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Abstract—For accommodating more electric vehicles (EVs) to
battle against fossil fuel emission, the problem of charging station
placement is inevitable and could be costly if done improperly.
Some researches consider a general setup, using conditions such
as driving ranges for planning. However, most of the EV growths
in the next decades will happen in the urban area, where driving
ranges is not the biggest concern. For such a need, we consider
several practical aspects of urban systems, such as voltage
regulation cost and protection device upgrade resulting from
the large integration of EVs. Notably, our diversified objective
can reveal the trade-off between different factors in different
cities worldwide. To understand the global optimum of large-
scale analysis, we studied each feature to preserve the problem
convexity. Our sensitivity analysis before and after convexification
shows that our approach is not only universally applicable but
also has a small approximation error for prioritizing the most
urgent constraint in a specific setup. Finally, numerical results
demonstrate the trade-off, the relationship between different
factors and the global objective, and the small approximation
error. A unique observation in this study shows the importance
of incorporating the protection device upgrade in urban system
planning on charging stations.

Index Terms—Electric vehicle charging station, distribution
grid, convexification, protective devices upgrade.

NOMENCLATURE

αn The inflation rate, (n = 1, · · · 6).
βn The discount rate, (n = 1, · · · 6).
∆P linei Expanded line capacity at node i, in kVA.
∆P subi Expanded substation capacity at node i, in kVA.
∆Vi Voltage deviation from nominal voltage Vnom at node

i, in p.u.
Φ Set of nodes in the distribution networks.
φni,k The probability that the nth EV owner will choose

the ith charging station of service provider k.
Ψ Set of branches in the distribution networks.
c The protective device capacity.
cacqdc , cinstdc , cuninstdc , cmaindc The acquisition, installing, unin-

stalling, and maintenance costs respectively, for the
protective device of type d capacity c, in $.

c1,i Fixed cost to build a new station at node i.
c2,i Fixed cost to add an extra spot in the existing

charging station at node i.
c3,i Line cost at node i, in $/(kVA · km).
c4,i Substation expansion cost at node i, in $/kW.
c5 Voltage regulation cost coefficient per p.u. voltage

square, in $/p.u.2.
cn,i,t The economic coefficient at node i at the tth year,

(n = 1, · · · 5).
d The protective device type.
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Di,k The average charging demand that each spot satisfies
from service provider k at bus node i, in MW.

Imax,j Maximum current limitation at branch j, in Amp.
li Length of the distribution line expansion required for

a new charging station at node i.
m Total number of branches in the distribution net-

works.
n Total number of nodes in the distribution networks.
nldn ev The number of EVs at downstream of line l.
P line0,i Original line capacity at node i, in kVA.
pev The power of the integrated EV, in W .
Psur The substation surplus capacity, in MW.
Rd The number of ranges of the continuous current of

protective device type d.
S The minimum power demand in a certain area, ag-

gregated by zip code, in MW.
T The total life of the project.
t The year of the project.
Vi Voltage at node i, in Volt.
Vmax,i Maximum voltage limitation at node i, in Volt.
Vmin,i Minimum voltage limitation at node i, in Volt.
xi Binary variable denoting charging station location at

node i.
xldc Binary variable, xldc = 1 when line l is determined

to upgrade its protective device to type d capacity c.
xbaseldc Binary variable, xbaseldc = 1 when line l initially has

the protective device of type d capacity c.
yi Number of new charging spots to be installed in the

station of node i.
zdc Binary variable, equal to zero when the element (d, c)

of the matrix A is negative.

I. INTRODUCTION

UNDER the Paris agreement signed in 2016, the model
of a sustainable urban city – Singapore, pledged to cut

emissions intensity by 36% below 2005 levels by 2030 [1].
To meet the commitment, emissions reduction worldwide in
the transport sector is crucial, and large-scale electric vehicle
(EV) adoption in the future is, therefore, utmost essential
to Singapore and many other cities/countries. For example,
Singapore took several important steps in this direction such as
1) an announcement of a new Vehicular Emissions Scheme [2]
and 2) the launch of the electric vehicle car-sharing program
[3], etc. However, one of the major barriers to successful
adoption of EVs at a large scale is the limited number of
available charging stations. Thus, it is important to properly
deploy EV charging infrastructure to enhance the adoption of
EVs efficiently.

EV charging station placement has therefore been an active
research area for intercity and urban infrastructure planning.
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In freeway charging infrastructure planning, [4] tackles the
EV charging station placement problem in a simple round
freeway, whereas [5] proposes a capacitated-flow refueling
location model to capture PEV charging demands in a more
complicated meshed transport network. However, both papers
share the similarity of considering the driving range in the
freeway. In contrast, the driving range constraints are not
prominent in the urban area charging infrastructure planning
since the charging stations are easily accessible, therefore,
researchers have considered various aspects dedicated for
urban area charging station placement. For example, [6] man-
ages to find the optimal way to recharge electric buses with
long continuous service hours under two scenarios: with and
without limited batteries. However, it is applicable only to
public bus systems. [7] considers urban traffic circulations
and hourly load change of private EVs, but it ignores the
geographical land and labor cost variation that are of high
importance in urban areas.

If zooming in on the specific techniques deployed and
the realistic factors considered, the problem under study can
be examined in various technical aspects. For example, [8]
includes the annual cost of battery swapping, and [9] considers
the vehicle-to-grid technology. Furthermore, researchers and
engineers explore many realistic factors such as investment
and energy losses [10], quality of service [11], service radius
[12], etc. The work in [13] considers the EV integration
impact on the grid. In fact, when the load profiles change,
the electrical demand at particular points can exceed the
rated value of the local T&D infrastructure. A study in the
U.S. has put the value of deferring network upgrade work
at approximately $650/kW for transmission and $1, 050/kW
for distribution networks [14]. Besides the techniques in the
previously mentioned papers, studies focusing on the infras-
tructure upgrade, therefore, seems necessary under large-scale
EV integration. Some papers discuss infrastructure upgrade.
For example, [9] takes into account the loading limits of
the distribution transformer and distribution lines; while [15]
considers minimizing the voltage deviation cost. However,
realistic factors like the upgrade of protective devices and its
effect on the overall planning are not addressed in the context
of EV charging station integration in the past.

The aforementioned urban planning and technical issues are
mainly formulated as optimization problems. Based on the
nature of the equations involved, these optimization problems
contain linear programming as well as the nonlinear program-
ming problems [9], [10]. Based on the permissible values of
the decision variables, integer programming, and real-valued
programming usually, exist in the same EV charging station
problem [16]. Based on the number of objective functions,
both single-objective [5] and multi-objective [10], [17] prob-
lems are proposed by researchers. Variously, the optimization
problems are sometimes considered on a game theoretical
framework in [11], [18]. Solutions to these optimization prob-
lems include greedy algorithm [6], [16], genetic algorithm
[9], interior point method [12], gradient methods [11], etc.
However, these solutions do not consider the convexification
of the constraints. Consequently, they are unable to guarantee
a global optimum.

