Poster Presentation

CCS’18, October 15-19, 2018, Toronto, ON, Canada

POSTER: End-to-End Secure Mobile Group Messaging
with Conversation Integrity and Minimal Metadata Leakage

Mike Schliep

University of Minnesota
schlil16@umn.edu

ABSTRACT

Existing End-to-End secure messaging applications trust a single
service provider to deliver messages in a consistent order to a con-
sistent group of conversation members. We propose a protocol
that removes this single point of failure by using multiple service
providers, enforcing conversation integrity as long as one service
provider out of N behave honestly. However, this approach could
potentially increase the number of entities that learn the metadata
for a conversation. In this work we discuss the challenges and pro-
vide a protocol that limits the metadata leakage to that of existing
messaging applications while still providing strong conversation
integrity.

KEYWORDS
End-to-End Encryption, Secure Messaging, Cryptographic Protocol

1 INTRODUCTION

Texting and social media-based messaging applications have be-
come prolific as a means of every day communication. The pop-
ularity of these messaging applications stems in part from their
convenience, allowing users to communicate even in a mobile and
asynchronous setting, where their network availability may be un-
reliable and they may come online and go offline at different times.
Due to increasing privacy concerns of users, some of the most
widely deployed messaging applications, including WhatsApp [11],
Facebook [5], and Signal [9], have been deploying end-to-end en-
cryption to protect the confidentiality and integrity of messages in
users’ conversations.
Message confidentiality and integrity are not sufficient to protect

a conversation. While current applications protect the integrity of
individual messages — an adversary cannot modify a message while
in transit from Alice to Bob — they do not protect the integrity
of the conversation. Consider the following conversation between
Alice and Bob, in which the order that messages are displayed
can drastically affect the meaning of the conversation, even if the
individual messages cannot be modified:
Alice’s View:

Alice: Are you going to the protests?

Alice: Have you had lunch yet?

Bob: No... Yes.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CCS ’18, October 15-19, 2018, Toronto, ON, Canada

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5693-0/18/10.

https://doi.org/10.1145/3243734.3278506

2282

Nicholas Hopper
University of Minnesota
hoppernj@umn.edu

Bob’s View:

Alice: Have you had lunch yet?
Alice: Are you going to the protests?
Bob: No... Yes.

We refer to the security property that a conversation must be
displayed consistently to all participants as conversation integrity.
This is an example of an additional security property we deem
necessary for any future protocols to achieve end-to-end secure
messaging.

To support conversation progress while some users are offline
the service provider handles routing and caching messages in the
conversation. This service provider can break the conversation in-
tegrity property of a protocol that allows conversation to progress
while some participants are offline. The service provider simply
needs to fork the conversation after a target message and can parti-
tion the group into multiple views of the same conversation. We
illustrate this with an example. Consider a conversation between
Alice, Bob, Charlie, and Dave. The service provider forks the con-
versation after Alice’s second message. The group is partitioned
into two views, one where Alice and Bob believe they are the only
participants online and the other where Charlie and Dave believe
they are the only participants online.

Alice’s and Bob’s View:

Alice: Lets go to the protest if 3 people want to?
Alice: I want to go.
Bob: I cannot make it.

Charlie’s and Dave’s View:

Alice: Lets go to the protest if 3 people want to?
Alice: I want to go.

Charlie: I am in.

Dave: Yes, me too.

Another security property we believe is importation for secure
messaging is deniability. Consider the following conversation:

Report: What is your company doing illegally?
Whistleblower: They are dumping poison into the water.

Message deniability guarantees there is no cryptographic proof
that the whistleblower authored the message. Now consider the
following conversation:

Whistleblower: My SSN is 123-45-6789.

Report: What is your company doing illegally?

Whistleblower: They are dumping poison into the water.
A protocol that provides message deniability allows the whistle-
blower to argue that they did not author the messages. But only
the whistleblower knows their social security number so a proto-
col must also provide message unlinkability, guaranteeing there is

https://doi.org/10.1145/3243734.3278506

Poster Presentation

no cryptographic proof to a third party that both messages were
authored by the same participant.

