studies will further our under-
standing of quantum thermodynamics and whether such
systems are suitable for future applications as quantum
memories [6, 43].
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[39] H. P. Lüschen, P. Bordia, S. Scherg, F. Alet, E. Altman,
U. Schneider, and I. Bloch, Physical Review Letters 119,
260401 (2017).

[40] K. Agarwal, E. Altman, E. Demler, S. Gopalakrishnan,
D. A. Huse, and M. Knap, Annalen der Physik 529,
1600326 (2017).

[41] W. De Roeck and F. Huveneers, Physical Review B 95,
155129 (2017).

[42] R. Nandkishore and S. Gopalakrishnan, Annalen der
Physik 529, 1600181 (2017).
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Calibration of Bose-Hubbard parameters

In order to properly frame our experimental results and
to compare them to numerical simulations, it is crucial
to know the tunneling constant J and on-site interaction
strength U in our system. The following two subsections
describe how they are measured.

J calibration

In order to calibrate the tunneling constant J in our
system, we use two digital micromirror devices (DMDs)
to isolate a one-dimensional chain of atoms from the
n = 1 shell of a Mott insulator [44]. With tunneling
along the chain being suppressed, we subsequently drop
the transverse lattice depth to the value used in our ex-
periments and let the system evolve, causing each atom
to perform a one-dimensional quantum walk [45]. The
probability density distribution describing such a quan-
tum walk is given by

|ψi(t)|2 =

∣∣∣∣Ji( 2J

πE
sin(πEt/h)

)∣∣∣∣2 (S1)

where i denotes the distance to the initial atom posi-
tion in lattice sites, Ji is the ith-order Bessel function of
the first kind, h is Planck’s constant, and the nearest-
neighbor potential difference E is introduced to allow for
an unintentional tilt of the lattice [46]. By averaging
over the entire chain of atoms for each image and taking
large numbers of images for various evolution times, we
are able to measure this density distribution experimen-
tally. The tunneling constant J and lattice tilt E are
then determined from a two-parameter fit of equation
Eq. S1 to our data. For all experiments discussed in the
main publication, the resulting tilt was consistent with a
value of E/h = 0 Hz. The tunneling was determined to
J/h = 37.5(1) Hz.

U calibration

In order to calibrate the on-site interaction strength
U, we again prepare an n = 1 Mott insulator. We then
use a magnetic field gradient to apply a linear potential
along the direction of the (so-far absent) one-dimensional
system we are interested in studying. This creates an off-
set energy E per lattice site. Subsequently, we drop the

lattice depth to an intermediate value where tunneling
is principally significant but still suppressed by the tilt.
We then modulate the depth of our optical lattice and
measure the n = 1 population fraction as a function of
the modulation frequency for several regions of interest
i (Fig. S2a) [47]. The resulting curves show two minima
at energies E±Ui (Fig. S2b), from which we extract the
interaction energy Ui. Since our experiments are per-
formed at a lower lattice depth, we rescale the measured
interaction energy with U ∝ V 0.33

0 . The exponent is de-
termined from numerical calculations that include effects
from higher bands. The resulting interaction energy at
V0 = 8Er is determined to be U/h = 107(1) Hz.

Disorder potential

In order to study many-body localization, we project
a quasiperiodic disorder potential onto our atoms. The
following subsections describe the exact shape of this po-
tential, how we calibrate its strength in the plane of
the atoms, and how its structure relates to the G(2)-
measurements discussed in our paper.

Disorder potential generation

We use a digital micromirror device (DMD) in the
Fourier plane of the high-resolution imaging system to
project a disorder potential onto the atoms. A conceptu-
ally simple way of producing such a potential is to project
a second lattice with incommensurate periodicity onto

Simple incommensurate potential

Zero-derivative potential used in our experiments

-5 -4 -3 -2 -1 0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

Site (x/a)

P
ot
en
ti
al
(W

)

