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ABSTRACT Mobile devices are becoming ever more popular for streaming videos, which account for
the majority of all the data traffic on the Internet. Memory is a critical component in mobile video
processing systems, increasingly dominating the power consumption. Today, memory designers are still
focusing on hardware-level power optimization techniques, which usually come with significant imple-
mentation cost (e.g., silicon area overhead or performance penalty). In this paper, we propose a video
content-aware memory technique for power-quality tradeoff from viewer’s perspectives. Based on the influ-
ence of video macroblock characteristics on the viewer’s experience, we develop two simple and effective
models–decision tree and logistic regression to enable hardware adaptation. We have also implemented a
novel viewer-aware bit-truncation technique which minimizes the impact on the viewer’s experience, while
introducing energy-quality adaptation to the video storage.

INDEX TERMS Viewer’s experience, video memory, video content, viewer-aware bit truncation,
energy-quality adaptation.

I. INTRODUCTION
Video is everywhere today. According to the recent Cisco
Visual Networking Index, Mobile video traffic accounted
for 60% of total mobile data in 2016 [1]. It is expected
to increase 9-fold between 2016 and 2021 and grow to
approximately 78% in 2021, with the continuous evolu-
tion of mobile networks and the proliferation of mobile
devices [1]. Consequently, video steaming has become one
of the most energy-intensive applications on mobile devices.
In particular, during the mobile video steaming process,
the frequent memory access contributes to over 92% of
the motion compensation energy [2] and 50% of the video
decoding consumption [3]; the high energy consumption
restraints are only expected to increase with the emerg-
ing of Ultra-High-Definition (UHD) (e.g., 4K and 8K)
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videos [4]. Accordingly, enhancing energy efficiency of video
memories is of paramount importance to enable efficient
mobile video systems, and is also one of the key design
considerations to deliver 4K/8K UHD videos to mobile
devices.

Designers have extensively exploited memory techniques
for power reduction, but traditional memory designs are typ-
ically developed based on an objective video output met-
ric such as the peak signal-to-noise ratio (PSNR), without
dynamic energy-quality adaptation to viewer’s true experi-
ence. Such hardware-viewer isolation is mainly due to the
following design challenges. First, the existing models to
represent viewer’s experience, such as the recently devel-
oped human visual system (HVS) model [5], are too con-
ceptual and too complex, to be useful in guiding hardware
design. Second, hardware design, particularlymemories, usu-
ally lack run-time adaptation and therefore new hardware
design techniques that enable viewer-aware adaptation need
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FIGURE 1. Proposed content-adaptive mobile video memory for
viewer-aware mobile video systems.

to be explored. Last, but not least, it is challenging for mobile
designers to directly connect hardware design to viewer’s
experience, which requires professional lab setup, human
subject involvement, and psychophysical analysis.

We have recently explored viewer-aware video memory
design by investigating the impact of illuminance levels
in different viewing surroundings on the viewer’s experi-
ence [6]–[8], as illustrated in Fig. 1. Specifically, we used a
bit truncation technique to introduce memory failures in high
noise-tolerance viewing contexts with high luminance levels
by adaptively disabling the least significant bits (LSB) of the
video data stored in memories. Our previous studies [6]–[8]
illustrate a new dimension of power savings for hardware
design through the introduction of viewer awareness, but the
developed memory lacks adaptation across a wide variety
of mobile videos. To enable an optimized trade-off between
energy efficiency and video quality, in this paper, we pro-
pose a novel energy-quality scalable video memory design
technique that takes into account video content to adjust the
energy-quality trade-off according to viewer’s experience.
Specially, this paper makes the following contributions.
• We developed a Xilinx Zynq 7020 FPGA based
H.264 decoder and display system and based on it,
the contribution of different video memories to the out-
put quality has been analyzed. We demonstrate that the
frame buffer can tolerant significant memory failures,
which enables power saving opportunities for hardware
design (Section III.A and Appendix).

• The impact of video content on viewer’s experience is
studied from the psychological perspective. We con-
clude that the correlation characteristics between ‘‘band-
ing distortion’’ to viewers caused by hardware noise
and the areas in frames that exhibit low variance among
pixel luminance values have the potential to enable
content-adaptation opportunities for hardware design
(Section III.B).

• Based on macroblock characteristics analysis and sub-
jective video testing, two models including one decision
tree model and one logistic regression model have been
developed to enable effective connection of the video
content to the hardware design process (Section IV).

