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We present details of a new solution method for the bound energy states of a quantum particle
in a one-dimensional symmetric finite square well potential. The solution is obtained in a clear way
by introducing a simple method that relies on the use of two auxiliary functions. The approach
is straightforward and leads to the well known even and odd-parity wave function solutions of
the problem without having to do any a-priori assumptions about the nature or symmetry of the
quantum states.
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I. INTRODUCTION

Since its birth at the start of the twentieth century,
quantum mechanics has evolved to become one of the
most successful theories in science. Active development
of modern quantum mechanical ideas have enabled scien-
tists to calculate with very high precision various prop-
erties of systems at various length scales. Information
technology relies on quantum theory and so does con-
trol of positions and energy levels of quantum states that
emerge in a variety of systems and potentials. Studies
of one-dimensional (1D), two-dimensional (2D), three-
dimensional (3D) dynamic quantum wells, quantum dots,
quantum localized lattices as well as nanosystems are also
of great interest [1, 2]. The hydrogen atom, quantum os-
cillators, problems involving a quantum oscillator under
the action of a periodic external potential, motion of a
charged particle with spin in a constant or uniform pe-
riodic magnetic field and many others are some of the
widely known problems that can be solved either an-
alytically or numerically using various quantum theory
methods [3–12].
For all these reasons, quantum mechanics is a very im-

portant part of any undergraduate physics curriculum.
With time, undergraduate students are expected to be-
come familiar with several quantum principles, they are
taught a variety of calculation methods and learn how
to apply these methods and techniques to solve simple
quantum problems. One of such problems which is vir-
tually found in all quantum textbooks in circulation is
that of a particle in an infinite or finite 1D quantum
well [13–17]. While the case of an infinite 1D quantum
well is elementary, the solution of its finite counterpart
is more demanding. In particular, the energy levels for
the case of bound states are found by solving the result-
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ing transcendental equations either numerically or graph-
ically [18–21]. Obtaining even parity and odd parity wave
function solutions generally involves algebraic manipula-
tions of systems of equations for sets of arbitrary con-
stants that may confuse some undergraduate students
like those that are not very advanced on the topic of lin-
ear homogeneous/nonhomogeneous systems of equations
(matrices, determinants, etc.). Therefore, finding simple
solutions is not only relevant from a pedagogical point of
view, but also important to engage better the audience.
The problem at hand is that of a particle subject to a

1D symmetric finite square (or rectangular) well potential
of the form:

V (x) =







−V0 ; −a ≤ x ≤ +a

0 ; elsewhere ,
(1)

where V0 > 0 is the depth of the well and a > 0 is its
range. Note that we have chosen the origin of the x-axis
at the center of the well so that the potential is an even
function of x and symmetric about x = 0. For the bound
states we require −V0 < E < 0. The discrete bound en-
ergy eigenfunctions are found by solving the stationary
Schrödinger equation in each region of constant potential
separately. There are three such regions of space labeled
as region I (−∞ < x ≤ −a), region II (−a ≤ x ≤ +a)
and region III (+a ≤ x < +∞). We denote the corre-
sponding wave functions in each of the three regions as
ΦI(x), ΦII(x) and ΦIII(x). As shown in Appendix. A
a general acceptable quantum solution of the stationary
Schrödinger’s equation (which goes to zero as |x| → ∞)
has the form:


















ΦI(x) = A exp(k′ x) ; −∞ < x ≤ −a

ΦII(x) = B1 sin(k x) +B2 cos(k x) ; −a ≤ x ≤ +a

ΦIII(x) = C exp(−k′ x) ; +a ≤ x < +∞ ,
(2)

where A, B1, B2 and C are constants to be determined.
We write all the formulas throughout the paper without
simplifications. With other words, we do not use atomic
units which are another familiar choice in the field [12].
Standard analysis and the usual boundary conditions