The contributions of this paper include three points. Firstly,
this paper quantifies the protection device upgrade cost with
step functions and integrates the protection cost into the
objective function of the EV charging station placement. The
effect of protection and voltage regulation upgrade on the
charging station placement is revealed. Secondly, the convex-
ification preservation is realized in this optimization problem,
at the same time, the global optimum is achieved and guaran-
teed. Thirdly, this paper suggests a comprehensive sensitivity
analysis before and after the problem convexification. The
sensitivity validation further indicates the applicability of the
proposed method in different cities and countries.

The established optimization problem originates from the
practical concerns within electrical and transportation net-
works. Its sensitivity is firstly analyzed, then the constraint
convexification is conducted. Meanwhile, the sensitivity anal-
ysis is re-evaluated after the problem convexification to see if
it still holds. In the end, the proposed objective function along
with its constraints will provide the results for the EV charging
station planning, which satisfies the economic requirements
that both networks request. The outline of the paper comes
as follows: Section II elaborates on the mathematical formu-
lation of the problem under study. Based on the proposed
formulas, Section III suggests a way of convexifying the
proposed realistic constraints in the objective function. Section
IV demonstrates the numerical results as well as sensitivity
analysis after convexification in small and large scale systems
respectively. Furthermore, the discussions on the geographical
effect and the importance of protection cost are presented in
Section V. The conclusions are in Section VI.

II. PROBLEM FORMULATION

Fig. 1 shows the flowchart of the proposed EV charging
station placement method. It considers the integrated elec-
trical and transportation networks as well as their associated
infrastructure costs. Therefore, the costs related to distribution
expansion, voltage regulation, protective device upgrade, and
EV station construction are incorporated in the objective func-
tion. This study is assumed to be conducted for urban cities
and large scale of EV integration in the future. Since a great
amount of stations has to be installed in this circumstance, the
EV charging station integration point could be at any bus along
the distribution feeder as long as the operation constraints
permit. In this section, the objective function and constraints
are first formulated and then explained in details. Afterwards,
the sensitivity analysis is provided from a mathematical angle.

A. Objective Function and Constraints
The objective function minimizes the total cost among the

costs of charging stations, distribution network expansion,
voltage regulation, and protection device upgrade. It is for-
mulated as a mixed-integer nonlinear optimization problem:

minimize
xi,yi

Csta + Cdis + Cvr + Cprot (1)
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Fig. 1. Flowchart of the proposed EV charging station placement method.

subject to

xi ∈ {0, 1}, i ∈ Φ, (2a)
yi ∈ Z+, i ∈ Φ, (2b)∑
i∈Φ

g(yi) ≥ S, i ∈ Φ, (2c)

f(Vi, δi, Pi, Qi) = 0, i ∈ Φ, (2d)
0 ≤ |Ij | ≤ Imax,j , j ∈ Ψ, (2e)
Vmin,i ≤ |Vi| ≤ Vmax,i, i ∈ Φ, (2f)
Csta + Cdis + Cvr + Cprot ≤ Cbudget, (2g)

where

Csta =
∑
i∈Φ

(c1,ixi + c2,iyi), (3)

Cdis =
∑
i∈Φ

(c3,ili(P
line
0,i + ∆P linei )) + c4,ih(∆P subi ), (4)

Cvr = c5
∑
i∈Φ

∆V 2
i , (5)

Cprot = Cacq + Cinst + Cuninst + Cmain. (6)

The definition of the notations is in the Nomenclature.
The formulated objective function deals with the planning,

specifically, the sitting and sizing of the charging stations.
It is, therefore, the distribution system operator (DSO) who
solves the optimization problem. In the deregulated electricity
markets in the States (such as California ISO, PJM, and
ERCOT), the market coordinator of the distribution networks
calculate the locational marginal prices (LMPs) at each node.
Then the wholesale market sells the electricity to the charging
stations that are run by the EV charging service providers
at the LMPs. The service providers provide charging service
at retail charging prices accordingly. For one thing, the DSO
plans the charging station placement to minimize its grid
operation cost and EV infrastructure investment using (1).
For another thing, the service providers always attempt to
maximize the profit once the EV infrastructure is built.

In the remaining part of Section II, the objective function
and constraints are explained first, then the problem sensitivity
is analyzed from the mathematical perspective.

B. Explanations of the Objective Function

The objective function aims to minimize the total cost
associated with four aspects in (1). They are visualized in Fig.

2, which is zoomed in from the electrical network in Fig. 1.
There are four terms (also viewed as four constraints) in this
objective function. They are related to different aspects of EV
charging and network upgrade costs.
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Fig. 2. Cost decomposition – Zoom-in of the electrical network.

The first term is the fixed cost of building a new station
and of adding an extra spot in the existing charging station.
The second one is related to the distribution line cost and
the substation expansion cost. The distribution line cost is
approximately proportional to the product of the line length
and the total line capacity. Moreover, the total line capacity
is the sum of the original line capacity and the expanded line
capacity, where the latter can be estimated to be proportional
to the number of new charging spots to be installed:

P line0,i + ∆P linei = P line0,i + pevyi, i ∈ Φ. (7)

The second term considers the distribution system expansion
cost including substation capacity upgrade, branch capacity
upgrade, branch expansion, etc. When a charging station
location that can satisfy a certain area’s charging demand is
not directly accessible from the closest distribution network
bus, an expansion of the existing distribution line, either in
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MV or LV level, is needed to deliver power to this charging
station. Also in the second term, an h function is employed
to describe the net power increase according to the substation
surplus capacity Psur. The h function is defined as follows:

h(∆P subi ) =

{
0, ∆P subi < Psur,

pev
∑
i yi, ∆P subi ≥ Psur.

(8)

The third term represents the equivalent cost resulting
from the impact of EV charging stations on the distribution
network voltage profile, where ∆Vi = Vi − Vi,ref . [19]
proposes a stochastic capacitor planning formulation for dis-
tribution systems. However, voltage regulation techniques in
distribution systems include voltage regulation transformers,
static var compensators, static synchronous compensators, and
shunt capacitor banks, etc [20]. They can maintain voltage
levels of load buses within an acceptable range. Since Q =
V 2/Xc = ωCV 2, the amount of reactive power compensation
is proportional to the bus voltage. Therefore the square of
voltage deviation from the reference voltage at each bus is
employed to evaluate the voltage regulation related cost.