• We further develop a novel viewer-aware bit trunca-
tion technique which enables better visual experience
while maintaining similar power efficiency. Based on
the developed models and viewer-aware bit trunca-
tion technique, a content-adaptive video memory design
with dynamic energy-quality trade-off is implemented
(Section V).

• Finally, a comprehensive suite of simulations on the
proposed content-adaptive video memory is performed
and the enriched results including performance, layout
design, video output quality of various mobile videos,
and power efficiency, are discussed (details are shown
in Section VI).

To the best of the authors’ knowledge, the proposed memory
has made the first attempt to exploit viewer’s experience
and video content to enable energy-quality adaptive hardware
design.

The organization of the paper is as follows. A review
of related video memories is provided in Section II.
In Section III, we study the contributions of video mem-
ories and the impact of video content on viewer’s expe-
rience. In Section IV, we present our subjective testing
procedure and model development process. Our hardware
design, that implements the functionality for power sav-
ings through viewer-aware bit truncation, is presented in
Section V. The evaluation results are presented in Section VI.
Finally, we conclude the paper in Section VII.

II. RELATED WORK
There is a rich body of literature for power reduction for
embedded memories and voltage scaling is particularly effec-
tive to reduce the memories’ power consumption due to the
strong dependency of dynamic and leakage power consump-
tion on supply voltage. However, voltage-scaled SRAMs
are susceptible to failures and many techniques have been
developed, which mainly fall into the following three aspects:
(i) assist schemes such as boosted wordline [9], negative bit-
line [10], and dual-rail supply [11]; (ii)more-than-6T bitcells
to achieve low voltage operation, such as 8T [12], 9T [13],
and 10T [14]; and (iii) error-correction techniques such as
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FIGURE 2. Mobile video memory architecture. (a) Block diagram of the mobile video decoding and display process and (b) Xilinx Zynq 7020 FPGA based
system implementation. Different memories are shaded. MB: Macroblock.

error correction codes [15] and data remapping [16]. How-
ever, the improvements in embedded memory power effi-
ciency are often achieved with significant design complexity,
silicon area overhead, and performance penalty for voltage
regulators and boosting circuits.

Several recent efforts have investigated application
resilience of videos to approximations with ‘‘good enough’’
output and additional power savings. Chang et al. [17] present
a hybrid 6T+8T SRAM to achieve quality-power optimiza-
tion. In [18], a heterogeneous sizing scheme is presented to
reduce the failure probability of conventional 6T bitcells.
In [19], the correlation between the most-significant-bits
(MSBs) of video data was utilized to design a hybrid 8T+10T
memory for power savings.

At the same time, alternative metrics for the analyzing
videos objectively, including Structural Similarity (SSIM)
and PSNR-B, have recently been shown to outperform the
traditional mean squared error (MSE) and PSNR [32], [33].
While SSIM and PSNR-B have more meaning in terms of
the viewer’s perception of a video, the complexity of their
calculations makes them less useful to hardware designers
when optimizing energy-quality tradeoff.

Very recently, we have investigated viewer-aware video
memory design by studying the impact of illuminance levels
in viewing contexts on the viewer’s experience [6]–[8], where
an increased amount of ambient luminance allows for a larger
amount of bits to be truncated without noticeable degradation
to the viewers.We developed a viewing context-aware SRAM
(VCAS), which introduces memory failures in luminance
contexts with high memory failure tolerance. Two low-power
techniques - voltage scaling and bit truncation - are explored
to implement. We conclude that those two techniques achieve
similarPSNR values, but the video quality degradation caused
by bit truncation is much less noticeable than that of the volt-
age scaling technique for the viewers. The hardware design
from our previous study has been developed for general
videos, although, we observed that the video characteristics
significantly influence the viewer’s experience [8]. In this
paper, we study the impact of video content characteristics on
viewer’s experience to enable video content-adaptive mem-
ory with dynamic energy-quality tradeoff.

It is worthy to emphasize that, the proposed content-
adaptive video memory as well as viewing luminance-aware
video memories [6]–[8] are orthogonal to existing low-power
hardware-level memories and they can be applied simultane-
ously to optimize power efficiency.

III. INFLUENCE OF VIDEO CONTENT ON VIEWER’S
EXPERIENCE
A. MOBILE VIDEO MEMORY SYSTEM
Video streaming has become the most important energy-
intensive application used in mobile devices [8]. Fig. 2 (a)
shows the block diagram of a H.264 video decoding and
display system [36]. After parsing compressed bitstream,
the inter predictor uses the reconstructed frames stored in
the reference frame buffer and the transmitted motion vec-
tors to construct new frames. After the frames are decoded,
the display controller sends them from the frame buffer to
the display panel periodically. During this process, multiple
memories are needed for storing the intermediate and final
results of the frame data, as listed in Table 1.