FIG. S1. Disorder engineering. Plot showing a simple in-
commensurate lattice potential (blue) and the custom poten-
tial used in our experiments (yellow). The custom potential
was engineered to yield the same on-site values as the simple
one, but additionally possesses a vanishing first derivative at
the position of the atoms (black dots), thereby making the
system less sensitive to shaking-induced heating processes.
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FIG. S2. Measurement of the interaction strength U in the system. (a) We start with an n = 1 Mott-insulator in a
linear potential and drop the lattice depth to an intermediate value where tunneling is principally allowed but suppressed by
the tilt (top). We then modulate the depth of the optical lattice and excite resonances at energies E ± U depending on the
lattice modulation frequency ν (center). Finally, we image the outcome of the modulation with our quantum gas microscope
and obtain number statistics for different regions of interest i (bottom). (b) We post-select on measurement outcomes where
a given region contained exactly two atoms and plot the probability of finding them on separate sites. The resulting plots
show the expected dips at E ± Ui, from which we obtain the individual values of Ui. Averaging over a total of six regions of
interest and rescaling the average value to the lattice depth used in the experiment, we determined the interaction strength in
our system to equal U/h = 107(1) Hz.

the bare lattice holding the atoms, e.g. by adding a po-
tential of the form

Vsimple(x) = 2W cos2
(
π
x

βa
+ φ

)
(S2)

to the existing lattice. Here, β = 1+
√
5

2 is the golden
ratio, an irrational number that is chosen to ensure max-
imal incommensurability between the two lattices.

The potential in Eq. S2 generates the desired on-site
potential values with a non-vanishing first derivative at
the positions of the individual atoms (Fig. S1). This im-
plies that the potential values sampled by the atoms may
vary if the relative position of the disorder potential with
respect to the bare lattice is perturbed, thereby making
the system susceptible to shaking-induced heating pro-
cesses. In order to make the system more robust, we set
out to find a potential V (x) that would provide the same
on-site potential values as the potential in Eq. S2, while
also possessing a vanishing first derivative at the individ-
ual sites of the bare lattice, i.e. a potential V (x) such
that

V (x)|x=na = Vsimple(x)|x=na ,
∂V (x)

∂x

∣∣∣∣
x=na

= 0 ∀ n ∈ Z
(S3)

where a is the lattice constant of the bare lattice, and
the position of an arbitrary lattice site is defined to be
x = 0. Since the incommensurate potential is sampled
where x is an integer multiple of a, the following holds:

cos2
(
π
n

β
+ φ

)
= cos2 (πn (β − 1) + φ)

= cos2 (πn (β −m) + φ) ∀ n,m ∈ Z
(S4)

where the first equality is due to β − 1 = 1
β . Therefore,

one suitable potential is given by the sum of two incom-
mensurate potentials which are displaced by one lattice
site:
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FIG. S3. Calibration of the disorder strength W in our system. (a) We prepare the same tilted lattice system
as for the U calibration (top). Afterwards, we adiabatically ramp the optical disorder power to different voltages on the
corresponding photodiode and analyze the resulting number statistics for various regions of interest. If the disorder power W is
made sufficiently large, the potential difference ∆i(W ) it induces within a given region of interest may partially compensate for
the linear tilt and enable resonant tunneling processes (center, bottom). (b) We again post-select on measurement outcomes
with exactly two atoms in a given region of interest and plot the probability P (n = 1) of finding them on separate sites. The
resulting curves show a sharp decay around the photodiode voltages where ∆i(W ) = E −Ui, a condition allowing for resonant
tunneling processes that deplete the initial n = 1 population. Having calibrated the E −Ui values independently and knowing
the constant ratios ∆i(W )/W from the disorder potential we project, we can link the corresponding phototiode voltages to
the appropriate values of W in the plane of our atoms. Technically, data from a single region of interest would be enough
to calibrate W . The independent calibration of various regions additionally allows us to verify that the potential seen by the
atoms indeed obeys the shape we expect, which we found to be the case in our measurements.

Vdis(x) =2W
[
(2− β) cos2

(
π(β − 1)

x

a
+ φ

)
+(β − 1) cos2

(
π(β − 2)

x

a
+ φ

)] (S5)

The potentials applied during our experiments are of the
form Eq. S5. In the above, different disorder strengths
correspond to different values of W and different disorder
realizations correspond to different values of the phase φ.
Fig. S1 shows the potentials Eq. S2 and Eq. S5 in units
of W for φ = 0.16.

