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Abstract—In this paper, we study the effect of side information
on the recovery of a hidden community of size K inside a
graph consisting of n nodes with K = o(n). We focus on side
information with finite cardinality and bounded (as n → ∞)
log-likelihood ratios (LLRs). We calculate tight necessary and
sufficient conditions for weak recovery of the labels subject
to observation of the graph and side information under belief
propagation (BP). Also, we show that BP with side information
is strictly inferior to the maximum likelihood detector without
side information. Finally, we validate our results through sim-
ulations on finite synthetic data-sets that shows the power of
our asymptotic results in characterizing the performance even at
finite n.

Index Terms—Community detection, Stochastic block model,
Side information, Belief Propagation.

I. INTRODUCTION

The problem of learning or detecting community structures
in random graphs has been studied in statistics [1], [2],
computer science [3], [4] and theoretical statistical physics [5].
In this paper, we consider the problem of finding a single
sub-graph (community) hidden in a large graph, where the
community size is much smaller than the graph size. This
problem arises in many applications such as fraud detection
in auction networks and web-graphs [6], [7].

Among the different random graph models, the stochastic
block model (SBM) is widely used in the context of commu-
nity detection [8], [9]. We use the stochastic block model for
one community [10], [11], [12], [13], which is characterized
by the following parameters: n is the number of nodes in the
graph, K is the size of the community, p is the probability of
having an edge between any two nodes inside the community,
and q is the probability of having an edge otherwise. The goal
is to recover/detect the hidden community upon observing the
graph edges.

The problem of finding a hidden community upon ob-
serving only the graph has been studied in [10], [11], [12].
The information limit of weak recovery (expected number of
misclassified nodes is o(K)) and exact recovery (probability
of correctly recovering all the labels converges to one) of a
hidden community have been established in [11]. The limit of
the belief propagation (BP) algorithm for weak recovery and
exact recovery has been also established in [12], [10] in terms
of a signal to noise ratio parameter λ = K2(p−q)2

(n−k)q , where it was
shown that BP achieves weak recovery if and only if λ > 1

e .

This work was supported in part by the NSF grant 1718551.

Moreover, BP followed by a local voting procedure was shown
to achieve exact recovery if exact recovery is information
theoretically possible and if λ > 1

e .
Graphical structures have been the main focus of the lit-

erature of community detection. However, in many practical
applications, non-graphical relevant information is available
that can aid the inference. For example, social networks such
as Facebook and Twitter have access to much information
other than the graph edges. A citation network has the authors
names, keywords, and abstracts of papers, and therefore may
provide significant additional information beyond the co-
authoring relationships. This paper presents new results on
the utility of side information in community detection, in
particular shedding light on the conditions under which side
information can improve the limit of weak recovery of a local
algorithm based on belief propagation for detecting a hidden
community.

A few results have recently appeared in the literature
regarding the community detection problem in the presence
of additional (non-graphical) information. In the context of
detecting two symmetric communities: (1) [14] showed that,
under certain condition, belief propagation with noisy label
information has the same residual error as the maximum a-
posteriori estimator. (2) Cai et. al [15] demonstrated regimes
for BP to achieve weak recovery upon observing a vanishing
fraction of labels. In [14], [15], a converse result was not
established. Also, the graph parameters are chosen such that
node degrees alone are not informative. Our work is different
from the above settings, in that we deal with a single com-
munity, and the degrees can be informative in revealing node
identities. In the context of detecting a single community, Ka-
davankandy et al. [13] used density evolution to characterize
the performance of BP with binary side information consisting
of noisy labels with vanishing noise, i.e. unbounded likelihood
ratios, with a specific rate of growth. They showed that BP
achieves weak recovery for any non-vanishing λ > 0. Our
work is different in that we focus on side information with
bounded log-likelihood ratios which is more practical. Also,
we consider more general side information whose alphabet
does not match the number/identity of communities which
is motivated by practical scenarios. Moreover, our results
suggests that BP can achieve weak recovery for any λ > 0 with
side information whose log-likelihood ratios are unbounded
with an arbitrary rate of growth which generalizes the results
obtained in [13]. In the interest of completeness, [16], [17],
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[18] also considered side information but in a different context
other than belief propagation.