for the corresponding wave functions in each of the three
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regions lead to a system of four equations for the four
undetermined constants. At this juncture, some text-
books approach the problem as solving a system of ho-
mogeneous equations for four unknown constants [16].
To this effect, they work with systems of equations in
matrix form (where the right-hand side column vector is
zero) and then argue that non-trivial solutions are ob-
tained only if the determinant of the coefficient matrix
is zero [16, 17]. Some other textbooks get involved into
complicated algebraic transformations by appealing to
symmetry conditions [13]. Among the few notable ex-
ceptions is Ref.[ 3] where one does not even choose the
1D finite square well potential to have a symmetric form
about x = 0 - see pg. 63 and Fig. 1 of Ref.[ 3].
These lines of discussion may confuse few students and

it is fair to say that sometimes the transformations in-
volved leading to the final result are rather complicated,
for instance, see pgs. 280-282 of Ref.[ 16]. Therefore, in
order to simplify the solution of the problem while keep-
ing utmost clarity, in this work we provide a new method
to solve this problem. We believe that this method is very
clear to understand and leads to the known results in a
way that students and teachers may find appealing. This
method involves the use of two auxiliary functions that
have unique properties.

II. NEW SOLUTION METHOD

The solution method that we introduce avoids some of
the mathematical hurdles previously mentioned. The ap-
proach is also quite conventional therefore it requires only
some basic knowledge of algebra and/or algebraic manip-
ulations. Therefore, all the steps should be easy to follow
even from the perspective of undergraduate students with
limited mathematical background. The first step of the
approach is to express three of the undetermined con-
stants mentioned earlier in terms of the remaining one
(chosen to be nonzero) while the second step is to intro-
duce two auxiliary functions that lead to the final result
written in a very simple compact form. To this effect, we
use the first three equations in Eq.(A8) of Appendix. A
to express the constants B1, B2, C in terms of A. The
expressions for the constants B1, B2 and C in terms of
A 6= 0 are given, respectively, in Eq.(A10), Eq.(A11) and
Eq.(A12) of Appendix. A. The form of these expressions
is highly suggestive. At this point, we introduce the fol-
lowing two auxiliary functions:

F (k, k′) = sin(k a)− k′

k
cos(k a) (3)

and

G(k, k′) = cos(k a) +
k′

k
sin(k a) . (4)

A detailed description of the major properties of these
two functions is provided in Appendix. B. These two

auxiliary functions help us to write the expressions for
the constants B1, B2 and C in a compact form as:























B1 = −A exp(−k′a)F (k, k′)

B2 = A exp(−k′a)G(k, k′)

C = A
[

− sin(k a)F (k, k′) + cos(k a)G(k, k′)
]

.

(5)

Note that the last equation, namely the fourth equation
in Eq.(A8), has not been used yet:

k [B1 cos(k a)−B2 sin(k a)] = −k′ C exp(−k′a) . (6)

By substituting the values of B1, B2 and C from Eq.(5)
into Eq.(6) one obtains the following neat, simple and
very compact result:

2 k F (k, k′)G(k, k′) = 0 . (7)

As explained in Appendix. B, the two auxiliary func-
tions F (k, k′) and G(k, k′) have the remarkable property
that they cannot be simultaneosly zero. This means that
Eq.(7) is satisfied for two separate situations

F (k, k′) = 0 (8)

or

G(k, k′) = 0 . (9)

This conclusion leads quite naturally to the well-known
two sets of solutions (with even and odd parity wave func-
tions) for the bound states of a particle in a 1D symmetric
finite well potential.

III. EVEN AND ODD PARITY SOLUTIONS

The even and odd parity wave function solutions for
the bound states of a particle in a 1D symmetric finite
quantum square well potential are well known. However,
for the sake of completeness, we report briefly below some
key results. Obviously, we skip most of the details which
are readily available in the literature.

A. Even parity solutions

The even parity solutions correspond to F (k, k′) = 0
where G(k, k′) 6= 0. This means that:

k tan(k a) = k′ . (10)

By using Eq.(5) in conjuction with Eq.(B5) one has:



















B1 = 0

B2 = A exp(−k′a)G(k, k′)

C = A .