The fourth term is associated with the protection device
upgrade due to the installation of EV charging stations. The
protection cost decomposition is shown at the top of Fig. 2.
It is assumed that the acquisition, installation, uninstallation,
and maintenance costs are constant at each current range. The
capacity c is an integer, denoting a specific numbered capacity
range up to Rd, for the protective device with type d. For
example, c = 1, · · · , 5 for the fuses, according to Table VIII.
The matrix A indicates the total number of devices to be
installed [21]:

A(d, c) =
m∑
l=1

(xldc − xbaseldc ). (9)

Therefore, we have:

Cacq =
4∑
d=1

Rd∑
c=1

cacqdc · zdc ·A(d, c), (10)

Cinst =
4∑
d=1

Rd∑
c=1

m∑
l=1

(cinstdc · xldc · (xldc − xbaseldc )), (11)

Cuninst =

4∑
d=1

Rd∑
c=1

m∑
l=1

(cuninstdc · xbaseldc · (xldc − xbaseldc )),

(12)

Cmain =
4∑
d=1

Rd∑
c=1

m∑
l=1

(cmaindc · xldc), (13)

where

xldc =

{
1, I0 + ∆Ild = I0 + nldn ev · I0

ev ∈ c,
0, otherwise.

(14)

On one hand, the proposed mathematical model consid-
ers the fuses, reclosers, overcurrent relays, and directional
overcurrent relays with synchronized recloser function in this
paper. Extra devices can be added depending on the specific
cases. On the other hand, the value selection of each device
capacity is according to the realistic device operating ranges.
Different costs of the protective devices can be found in

Appendix A. We assume there is no relocation during device
upgrade since the original placement of the recloser was
very likely determined by the reach of the feeder relays.
Replacement of the recloser with directionality function is
preferred in practice [22].

C. Explanations of the Constraints

1) Optimization variables in (2a) and (2b): xi is a binary
variable that indicates the availability of the charging
station at bus node i, and yi is an integer variable that
shows the number of charging spots at bus node i.

2) Charging serviceability constraint in (2c): the charging
station serviceability needs to be higher or equal to the
minimum power demand S in a certain area. The charg-
ing serviceability is the summation of the serviceability
function g(yi) over all charging locations. To simplify
the problem, we use

g(yi) = Di,kyi, (15)

to represent the charging demand. We include in this
paper the nested logit model [11] to predict and quantify
the charging demand Di,k. The social welfare behind
Di,k contains the influence from the EV owner pref-
erence, charging prices, road connections, traffic condi-
tions and the number of EVs in that area. Details of the
nested logit model and how it quantify the social welfare
is given in Appendix B.

3) Power flow constraints in (2d): the integration of EVs
and locally distributed generations should respect the
constraints of the electric network. The function f
denotes the power flow equations.

4) Line current constraint in (2e): the current flowing in
each line should not exceed the maximum rated current
of the line.

5) Voltage limits in (2f): for the operation safety, the
voltage range of 0.95 ∼ 1.05 is recommended.

6) Budget limits in (2g): for the generality of the proposed
method, this constraint can be estimated ahead of the
overall optimization and planning. Concisely, the budget
constraint depends on the regional EV flow that EV
supply equipment can host in each planning stage, along
with other system upgrade costs. This constraint can be
ignored based on the requirement of different utilities.

D. Sensitivity Analysis of the Problem

In order to analyze the sensitivity of each constraint in
the objective function (1), the comparison is made in (3)-(6).
Specifically, Csta in (3) can be rearranged into c1,i

∑
i∈Φ xi+

c2,i
∑
i∈Φ yi; while Cdis in (4) can be decomposed into the

following format using (7)-(8) when ∆P subi ≥ Psur:

Cdis =
∑
i∈Φ

c3,iliP
line
0,i + (c3,ilipev + c4,ipev)

∑
i∈Φ

yi. (16)

Now each term in the objective function seems comparable:
Constraint (3): In Csta, generally, the number of the stations

is smaller than that of the spots, and the cost of building a
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station is higher than that of a spot. Therefore, xi is smaller
than yi, whereas c1,i is larger than c2,i.

Constraint (4): Between Csta and Cdis, the values asso-
ciated with

∑
i∈Φ yi depends on their coefficient c2,i and

(c3,ilipev + c4,ipev). Furthermore, Cdis has a relatively con-
stant part

∑
i∈Φ c3,iliP

line
0,i whereas Csta has the sub-term

c1,i
∑
i∈Φ xi that relies on the optimized number of stations.

Constraint (5): Cvr grows relatively faster than other terms
when c5 is remarkable due to the square term. Meanwhile, the
∆V 2

i part in (5) indicates a strong relevance with placements
that boost up bus voltages.

Constraint (6): The sub-terms in Cprot does not increase as
fast as the ones with

∑
i∈Φ yi, and they mainly depend on

the current-cost relationship as assumed in Section II-B. This
means that the EV charging station placements resulting in
high current absorption would increase the cost in this term.

E. Variation of the Economic Parameters

The variation of economic parameters is considered in this
subsection. Factors like the time value and the uncertainty of
the cost cannot be ignored sometimes since some costs in the
objective function are related to an early stage of the project
and some are postponed to a later stage. Consequently, the
levelized cost coefficients are proposed. The idea comes from
the levelized cost of energy, which is extensively studied in
systemically analyzing comparable projects and establishing
renewable energy policy [23]–[25]. The four terms in (1) are
levelized as follows:

Clevsta =
∑
i∈Φ

(
T∑
t=0

c1,i,t
(1 + α1)t

(1 + β1)t
xi +

T∑
t=0

c2,i,t
(1 + α2)t

(1 + β2)t
yi),

(17)

Clevdis =
∑
i∈Φ

(
T∑
t=0

c3,i,t
(1 + α3)t

(1 + β3)t
li(P

line
0,i + ∆P linei )) (18)

+

T∑
t=0

c4,i,t
(1 + α4)t

(1 + β4)t
h(∆P subi ), (19)

Clevvr =
T∑
t=0

c5,i,t
(1 + α5)t

(1 + β5)t

∑
i∈Φ

∆V 2
i , (20)

Clevprot =
T∑
t=0

c6,i,t
(1 + α6)t

(1 + β6)t
(Cacq + Cinst + Cuninst + Cmain),

(21)

where t is the year of the project, T is the total life of the
project, αn(n = 1, · · · 6) is the inflation rate, βn(n = 1, · · · 6)
is the discount rate. The inflation rate denotes the increase
in the price index. The discount rate originates from the net
present value theory and can be understood as the return that
could be earned in alternative investments.

