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Abstract The article aims at studying hypergeometric—type mathematical
techniques based on extension of the mathematical model occuring in de-
scription of the Coulomb self-energy of a uniformly charged three-dimensional
cylinder. The associated crossed term integral is investigated and solved by
computational series built by hypergeometric—type terms for different values
of parameters involved.
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1 Introduction

Application of different methods to solve a given problem may potentially
result in interesting transformations and identities that otherwise are not so
obvious. The aim of this work is to derive various presentations in terms of
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hypergeometric-type functions for an integral expression that is often encoun-
tered in studies of electrostatics. To this effect, we adopt various methods to
solve the problem of the Coulomb self-energy of a uniformly charged hollow
cylinder with inner radius, R; and outer radius, R,.

Uniformly charged regular bodies have always been of great interest to
physics as well as to several other scientific disciplines. They are encountered
in many studies that require the knowledge of the electrostatic field/potential
created by a uniformly charged body. Unfortunately, exact expressions are
available only when the uniformly charged body is highly regular/symmetric.
Descriptions of the electrostatic properties of several uniformly charged bodies
with various symmetries (spherical, cylindrical, etc.) are widely reported in the
literature [1-10]. Among these cases, one standard problem often encountered
in electrostatics is that of the Coulomb self-energy of the system. This is not
a simple problem as demonstrated by the case of a uniformly charged wire
with finite length [11-15]. The three-dimensional (3D) version of finite wire is
a uniformly solid charged cylinder and its self energy has been obtained. The
aim of this work is to extend the calculations to the more challenging model
of a hollow cylinder. To this effect, we first obtain expressions for the quantity
of interest by applying standard integration techniques. We then implement
suitable transformations involving various special functions that allow us to
obtain compact representations of the final result.

The paper is organized as follows: In Section 2 we present the problem
under consideration; in Section 3 the problem is solved for suitably small
positive values of the input parameters, while in Section 4 the solution is
derived for general parameter space. In Section 5 we discuss the results and
present some concluding remarks.

2 The Problem

Let us consider a 3D cylindrical domain D as depicted in Fig. 1. The use of a
cylindrical system of coordinates is obviously mandatory. It is assumed that
this domain contains a total amount of charge, () which is uniformly spread.
Hence, the uniform surface charge density in this case is: p(r) = po = Q/V,
where V' = 7 (R3 — R?) L. The total electrostatic energy arising from the
Coulomb interaction between all infinitesimal charges between the two coaxial
cylinders, namely, the electrostatic Coulomb self-energy of the body is given
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where k. is Coulomb’s electric constant and r (r’) are 3D position vectors.
Computations are greatly simplified if one expands |r — r’|~! using the
following formula (see [16, p. 565] or [17, p. 140]):

Z/ dke! ™ 192 T (1) T (ke p2) e M0 (2)
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Fig. 1 Outlook of the original problem. A total charge @ is uniformly deposited between
radii R1 and Ra, with a height (or lenght) equal to L. See text for details.

where J,,(x) stands for the Bessel functions of the first kind of integral order
m.

Now, we shall introduce a set of dimensionless parameters that will describe
the shape of two concentric cylinders such that Ry < r < Rs). Let us define
¢c=L/Ry,d=L/Ry and v = Ry/Ry =d/c €[0,1].

The total electrostatic self-energy of two uniformly charged concentric
cylinders such that charge is spatially distributed only inside Ry < r < Rs
and z € [0, L] is given —after replacing relation (2) into (1) and integrating, by
the expression

oo R 2 —kL
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The integral being squared is equal to

1

- [Rg Ji(k Rs) — Ry Jy (k Rl)] .

Thus, by developing the square in the previous expressions, we shall end up
with three contributions, namely,

1

2 [R% Ji(k Ry) + Ry Ji(k Ry1) — 2Ry Ry J1(k Ry) Ji(k R2)] ;

that shall be integrated altogether with k~2 (e*kL -1+ kzL) over the variable
k. It is apparent from the previous relation that the two first contributions are
identical as far as the integration over k is concerned. Physically, the two first
terms will give rise to the total self-energy of two uniformly charged cylinders
with radii Ry and Ry, respectively. The last term, which we shall call from here



onwards the crossed term, is responsible for subtracting the right amount of
energy to two cylinders in order to account only for the charge present between
them. As we shall see later on, this contribution, which could a priori looks
not more complex than the other two, will indeed constitute a mathematical
challenge.