To evaluate the contribution of different memories to the
output video quality, we developed a video decoder and
display system, as shown in Fig. 2 (b). For the memories
listed in Table 1, we applied the bit truncation technique [7] to
each memory during the video decoding process by disabling
least-significant bits (LSBs) [8], [21] and then the output
video is captured for quality evaluation. Specifically, LSB
truncation starting with one bit with a maximum of five
bits have been applied to each video memory. The encoded
bitstream, which resided on an on-board SD card, is decoded
using a Xilinx Zynq 7020 FPGA based H.264 decoder.
An Arduino-based memory controller is implemented select
the memory for truncation as well as the number of truncated
LSB which are specified by the user input over a serial
interface. A video capture card is utilized to capture the
video output over the HDMI output for evaluation. It has
been shown that, the frame buffer, the largest memory, can
tolerant three truncated LSBs, which provides power saving
opportunities for a hardware design. The detailed results are
discussed in Appendix.
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TABLE 1. Video memories and their functionality.

B. INFLUENCE OF VIDEO CONTENT ON VIEWER’S
EXPERIENCE IN THE PRESENCE OF HARDWARE NOISE
Traditionally, hardware designers have used PSNRfor eval-
uating video quality, which has been recently shown to be
insufficient to demonstrate the viewer’s experience [20], [31].
PSNR does not encompass the necessary information to hard-
ware designers about viewer’s experience, due to the fact
that key influencing factors for viewer’s experience, such as
video content and environment conditions, are not included
in PSNR [31]. In this paper, we aim to find a better method
to analyze videos in a quantitative way that will also be
useful to hardware researchers. We begin this process by
using the PSNRmetric to describe video quality. We continue
by adding new insight to the traditional PSNRmetric with the
introduction of content-aware information. This new form of
information allows us to gracefully scale the video quality
with enhanced energy efficiency of hardware.

1) TRADITIONAL PSNR METRIC
The traditional PSNR metric is defined as [19]

PSNR = 10 log10

(
2552

MSE

)
(1)

where theMSE is the mean squared error between the original
video (Org) and the degraded video (Deg), expressed as

MSE =
1
mn

∑m−1

i=0

∑n−1

j=0
[Org (i, j)− Deg(i, j)]2 (2)

Although PSNR is simple for hardware designers to under-
stand, it does not truly capture the effect that errors have
on the user’s perception of the video. To show the lack of
complete information the PSNR provides in terms of user per-
ception, we apply the bit truncation technique to two videos
and calculate thePSNR values for 1 to 4 truncated LSBs of the
luma data (i.e. the luminance channel, or Y component in raw
YUV videos). We adopt the bit truncation technique to enable
energy-quality adaption, which is due to the following two
reasons: (i) bit truncation causes blurring in videos, which is
similar to the ‘‘banding distortion’’ in the codec-algorithm

TABLE 2. Output quality of different videos with bit truncation.

field, and the video degradation is much less noticeable to
viewers as compared to other low-power techniques such as
voltage scaling [8] and (ii) the power/energy savings with
bit truncation is much more significant than other low power
techniques such as voltage scaling [21].

Table 2 shows two videos which were downloaded from
Google’s recently released Youtube-8M Dataset [22], which
is the largest multi-label video dataset. In this paper, to main-
tain a short and consistent size label for all included YouTube
video samples, we use the video tag to label each video, which
is the last portion of the full URL address1. As observed
in Table 2, using the bit truncation technique, the PSNRvalue
is reduced by approximately 7dB, on average, for each
additional truncated LSB. Both videos have very similar
PSNR values with the same number of LSBs truncated, but
the visual quality is significantly different. As compared
to video #1 (video tag:EFv2FvnlLao), the ‘‘banding distor-
tion’’ of video #2 (video tag: FNlpA4FME-8) is much more
noticeable to the viewers. Accordingly, the traditional video
quality metric PSNRcannot correlate well with the viewer’s
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FIGURE 3. Plain MBs visualization and video output comparison of two videos with varying plain MB % (with 2 LSBs truncated). White: plain MBs.

experience and the video-content properties, such as the tex-
ture/motion characteristics, significantly affect the viewer’s
experience. In this paper, we introduce the video content
information to study the viewer’s experience. Specifically,
we adapt the recently developed video macroblock (MB)
characterization by analyzing the pixel-luminance values’
variance [23], as described in the next subsection.