(11)
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As a result the even-parity wave function, Φe(x) becomes:

Φe(x) =



















A exp(k′ x) ; −∞ < x ≤ −a

A exp(−k′ a)G(k, k′) cos(k x) ; −a ≤ x ≤ +a

A exp(−k′ x) ; +a ≤ x < +∞ .
(12)

If one multiplies Φe(x) in Eq.(12) with exp(k′a) cos(k a)
and uses the property in Eq.(B5) one obtains:

Φe(x) =



















A cos(k a) exp[k′ (x+ a)] ; −∞ < x ≤ −a

A cos(k x) ; −a ≤ x ≤ +a

A cos(k a) exp[−k′ (x− a)] ; +a ≤ x < +∞ ,
(13)

where the new wave function Φe(x) in Eq.(13)
incorporates the irrelevant multiplication factor,
exp(k′a) cos(k a). The constant A is determined from
the overall normalization of the wave function.

B. Odd parity solutions

The odd parity solutions correspond to G(k, k′) = 0
where F (k, k′) 6= 0. This means that:

k cot(k a) = −k′ . (14)

By using Eq.(5) in conjuction with Eq.(B6) one has:



















B1 = −A exp(−k′a)F (k, k′)

B2 = 0

C = −A .

(15)

Thus, the odd-parity wave function, Φo(x) becomes:

Φo(x) =



















A exp(k′ x) ; −∞ < x ≤ −a

−A exp(−k′ a)F (k, k′) sin(k x) ; −a ≤ x ≤ +a

−A exp(−k′ x) ; +a ≤ x < +∞ ,
(16)

If one multiplies Φo(x) in Eq.(16) with exp(k′a) sin(k a)
and uses Eq.(B6) one has:

Φo(x) =



















A sin(k a) exp[k′ (x+ a)] ; −∞ < x ≤ −a

−A sin(k x) ; −a ≤ x ≤ +a

−A sin(k a) exp[−k′ (x− a)] ; +a ≤ x < +∞ ,
(17)

where the new wave function in Eq.(17) incorporates the
irrelevant multiplication factor, exp(k′a) sin(k a).

C. Graphical solution for the energy

The energy of the bound state is calculated from the
expressions in Eq.(A4) subject to the constraint:

k2 + k′
2
=

2m

~2
V0 . (18)

In order to obtain more easily the allowed energies corre-
sponding to even and odd parity solutions one introduces
the following dimensionless variables:

ξ = k a > 0 ; η = k′ a > 0 ; γ2 =
2m

~2
V0 a

2 > 0

(19)
As a result, the expression in Eq.(18) can be rewritten
as:

ξ2 + η2 = γ2 . (20)

The energy values corresponding to even parity solutions
are then obtained after solving the following transcen-
dental equations:

ξ tan(ξ) = η ; ξ2 + η2 = γ2 ; tan(ξ) > 0 . (21)

On the other hand, for odd parity solutions one has:

ξ cot(ξ) = −η ; ξ2+ η2 = γ2 ; − cot(ξ) > 0 . (22)

The allowed bound state energies are related to k (and/or
k′) and may be expressed in terms of the new variables
ξ and η. For instance, one may write the expression for
the energy as:

E = − ~
2

2m
k′

2
= − ~

2

2ma2
η2 ; η = k′a . (23)

Alternatively, one may choose to write:

V0 =
~
2

2ma2
γ2 , (24)

and from there obtain

E = −V0

(

η

γ

)2

. (25)

Graphical solutions of the transcendental equations are
widely available in the literature, for instance, see
Ref.[ 22] for several such methods.

IV. CONCLUSIONS

In this work we considered the well known quantum
mechanical problem of determining the bound energy
states of a quantum particle in a 1D symmetric finite
square well potential. The purpose of the study is to
present a simple solution method to the problem that re-
lies on the use of two auxiliary functions. The method
adopted presents a new insight into the solution of this
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standard quantum mechanical problem. The key aspect
of the approach is to highlight the important role that a
special combination of trigonometric functions, denoted
as the auxiliary functions F (k, k′) and G(k, k′), play in
solving the problem at hand. The method allows one
to elegantly separate the even and odd-parity wave func-
tion solutions of the problem by looking at each auxiliary
function separately and show that one of the auxiliary
functions (and one of them only) has to be equal to zero.
It is worthwhile pointing out that the method out-