The equation (1) can now be rewritten as

minimize
xi,yi

Clevsta + Clevdis + Clevvr + Clevprot. (22)

III. PROBLEM CONVEXIFICATION

Following the sensitivity analysis of the previous section,
this section discusses the way of convexifying the nonlinear

terms in the objective function. Furthermore, the approxima-
tion error is discussed in the second part. By convexifying the
optimization constraints, we can achieve (1) the guarantee of
a global minimum solution in both small and large electric
systems, and (2) a decreased computational time. The trade-
off is that the convex preservation contributes to some errors
during optimization. More details regarding the trade-off can
be found in Section IV.

A. Convexify the Problem

The linearization of the AC power flow in constraint (2) is
depicted in Appendix C. This paper does not focus on AC
power flow linearization. For the reference of the audience,
other relevant methods on AC power flow linearization in-
cluding the DistFlow and second-order conic relaxation can
be found in [26], [27]. In addition, other constraints in (2)
are linear. Therefore, greater emphasis is to be placed on the
constraints from the objective function.

1) Constraint (3): It is a linear combination of the number
of stations and the number of spots. Therefore it is convex.

2) Constraint (4): The first part of this constraint is linear,
whereas the second part of this constraint is not linear as
indicated in (8). However, the piece-wise linear function (8)
becomes linear when the substation surplus capacity (assuming
to be 1 MW in this paper) is exceeded. It actually means that as
long as there are more than 1MW/0.044MW ≈ 23 spots to
be built downstream from the entire substation, this constraint
is linear.

3) Constraint (5): In this constraint, the optimization vari-
able xi is linearly related to the net active power injection Pi
at bus i in power flow calculation:

In this constraint, the variable Vi is a nonlinear function of
the optimization variable xi, which is linearly related to the net
active power injection Pi at bus i in power flow calculation:

Pi,inj = Pi,gen − Pi,load − xipev, i ∈ Φ, (23)

but the variable Vi is a nonlinear function of the optimiza-
tion variable xi. Utilizing the AC power flow linearization
technique as elaborated in Appendix C, we can easily establish
the linear relationship between the optimization variable x
and the non-slack bus voltage VN . It is convex and a global
optimum is guaranteed.

4) Constraint (6): Given the assumption of this constraint,
the protection cost is actually a summation of four piece-wise
step functions including the costs of acquisition, installation,
uninstallation, and maintenance. Its curve is plotted in Fig. 3.
To linearize the step functions, these step functions in Fig. 3
are approximated by three linear lines (the dash-dot lines in
blue) using the linear curve-fitting algorithm.

B. Convexification Error Analysis

The convexification error analysis is conducted in the same
order as in the previous section. The convexification of the
AC power flow in constraint (2) uses the same linearization
technique like the one in constraint (5) from the objective
function. The following convexification errors are elaborated.
• Constraint (3): No approximation error associated with

this constraint since it is a linear constraint itself.
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Fig. 3. Cost functions of protective devices and their estimated and linearized
functions. Assume there are four levels of capacity for the device type d.

• Constraint (4): The largest approximation error occurs
at the turning point where 23 spots are planned but
substation expansion is not yet required. However, if the
number of spots to be built is larger than 23, there will
be no error associated with this constraint.

• Constraint (5): The approximation error originates from
the quadratic term that is neglected in the derivation
of the voltage-power equation, the details of which can
be found in Appendix C. The error in complex power
originates from the high order series of the following
Taylor expansion. If we neglect high order terms and
defining V = 1 − ∆V , a linear form is obtained when
||∆V || < 1:

1

V
=

1

1−∆V
=

+∞∑
n=0

(∆V )n ≈ 1 + ∆V = 2− V. (24)

The error in percentage for the approximation is calcu-
lated by defining a function Ψ(V ) = 100 · ||(1/V )− (2−
V )||. L2-norm is employed here.

• Constraint (6): To simplify this constraint, a best-fitting
straight line for each protective device is obtained based
on realistic costs (refer to Appendix A for details) and
R-squared values as shown in Table I. The closer the R-
squared value is to 1.0, the better the fit of the regression
line. We see that all four types of devices’ R values are
above 0.75, which fairly represents the realistic device
costs.

TABLE I
BEST TREND-LINE ON ESTIMATING THE PROTECTIVE DEVICE COSTS

USING THE DATA IN APPENDIX A.

Device type Cost function (c) w.r.t.
current (I) R2

Fuse c = 3.771I + 548.26 0.775

Recloser c = 16.381I + 18219 0.797

Overcurrent relay c = 2.040I + 4515.9 0.756

DORSR c = 2.040I + 6515.9 0.756

C. Sensitivity Analysis

The errors according to the above analysis are small and
have little influence on the sensitivity of the problem. For
example, the constraint (3) is linear by itself. The constraint
(4) is also linear when below or above a certain number
of charging spots. The constraint (5) has a maximum error
of 0.26% in the Ψ(V ) equation if the deployed voltage
regulator regulates the bus voltage between 0.95 and 1.05.

The constraint (6) does not present a large cost change among
each two adjacent current ranges based on the realistic data in
Appendix A. Therefore the protective cost can be assumed as a
constant when the continuous current setting is within a range
of operating currents [21]. In the next section, the numerical
results will validate the problem sensitivity in various aspects.

D. Feasibility Analysis

As an important part of this optimization problem, the
linearization of the power flow equations has made this
problem an NP problem. It also contributes a big portion of
the approximation error. Mathematically, it might result in
a global solution outside of the feasible region of the main
optimization problem. Therefore, by revisiting the constraint
(2d), we know that the power flow linearization establishes a
linear relationship between the solution (it directly determines
the power demand Pi, Qi) and the complex voltage. The error
of the power flow linearization directly affects the objective
function through constraint (5), which is the voltage regulation
cost. During optimization, the solver searches for the optimal
solution that minimizes the overall cost, consequently, the
power flow linearization affects the solution and its errors.

To evaluate the feasibility of the solution, it is recommended
to plug the solution back to the AC power flow and the main
optimization problem as a validation. The solution evaluation
comes in twofold. Firstly, if the solution is within the feasible
region of the main optimization problem, no corrective action
is required. Secondly, if the solution is within the infeasible
region, we recommend using a weighted constraint violation
metric to quantify the error. We formulate all the inequal-
ity constraints in (2) in the format of bi,min ≤ ai(x) ≤
bi,max, i = 1, · · · , r, where r is the number of constraints.
Then for a solution x∗ obtained from the convexified problem,
the constraint violation metric Vc is defined as follows:

Vc =
r∑
i=1

[ai(x
∗)− bi,max]+ +

r∑
i=1

[bi,min − ai(x∗)]+, (25)

where the operator [·]+ keeps the value inside the bracket
unchanged when it is non-negative, and output zero when it
is negative. The weight of each constraint is at the utility or
DSO’s discretion. To simplify this problem, we assume each
term has a weight of 1.