Most deployed secure messaging applications are based on the
Signal two-party protocol, which is non-trivial to extend to group
settings. Recently, multiple vulnerabilities [6, 7] have been discov-
ered in the way these applications implement end-to-end secure
messaging for groups. These vulnerabilities allow an adversary to
drop or reorder messages in two-party and group conversations.
Other messaging applications ignore end-to-end security of group
conversations entirely. We consider group conversations just as
important as two-party conversations and future protocols must
be designed with that in mind.

On the other hand, recent literate literature [2-4, 8] proposing
secure messaging protocols make assumptions that are not realistic
in the modern mobile internet which makes them not practical for
real world deployments. Most of these works require synchronous
communication or provide little to no guarantees about conversa-
tion integrity.

We propose a new protocol (GrOMPI) that provides end-to-end
secure messaging in the mobile model with conversation integrity
and does not leak metadata to any additional entities compared to
existing applications.

2 SECURITY GOALS

We quickly discuss the threat model and security goals of end-to-
end secure mobile messaging.

2.1 Threat Model

The security provided by GrOMPI needs to withstand strong ad-
versaries. We must consider an adversary that may compromise
multiple servers and multiple users long-term and ephemeral keys.
The adversary also has full network control and may drop, modify,
and reorder the network traffic.

2.2 Security Properties
We now discuss the security goals of GrOMPIL.

e Message Confidentiality: Only conversation participants
can read a message.

Message Integrity: Messages are guaranteed to not have
been modified in transit.

Message Authentication: Conversation participants can
verify the author of a message.

Forward Secrecy: Past messages are confidential even if
future key material is revealed.

Backward Secrecy: Future messages are confidential if past
key material is revealed, also know as future secrecy or post-
compromise secrecy.

Participant Authentication: Participants can verify other
participants are really who they claim to be.

Participant Consistency: All participants of a conversa-
tion agree on all the participants of the conversation.
Conversation Integrity: All participants see the same con-
versation. This includes the order of messages in a conversa-
tion and the order of participant changes in a conversation.
Deniability: Participants must be able to deny taking part in
a conversation. Unger et. al. [10] refer to this as participant

2283

CCS’18, October 15-19, 2018, Toronto, ON, Canada

repudiation. They also discuss two additional deniability
properties; message repudiation and message unlinkability.
Participant repudiation implies message repudiation. Mes-
sage unlinkability is the property that if a distinguisher can
be convinced a user authored one message this should not
prove the authorship of any other message. Off-the-Record
messaging should provide all of these forms of deniability.
Metadata Privacy: Minimal metadata is leaked to the fewest
entities that are not participants in the conversation.
Anonymity Preserving: The protocol should not under-
mine the anonymity features of the underlying transport.
Computation and Trust Equality: All users perform simi-
lar computations and no user is trusted more than any other.
Untrusted Service Provider: Any single service provider
is not trusted to provide any of the security properties.
e Dynamic Groups: Participants can be added and removed
from conversations without restarting the protocol.

3 GROMPI: IN SUBMISSION

At a high level GrOMPI is designed as follows. To avoid the conver-
sation partitioning attack discussed previously GrOMPI depends
on a routing server used to route messages and multiple mirrors to
enforce a consistent order. Users register with a routing server out-
of-band. This registration links a user identity, a long-term public
key, and multiple single use pre-keys. The routing server shares this
registration information with the mirrors. When messages are sent
as part of a conversation they are uploaded to the routing server
and distributed to the mirrors. The server and mirrors then send
the messages to the participants. The participants do not process a
message until it has been received from the server and every mirror.
As long as a single server or mirror is honest conversation integrity
and participant consistency is enforced.