Calibration of the applied disorder potential

In order to calibrate the effective disorder strength W ,
we prepare the exact same system as for the U calibra-
tion, i.e. a tilted n = 1 Mott insulator. Instead of mod-
ulating the depth of the optical lattice, we adiabatically

ramp up the optical power on the disorder-DMD to var-
ious values. We then study the resulting atom number
statistics in the two-site regions of interest that were al-
ready used for the U calibration (Fig. S3a). By plotting
the post-selected unity-filling fraction for a given region
i, we can identify the optical power at which the disorder
successfully compensates for the known E −Ui detuning
induced by the tilt (Fig. S3b), thereby allowing for reso-
nant tunneling events that deplete the n = 1 population
of the corresponding lattice sites. In theory, measuring
one such resonance for a single disorder pattern would
suffice to calibrate W , as the relative disorder-strength
between the corresponding lattice sites with respect to W
is known from Eq. S5. In practice, however, we indepen-
dently measure the resonance for each region of interest
within a given pattern (Fig. S4). This allows us to ver-
ify that equation Eq. S5 is indeed a valid description of
the disorder potential seen by the atoms, and that our
method is not suffering from significant aberrations or
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FIG. S4. Relative potential offsets within one pat-
tern. In order to benchmark the applied disorder potential,
we compare the measured site offsets within one pattern to
the numerical Fourier transform of the corresponding holo-
gram (dotted line). The agreement between the data and
numerical prediction confirms the high level of control over
the applied optical potential. The relative potential offsets
(both data and numerical prediction) are normalized to the
largest potential difference in all applied patterns.

other unwanted distortions.

G2(d) fitting and correlations from quasiperiodic potential

The two-point, density-density correlation function
G2(d), as defined in Eq. S6, measures the correlated
fluctuations of the wavefunction between sites which are
spaced a distance d apart.

G2(d) = 〈â†i â
†
i+dâiâi+d〉i − 〈â

†
i âi〉i〈â

†
i+dâi+d〉i (S6)

Due to the conserved global particle number, tunnel-
ing alone will generally give rise to an anti-correlation
of the G2(d) function, yielding G2(d) < 0. A positive
correlation G2(d) > 0, on the other hand, corresponds
to the wavefunction having density fluctuations which
make atoms more likely to be found together at sites i
and i+d. For moderate disorder strengths, this two-point
correlator obtains a structure which mimics the correla-
tion function of the applied disorder potential (Fig. S5).
The latter is calculated as

V2(d) =〈V (x, φ)V (x+ d, φ)〉d,φ
− 〈V (x, φ)〉d,φ〈V (x+ d, φ)〉d,φ

(S7)

where V (x, φ) = cos (2πβx+ φ) is the applied potential
(as sampled by the bare lattice sites).

The similarity between the potential correlation func-
tion and the density-density correlation function leads

to an ansatz fitting function that captures the non-
monotonicity of the density-density correlator:

G̃(2)(d) = [A+B · V2(d)] e−d/ξ (S8)

This function allows for an offset A and rescaling B of the
applied-disorder correlations as well as a decay length ξ,
which is needed to describe localized wavefunctions. This
ansatz provides a significantly improved fit for nearly the
entire range of measured disordered values. An example
is plotted in Fig. S5.

Experimental sequence

Our experiments start with a two-dimensional, unity-
filling Mott insulator of 87Rb atoms in a deep, blue-
detuned optical lattice (Vx = Vy = 45Er) with a lat-
tice constant of 680 nm. Using a procedure outlined in
previous work [5], we employ two digital micromirror de-
vices (DMDs) in the Fourier plane to initialize a one-
dimensional system of N = 8 (N = 6 in Fig. 4) atoms.
After post-selection, we achieve a single-site loading fi-
delity of 99.1(2)%, which stems from the initial Mott
insulator fidelity. Before post-selection, the likelihood of
loading more than N atoms is < 0.5(5)%.

To initiate the many-body dynamics, we then perform
three separate actions. In a first step, we use one of
the DMDs to project an optical potential Vwalls onto
the atoms, which consists of a flat-top profile in the
y-direction and two narrow Gaussian peaks separated
by N + 2 lattice sites in the x-direction. This ”wall-
potential” provides a box-like confinement which is reg-
istered to the position of the optical lattice, and defines
the size of the one-dimensional system once the bare lat-
tice depth has been lowered. Secondly, we simultane-
ously use the other DMD to project a custom disorder
potential onto the atoms. Finally, after both of these po-
tentials have been turned on, we rapidly lower the bare
lattice depth along the atomic chain from Vx = 45Er

to 8Er, thereby quenching the system and initiating the
dynamics.