IV. NUMERICAL RESULTS

After discussing the way of convexifying the constraints in
the objective function, this section demonstrates the effect of
each constraint from the objective function on the overall prob-
lem using realistic data. After introducing the cost parameters
and the systems under study, we investigate the sensitivity of
the formulated problem from small to large systems.

A. Cost Parameters

The fixed costs for each PEV charging station is as-
sumed to be c1,i = 163, 000 ($) [5]. The land use costs
are 407 $/m2 and adding one extra charging spot requires
20 m2 land. The per-unit purchase cost for one charging
spot is 23, 500 $ [28]. Thus we have c2,i = 407 × 20 +
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23, 500 = 31, 640 ($). The distribution line cost is assumed to
be c3,i =120 ($/(kVA · km)) [29]. The substation expansion
cost is assumed to be c4,i =788 ($/kVA) [10].

The charging demand, Di,k, that each spot satisfies, follows
the constraint (2c) and the nested logit model, the coeffi-
cients of which are estimated from the preference survey
data [30]. We assume the distribution feeder has 1 MVA
surplus substation capacity which can be utilized by charging
station. The rated charging power for each charging spot is
44 kW [5]. The voltage regulation coefficient c5 is assumed
to be 50, 000 ($) according to [31], given the base power
of 100 MVA. Per car, the charging current is assumed to be
44 kW/

√
3/12.5 kV=2 A.

B. Numerical Results of a Toy Example

This subsection demonstrates the station distribution of the
entire system upon applying the constraints in an IEEE 4-bus
small toy example then draws some interesting observations
from this toy example. The results on large systems are
presented in the next subsection.

The toy example is based on a modified IEEE 4-bus system
as shown in Fig. 4. Besides the parameters in the previous
subsection, an overcurrent relay is assumed to be installed
next to B2 and a fuse next to B3. Meanwhile, B2 and B3
are also the only buses where an EV charging station can be
built. Assuming also there are about 85 EVs per hour require
charging services in the area under study and there is no limit
for each charging spot. The charging demand is assumed to be
(24 h×60 min/h)/(42 min×0.5) = 68 (vehicles/day)1 in this
toy example. Therefore, we will have the total charging station
spots of 85× 24/68 = 30.

CB

B1 B2 B3

L-1

L-3

DG

B400

L-2

Fig. 4. IEEE 4-bus distribution system.

The placement results are presented by adding one con-
straint item after another to clearly observe the sensitivity of
each constraint. Since there are many possible types of per-
mutation of adding the four constraints, we have selected the
constraint incremental procedure that best illustrates the nature
of each constraint as shown in Table II. The following items
illustrate the consequences in four representative scenarios:

1) The Constraint Added: Csta: When there is only one
constraint of charging station cost, the objective function
attempts to build less number of stations for reducing the total
cost as shown in (3). Since no spot limitation is assumed in

1The average charging time of an EV with empty battery is estimated as
(200 km×0.14 kWh/km)/(44 kW×0.92) = 42min [32]

TABLE II
EV CHARGING STATION PLACEMENT RESULTS OF THE TOY EXAMPLE BY

ADDING THE CONSTRAINTS INCREMENTALLY.

Constraint EV numbers at B2 &
B3 Ctotal($)

Csta (0, 30) or (30, 0) 949, 200

Csta + Cdis (0, 30) or (30, 0) 2, 152, 360

Csta + Cdis + Cvr (0, 30) 2, 160, 360

Csta+Cdis+Cvr+Cprot (30, 0) 2, 195, 210

this example, the optimal placements are a) no station built
near B2 and 30 spots built near B3, or b) no station built
near B3 and 30 spots built near B2. They are noted as (0, 30),
(30, 0).

2) The Constraint Added: Csta+Cdis: When the constraint
of distribution system expansion is included, the EV placement
is not changed. The reason for that is the constraint of Cdis
depends on

∑
yi – the total number of spots, which adds

more cost but does not alter the placements within the buses
for station installation. It is more economical to build fewer
stations since the cost is saved by building one charging station
as long as the capacity of the station is not violated.

3) The Constraint Added: Csta + Cdis + Cvr: Now the
voltage regulation constraint is also added to the objective
function. It plays an influential role in favor of the placement
that causes less voltage deviation. The resulting placement of
(0, 30) indicates that we have the minimum voltage violation
by placing all the EVs at bus 3. To be noticed that voltage
regulation cost might overwhelm other costs.

4) The Constraint Added: Csta+Cdis+Cvr+Cprot: With
the last constraint from a protection upgrade perspective, the
optimal placement becomes (30, 0). With the existence of this
constraint, the placement moves from the end of the feeder
towards the substation due to the characteristics associated
with protective device upgrade: (a) the overcurrent relay (OC)
relay upgrade at branch 1-2 (1 and 2 are the from and to
buses respectively) is inevitable; (b) if all of the EV spots are
placed at the end of the feeder, more protective devices are
required to be upgraded along the feeder, and in this case,
case 2 costs less since protective devices at branch 2-3 do not
require an upgrade. Additionally, the land cost coefficients can
overwhelm the voltage regulation cost and the protection cost,
if the land cost in the urban area is expensive.

C. Numerical Results on a Large System

This subsection reveals the sensitivity analysis after convexi-
fication preservation on large systems. The benefits of problem
convexification are first discussed. To observe the placement
results, the optimization variables are evaluated. Subsequently,
the cost analysis is added to validate the sensitivity. The
deployed benchmark system in this section is the IEEE 123-
bus distribution system (refer to Fig. 12 in Appendix D), and
the costs and assumptions follow the ones in Section IV-A.

The urban traffic networks are built based on the Sioux
Falls network [33], which has 24 transportation nodes and 76
links. To couple the electrical and distribution networks, we
first adjust some node locations of the transportation network
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while maintaining the same node connectivity, and then merge
the two networks by assuming only the centroid transportation
nodes (refer to Appendix E) are directly overlapping with
selected electrical nodes. The coupling relationship of 13 cen-
troid transportation nodes in the 123-bus distribution network
is shown in Table III. The remaining electrical nodes that are
not shown are assumed to be connected to the transportation
network according to the nearest geographical locations.

TABLE III
COUPLING RELATIONSHIP OF 13 CENTROID TRANSPORTATION NODES IN

THE 123-BUS DISTRIBUTION NETWORK.

T1 ∼ E110 T2 ∼ E76 T4 ∼ E101 T5 ∼ E67 T10 ∼ E60

T11 ∼ E66 T13 ∼ E25 T14 ∼ E47 T15 ∼ E35 T19 ∼ E54

T20 ∼ E13 T21 ∼ E1 T24 ∼ E18

Note: T: Transportation network. E: Electrical network.

