Light-weight Object Detection and Decision Making via Approximate
Computing in Resource-constrained Mobile Robots

Parul Pandeyl, Qifan He2, Dario Pompilil, and Roberto Tron?2

Abstract—Most of the current solutions for autonomous
flights in indoor environments rely on purely geometric maps
(e.g., point clouds). There has been, however, a growing interest
in supplementing such maps with semantic information (e.g.,
object detections) using computer vision algorithms. Unfor-
tunately, there is a disconnect between the relatively heavy
computational requirements of these computer vision solutions,
and the limited computation capacity available on mobile
autonomous platforms. In this paper, we propose to bridge
this gap with a novel Markov Decision Process framework that
adapts the parameters of the vision algorithms to the incoming
video data rather than fixing them a priori. As a concrete
example, we test our framework on a object detection and
tracking task, showing significant benefits in terms of energy
consumption without considerable loss in accuracy, using a
combination of publicly available and novel datasets.

I. INTRODUCTION

Autonomous navigation in indoor environments (e.g., with
robotic drones) can be achieved through the use of map-
ping, planning, and control solutions that rely purely on
geometric information (such as occupancy grids or point
clouds). There exist an opportunity, however, to improve
these techniques for robots that need to work in close
proximity to humans, e.g., in controlled environments such as
warehouses or in search and rescue missions. There has been
a growing interest in supplementing geometric maps with
semantic information, by using vision information to reach
some understanding of the environment [1]. As a motivating
application, we posit that the autonomous robots could use
the same existing infrastructure developed for humans, such
as traffic signs, to navigate. In other words, signs that have
intuitive meaning for humans can be used to influence the
behavior of robots; for instance, if a robot detects a “Stop"
sign, it might pause its motion until some environment-
specific condition is met.

To realize these functions, it is necessary to run object
detection algorithms on the incoming data (video stream) in
near real-time. However, running computationally-intensive
vision algorithms using on-board processors can cause delay
in detection and significant battery consumption leading,
to reduction in the mission time. In robotics, offloading
operations to clouds has been proposed as a way to handle the
constraints on the robots, targeting collaborative applications
such as localization [2], [3] and object recognition [4],
[5]. However, such approach faces challenges such as a
variable network connectivity or a high latency, leading to
performance bottlenecks, especially for real-time/interactive
applications that require low response times.

1Parul Pandey and Dario Pompili are with the Department of Electri-
cal and Computer Engineering, Rutgers University—New Brunswick, NJ
{parul_pandey, pompili}@cac.rutgers.edu

2Qifan He and Roberto Tron are with the Department of Mechanical
Engineering, Boston University, MA {hegf, tron}@bu.edu

Proposed Approach: In recent years there has been
tremendous improvement in the performance of detection
algorithms; however, these algorithms have been mostly
designed for accuracy, and are too slow for resource-
constrained autonomous systems (since they typically rely
on deep neural architectures or model ensembles). We ar-
gue that the selection of the computer vision algorithm,
along with its parameters, should depend on the input data,
resources available with the device (battery capacity, and
CPU frequency), and the accuracy of the results that is
acceptable to the user or application. To this end, we exploit
the paradigm of approximate computing that reduces the
amount of computation that an application is expected to
perform, resulting in a reduction of the application execution
time, subject to a potential but acceptable loss in accuracy.

Specifically, we propose a decision framework that selects
the parameters of computationally intensive algorithm that
are “good-enough"”, i.e., parameters that give acceptable
accuracy in each frame of the video with significant savings
in time and energy. Our framework exploits the temporal
correlation between the continuous stream of frames obtained
from the camera sensors, learns the good-enough parameters
from the first few frames, and applies these parameters to the
subsequent frames. We cast the problem of selecting the algo-
rithm and input parameters for a video as a Markov Decision
Process (MDP). MDPs provides a mathematical framework
for modeling decision making in a stochastic environment.
We design a reward function for the MDP that achieves
acceptable accuracy for the application with minimum cost
(in terms of time). While in this paper we focus on a specific
case study, the selection of good-enough parameters via
MDP is a generic technique that may be applied to a wide
range of computationally-intensive algorithms. Our proposed
framework works well in variety of challenging conditions,
such as those that exists in object detection application (e.g.,
background clutter or poor illumination).