After a variable evolution time in this lowered poten-
tial, we again freeze the atomic dynamics by quickly
ramping the longitudinal lattice back up to Vx = 45Er.
We then turn off both the disorder and the confining
potential Vwalls and perform a site-resolved atom num-
ber measurement. To avoid the parity projection that
is usually induced by light-assisted collisions during the
imaging process, we employ the following technique: We
briefly drop the transverse lattice potential to Vy ∼ 0.2Er

while keeping the longitudinal lattice at Vx = 45Er. In
the absence of a confining transverse lattice, the atoms
are free to leave their initial locations and spread out in
tubes. After 8 ms of free evolution in these tubes, the
particles have delocalized over approximately 80 lattice
sites, and we pin their positions with a deep imaging
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FIG. S5. Potential and Wavefunction: Two-Point Correlations The left plot shows the measured G2(d) data for an 8
site system after 100τ with disorder strength W = 5.8J and U = 2.7J . The solid line shows the result of exact diagonalization
for the same experimental parameters. The middle plot is the calculated two-point correlator for the applied quasiperiodic
potential, averaged over many different disorder realizations (Eq. S7) – the qualitative features in the left plot mimic the
correlation function of the applied potential. The right plot is the same data with the fitted correlation function (black) made
from the applied-potential correlations ansatz (Eq. S8).
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FIG. S6. Experimental sequence. Figure showing the sequence of optical potentials used in the experiments. In a two-step
process, a 1 × N (N = 6, 8) plaquette of atoms is cut out of an initially prepared Mott insulator, using custom potentials
engineered with two different DMDs. Subsequently, one of the DMDs is employed to project a quasi-periodic disorder potential
onto the atomic chain, while the other one is used to define the length of the chain after the corresponding lattice has been
quenched to a lower power. Following a variable evolution time, the full lattice potential is restored and both DMD potentials
are ramped down. We then turn off the transverse lattice to expand the atomic population of the individual lattice sites in
tubes. Finally, we perform fluorescence imaging to obtain the full number statistics of the system.

lattice. In a last step, we illuminate the atoms with a
fluorescence beam to acquire site- and number-resolved
images of the system, with the total number of atoms in
each tube corresponding to the original population of a
particular lattice site [5].

The above technique, however, does not completely

eliminate the possibility of parity projection, since there
is still a finite probability to find multiple atoms on the
same site even after expansion. To estimate this effect we
note that, in the majority of our experiments the proba-
bility of having more than three particles on the same site
is 1.3(1)%. Given the parameters of our expansion, the
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probability of having a parity projected outcome, start-
ing with 4 atoms on the same site, is estimated to be
4.8(4)%. This results in 0.06(3)% of faulty post selected
shots, since this effect is smaller then our statistical error
we don’t account for this it in any of the data.

Thermal ensemble calculation

The thermal prediction shown in Fig. 2E is calculated
from an equal-probability statistical mixture of those 11
eigenstates of the Hamiltonian Ĥ that are closest to the
average energy of the initial state |ψ0〉, which is given
by E0 = 〈ψ0| Ĥ |ψ0〉. We verify that the results do not
depend on the exact number of included eigenstates in
the vicinity of the chosen value.

Entropy partitioning

In a system with a globally conserved quantity, the re-
sultant reduced density matrix for a subsystem is block
diagonal. This block diagonal structure is due to the
blocks having an exact correlation between two subsys-
tems local quantities that are globally conserved. A spe-
cific example of 6 atoms on a Bose-Hubbard chain is
shown graphically in Fig. S7.

The von Neumann entropy for the reduced density ma-
trix ρA of subsystem A is defined in the Schmidt basis
as

SvN =
∑
i

ρii log (ρii), (S9)

Due to the block diagonal structure, SvN can be written
as the sum of diagonalized blocks

SvN =
N∑
n=0

∑
i

pnρ
(n)
ii log

(
pnρ

(n)
ii

)
, (S10)

where pn refers to the probability of populating states
with n atoms in subsystem A and each block in the re-
duced density matrix that consists of n atoms is denoted

as ρ(n) and normalized according to
∑
i ρ

(n)
ii = 1 The

normalized blocks ρ(n) are multiplied by their relative
particle number probability in the reduced density ma-
trix by pn. The expression for the von Neumann entropy
can then be reduced to a sum of separate entropy contri-

FIG. S7. Reduced density matrix. Cartoon of the
reduced density matrix with a globally conserved quantity.
In the Bose-Hubbard system investigated, the global particle
number is conserved: In this example the total particle num-
ber is fixed to 6 atoms. The shading in the blocks reflects the
relative probability of having that number of atoms in subsys-
tem A. The block sizes reflect the relative Hilbert space size
corresponding to that number of particles in the subsystem.