2) VIDEO MACROBLOCK VARIANCE ANALYSIS
The MB variance analysis is typically conducted during the
video pre-processing stage when encoding videos [23], [24].
In our analysis, we adopt their defined calculation for deter-
mining whether a given MB is considered either plain or
textured, which avoids introducing significant computational
overhead. The calculation is based on the variance of pixel
luminance values of a given MB and is defined as [23]

VMB =
∑15

i=0

∑15

i=0
(P (i, j)− ρMB)2 � 8

MB =

Plain if (VMB ≤ ThLow)

Textured Else
(3)

where ρMB and VMB are the average luminance and vari-
ance of luminance values in a given MB, respectively. The
value we used for ThLow was 1.25 as was determined in [24]
through the use of regression analysis. For our purposes,

this ThLow value is an arbitrary number used to define our
plain macroblock percentages in our model design process
(Section IV). This MB characterization can be calculated
during the encoding process and transmitted as metadata in
the video bit stream. Currently we use an embedded system
implementation for calculating this average plain MB cal-
culation. To minimize computational overhead, we calculate
a single, averaged plain MB percentage that represents an
entire sample. However, it is possible to calculate a per frame
MB percentage for videos that change scenes frequently
for dynamic adaptation. Two benchmark videos, Akiyo and
News, were initially retrieved from [25]; these videos con-
tained static backgrounds with a low amount of motion from
the reporter(s) in the videos. Both videos displayed low
plain macroblock percentages when analyzed. We further
obtain 32 video samples with similar broadcasting charac-
teristics from the Youtube-8M Dataset [22] and calculate the
percentages per frame for the minimum, maximum, median,
and average percentage of each sample video. Fig. 2 displays
two video samples with similar PSNR values but varying1

plain MB percentages (with 2 LSBs truncated). The distri-
bution of plain MBs and the resulting banding distortion
effect are visualized in Fig. 3. An important observation is

1These tags are used as a unique key that points to the corresponding
YouTube video. For example, the video tag EFv2FvnlLao can be used to
locate the original video sample on YouTube using the following URL:
https://www.youtube.com/watch?v= EFv2FvnlLao.

VOLUME 7, 2019 47483



J. Edstrom et al.: Content-Adaptive Memory for Viewer-Aware Energy-Quality Scalable Mobile Video Systems

that a noticeable relationship exists between the banding
distortion and plain MBs;videos with large amounts of plain
MBs, especially where the plain MBs are dense, tend to have
decreased visual quality to the viewers. Accordingly, we uti-
lize this relationship to develop a content-adaptive model to
predict the number of truncated LSBs for different videos.
Specifically, to minimize the computational overhead, we use
the average plain MB percentage per video frame and focus
on low-motion videos with a stationary camera or containing
a reporter in our analysis.

IV. MODELING PROCESS
To determine the acceptable number of LSBs to truncate
for different videos, we conduct subjective video testing
and based on the collected data, develop two models using
decision tree and logistic regression methods. For our initial
study, described in this paper, we only consider the luma (Y)
component when truncating LSBs.

A. SUBJECTIVE TESTING PROCEDURE FOR DATA
COLLECTION
We conduct two sets of subjective video studies to col-
lect viewers’ feedback. Within each of the studies designed
for subjective analysis of truncation techniques, partici-
pants were asked to view multiple versions of the same
video. Our testing procedure follows guidelines from the
ITU [26] and uses the Degradation Category Rating (DCR)
method [20], which is also known as the Double Stimu-
lus Impairment Scale (DSIS). The participants were asked
to watch both original video and truncated video and then
score from 1 to 5 based on the quality in their opinions
(imperceptible-5, perceptible but not annoying-4, slightly
annoying-3, annoying-2, very annoying-1). We used an aver-
age score of 4.0 or higher as the target for acceptable video
quality [27]. The first (second) of two studies contained 10
(13) participants whowere each asked to view 7 (9) individual
videos from our 34 sample videos.

With these average scores for different amounts of LSBs
truncated, we split the video samples into different regions.
Based on this, we develop models that connect the average
plain MB percentage to number of LSBs that can be trun-
cated.