Taking into account the following identity !
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and the following two results
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we define the function v — ¥ (u) by
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Finally, the total energy U (3), in units of k}gz, can be splitted into three
contributions, reads as follows
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Thus, we have a final expression for the total self-energy depending only on two
parameters. The crossed term involving the product of two Bessel functions of
the first kind is actually more involved that it may appear. In point of fact, its
analytic value is extremely involved, and shall be considered in the following
Sections using hypergeometric-type functions.

3 The Crossed Term Integral

In this section we give a closed form of the so—called crossed term integral which
we derived for some appropriately small values of the parameters involved.
During the derivation procedure we make use of the Appell hypergeometric
function Fy, while the final result is expressed in terms of the Kampé de Fériet
generalized hypergeometric function of two variables.

1 The displays [21, p. 2307, Egs. (C.6-9)] contain the redundantly written
2F3(%,2;2,2,3; z). We will write this hypergeometric term here and in what follows in
the reduced correct form 1F2(%; 2,3;2).



Consider the integral
I(a,b,c) := / dtt*Ji(at)Ji(bt) (7 — 1 +ct) ,
0
where all three parameters all positive. Recall that by equating a = v and
b+ 1 we recover the special case considered in (4). By substituting tc=! + ¢
we get
I(a,b,c) = c3/ dtt=*Jy(at) 1 (Bt) (e™F — 1 +¢)
0
spfab 3
=cI|—-,-,1)=¢cH 5
¢ () SH(o,B), (5)
where the shorthand o = ac™!, 8 = bc~! is used. Bearing in mind that

1
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by changing the order of integration we conclude
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H(a,ﬂ):/o ds(l—s)/ dtt=2Jy (at)J,(Bt) e " :;/ ds(1—s).7 . (6)

0 0

Next, we express the product of Bessel functions as a double series in the

following way: 2
2m—+1 2n+1
(@) ()
2 Z 2
F(m+2)m! I'(n+2)n!

Ji(at)Jy(Bt) =172
m>0
m+n 2m62n

_ Oéﬁ 2(m+n)
B m;O 4m+” Y (2)n m!n! t ’

where the Pochhammer symbol notation
(a)p =ala+1)---(a+n—1)

was used.
Thus, the inner integral appearing in (6) becomes

I, = t=2 T (at)Jy (Bt) e Stdt
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2 The case a = f is known, see e.g. [18, p. 360, Eq. 9.1.4].



Applying here Legendre’s duplication formula
VI I(22)=2""'"T(z)[(z+3), 2>0,

we have
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Recall the series representation of Appell’s hypergeometric function of two
variables [26, Eq. 16.13.4]
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by which we deduce
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Obviously .#; is not integrable with respect intervals which contain origin as
endpoint, we transform Fy by the formula [26, Eq. 16.16.10]
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Indeed, since the conventional (0),, = 0., where ;s stands for the Kronecker
symbol, the second Fy term obviously reduces to 1.

Now, including .#; from (7) into (6) and having in mind that s > 0, we
have

H(a, B) = Z/Olds(l —s){F4 (;,_;;2,;; <g)2,_ (Zf) - ;} (8)



The Kampé de Fériet generalized hypergeometric function of two variables
defined by the double-series [19] in a notation given e.g. by Srivastava and
Panda [29, p. 423, Eq. (26)]
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which converges [27] when

(i) p+g<l+m+1,p+k<l+n+1, max{|z|,|y|} < oo, or
(i) p+gq=l4+m+1,p+k=Il+n+1 and

2|7+ |y|7T <1,  I<p
max{|z|, [y|} < 1, I>p

Routine calculation gives the value of the first integral in (8):
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Conditions (ii) imply that the convergence region is |a|+1 < ||, which reduces
to a 4+ ¢ < b. Finally, it follows:
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By this we have proved the following result.

Proposition 1 Assume that a,b,c > 0. Then for all a + ¢ < b we have

ac® [ o ordi -1 .- 11 d? ? c
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Obviously, our physical model which describes via the crossed term integral
occurring in Coulomb self-energy of a uniformly charged cylinder is a special
case of (9). Now we devote the following lines to these specifications and the
asymptotic of the getting result for small parameter v = Ry/Rs € (0,1).