1) The Benefits of Problem Convexification: Efforts are
exerted on the convexification of the nonlinear constraints,
the purpose of which is to guarantee a global optimum
without jeopardizing the cost evaluation. Table IV illustrates
the comparison between the scenario that convexifies all the
constraints and the one does not.

TABLE IV
OPTIMIZATION RESULTS WITH AND WITHOUT CONSTRAINT

CONVEXIFICATION IN THE 123-BUS SYSTEM.

Constraints Without
convexification

With
convexification

Percent of cases that failed to
find a global minimum 19.8% (50) 0.0% (0)

Average total cost in cases
with a global minimum ($) 7.92× 107 (8) 7.96× 107 (11)

Average total cost in cases
with a local minimum ($) 8.47× 107 (3) Unavailable

Computational time in cases
with a global minimum (sec) 112.4 (8) 105.6 (11)

Computational time in cases
with a local minimum (sec) 2, 115.7 (3) Unavailable

Note: the numbers in the brackets denote the numbers of tests
under the corresponding constraints.

Firstly, there are 23 cases tested in this section under
different EV flows and station capacity limits in order to obtain
the percent of cases that failed to find a global minimum.
Since the initial points also affect whether the optimization
objective function converges to a global minimum or not,
11 initial feasible points are, therefore, tested for each case
to obtain the overall percentage of cases that failed to find
a global minimum. As a result, 50 tests in total fail to
converge to their corresponding global minimums. As is seen
from Table IV, 50/(23 × 11) = 19.8% of cases failed to
find a global minimum due to the non-convexity constraints.
Not surprisingly, all of the cases with convexified constraints
successfully find the global minimum.

Secondly, the fact of convexifying the constraints does not
affect much of the total cost. To maintain fair comparisons
under the same EV demand and computational complexity, the
average total cost and computational time have to be calculated

in the same case. In Table III, the demonstrated case is with
the EV flow of 5, 185 EVs/h and 25-spot limit per station.
In this case, the solutions of 3 tests reach local minimums,
and 8 tests reach global minimums. The total costs without
and with convexification are calculated using equation (1) and
averaged over their corresponding numbers of tests. Further-
more, in order to demonstrate the system-level performance
after accumulating all errors due to convexification, Fig. 5
is presented here. The error is defined as the cost difference
with and without convexification divided by the cost without
convexification. As shown in Fig. 5, the total cost increases in
the early stage when the EV flow is low since the optimization
constraints force the charging stations to be built at high costs.
At a later stage when the EV flow rises the overall cost reduces
because fewer stations are built – more spots can be installed
in the same station where the costs are low. Similar results
are obtained in [5]. More importantly, the highest error is
accumulated but does not exceed 4.4% as the number of EVs
per hour increases. The mean error value in Fig. 5 is computed
as 1.54%, therefore, the influence due to error accumulation
on the system-level performance is limited.
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Fig. 5. The system-level performance after accumulating all errors due to
convexification.

Thirdly, the total optimization computational time with
convexified constraints is comparable with the one without
convexification. However, the computational time is signif-
icantly high in the cases that a local minimum is found.
The computational time is recorded as the elapsed time of
the optimization and also averaged over their corresponding
numbers of tests. The corresponding numbers of tests are
shown in the brackets in the table.

In summary, the convex preservation contributes to a limited
amount of extra cost to the total cost and always provides a
global minimum with small computational time. Therefore it
is concluded that the idea of convexifying the constraint in
this problem is more beneficial than disadvantageous in this
optimization problem.

2) Sensitivity Validation With Respect to the Optimization
Variables: This section observes the optimization variables to
illustrate the station distribution of the entire system when the
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Fig. 6. The station distribution of the entire system when the coefficient c5 changes.

constraint coefficients change, and then draw some interesting
conclusions upon the observation. The spot limitation of each
station in this network is assumed to be 25 2. Assuming as
well the number of EV flows per hour requires only 30% 3

of the maximum station capacity in the whole system. Fig. 6
shows the charging station distribution from bus 2 to 123.

We further focus on five particular nodes at bus 33-37 to see
how the constraints affect the EV charging station placement,
shown in Fig. 7. The five particular end nodes are selected as a
representative region to exhibit the sensitivity of the placement
distribution due to the constraint coefficient change. Upon a
large amount of observation on the entire system’s placement
distribution, the five particular end nodes well represent the
overall characteristics. Table V shows the resulting placement
as the constraint coefficient changes.

When the voltage regulation constraint is not playing a role
in the planning, due to the low density of the EV integration
in this case study, only 4 spots are required on bus 33 to
37. As the voltage regulation coefficient increases from 1e4
to 5e5, the total EV spot number over the small region of
bus 33 − 37 increases from 21 to 50, if we sum up the spot
numbers of the second and third data rows in Table V. This
actually means when the voltage regulation cost is high, the
preferred EV placement location moves to this region. As the
voltage regulation coefficient goes higher, each bus in this
region reaches its maximum capacity. Furthermore, the last
data row in Table V indicates the domination of the voltage
regulation constraint does not rely on the existence of the
protection constraint.

By observing the overall placement results in the 123-bus
system, the following conclusions are drawn:

• The constraint on voltage regulations pushes the EV
charging station placement towards the end of the dis-
tribution feeder.

2Adding one extra charging spot requires 15m2 ∼ 20m2 land [32], [34],
the land use is then around 375m2∼ 500m2. Since more spaces can be
provided for non-EVs, this land use range can easily fit into the parking lot
design requirements such as the ones in [35].

3Given 122 potential stations in the system, theoretically, the maximum
station capacity in the whole system is 122 × 25 = 3, 050 spots. However,
the reality can be that the EV flows per hour have not been saturated to the
point that each available station needs to be fitted with a maximum of 25
spots. A 30% capacity indicates 3, 050 × 0.3 = 915 spots. It is a feasible
scenario for medium voltage distribution network as evidenced in [5], [32].
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Fig. 7. The partial topology of the distribution system and the highlight of
the area under study.

TABLE V
EV CHARGING STATION PLACEMENT AT BUS 33-37 IN 123-BUS SYSTEM.

Constraint Constraint coefficient Placement at bus
33-37

(3), (4), (6) c5 = 0 0 4 0 0 0
(3), (4), (5), (6) c5 = 1e4 10 5 4 1 1
(3), (4), (5), (6) c5 = 5e5 5 16 4 0 25
(3), (4), (5), (6) c5 = 1e6 25 25 25 25 25

(3), (4), (5) c5 = 1e6 25 25 25 25 25

• The cost derived from the constraint on the protective
device is less when the EV charging stations are located
near the feeder trunk.