butions Sn and Sc

SvN =

N∑
n=0

∑
i

pnρ
(n)
ii

[
log (pn) + log

(
ρ
(n)
ii

)]
=

N∑
n=0

pn log (pn)
∑
i

ρ
(n)
ii +

N∑
n=0

pn
∑
i

ρ
(n)
ii log

(
ρ
(n)
ii

)
=

N∑
n=0

pn log (pn) +

N∑
n=0

pn
∑
i

ρ
(n)
ii log

(
ρ
(n)
ii

)
= Sn + Sc.

(S11)

The first term describes the entropy Sn attributed to
the particle number fluctuations within a subsystem and
is exactly correlated with the remaining subsystem due to
the conserved global particle number. The second term
defines the entropy Sc attributed to the population of
different configurational states of n atoms in subsystem
A. These configurations are internal degrees of freedom
for the subsystem A, whose Hilbert space dimension de-
pends on the number of atoms n that constrain the possi-
ble number of configurations. This type of entanglement
has also been refered to as ”entanglement of particles” or
”operational entanglement” [48, 49].

Sn is a consequence of the conserved particle number
and the hopping present in the system. It will generically
have a non-zero contribution for a finite tunnel coupling
between subsystems A and B. However, Sc describes the
entropy induced by correlations between different config-
urational states in subsystems A and B. These types
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of correlations are not generically enforced by the mere
presence of conserved quantities and dynamics in the sys-
tem.

Entanglement dynamics in the MBL regime

The following subsections show exact diagonaliza-
tion calculations based on the Hamiltonian in Eq. 1 at
strong disorder for both the interacting (MBL) and non-
interacting (AL) cases. We numerically show the evolu-
tion of the entanglement entropy SvN for different Hamil-
tonian parameters and discuss the connection of the con-
figurational entanglement entropy Sc with the configura-
tional correlator C.

Entropy partitioning

A calculation of the dynamics for the partitioned en-
tropy is shown in Fig. S8. Since the initial state is a
product state, there is no initial entropy contribution
from number fluctuations or configurational correlations.
In the many-body-localized regime, the site occupation
numbers become a reasonable proxy for locally-conserved
quantities, leading to a suppression of the entropy Sn

that is associated with particle fluctuations across the
boundary of subsystems A and B. Indeed, the numeri-
cal calculations show that Sn reaches a stationary value
within a few tunneling times, indicating that the particle
transport has reached its equilibrium.

However, the configurational entropy Sc still grows
due to the presence of interactions. This is a conse-
quence of exponentially weak interactions between parti-
cles that occupy localized orbitals in each of the subsys-
tems. Sc is responsible for the unbounded logarithmic
entropy growth expected in many-body localization [30].
The growth persists for much longer times than the par-
ticle number fluctuations and demonstrates a separation
of time scales of Sn and Sc.

Effect of interactions

In order to separately investigate the contribution of
Sn and Sc, we perform numerical calculations at differ-
ent interaction strengths U . The total (von Neumann)
entanglement entropy SvN shows a logarithmically-slow
growth, which depends on the interaction strength.
Whereas the number entropy Sn is almost independent of
the interaction strength, the configurational entropy Sc

shows a qualitatively different behaviour in the presence
or absence of interactions in the system. Without inter-
actions, almost no configurational entropy is generated
and Sc remains nearly independent of the evolution time.
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0.2

0.4

0.6

0.8

1.0

time (2πJt)

S
vN

von Neumann Entropy: W=10J,U=2.7J

SvN

SC

Sn

FIG. S8. Total entropy partitioned The total von Neu-
mann entanglement entropy SvN for the half-system is shown
as a function of time in an interacting system at strong dis-
order. The entropy is split up into Sn and Sc. For visual
guidance, the configurational entropy (Sc) is offset by the
long-time average of Sn. This partitioning of the entropy
qualitatively shows that logarithmic entropy growth arises
primarily from the configurational entropy. The simulation
was performed using exact diagonalization on 6 sites at unity
filling.

However, when interactions are present, Sc shows a loga-
rithmic growth with the same interaction dependence as
SvN. These calculations show that the separation of the
entanglement into number and configurational degrees of
freedom allows us to isolate the logarithmic growth of
SvN.