B. MODELING PROCESS
1) DECISION TREE MODEL
From our initial subjective studies, we aim tomodel the corre-
lations between the calculated average plain MB percentage
and the largest amount of LSBs that can be truncated for a
given PSNR that will maintain an acceptable video quality.
Fig. 4 displays the video samples average plain macroblock
percentage and how many bits can be truncated based on the
minimum acceptable impairment score of 4.0.

From these preliminary results, we discover an inverse
relationship between plain MB percentage and acceptable
number of LSBs to truncate. With the knowledge of this

FIGURE 4. Acceptable truncated bits based on subjective feedback. 1T:
1 LSB truncated; 2T: 2 LSBs truncated; 3T: 3 LSBs truncated.

FIGURE 5. Developed decision tree model for bit truncation.

relationship and the subjective data gathered from partic-
ipants, we develop a decision tree model using the Clas-
sification Learner tool in MATLAB, as shown in Fig. 5.
By traversing the tree from the top to the bottom based on the
plain MB percentages, the number of truncated LSBs can be
obtained for different videos. It is worthy to mention that the
majority of videos from the Youtube-8M dataset have plain
MB percentages above 1.96405% (see Fig. 5) and therefore
the number of videos with the decision for 3 LSBs truncation
is much less than that of 1 LSB and 2 LSBs truncation.

2) LOGISTIC REGRESSION MODEL
In our model development process, we also considered
another widely-applied statistical modeling method: logistic
regression, in which we have{

πi = π3 exp (βi0 + βi1x), i = 1, 2
π3 =

1
1+exp (β10+β11x)+exp (β20+β21x)

, (4)

where πi := P {Y = i|x} indicates the probability that
the number of truncated LSBs is i for given average
plain MB percentage which equals x. We use Matlab
to fit the β̂ coefficients and get β̂10 = −1.6636,
β̂11 = 12.7929, β̂20 = 1.4408, β̂21 = 1.0497. However,
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TABLE 3. Results of ordinal logistic regression.

their corresponding p-values are 0.243, 0.103, 0.111, 0.881,
respectively. This implies that all four coefficients are not
significant in the regression under a 5% significance level.
By observing the data, one can clearly see that this is due to
noise.

In addition, we notice that, if a user chooses a video as
satisfactory which is truncated by k LSBs, then he/she will
be satisfied by the same video truncated by k ′ LSBs where
0 < k

′

< k . The difference between k LSBs and k ′

LSBs truncation is the energy efficiency that can be enabled;
the efficiency is higher for k LSB truncations. To this end,
we further apply the ordinal logistic regression, which yields

ln
(

π1

π2 + π3

)
= β10 + β1x (5)

ln
(
π1 + π2

π3

)
= β20 + β1x (6)

Moreover, we have

π1 + π2 + π3 = 1 (7)

Solving (5), (6) and (7), one can get

π1 =
exp (β10 + β1x)

1+ exp (β10 + β1x)

π2 =
1

1+ exp (β10 + β1x)
−

1
1+ exp (β20 + β1x)

π3 =
1

1+ exp (β20 + β1x)
. (8)

We use Matlab to fit the ordinal coefficients and get β̂ =[
β̂10, β̂20, β̂1

]
= [−2.8322, 0.9856, 9.7783], with p-values

p = [0.0039, 0.1710, 0.0156], respectively. With this ordinal
logistic regression, only β20 is not significant under a 5% sig-
nificance level and the result is much better than the previous
case using the standard logistic regression.

Table 3 lists the ordinal logistic regression results. One can
see that there is no decision for 3 LSBs truncation based on
the ordinal logistic regression model. This is mainly because

very few videos with 3 truncated LSBs are considered accept-
able by the participants; also, most of the video testing results
with 3 LSBs truncation are considered to be noisy data.
When the plainMB percentage (x) is 0.28504 (i.e., 28.504%),
we have P{1 LSB truncated}=P{2 LSBs truncated}= 0.4888.
Accordingly, if x > 28.504%, 1 LSB is truncated; otherwise,
2 LSBs would be truncated.

The developed decision tree model and ordinal logistic
regression model only involve very few parameters and the
computation time is negligible. The comparison of results
between the developed decision tree model and ordinal logis-
tic regression model will be discussed in Section VI.

V. QUALITY OPTIMIZED BIT TRUNCATION DESIGN
In this paper, we also propose a new viewer-aware bit-
truncation technique which has less visual quality degra-
dation with the same number of LSBs truncated. Based
on the developed bit-truncation technique and models,
we implement an energy-quality scalable memory with con-
tent adaptation.