There are four types of messages; Setup, Receipt, Message, and
Update. The Setup message indicates a new conversation. Receipt
indicates a users has processed all previous Setup, Message, and
Update messages. Message is used to send a conversation message to
display to users. And Update is used to update the set of participants
in a conversation. The rules of who is authorized to make participant
changes as well as what kind of changes they are allowed to make
are left up to the implementation but must be enforceable by the
servers.

When Alice wishes to send a message in a conversation with Bob
and Charlie she first fetches Bob’s and Charlie’s long-term public
keys and a single use public pre-key for each of Bob and Charlie.
She then uploads the message of the form:

Sid, “TYPE”, Alice, c, cgp, Cac, authgs,, . . ., authgs,,

to the routing server. Sid is a unique session identifier for the session.
TYPE is the type of message, c is the message ciphertext or set of
participants. ¢4« are per-user ciphertext blocks that authenticate
the message and contain key ratchet material for Bob and Charlie.
The authgs blocks are authentication blocks allowing the servers
to authenticate the entire message from Alice.

Poster Presentation

The servers then distribute the following to Alice, Bob and Char-
lie respectively.

Sid, “TYPE”, Alice, c
Sid, “TYPE”, Alice, c, ¢4
Sid, “TYPE”, Alice, c, cqc

All messages in a conversation are processed in this manner.
The pairwise ciphertext blocks provide message authentication and
integrity. The pairwise ciphertext blocks use a protocol that pro-
vides forward and backward secrecy as well as deniability, similar
to OTR or Signal. As long as a single mirror is honest the proto-
col provides participant consistency and conversation integrity.
Participant authentication is provided by verifying the long-term
keys out-of-band in the same manner as existing secure messaging
applications. Finally, GrOMPI does not compromise the anonymity
of any network protocol by using anonymous Diffie-Hellman to
encapsulate setting up the client secure connections to the server.

4 METADATA PROTECTION: WORK IN
PROGRESS

The disadvantage of GrOMPI compared to other secure messaging
protocols is that with GrOMPI more servers learn the metadata of a
conversation. This is necessary for the mirrors to send the messages
to the clients. We are working to reduce the metadata leaked to the
mirrors. We achieve this by removing the mirrors and replacing
them with order enforcing servers.

When a client registers pre-keys with the routing server, the
client also registers conversation order pre-keys that are associated
with an ephemeral client identity. Now, when a conversation is
setup the routing server chooses a conversation order pre-key and
sends it to the order enforcing servers. Then the order enforcing
server can derive a symmetric key with the ephemeral client identity
and produce a Message Authentication Code (MAC) associating the
hash of the setup message as the first message in a conversation.
The MAC is returned to the routing server and delivered to the
client through the routing server. This way the order enforcing
servers do not learn who participated in a conversation. The order
of all conversation messages are enforced this way with the MAC
associating the hash of the message with the index of the message
in the conversation.

This approach still reveals how many participants are in a con-
versation and how often messages are sent. To avoid this we pad
all conversations to a constant number of participants and the rout-
ing server can send noise messages in a conversation. This does
increase the size of setup and participant change messages and
also increases the number of messages a client must process but
significantly reduces the amount of metadata leaked to the order
enforcing servers. Finally, all conversation order key material must
be replaced when the participants of a conversation are changed.
This avoids leaking the number of users added or removed.

In addition to protecting the metadata of a conversation this also
eases deployment of the protocol. With this new model only the
routing server must be highly available. As long as a majority of
the order enforcing servers are honest and available a conversation
can continue to progresses even if some order enforcing servers
are offline.

2284

CCS’18, October 15-19, 2018, Toronto, ON, Canada

5 RELATED WORK

Off-The-Recorcd (OTR) [2] is the first academic work to look at
providing private instant messaging. OTR provides message con-
fidently, integrity, authentication, repudiation, and unlinkability.
However OTR does not provide participant repudiation or conver-
sation integrity. The main limitation of OTR is it only supports
conversations between two individuals. There is not a straight
forward mechanism to apply OTR in a group setting.