In this paper, a BP algorithm that leverage side information
consisting of M outcomes with finite M is proposed for
detecting a hidden community of size K = o(n). We consider
side information with bounded log-likelihood ratios (LLR) and
study the effect of such side information on the weak recovery
limits of BP. More specifically:

• We show that the proposed BP algorithm achieves weak
recovery if and only if λ > 1

Le , where L ≥ 1 is a function
of the side information LLR. Moreover, we show that for
any local algorithm (to be defined later), weak recovery
is not possible if λ ≤ 1

Le .
• We also compare the new limit with the information limit

without side information for weak and exact recovery
established in [11]. We show that BP, which is near-linear
in computational complexity with respect to n, is strictly
inferior to the maximum likelihood detector, which has
exponential complexity.

• Moreover, we provide numerical results on finite syn-
thetic data-sets that validate our asymptotic analysis
showing the power of our asymptotic results in charac-
terizing the performance even at finite n

II. SYSTEM MODEL AND DEFINITIONS

We consider the stochastic block model for a hidden com-
munity with side information. Let G(n,K, p, q) denote the
ensemble of graphs with n nodes, a hidden community C∗

with size |C∗| = K and an edge between a pair of nodes is
drawn with probability p if both nodes are in C∗ and proba-
bility q otherwise. Denote by G(V,E) a graph realization of
G(n,K, p, q). Let xi denotes the label of node i ∈ {1, · · · , n},
where xi = 1 if i ∈ C∗ and xi = 0 if i /∈ C∗. Also, let
x∗ ∈ {0, 1}n denotes the vector of the true labels. Finally, for
each node i a scalar side information yi ∈ {u1, u2, · · · , uM},
M < ∞ is observed. Let P(yi = um|xi = 1) = α+,m and
P(yi = um|xi = 0) = α−,m, for α+,m ≥ 0, α−,m ≥ 0 and∑M

m=1 α+,m =
∑M

m=1 α−,m = 1.
This paper studies the problem of recovery the hidden

community upon observing G and the vector of nodes’ side
information by y. Let x̂(G,y) be an estimator of x∗ given
G and y. The following assumptions and definitions are used
throughout the paper:

As n → ∞: K → ∞ such that K = o(n), p ≥ q, p
q = θ(1),

lim supn→∞ p < 1, np = no(1) and K2(p−q)2

(n−k)q → λ and λ is a
positive constant. Also, as n → ∞, both α+,m

α−,m
and α−,m

α+,m
are

bounded for all m ∈ {1, · · · ,M}.
An estimator x̂(G,y) is said to achieve weak recovery if, as

n → ∞, d(x̂,x∗)
K → 0 in probability, where d(., .) denotes the

hamming distance. It was shown in [11] that such a definition
for weak recovery is equivalent to the existence of an estimator
x̂ such that E[d(x̂,x∗)] = o(K). We will use this equivalence
throughout this paper. Also, an estimator x̂(G,y) is said to
achieve exact recovery if, as n → ∞, P(x̂ = x∗) → 1.