A. QUALITY OPTIMIZED BIT TRUNCATION
Bit truncation can adjust the video data’s bit-depth by dis-
abling LSBs to enable power savings and it has been applied
widely in low-power hardware design [8], [21]. In this paper,
we introduce viewer-awareness to the hardware-design pro-
cess and develop a new hardware-implementation scheme
for bit truncation with a minimized effect on the viewer’s
experience.

Suppose that we are truncating the lowest t LSBs of each
luma (Y) byte. For a given video, we can calculate the true
numerical value for these truncated bits. However, if we con-
sider all videos in general, the true (decimal) value of these
truncated t LSBs should be considered a random variable.
These truncated t LSBs may express any decimal numbers
among 0, 1, 2, · · · ,2t − 1, because we do not have general
prior knowledge that works for all videos. A crucial question
is as follows: what value should be set/given after the true
value of these lowest t bits are truncated? A natural and
intuitive method is to make them all zeros. For example, if the
true value of a byte is 10101110(B) and three bits are trun-
cated, then the byte’s value after truncation is 10101000(B).
Setting the truncated bits as zeros has been widely adopted
by designers [8], [21]. However, in the following proposition,
we show that this value is not the best for minimizing the
expected mean square error, E (MSE).

Proposition 1. Suppose that the lowest t LSBs of a byte
are truncated. Without losing generality, it is assumed that the
true value of these bits is evenly distributed. Then, the best
value for these t truncated bits, in terms of minimizing
E (MSE), is 10 · · · 0(B) (with t − 1 zeros).
Proof. Let random variable Y indicate the true numerical

value which is expressed by the truncated t LSBs. Because Y
is evenly distributed, we have the following probability mass
function (pmf) for Y :
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FIGURE 6. Average PSNR values of 2,000 YouTube-8M videos using two
different truncation techniques.

Let x be the targeted (decimal) value that is set for these
truncated LSBs. We aim to minimize E (MSE), namely to
minimize

f (x)=
1
2t

[
(x − 0)2+(x − 1)2+· · ·+

(
x−(2t − 1)

)2] (9)

Let

0= f′(x) =
1

2t−1
[
x+(x − 1)+ · · ·+

(
x−
(
2t − 1

))]
⇒

x = 2t−1 −
1
2

(10)

Because x is an integer, we take x = 2t−1= 10 · · · 0(B)
(with t − 1 zeros).
The significance of Proposition 1 is that it shows the

dependence between the value set for the truncated bits and
the expected MSE and that it gives the best value, in gen-
eral. We randomly selected 2,000 unique videos, representing
100,000 individual frames, from YouTube-8M [22]. As illus-
trated in Fig. 6, setting the truncated bits to be 10 · · · 0(B)
(with t − 1 zeros) can enable much higher PSNR values,
thereby providing a better viewing experience for the same
videos in the same surroundings.

B. CONTENT-ADAPTATION VIDEO MEMORY DESIGN
Fig. 7 (a) shows the architecture of the proposed
viewer-aware dynamic bit-truncationmemorywith 512words
× 64 bits, which contains 32kb 6T SRAMbit-cells. To enable
viewer-aware bit truncation for LSBs, two different bit-line
conditioning circuitries are applied to the memory. The nor-
mal bit-line conditioning circuitries have a pre-charge unit,
write driver, and sense amplifier, and they are connected to
the 4 most significant bits (MSBs) in a byte; the remaining
bit-lines contain extra circuitry to enable bit truncation, and
they are applied for the 4 LSBs in a byte as shown in Fig. 7
(b).

The truncation controller is shown in Fig. 7 (c). ϕ 1 and ϕ
2 are signals generated from peripheral circuitry based on the
clock signal. ϕ 1 controls read andwrite operations depending
on which period it is in; ϕ 2 controls the pre-charging circuity
of the memory. The sense signal only turns on for a very
short time at the end of the reading operation in order to
reduce the power consumption during the read operation.
The truncation process is controlled by three external signals.

FIGURE 7. Content-adaptive video memory. (a) Memory structure. (b) Bit-line conditioning circuitry. (c) Bit truncation controller.
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FIGURE 8. Timing diagram. DATA7: MSB; DATA0: LSB.