Multiparty OTR (mpOTR) [3] tries to provide the properties
of OTR for group conversations. However, it only achieves con-
versation integrity after a conversation has ended by executing a
byzantine agreement of the completed transcript. Group Off-The-
Recored (GOTR)[4] and SYM-GOTR [8] provide the properties of
OTR for group conversations with conversation integrity but re-
quire all users to be online at the same time to make conversation
progress. They achieve conversation integrity by performing a
consistency check after every message.

Signal [9] formerly TextSecure is the most widely deployed pro-
tocol for secure mobile messaging. Recently multiple vulnerabili-
ties [6, 7] have been discovered affecting participant consistency
and conversation integrity vulnerabilities in two-party and group
conversations. Signal lacks conversation integrity of messages and
receipts, Charlie can not verify if Alice has received Bob’s message
and no order of messages is enforced.

Recently the Internet Engineering Task Force initiated a working
group to develop a standard for Messaging Layer Security (MLS) [1].
The working group has focused on developing a group key agree-
ment protocol that can be setup and ratcheted while some users are
offline. They do not provide a mechanism for message authorship
authentication, deniability, or message ordering.

6 ACKNOWLEDGMENTS

This work was sponsored by the National Science Foundation under
grant 1814753.

REFERENCES

[1] Richard Barnes, Jon Millican, Emad Omara, Katriel Cohn-Gordon, and Raphael
Robert. 2018. Messaging Layer (MLS) Secuirty. https://tools.ietf.org/html/
draft-barnes-mls-protocol-01.

Nikita Borisov, Ian Goldberg, and Eric Brewer. 2004. Off-the-record communica-
tion, or, why not to use PGP. In Proceedings of the 2004 ACM workshop on Privacy
in the electronic society. ACM, 77-84.

Ian Goldberg, Berkant Ustaoglu, Matthew D Van Gundy, and Hao Chen. 2009.
Multi-party off-the-record messaging. In Proceedings of the 16th ACM conference
on Computer and communications security. ACM, 358-368.

Hong Liu, Eugene Y Vasserman, and Nicholas Hopper. 2013. Improved group
off-the-record messaging. In Proceedings of the 12th ACM workshop on Workshop
on privacy in the electronic society. ACM, 249-254.

Moxie Marlinspike. 2016. Facebook Messenger deploys Signal Protocol for end
to end encryption. https://whispersystems.org/blog/facebook-messenger/
Paul Résler, Christian Mainka, and Jorg Schwenk. 2018. More is Less: On the
End-to-End Security of Group Chats in Signal, WhatsApp, and Threema. (2018).
Michael Schliep, Ian Kariniemi, and Nicholas Hopper. 2017. Is Bob Sending Mixed
Signals?. In Proceedings of the 2017 on Workshop on Privacy in the Electronic Society.
ACM, 31-40.

Michael Schliep, Eugene Vasserman, and Nicholas Hopper. 2018. Consistent
Synchronous Group Off-The-Record Messaging with SYM-GOTR. Proceedings on
Privacy Enhancing Technologies 2018, 3 (2018), 181-202.

Open Whisper Systems. [n. d.]. Open Whisper Systems. https://whispersystems.
org/.

Nik Unger, Sergej Dechand, Joseph Bonneau, Sascha Fahl, Henning Perl, Ian
Goldberg, and Matthew Smith. 2015. SoK: Secure Messaging. In Security and
Privacy (SP), 2015 IEEE Symposium on. IEEE, 232-249.

WhatsApp. 2017. https://www.whatsapp.com/security

3

https://tools.ietf.org/html/draft-barnes-mls-protocol-01
https://tools.ietf.org/html/draft-barnes-mls-protocol-01
https://whispersystems.org/blog/facebook-messenger/
https://whispersystems.org/
https://whispersystems.org/
https://www.whatsapp.com/security

	Abstract
	1 Introduction
	2 Security Goals
	2.1 Threat Model
	2.2 Security Properties

	3 GrOMPI: In Submission
	4 Metadata Protection: Work In Progress
	5 Related Work
	6 Acknowledgments
	References