lined in this work can be immediately generalized to a 1D
asymmetric quantum well potential scenario, too. If the
symmetric potential in Eq.(1) is changed to an asymmet-
ric form so that V (x) = V1 ≥ 0 for x ≤ −a and V (x) = 0
for x ≥ +a then the approach to calculate the bound
energy states (that correspond to E < 0) will lead to a
compact equation involving the previously defined two
auxiliary functions that is slightly different from Eq.(7).
However, under these circumstance, the second argument
of the two auxiliary functions (that was k′ for the sym-
metric potential) will not be the same. Analogs in spirit
to the procedure outlined in this work may be applied
to even more complex problems such as computing the
strong field Stark and Zeeman resonances (energies and
widths) in atomic and molecular systems including DC
and AC strong field effects, atomic, molecular and nu-
clear multiphoton resonances, different resonant effects
in cooperative laser-electron nuclear processes and reso-
nant effects in the interaction of strong electromagnetic
pulses with solids, to mention a few [6–12].
Furthermore, this study also underscores the pedagog-

ical value of the method from the perspective of under-
graduate students taking an introductory quantum me-
chanics course. We believe that the results presented in
this work would be useful to an audience of undergradu-
ate and graduate students as well as instructors teaching
quantum mechanics in an undergraduate physics envi-
ronment.
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APPENDIX A: WAVE FUNCTION

The stationary Schrödinger’s equation reads:
[

− ~
2

2m

d2

dx2
+ V (x)

]

Φ(x) = E Φ(x) , (A1)

where m is the mass of the particle, ~ is the reduced
Planck’s constant and Φ(x) is the (unknown) wave func-
tion of the particle corresponding to energy, E. For con-
venience, one rewrites Eq.(A1) as:

d2Φ(x)

dx2
+

2m

~2

[

E − V (x)
]

Φ(x) = 0 . (A2)

The above equation should be solved separately in three
different regions of space: region I (−∞ < x ≤ −a),
region II (−a ≤ x ≤ +a) and region III (+a ≤ x < +∞).
The differential equations written separately for each of
the three regions read:























d
2ΦI

dx2 − k′
2
ΦI(x) = 0 ; −∞ < x ≤ −a

d
2ΦII

dx2 + k2 ΦII(x) = 0 ; −a ≤ x ≤ +a

d
2ΦIII

dx2 − k′
2
ΦIII(x) = 0 ; +a ≤ x < +∞ ,

(A3)
where we have introduced two constants:

2m

~2
E = −k′

2
;

2m

~2
(E + V0) = k2 . (A4)

It is implied that both k and k′ are non-negative and
real. A general acceptable quantum solution (which goes
to zero as |x| → ∞) has the form:



















ΦI(x) = A exp(k′ x) ; −∞ < x ≤ −a

ΦII(x) = B1 sin(k x) +B2 cos(k x) ; −a ≤ x ≤ +a

ΦIII(x) = C exp(−k′ x) ; +a ≤ x < +∞ ,
(A5)

where A, B1, B2 and C are constants to be determined.
It is also useful to calculate the first derivatives of the
above wave functions:



























dΦI(x)
dx

= k′ A exp(k′ x) ; −∞ < x ≤ −a

dΦII(x)
dx

= k
[

B1 cos(k x)−B2 sin(k x)
]

; −a ≤ x ≤ +a

dΦIII(x)
dx

= −k′ C exp(−k′ x) ; +a ≤ x < +∞ .
(A6)

Continuity conditions for the wave function and its first
derivative at x = −a and x = +a require that:



































ΦI(x = −a−) = ΦII(x = −a+)

dΦI

dx
(x = −a−) = dΦII

dx
(x = −a+)

ΦII(x = +a−) = ΦIII(x = +a+)

dΦII

dx
(x = +a−) = dΦIII

dx
(x = +a+) .

(A7)

The symbol x = a− indicates that x approaches a from
the left (x → a−). This means that f(x = a−) =
limx→a− f(x) is the left-hand limit of f(x) as x ap-
proaches a from the left. Likewise, x = a+ indicates
that x approaches a from the right (x → a+). There-
fore, f(x = a+) = limx→a+ f(x) is the right-hand limit
of f(x) as x approaches a from the right. Application
of the continuity conditions from Eq.(A7) leads to the
following system of equations for the four unknown con-
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stants, A, B1, B2 and C:











































A exp(−k′a) = −B1 sin(k a) +B2 cos(k a)

k′ A exp(−k′a) = k
[

B1 cos(k a) +B2 sin(k a)
]

B1 sin(k a) +B2 cos(k a) = C exp(−k′a)

k
[

B1 cos(k a)−B2 sin(k a)
]

= −k′ C exp(−k′a) .