3) Sensitivity Validation With Respect to Different Cost
Components: In this subsection, we investigate three issues.
First of all, how does the amount of EV flow at unit time affect
the number of charging stations and total cost? As the number
of charges per hour progresses, the number of spots in demand
is proportional to the number of EVs per hour, as assumed and
governed by (15). As for the number of stations, it reaches its
maximum of 122 (assuming no station is built on the slack bus)
in Fig. 8a, which is bounded by the electric system capacity
constraints (2e) and (2f). Meanwhile, the number of EVs per
hour is 6, 913. In Fig. 8b, given the EV station capacity of
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(b) EV stations and spots. EV station capacity 10.
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Fig. 8. EV charging station placement in the 123-bus system under different EV magnitude. c5 = 5e5.

10 spots per station, the number of stations saturates at 122 –
the maximum number of stations that the current system can
hold, when the number of EVs per hour reaches 3, 500. The
cost diagrams under two EV station capacities are depicted
in Fig. 8c and Fig. 8d. The distribution system cost takes up
a large portion of the total cost, whereas the costs of voltage
regulation and protection upgrade have low cost with the same
parameters in Section IV-A.

Secondly, what is the effect of distribution expansion cost
on the total cost? Due to the labor and land costs in different
areas, costs resulting from (3) and (4) varies immensely. Under
this circumstance, the effect of the substation expansion coeffi-
cient c4 on the EV charging station placements is investigated
and plotted in Fig. 9a and Fig. 9b. From the bottom to top
points, the same layers/color represents the same value of c4.
It can be observed that the number of stations does not rely
on the varying of c4. The increasing of c4 does not change
the planning of the stations but the total cost. It is easy to see
that the larger number of EVs per hour there is, the more c4
variation alters the total costs.

Thirdly, what are the relations between the amount of EV
flow at unit time and the distribution grid operation costs on
the voltage regulation and protection upgrade? When the EV
charging station cost and distribution expansion cost are not
dominantly high, the voltage regulation cost and projection
cost affect the total cost. The sensitivity of the voltage reg-
ulation cost and projection cost in terms of the number of
EVs per hour is presented in Fig. 10. The voltage regulation
cost rises quadratically as predicted in Section II-D and cease
rising when the number of EVs per hour exceeds the system
station capacity, which is 3, 500 EVs per hour.

4) Feasibility Analysis: The feasibility of the 123-bus sys-
tem solutions is evaluated, using the case study the same as in
Section IV-C1. The resulting constraint violation Vc is 7.1953
after averaging the 23 cases that consider different EV flows
and station capacity limits. Notably, the constraint violation
is mainly contributed by the voltage constraints (2f), which
in turn emphasizes the importance of considering the voltage
regulation cost (constraint (5)). However, the convexification
error of the adopted power flow linearization is small. In
the case study, the maximum node voltage difference is
4.91 × 10−3, obtained by subtracting the estimated solutions
with the solutions from the conventional back-forward sweep
algorithm. Similar results can be found in [36].

D. Results Considering the Economic Parameter Variation

It is also presented here how the optimization variables
alter when the economic parameter variation is considered
in equation (22). An analysis is applied to the levelized cost
coefficients model using the inflation rate of 1%, 2%, and
5%, discount rate of 5%, 7.5%, 10%, and 15%, as well as
project time of 1, 5, and 20 years [24]. We have designed five
scenarios to show the influence of the economic parameter
variation. The first scenario is the same case as in Fig. 8a,
where the levelized cost coefficient method is not involved.
The second scenarios is the base case for the levelized method,
where α1 = 5%, α2 = α3 = α4 = α5 = 3%, β2 = 15%,
β1 = β3 = β4 = β5 = 5%, and T = 20. Scenario 3 is the
same as the second scenario except for T = 5. Scenario 4 is
the same as the second scenario except for α1 = 1%. Scenario
5 is the same as the second scenario except for β1 = 15%.
The time value of the cost coefficients cn,i,t (n = 1, · · · , 5) is
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Fig. 9. The effect of the coefficient c4 on the station number and the total cost. c5 = 5e5. EV station capacity 10.
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Fig. 10. The sensitivity of the voltage regulation cost and projection cost in
terms of the number of EVs per hour. c5 = 5e5. EV station capacity 10.

taken into account as the duration of the project changes. The
corresponding results are shown in Fig. 11. It is interesting
to see the subtle deviation from the base case affected by the
economic parameters as the EV flow increases. For example,
scenario 2 and 3 consider the time-sensitive costs given the
project time spans of 20 and 5 years. They share at least five
crossover points during each level of the EV flows. Behind
these two scenarios are two different objective functions that
consider the different time value of money.
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Fig. 11. The number of charging stations under five different scenarios when
considering the economic parameter variation.

V. DISCUSSIONS

A. Applicability in Different Cities and Countries

The formulation of the problem renders itself the flexibility
of implementing different types of cost. Due to the variation
of costs on land, labor, and equipment in different cities

and countries, the coefficient c1 to c5 can vary significantly.
According to the analysis in Section II-D, the dominating
terms are highly dependent on these coefficients. Although
the aforementioned costs directly determine the coefficients
of constraints (3)-(6), the objective function remains effective
in different locations because the objective function aims
to minimize the total cost. Actually, in different cities or
countries, the dominating constraints might be different.
• Developed countries. Take the States, for example, the

labor cost is comparatively high. According to [37], the
labor cost takes up to 60% of the EV supply equipment
installation cost. That is why the EV charging station and
distribution expansion costs are dominantly high.

• Developing countries. We investigate the EV charging
station cost for the city of Beijing in China, the cor-
responding costs are listed, according to [38], as fol-
lows (assuming the US Dollar (USD) to Chinese Yuan
(CNY) exchange rate is 6.35): c1,i = 50, 640 ($), c2,i =
7, 122 ($), c3,i =43 ($/(kVA · km)), c4,i =102 ($/kVA)
It is seen that the EV charging station and distribution
expansion costs are much lower compared to the US.
The discrepancy in small cities in China is even larger.
This phenomenon could eventually make the constraint
of voltage regulation the dominant constraint during
optimization.

B. Results Without Considering the Protection Cost

The cost of protective devices elevates fast when the electric
network accommodates more EVs which result in higher
steady-state and fault current levels. Consequently, in bigger
systems, the cost of the protective devices is altering the EV
charging station placement since we are minimizing the total
operational cost. Table VI illustrates the EV charging station
placement results in two distribution systems under the EV
flow of 1, 500 per hour with the parameters from Section V-A.
It is presented that the protection cost may take up to 8% of
the total cost, which cannot be neglected in EV haring station
placement planning.