Configurational correlations vs. configurational entropy

Since the configurational entropy is inaccessible in this
experiment, we use the correlator C as a measure of the
configurational entanglement in the system (see Eq. 2).
It is related to the configurational mutual information be-
tween the two subsystems [50]. C measures the distance
between the joint distribution of particle configurations
in the entire system from the uncorrelated distributions
of configurations in subsystem A and B. These correla-
tions are measured in the Fock basis and act as a proxy
for the corresponding configurational-entropy growth.

Despite being qualitatively similar metrics which go to
zero in the unentangled limit, Sc and C show very distinct
behavior for large degrees of entanglement. Consider the
maximally mixed reduced density matrix in the Schmidt
basis. The configurational entanglement entropy Sc is
unbounded and Sc → log (N) for the maximally mixed
case with N representing the Hilbert space dimension of
the reduced density matrix.
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FIG. S9. Entropy comparison: various interaction strengths The leftmost panel shows the total von Neumann entropy
for interaction strengths of U/J = 0, 0.9, 1.8, 2.7. The second figure shows the contribution of the particle number entropy Sn.
The right panel shows the contribution of the configurational entropy Sc and its dependence on the interaction strength. All
simulations were performed by exact diagonalization on 6 sites at unity filling.
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FIG. S10. Correlations and Configurational Entropy. The configurational correlations C in the Fock basis are plotted
in the left panel as a function of interaction strength and evolution time. The corresponding configurational entropy Sc is
plotted in the right panel as a function of interaction strength and evolution time. All simulations were performed by exact
diagonalization on 6 sites at unity filling.

Since

C =
N∑
n=0

pn
∑

{An},{Bn}

|p(An ⊗Bn) + p(An)p(Bn)|

≤
N∑
n=0

pn
∑

{An},{Bn}

|p(An ⊗Bn)|+ |p(An)p(Bn)| = 2

(S12)
where the last equality is enforced by the normaliza-
tion of the probability distributions. This bound of
C ≤ 2 can be shown to be a tight upper bound in large
Hilbert space dimensions for a maximally mixed reduced
density matrix, where the two probability distributions
are perfectly correlated. Let us consider the maximally
mixed reduced density matrix in the Schmidt basis, with

p
(n)
a , p

(n)
b = 1/N and p

(n)
a,b ∈ {1/N, 0}. For simplicity, let

us consider the case where pn = 1 for one n0 and pn = 0

for all other n. We therefore drop all superscripts of n.

C =
∑

{A},{B}

|p(A⊗B)− p(A)p(B)|

≤
N∑

a,b=1

∣∣∣∣ 1

N
− 1

N2

∣∣∣∣+
N2∑

a,b=N+1

∣∣∣∣0− 1

N2

∣∣∣∣
= N

(
1

N

) ∣∣∣∣1− 1

N

∣∣∣∣+
(
N2 −N

) 1

N2

=
N − 1

N
+ 1− 1

N
= 2

(
1− 1

N

)
(S13)

This shows that for the same reduced density matrices,
Sc → log N as C → 2(1 − 1

N ). While the asymptotic
behaviors are different for Sc and C, the performed mea-
surements are far away from this differentiating asymp-
totic regime, and the values of both quantities are ap-
proximately linearly related for the measured parameter
range (as numerically shown in Fig. S10).
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Figure number of unique disorders post selected shots per point

2D: W=1.0J 197 64, 82, 68, 63, 58, 55, 133, 142, 192, 180, 160, 108

2D: W=8.9J 197 134, 135, 143, 140, 156, 152, 144, 126, 123, 128, 126, 147

2E 197 106, 113, 118, 129, 191, 186, 101, 186, 185, 104, 110, 124, 102

3A,B: W=1.0J 197 160

3A,B: W=8.9J 197 110

3C 197 129, 191, 101, 186, 185, 104, 110, 124, 102

4 4 avg. per disorder: 210.5, 305.75, 264.25, 219, 263.5, 196.25

5 4 avg. per disorder: 740.25

Data analysis

For the data in Figs. 2 and 3, we use 197 unique disor-
der patterns and perform a running average by randomly
sampling a given number of realizations and treating
them as independent measurements of the same system.

Additionally, the data in Fig. 2 is averaged over only the
middle 6 sites of the chain to exclude edge effects. For
the data in Figs. 4 and 5, we use 4 different disorder
patterns. We first average each observable over different
outcomes for the same disorder and subsequently perform
the average over different disorder realizations.
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