(A8)
The four equations in Eq.(A8) determine four constants
and the energy (for example, via the variable k). To ob-
tain a system of equations that is not under-determined,
one uses the normalization condition:

∫ +∞

−∞

dx |Φ(x)|2 = 1 . (A9)

This provides the required additional fifth equation.
Since the wave function is nonzero in region I, the con-

dition ΦI(x) 6= 0 implies that constant A 6= 0. The same
arguments apply to constant C but cannot be generalized
to B1 and B2. Therefore, a suitable approach is to ex-
press B1, B2 and C in terms of A (which is guaranteed to
be nonzero). After some algebraic manipulations to the
first three equations in Eq.(A8) we obtain the following
expressions for B1, B2 and C in terms of A, respectively:

B1 = −A exp(−k′a)
[

sin(k a)− k′

k
cos(k a)

]

, (A10)

B2 = A exp(−k′a)
[

cos(k a) +
k′

k
sin(k a)

]

, (A11)

and

C = A
{

− sin(k a)
[

sin(k a)− k′

k
cos(k a)

]

+ cos(k a)
[

cos(k a) +
k′

k
sin(k a)

]}

. (A12)

Note that the fourth equation in Eq.(A8) has not been
used in these transformations.
In a more traditional approach, use of the fourth equa-

tion in Eq.(A8) eventually leads to a transcendental equa-
tion involving k and k′. A typical treatment found in sev-

eral books [16, 17] is to use all the equations in Eq.(A8)
(including the fourth equation) to obtain a system of
equations in matrix form for the four unknown constants,
A, B1, B2 and C which in our case reads:







exp(−k′a) sin(k a) − cos(k a) 0
k′ exp(−k′a) −k cos(k a) −k sin(k a) 0
0 sin(k a) cos(k a) − exp(−k′a)
0 k cos(k a) −k sin(k a) k′ exp(−k′a)













A
B1

B2

C






= 0 (A13)

The system of homogeneous equations in Eq.(A13) has
either one solution, A = B1 = B2 = C = 0 or infinite
solutions. The zero solution (A = B1 = B2 = C = 0)
is the only solution if the determinant of the coefficient
matrix is nonzero. However, since we are looking for
a nonzero solution for the four unknown constants, we
must require that the determinant of the coefficient ma-
trix be zero. The normalization condition determines the
specific values of constants A, B1, B2 and C from the in-
finite set of the solutions of Eq.(A13) for the case when
the determinant of the coefficient matrix is zero.

APPENDIX B: AUXILIARY FUNCTIONS

Consider the following two auxiliary functions:

F (k, k′) = sin(k a)− k′

k
cos(k a) (B1)

and

G(k, k′) = cos(k a) +
k′

k
sin(k a) , (B2)

where k, k′ are non-negative and real parameters. The
two functions F (k, k′) and G(k, k′) defined in Eq.(B1)
and Eq.(B2) have the property that they cannot be si-
multaneosly zero. The proof od this statement is simple.
If it is assumed that F (k, k′) = 0 one obtains:

tan(k a) =
k′

k
. (B3)
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If one assumes that simultaneously also G(k, k′) = 0 then
one should have:

tan(k a) = − k

k′
. (B4)

This means that if Eq.(B3) and Eq.(B4) are simultane-
osly true, one should have k′/k = −k/k′, a result that
eventually would lead to k′ = i k where i =

√
−1 is the

imaginary unit number. However, this conclusion can-
not be true since it is assumed that both k and k′ are
real. In short, if F (k, k′) = 0 then G(k, k′) 6= 0 and, by
the same token, if G(k, k′) = 0 then F (k, k′) 6= 0. The

two auxiliary functions have also the following interesting
properties:

cos(k a)G(k, k′) = 1 when F (k, k′) = 0 , (B5)

and

sin(k a)F (k, k′) = 1 when G(k, k′) = 0 . (B6)

The proof of Eq.(B5) and Eq.(B6) is left to the reader as
an exercise.
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