FIGURE 9. Physical layout design.

trunc_encontrols whether the truncation function is on, and
the other two signals, B<0> and B<1>,determine howmany
bits to truncate. t1 and t2 are generated from B<0> and
B<1> through two decoders. The decoder for t1 is a normal
2-to-4 decoder. A special 2-to-4 truncation control decoder
is applied for generating t2, and the truth table is also shown
in Fig. 7 (c). When t1 and t2 are both0s, the normal operations
are applied; whenever t1 is 1, the pre-charging, writing, and
reading operations are suspended; on the basis of t1 being 1,
if t2 is 1 then the output will be 0, otherwise the output will
be 1; the data pattern 01 for t1 and t2will never appear.
The detailed evaluation results including performance,

power efficiency, layout, and video quality will be presented
in Section VI.

FIGURE 10. Power savings.

FIGURE 11. Psychological experiment set-up at North Dakota State
University Center for Visual and Cognitive Neuroscience.

VI. EXPERIMENTAL RESULTS
The proposed memory is implemented based on a 45 nm
CMOS technology [28]. In addition to hardware-level imple-
mentation and verification, psychological experiments are
conducted to test the video output quality from the viewers’
perspective.
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FIGURE 12. Video quality testing results using the decision tree model.
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FIGURE 13. Output quality of video (tag wF6lvdXXwc4): (a) with 3 LSBs truncated using decision tree model and (b) with 2 LSBs truncated using the
developed ordinal logistic regression model.

A. SPEED
Fig. 8 shows the timing diagram for the proposed memory.
To test the functionality of the memory, the data: 0xe9, 0xce,
0x62, and 0x71, are written to the addresses: 0x55, 0xb9,
0xce, and 0x15,respectively, and then read out from the same
addresses. For example, during a 3 bit truncation operation,
the values read out are: 0xec, 0xcc, 0x64, and 0x74, which the
last 3 LSBs for these values are 100(B). The access delay of
the reading operation is about 0.5 ns, which is fast enough
to deliver the typical mobile video sequences (11MHz for
CIF/QCIF and 72MHz for HD720 [29]).

B. LAYOUT
The layout design for 512 words × 64 bits SRAM with
viewer-aware bit truncation is shown in Fig. 9. Only a
few gates are added to the bit-line conditioning circuit to
enable the truncation function. Also, after careful design,
the decoders for truncation controlling can be fit into the free
space of the original layout, without introducing additional
overhead. The proposed memory consumes only 0.32%more
silicon area as compared to the traditional SRAM, which is
negligible.

C. POWER SAVINGS
Input patterns that cover all data switching possibilities have
been tested for thememory. Normal operation, and 1 to 4 LSB
truncations, are simulated based on these input patterns, and
the power consumption for each scenario is shown in Fig. 10.
As compared to normal operation, the average power con-
sumption of reading and writing operations for 1 to 4 LSB
truncations can enable 13.54%, 20.10%, 26.83%, and 33.31%
power savings, respectively.

D. VIDEO QUALITY
Finally, in order to verify the effectiveness of our technique
on the viewer’s experience, we conduct psychological exper-
iments at the North Dakota State University Center for Visual
and Cognitive Neuroscience. The psychophysical experiment

setup is shown in Fig. 11. The ambient illumination was
provided using a rectangular array of 60 high-intensity LEDs
capable of emitting a maximum of 64,000 Lux (Larson Elec-
tronics, model LEDP5W-60-D-1227-F5.15). An illumination
meter (Extechmodel 401027) was used to accuratelymeasure
the ambient illumination of the phone used for testing, a Sam-
sung Galaxy Note 4. In our experiments, we adjust the output
of the high-intensity light source using neutral-density filters.
The luminance level measured by the illumination meter was
approximately 811 Lux, which is a typical indoor light level.

To assess the degree towhich observers can accept the trun-
cated videos as compared to the reference videos using the
developedmodels, we collected a total of 20 videos: 10 videos
that we classify as having a stationary camera and 10 videos
containing a reporter. Each video sample was evaluated at
a single quality point, encoded using a constant rate factor
of 0 (i.e. lossless compression), had a 640 × 360 resolution,
was 10 seconds in length, and was downloaded from [22].
Based on these videos we calculated the average plain MB
percentages and used the developed models to predict what
the expected amount of acceptable LSBs to truncate would be
for different videos. We then created another two versions of
each video from the reference, one with the predicted amount
of acceptable bits to truncate and another with one bit beyond
the predicted acceptable amount. We created sequences of
numbers to represent each video and randomized the order
they would be presented. During testing, each participant
would compare a total of 40 truncated videos to the origi-
nal, non-truncated version and give their opinion of whether
they would consider the video acceptable for viewing on the
mobile device.