Previous Work: The problem of object detection has been
considered exhaustively in the computer-vision literature.
However, our focus is on reducing the computational require-
ment of state-of-the art detector to better fit real-time appli-
cations on resource-constrained platforms. Likewise, MDPs
have also been used in the computer vision community
for the problem of object detection [6], [7], multi-object
tracking [8], human path predictions [9], and videogame
play [10]. However, they have not been considered with the
goal of achieving good-enough performance for video data
on resource-constrained devices.

Paper Contributions: We make these contributions:

o We use object detection and tracking as a case study to
motivate that traditional “one-size-fits-all" approaches
are energy and time inefficient for real-time applica-
tions, while we show via simulations and experiments
that our solution shows improved performance.

\
y%i

o All models
o Pareto-optimal

o
*
@

9

™~
% T
Qap

S@oano

Probability of succesful ddetection
o
©o0 o

YUG 0.65 07 0.75 08 085 09 095 1 2 1.5 1 0.5 0 05 1 15 2
Area under curve (AUC) classifier score

(@) (b)

Fig. 1: (a) Representing the tradeoff between accuracy in terms of area under the curve
(AUC) and speed up in execution time per frame for different values of parameter tuple
of the object detection pipeline, namely, number of detection proposals and cell size
in object detection pipeline; (b) Illustration of variation of probability of successful
detection with classifier score for various road sign in KUL traffic sign dataset [11].
The SVM scores have been converted to probabilities using Platt Scaling [12] and we
determine the values of c,pt, Cge, and cyq for the reward function.

« We identify, via offline experiments, the algorithm and
parameters of an object detection application that can
be approximated, showing 42% increases in speed while
maintaining 80% accuracy.

o We validate the proposed solution on publicly available
datasets, and on a new dataset of videos collected with
a Bebop drone; we achieve up to 30 fps for 480 x 270
video frames with an accuracy drop of less than 2% with
respect to a fixed choice of object detection parameters.

Paper Organization: In §II we introduce the entities of
our decision framework, cast the problem of selecting the
parameter-algorithm combination as an MDP, and present
its application to a popular object detection algorithm. In
§III, we provide details of our experimental setup and study
the performance of our solution under various conditions.
Finally, in §IV, we conclude our work.

II. PROPOSED WORK

In this section we give the details of our proposed MDP-
based decision framework for selecting good-enough param-
eters for an object detection and tracking. In MDPs, an agent
takes actions based on its state, and receives a corresponding
reward. The goal of the MDP is to maximize the sum of
rewards. In our case, the rewards are designed such that the
system achieves acceptable accuracy with minimum cost (in
terms of execution time). To this end, a policy is learned
for an MDP, which gives the optimal action that should be
taken from each state of the MDP to maximize its sum of
rewards achieved from that state. In our scenario the agent
is represented by the vision-based navigation system in the
drone, actions corresponds to choices of the parameter of the
object detection workflow that will be used on the received
frame, the current state is represented by whether the object
is likely to have been successfully detected in the current
frame, and the reward is given by a combination of execution
time and confidence levels returned by the object detector
and tracker. We first detail our decision framework, and then
show its application to a popular object detection algorithm.

Decision Framework: As the video is captured by the
drone’s camera, the frames are given to the MDP, which
estimates the good-enough parameters of an object detection
algorithm from the first few frames, and then reuses them in
the subsequent frames. The system continues to use the good-
enough parameters as long as the classifier score is above

a threshold, otherwise the MDP is triggered again to re-
estimate the good-enough parameters. If, for a given frame,
the MDP cannot find parameters that lead to a sufficient score
after a set number of attempts, we consider this as a sign of
an unlikely detection, and drop the frame. Our framework is
composed of the following entities:

States: Each state s € § of the MDP is represented by a tuple
given as s = {c, params}, where c is the classifier score and
params includes all tunable parameters of an object detection
algorithm. We first identify all combinations of tunable
parameters in params, thus generating different instances.
Next, only those instances of params that are on the Pareto-
optimal front with respect to the accuracy/execution time
tradeoff are considered in 8. See Fig. 1(a) for an example.
Actions: The action space of the MDP consists of choosing
good-enough parameters (params) for object detection, and
applying them to the incoming frame.