Finally, we denote the expectation of the likelihood ratio of
the side information conditioned on x = 1 by:

L !
M∑

m=1

α2
+,m

α−,m
(1)

III. BELIEF PROPAGATION ALGORITHM

A. Belief Propagation on a Random Tree with Side Informa-
tion

In this section, we study an inference problem on a random
tree. Fix a node u and let Tu be an infinite tree rooted at u.
For a node i ∈ Tu, let T t

i be a sub-tree of Tu rooted at i with
depth t. Let τi ∈ {0, 1} denote the label of node i in Tu. The
tree is generated as follows. Assume τu = Bernoulli(Kn ). For
any i ∈ Tu, let Hi denote the number of its children j such
that τj = 1 and Fi denote the number of its children j such
that τj = 0. Assume Hi ∼ Poisson(Kp) if τi = 1, Hi ∼
Poisson(Kq) if τi = 0 and Fi ∼ Poisson((n−K)q) for all i.
Finally, for any node i ∈ Tu, let τ̃i ∈ {u1, · · · , uM},M < ∞
denote node i side information. Assume, P(τ̃i = um|τi =
1) = α+,m and P(τ̃i = um|τi = 0) = α−,m.
We wish to infer the label of root u given observations the

tree T t
u and side information τ̃T t

u
, where τ̃T t

u
is the set of side

information of all nodes i in T t
u. Based on these definitions,

the probability of error of an estimator τ̂u(T t
u, τ̃T t

u
) can be

written as:

pte !
K

n
P(τ̂u = 0|τu = 1) +

n−K

n
P(τ̂u = 1|τu = 0) (2)

The maximum a posteriori (MAP) detector minimizes pte and
can be written in terms of the log-likelihood ratio as τ̂MAP =
1Γt

u≥ν , where ν = log(n−K
K ) and:

Γt
u = log

(P(T t
u, τ̃T t

u
|τu = 1)

P(T t
u, τ̃T t

u
|τu = 0)

)
(3)

The probability of error of the MAP estimator can be bounded
as follows [19]:

K(n−K)

n2
ρ2 ≤ pte ≤

√
K(n−K)

n
ρ (4)

where ρ = E[e
Γt
u
2 |τu = 0]. In the remainder of this section,

we will drive upper and lower bounds on ρ.

Lemma 1. Let Nu denote the children of node u and hu =
log

(P(τ̃u|τu=1)
P(τ̃u|τu=0)

)
. Then,

Γt+1
u = −K(p− q) + hu +

∑

k∈Nu

log

( p
q e

Γt
k−ν + 1

eΓ
t
k−ν + 1

)
(5)

Proof. Omitted for brevity.

1) Lower and Upper Bounds on ρ:
Define for t ≥ 1, ψt

u = −K(p− q) +
∑

j∈Nu
F (hj + ψt−1

j ),

where F (x) = log(
p
q e

x−ν+1

ex−ν+1 ) = log(1 +
p
q−1

1+e−(x−ν) ). Then,
Γt+1
u = hu + ψt+1

u and ψ0
i = 0 ∀i ∈ T t

u. Also, let Zt
0 and Zt

1

denote the distribution of ψt
u conditioned on τu = 0 and τu =

1, respectively. Similarly, let U0 and U1 denote the distribution
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of hu conditioned on τu = 0 and τu = 1, respectively. Thus,
ρ = E[e 1

2 (Z
t
0+U0)] = E[e

U0
2 ]E[e

Zt
0
2 ]. Let f(x) =

1+ p
q x

1+x . Also,
define:

bt ! E[ eZ
t
1+U1

1 + eZ
t
1+U1−ν

] (6)

at ! E[eZ
t
1+U1 ] (7)

Lemma 2. Let B = (pq )
1.5. Then:

E[e
U0
2 ]e

−λ
8 bt ≤ ρ ≤ E[e

U0
2 ]e

−λ
8B bt (8)

Proof. Omitted for brevity.

Thus, to bound ρ, we need to bound bt.

Lemma 3. For all t ≥ 0, bt ≤ Le, if λ ≤ 1
Le .

Proof. Omitted for brevity.

It remains to lower bound bt for λ > 1
Le .

Lemma 4. Let L′
= E[e3U0 ]. Assume that bt ≤ ν

2(C−λ) . Then,

bt+1 ≥ at+1 ≥ Leλbt(1− L
′

L
e

−ν
2 ) (9)

Proof. Omitted for brevity.