Corollary 1 Let v € (0,1), ¢ > 0 where v+ ¢ < 1. Then the crossed term
integral takes the form
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Our special attention deserves the asymptotic of this expression. Thus,
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since the Maclaurin series of I(, 1, ¢) is given by the Kampé de Fériet function.
Here we can write explicitly

1
3F2( ’3221’ ) 32{2— (2 +c*)V1+ ¢ — 3¢ sinh™? )}

2
Moreover, the related Maclaurin series reads
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4 Hypergeometric—Type Solution for General Parameter Space

In this section we treat the crossed term integral I(a,b,c) by a method which
leads to final expression valid for all positive ¢ > 0 and v € (0,1) occurring in
the model I(7, 1, ¢). In this purpose recalling (5) we concentrate to

H(a, B) :/1 ds(1—s) /Oo t=2 01 (o) Jy (Bt) e *tdt
:/ ds ( 1—3/ det™ QZ O‘t/z ) J1(Bt)e "t

n>0

o « ( ) (Q/Q) > 7st n—
fZ/O ds (1 — )ZW/O 271 7, (B) dt

n>0




The Laplace-Mellin transform formula [25, p. 246, Eq. (2)]

> N2V I(p+v+1) p+rv+1l v—p A2
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under constraint R(pu+v) > —1, R(p) > |S(N)|, |N/r] <1, r = /p* + A2 The
inner t-integral H («, /3) satisfies all conditions upon the parameters, hence by
the Legendre’s duplication formula it follows

Ha,) = 2 3 CU @072, (0

n>0 ( )
' ) B
x/ dSWQFl(n—I-l/Q 1 - 52+52)

In turn, the hypergeometric function one reduces to a polynomial of degree
n — 1, that is
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The Pochhammer symbol’s identity (1/2),, (n+1/2)r = (1/2),+r encompasses
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At this point we check the parameter space which ensures the convergence
issue of the series H(«, 3). Since

b
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and for m enough large there holds true
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denotes the Laplace function, the main term a,, say, of the right-hand-side
series (10) behaves like

VT2 [ (/24 n)i(1 =) (2)"
") (2 vVt k k! B
VI (1/2)0 &2 (1/2 4 n)i(1 = n)i | fay 20
= 2(2), n! (2):k! : (B)
VT (A/2)n(=1/2)n a2
= D (5) . n— oo (11)

It is not hard to see that {/a, — 0 with growing n. Consequently by the
Cauchy-Hadamard theorem H («v, 8) converges for all /8 > 0, that is a fortiori
for all positive a, b, ¢ as the derived bound (11) is uniform with respect to the
input parameter c.

Now, routine algebra and Euler hypergeometric transformation formula
[18, p. 559, Eq. 15.3.3.] give us

1
/o ds W =B R (1/2,m 4 1/2;3/2 - 577)

1 —
= gz 2P (L1 - mi3/2 =577,

which turns out to be a hypergeometric polynomial of degree m — 1 in —372,
while

/1 1 s 6172m _ (52 + 1)1/27m
P (Bt 2yt T 2m — 1 '

Using the obvious transformation
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and putting m = n + k in the last two expressions, we conclude
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Hence, we deduce
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The second sum one easily transforms into
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In turn, since
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the closed form becomes
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The third sum in (12) one rewrites into

ngab\/bjﬁzz( 12” —1/2)n( a? )”

(
1 2 1 2
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As the convergence issues have solved previously by (11) collecting all these
values we deduce the final result.

Proposition 2 Let a,b,c > 0. Then we have

I(a,b,c) =

b2—|—(:2 an:l 1/2 Ynik(1l —n)y a®mb?F
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Corollary 2 For all ¢ > 0,7 € (0,1) we have
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5 Conclusions

The study of the Coulomb self-energy of two finite coaxial cylinders whose
space between them has been filled some dielectric material capable of sup-
porting a total charge @ has been performed. A previous study consisting of
a single cylinder provided a closed formula for the total energy. Surprisingly
enough, the fact of "emptying” the cylinder leads to new, exciting mathe-
matical integrals, which can be tackled analytically up to some extend. It is,
therefore, this precise study that has brought special functions of hypergeo-
metric —type to our attention, of special significance being the Kampé de Fériet
hypergeometric function one of two variables. To the best of our knowledge,
this function - the crossed term integral - rarely appears or it does not at all
when considering systems amenable to be studied by means of mathematical
physics. Finally, we draw the interested reader’s attention to the recent article
[31] in which similar integrals have been resolved in terms of elliptic integrals
of the first and second kind.
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