VI. CONCLUSIONS

The proposed objective function is ameliorated through
the proposed sensitivity analysis and convexification method.
The optimization function successfully introduces the costs
of distribution expansion, EV station, voltage regulation as
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TABLE VI
EV CHARGING STATION PLACEMENT WHEN THE EV FLOW REQUIRES 30%

OF AVAILABLE SPOTS AND THE SPOTS LIMIT OF EACH STATION IS 10.

Sys. magnitude 18-bus 115-bus [39] 123-bus [40]

# of stations 6 39 39

# of spots 51 342 366

Total cost ($) 2.82e6 1.86e7 5.30e6

Percent of prot. cost ($) 5.89% 8.60% 6.03%

well as a well-designed protective device cost model to this
problem. The problem sensitivity is not compromised after the
convexification. The idea of the convex preservation of con-
straints always guarantees a global minimum in different test
cases. Meanwhile, the computational time is greatly decreased
with convex preservation. Through the numerical results, we
realize that the voltage regulation cost is trying to favor the EV
charging station placement at the end of branches. However,
the protective device upgrade will cost less if more EV
charging stations are installed at the main line of the feeder,
trying to avoid branch ends. Numerical results also show
that the protective device cost is not negligible in the total
planning cost. At the end of numerical results, the proposed
method illustrates that it is a flexible solution for the EV
charging station placement no matter in developed countries or
developing countries. To conclude, the proposed method can
provide recommendations for the DSOs on future EV charging
station planning. Since this work is related to EV charging
station planning, future work could incorporate an optimal
charging strategy on this determined EV infrastructure.

APPENDIX A
PROTECTIVE DEVICE COSTS

The protective device costs are in Table VII and VIII [21].

TABLE VII
PROTECTIVE DEVICE INSTALLATION AND MAINTENANCE COSTS.

Device type Install/uninstall
cost ($)

Annual maintenance
cost ($)

Fuse 1, 000 50

Recloser 5, 000 2, 500

Overcurrent relay 1, 000 500

DORSR 1, 500 750

APPENDIX B
NESTED LOGIT MODEL AND CHARGING DEMAND

ESTIMATION

According to [11], the consumer, as a utility maximizer,
will always choose the product or service which
brings him/her the maximum utility. The utility that
the wth EV owner can obtain from choosing bus
node i and service provider k (k = 1, · · · , kmax) is
defined as Uwi,k = Ūwi,k + εwi,k. The vector of εw =

[εw1,1, · · · , εwn,1, εw1,2, · · · , εwn,2, · · · , εw1,kmax
, · · · , εwn,kmax

]T

have a generalized extreme value distribution with cumulative
distribution function

TABLE VIII
PROTECTIVE DEVICE ACQUISITION COSTS.

Device type Current (A) Cost ($)

Fuse

0 ∼ 20 400

21 ∼ 50 700

51 ∼ 80 850

81 ∼ 100 1, 000

101 ∼ 200 1, 100

Recloser

0 ∼ 50 15, 000

51 ∼ 100 19, 000

101 ∼ 300 22, 000

301 ∼ 500 27, 000

501 ∼ 1, 000 30, 000

Overcurrent relay

0 ∼ 50 4, 000

51 ∼ 100 4, 500

101 ∼ 300 5, 000

301 ∼ 500 5, 500

501 ∼ 1, 000 6, 000

DORSR

0 ∼ 50 6, 000

51 ∼ 100 6, 500

101 ∼ 200 7, 000

201 ∼ 500 7, 500

501 ∼ 1, 000 8, 000

F (εw) = exp

(
−
kmax∑
k=1

( n∑
i=1

e−ε
w
i,k/σk

)σk
)
, (26)

where σ is a measure of the degree of independence.
The variable Ūwi,k is defined as

Ūwi,k = W̄w
k + V̄ wk , (27)

W̄w
k = α

1

tk
+ β

pk
iw
, (28)

V̄ wk = µkd
w
i,k + ηkz

w
i,k + γkr

w
i,k + λkg

w
i,k + δkm

w
i,k. (29)

Concretely, tk, pk and iw represent the average charging
time, the retail charging price, and the income of the wth EV
owner; α, β are the corresponding weighting coefficients; dwi,k
is the deviating distance, which is the route length of this new
route minus the route length of the original route; zwi,k is the
destination indicator, and becomes 1 when the ith charging
station is near the EV owner’s travel destination; the vector
of [rwi,k, g

w
i,k,m

w
i,k]T denotes the attractiveness of this charging

station in terms of three amenities: restaurant, shopping center,
and supermarket, respectively.

The probability that the wth EV owner will choose the ith

charging station of service provider k is

φwi,k =
eŪ

w
i,k/σk(

∑n
i=1 e

Ūw
i,k/σk)σk−1∑kmax

t=1 (
∑n
i=1 e

Ūw
i,t/σt)σt

. (30)

As for the charging demand estimation, let qw (w =
1, 2, · · · , NEV ) denote the total electricity that the wth EV
owner purchases from the charging station (NEV is the total
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number of EVs). The total predicted charging demand of bus
node i of service provider k is modeled as:

Di,k =

NEV∑
n=1

qwφ
w
i,k. (31)

APPENDIX C
DERIVATION OF THE AC POWER FLOW LINEARIZATION

Nodal currents can be expressed by the admittance matrix
and nodal voltages:(

IS
IN

)
=

(
YSS YSN
YNS YNN

)
·
(
VS
VN

)
(32)

where S represents the slack node and N is the set of
remaining nodes. Each nodal current is related to the voltage
by the following ZIP model:

Ik =
S∗Pk
V ∗k

+ h · S∗Ik + h2 · S∗Zk · Vk (33)

We linearize the AC power flow equation and express
the voltage as a function of the power injected in a closed
rectangular form [36]:

A+B · V ∗N + C · VN = 0 (34)

with A = YNS ·VS = 2h ·S∗PN−h ·S∗IN , B = h2 ·diag(S∗PN ),
C = YNN − h2 · diag(S∗ZN ), where VN is the vector of non-
slack bus voltages, SZN , SIN and SPN are the complex power
injection of constant impedance load, constant current load and
constant power load at non-slack buses, h = 1/Vnom.

From (24), if we neglect high order terms and defining V =
1−∆V , a linear form is obtained:

1

V
=

1

1−∆V
≈ 1 + ∆V = 2− V. (35)

APPENDIX D
IEEE 123-BUS DISTRIBUTION SYSTEM

The single line diagram of the IEEE 123-bus distribution
system [40] is shown in Fig. 12.

APPENDIX E
TRANSPORTATION NETWORK OF SIOUX FALLS

The Sioux Falls network is shown in Fig. 13. Its details can
be found in [33].
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