Lemma 5. The sequences at and bt are non-decreasing in t.

Proof. The proof is very similar to that of [12, Lemma 5], and
is omitted for brevity.

Lemma 6. Define log∗(ν) to be the number of times the
logarithm function must be iteratively applied to ν to get a
result less than or equal to one. Let C = λ(2 + p

q ) and
L

′
= E[e3U0 ]. Suppose λ > 1

Le . Then there are constants
t̄o and νo depending only on λ and L such that:

bt̄o+log∗(ν)+2 ≥ Le
λν

2(C−λ) (1− L
′

L
e

−ν
2 ) (10)

whenever ν ≥ νo and ν ≥ 2L(C − λ).

Proof. Omitted for brevity.

2) Achievability and Converse for the MAP Detector:

Lemma 7. Recall the definition of the MAP estimator
τ̂MAP = 1Γt

u≥ν , where ν = log(n−K
K ) and Γt

u =

log(
P(T t

u,τ̃Tt
u
|τu=1)

P(T t
u,τ̃Tt

u
|τu=0) ). Let L

′
= E[e3U0 ]. Define C = λ(2 + p

q )

and B = (pq )
1.5, which is bounded because p

q = θ(1).
If 0 < λ ≤ 1

Le , then:

pte ≥
K(n−K)

n2
E2[e

U0
2 ]e

−λLe
4 (11)

If λ > 1
Le , then:

pte ≤
√

K(n−K)

n2
E[e

U0
2 ]e

−λL
8B e

λν
2(C−λ) (1−L

′

L e
−ν
2 ) (12)

Moreover, by assumption, we have ν → ∞. Then,

pte ≤
√

K(n−K)

n2
E[e

U0
2 ]e−ν(r+ 1

2 ) =
K

n
e−ν(r+o(1)) (13)

TABLE I
BELIEF PROPAGATION ALGORITHM FOR COMMUNITY RECOVERY WITH

SIDE INFORMATION.

1: Start with graph G and side information y.
2: Set R0

i→j = 0, ∀i ∈ {1, · · · , n} and j ∈ Ni.
3: For all i ∈ {1, · · · , n} and j ∈ Ni, run for tf − 1 iterations of

belief propagation as in (15).
4: For all i ∈ {1, · · · , n}, compute its belief R

tf
i based on (16):

5: Return C̃, the set of K indices in {1, · · · , n} with the largest R
tf
i .

for some r > 0.

Proof. The proof follows directly from (4) and Lemmas 3 and
6.

B. Belief Propagation Algorithm for Community Recovery
with Side Information

In this section, we relate the inference problem defined
on the random tree to the problem of recovering a hidden
community with side information. This can be done via a
coupling lemma [12] that shows that under certain conditions,
the neighborhood of a fixed node i in the graph is locally
like a tree with probability converging to one, and hence, the
BP algorithm defined for random trees in Section III-A can
be used on the graph as well. The proof of these coupling
lemmas depends only on the tree structure. Since in this paper,
the side information is independent of the tree structure given
the labels. This implies that the coupling lemmas hold for our
case as well. We state the coupling lemma for completion.

Lemma 8. Suppose that K, p, q,α+,m,α−,m for all m ∈
{1, · · · ,M} and tf depend on n such that tf is a positive
integer and (2 + np)tf = no(1). Then:
If |C∗| = K, then for any fixed node u, there exists a

coupling between (G,x,y) and (Tu, τTu , τ̃Tu) such that:

P((Gtf
u ,x

tf
u ,y

tf
u ) = (T

tf
u , τ

T
tf
u
, τ̃

T
tf
u
)) ≥ 1− n−1+o(1) (14)

Proof. The proof follows directly from [12, Lemma 15].