The testing results for the developed decision tree model
are shown in Fig. 12. In our analysis, the plain macroblock
percentages, the number of bits truncated, and the video
quality metric (VQM) [34] calculation are included for com-
parison among samples. VQM is one widely used objective
video quality metric that has been shown to have a strong
correlation to the subjective viewer ratings. When calculating
the VQM for each sample, we used the NTIA General Model
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TABLE 4. Results of videos with different LSBs truncated in different memories.
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with Full Reference Calibration, which have been standard-
ized by both the ITU and ANSI [35]. The developed decision
tree model works well for nearly all of videos. There was
only one video, with tag wF6lvdXXwc4, out of 20 videos that
was considered to not be acceptable by the vast majority of
participants. As shown in Fig. 13 (a), this video displayed
banding distortion, caused by bit truncation, appearing on
the reporter’s face; which is likely the viewer’s focus point.
Due to this particularly noticeable distortion, viewers were
less likely to accept the displayed degradation. All other
samples were considered acceptable by the majority of the
15 total participants, with the lowest acceptance rate being
73% for the video with tag 2AQ6rhVhwRc; another video
with banding appearing very close to the viewer’s focus point,
the kitten playing with a string in the video.

We further compared the results using the ordinal logistic
regression to the decision tree model. Those two models
achieve the same prediction results for the majority of videos;
only 4 out of 20 videos are different. For those 4 videos,
decision tree model predicts 3 LSBs truncated, but the ordinal
logistic regression model predicts 2 LSBs truncated. One of
those 4 videos is the video with tag wF6lvdXXwc4; it was
the only one that was considered to not be acceptable using
the decision tree model. With 2 LSBs truncated predicted
by the ordinal logistic regression model, the visual quality
is significantly improved, as illustrated in Fig. 13 (b). For
the other 3 videos (with tags Lp3H1XOcKCE, dgAu_Wsd7Fo,
and lcVPxLFlq1c), the visual output with 3 LSBs truncated
are acceptable by themajority of participants. Particularly, for
the video with tag dgAu_Wsd7Fo, all of the participants said
it was acceptable. From the above analysis, we can conclude
that as compared to the decision tree model, the ordinal
logistic regression model is a more conservative model which
can avoid the worst video quality degradation case, but it may
lose energy optimization opportunities for some videos.

Another interesting observation that was made during
the video testing process is that if we can detect where
the viewer’s focus is in different videos (e.g., mobile gaze
tracker [30]), we can further remove noticeable degradation
in these sensitive areas of videos in the future.

VII. CONCLUSION
During the hardware implementation process, we use a single
percentage for the entire video in order to minimize the
overhead of the design. In order to better suit the applicability
and energy-quality scalability, future research will investigate
the capability of calculating the macroblock percentage for
each frame. This per frame calculation could allow for real-
time adjustment of truncated bits at the cost of additional
area overhead. We also intend to expand our number of
participants and video samples in order to create a more
comprehensive model. Finally, we plan to further study the
relationship between the content information described in this
paper and the psychophysical human visual systemmodels to
better understand what other metrics we can use to support
hardware design.

APPENDIX
Table 4 lists the results with LSB truncation in different
video memories using the video system shown in Fig. 2. The
standard video sequence aspen_1080p.y4m [25], which has a
wide range of plain MB percentages across different frames,
is used for evaluation. The average plain MB percentage was
20.90%; the maximum and minimum were 50.89% at frame
#367 and 3.03% at frame #113, respectively. The video was
encoded with the following ffmpeg [37] command:

ffmpeg -i aspen_1080p.y4m -profile:v baseline -pixel_
format yuv420p -level 3.1 -framerate 30 -preset 1 -cavlc 1
-pix_fmt yuv420p aspen_1080p.264

As the encoded video is processed using the Xilinx Zynq
7020 FPGA based H.264 decoding and display system
(Fig. 2), the number of truncated LSBs in each memory
(Table I) changes from one to a maximum of five. The trun-
cated bits were set to zeros [8], [21].

As shown in Table IV, truncation in different memo-
ries significantly influences the output quality. For example,
truncation in chroma memories (Chroma Level Cb and Cr)
causes color distortion, while truncation in Luminosity Level
memory leads to the banding distortion effect. Additionally,
truncation in the restructured neighboring memory results in
significant output quality degradation. Among those memo-
ries, the reference MB memory and frame buffer can toler-
ant considerable memory failures. Particularly, for the frame
buffer, considering its large size (Table I), the tolerance to
three LSBs truncation provides power saving opportunities.
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