We are now ready to present the BP algorithm for com-
munity recovery with side information. Define the message
transmitted from node i to its neighbor node j at iteration
t+ 1 as:

Rt+1
i→j = hi −K(p− q) +

∑

k∈Ni\j

F (Rt
k→i) (15)

where hi = log(P(yi|xi=1)
P(yi|xi=0) ), Ni is the set of neighbors of node

i and F (x) = log(
p
q e

x−ν+1

ex−ν+1 ). The messages are initialized to
zero for all nodes i, i.e., R0

i→j = 0 for all i ∈ {1, · · · , n} and
j ∈ Ni. Define the belief of node i at iteration t+ 1 as:

Rt+1
i = hi −K(p− q) +

∑

k∈Ni

F (Rt
k→i) (16)

Algorithm I presents the proposed BP algorithm for com-
munity recovery with side information.

By Lemma 8, with probability converging to one, we have
R

tf
i = Γ

tf
i , where Γ

tf
i was the log-likelihood defined for the
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random tree. Hence, we expect the performance of Algorithm I
to be the same as the MAP estimator defined as τ̂MAP =
1
Γ
tf
i ≥ν

, where ν = log(n−K
K ). The only difference is that the

MAP estimator decides based on Γtf
i ≥ ν while in Algorithm I

the selection is based on the largest Rtf
i . Let Ĉ define the

community recovered by the MAP estimator, i.e. Ĉ = {i :
R

tf
i ≥ ν}. Since C̃ is the set of nodes with the K largest

R
tf
i . Then, we have either C̃ ⊂ Ĉ or Ĉ ⊂ C̃. Thus,

|C∗△C̃| ≤ |C∗△Ĉ|+ |Ĉ△C̃| = |C∗△Ĉ|+ |K − |Ĉ||
= |C∗△Ĉ|+ ||C∗|− |Ĉ|| ≤ 2|C∗△Ĉ| (17)

1) Weak Recovery:

Theorem 1. [Achievability] Suppose that (np)log∗(n) = no(1).
Assume λ > 1

Le . Let tf = t̄o + log∗(ν) + 2, where t̄o is a
constant depending only on λ and L. Let C̃ be the output of
Algorithm I. Then,

E[|C∗△C̃|]
K

→ 0 (18)

for |C∗| = K.

Proof. Omitted for brevity.

Remark 1. In [13] the authors used a different approach,
namely, density evolution to study the effect of binary noisy
side information with unbounded LLR on the performance of
BP. The authors considered the case where the LLR grows
as log( n

K ), i.e., L grows as n
K , and showed that BP achieves

weak recovery for any λ > 0. Our result here suggests that for
unbounded LLR, BP can achieve weak recovery for L → ∞
arbitrary slow. A comprehensive study of the unbounded LLR
case is still an open problem.

Theorem 2. [Converse] Assume λ ≤ 1
Le . Let tf ∈ N depend

on n such that (2+np)tf = no(1). Then, for any estimator Ĉ
such that for each node u in the graph, x∗

u is estimated based
on G and y in a neighborhood of radius tf from u,

E[|C∗△Ĉ|]
K

≥ (1− K

n
)E2[e

U0
2 ]e

−λLe
4 − o(1) (19)

where E2[e
U0
2 ] = (

∑M
m=1 α−,m

√
α+,m

α−,m
)2 which is bounded

by assumption.

Proof. Omitted for brevity.

2) Comparison with Information Theoretic Limits:
The information limits for weak recovery without side

information was established in [11]. Since K → ∞, the
information limits for weak recovery without side information
reduces to lim infn→∞

Kd(p||q)
2 log( n

K ) ≥ 1 [11], where d(p||q) is
the binary Kullback-Leibler divergence. In terms of λ, it was
shown in [12] that the former condition can be written as:

λ > C
K

n
log(

n

K
) (20)

for some positive constant C. Thus, weak recovery only
demands a vanishing λ. On the other hand, we showed that BP

achieves weak recovery for λ > 1
Le , where L is bounded and

greater than one. This implies a gap between the information
limits and BP limits for weak recovery. Note that since L ≥ 1,
then the gap is smaller compared to the BP limit without side
information, i.e., λ > 1

e .
To illustrate our results, consider the following regime:

K =
cn

log(n)
, q =

b log2(n)

n
, p = 2q (21)

for fixed positive b, c as n → ∞. In the above regime,
λ = c2b and Kd(p||q) ≈ log(n), and hence, weak recovery
is always asymptotically possible without side information,
and by extension, with side information. Moreover, it was
shown in [12] that exact recovery is asymptotically possible
if cb(1− 1+log log(2)

log(2) ) > 1. We focus on side information with
M = 2, where each node observes the true label passed though
a binary symmetric channel with cross-over probability α.
Figure 1 shows the curve {(b, c) : c2b = 1

e}, i.e., the
weak recovery limit of BP without side information, the curve
{(b, c) : c2b = 1

Le}, i.e., the weak recovery limit of BP with
side information and the curve {(b, c) : cb(1− 1+log log(2)

log(2) ) =
1}, i.e., the information theoretic limit for exact recovery. It
was shown in [12], that BP without side information achieves
exact recovery if cb(1 − 1+log log(2)

log(2) ) > 1 and λ > 1
e . From

the figure, it can be shown that side information helps BP to
achieve recovery in regimes where it was known to fail without
side information. In region 1, exact recovery is provided by
the BP algorithm plus voting procedure with or without the
help of side information. In region 2, we conjecture that exact
recovery is provided by the proposed BP algorithm with side
information plus the same voting procedure provided in [12].
In region 3, weak recovery is provided by the BP algorithm
with or without the help of side information, but exact recovery
is not asymptotically possible. In region 4, weak recovery
is provided by the BP algorithm only with the help of side
information, but exact recovery is not asymptotically possible.
In region 5, exact recovery is asymptotically possible, but
BP without side information or with side information whose
α = 0.3 can not achieve even weak recovery (needs less
α, i.e., better quality of side information). In region 6, weak
recovery, but not exact recovery, is asymptotically possible and
BP without side information or with side information whose
α = 0.3 can not achieve weak recovery.
3) Numerical Results:
This section aims to validate our theoretical findings on

the synthetic model. We show that even at finite n, the
performance of BP is illuminated by the theoretic limits found
in this paper. We run Algorithm I on a graph generated with
n = 104,K = 100, tf = 10. We assume side information
consisting of the true labels passed through a binary symmetric
channel with cross-over probability α. We use the following
performance metric ζ =

∑n
i=1 |x∗

i −x̂i|
K ∈ [0, 2]. Two scenarios

are considered: (1) λ < 1
e , where we used q = 5× 10−4 and

p = 10q, which results in λ ≈ 0.041. The results are reported
for different values of α in Table II, which show that when
λ < 1

Le , the fraction of error is close to its maximum which
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Fig. 1. Phase diagram with K = c n
log(n) , q = b log2(n)

n , p = 2q and
α = 0.3 for b, c fixed as n → ∞.

implies that weak recovery is not attainable. On the other hand,
when λ >> 1

Le , the fraction of error is closer to zero. (2)
λ > 1

e , where we used q = 5 × 10−4 and p = 80q, which
results in λ ≈ 3.152. The results are reported for different
values of α in Table III. In this scenario, the results show that
the performance of BP without side information is much better
compared to the first scenario, which occur because λ > 1

e .
The results also show that the performance is improved as α
decreases.

TABLE II
PERFORMANCE OF BP FOR λ < 1

e .

α ζ w/o side λ× Le ≈ ζ with side
0.1 1.92 0.903 1.5
0.01 1.92 10 0.8
0.001 1.92 100 0.1

TABLE III
PERFORMANCE OF BP FOR λ > 1

e .

α ζ w/o side λ× Le ≈ ζ with side
0.1 0.25 70 0.2
0.01 0.25 840 0.06
0.001 0.25 8551 0.04
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