Reward Function: The reward is the way of communi-
cating to the MDP the goal we want to achieve, that is, the
agent should obtain a high positive reward when it achieves
the desired goal, and a lower reward otherwise. Our goal is to
achieve acceptable accuracy with minimum execution time.
We use the classifier score as a proxy for detection accuracy;
while the latter, naturally, cannot be computed at runtime due
to the absence of ground truth annotations, the classifier score
correlates well with the quality of the prediction (e.g., see
Fig. 1(b)), with higher scores indicating better predictions.

In order to define our reward function, we first delineate
three categories for the classifier score c that we obtain after
running the object detection algorithm: optimal score (copt),
good-enough score (cye), and unacceptable score (c,,) With
Copt > Cge > Cuq, and with associated weights wyp, Wge,
Wy, respectively,. The category of weights are obtained from
offline training of an algorithm, as explained later for a
specific object detection algorithm.

When an action is executed (i.e., the object detection
algorithm is run with parameters corresponding to a state
s'), the MDP receives a classifier score, and thus a weight
W € {Wopt, Wge, Wayq }. Our proposed reward function is:

w

R(s',w) = PPk

ey
where r(s') = %, gives the factor of increase in execution
time T, when choosing the tuple for state s’ with respect to
the parameter tuple which takes minimum time 7},;,, and
« is a tuning parameter. In order to encourage the MDP to
select parameters with acceptable (good-enough or better)
accuracy and minimum execution cost we let wye > Wop.

Application to Object Detection: In this work we use
object detection and tracking as a representative application.
We employ two well known computer-vision algorithms,
namely, Histogram of Gradients (HoG) [13] and Edge-
boxes [14], although our framework could be applied to
any set of algorithms that offer tuning parameters. HoG
features represent the shape of the object to be detected by
computing a dense grid of local gradients (edge directions)
in an image. The input image is divided into cells and an
orientation based histogram of gradients with bins of a given
size is computed for each cell using gradient orientation at
each of its pixel. The cell histograms are normalized with
respect to neighboring cells in a block of a given size. In this
specific case, the parameter tuple is given by params = {BB,
bsize, csize, nhist}, that is: number of bounding boxes or

(a) (b)

(d)

Fig. 2: Motivation figures to illustrate that parameters of the object detection algorithms can be adapted to input data to achieve savings in time and energy. Figures (a,b,c) show
variation in the amount of background clutter; (d and e) show variation in illumination, and (f) shows variation in camera viewpoint. These variation lead to differences in the
minimum number of bounding boxes parameter (detection proposals) required for object detection. Lower detection proposals translate to lower execution time.

detection proposals, block size, cell size, and number of bins
in the histogram, where detection proposals is a parameter
of Edgeboxes, and the others belong to HoG.

Fig. 2 visually shows an example to make the case that
the parameters of the object detection algorithm should not
be fixed, but should be adapted to the scene. For instance,
in Fig. 2(a,b,c) the minimum number of bounding box re-
quired per image varies as the background clutter (quantified
using [15]) varies from 1 for image 2(a) to 100 for image
2(b). Similarly, due to variation in illumination, image 2(d)
requires less detection proposals than 2(e) and for image 2(f)
the detection of the road sign (on the bottom-right corner)
is not possible because of the camera’s viewpoint. Fig 1(a)
shows the tradeoff between accuracy in terms of area under
the curve (AUC) and speed up in execution time. Each
marker in the figure is one instance of params, with red
markers highlighting the Pareto-optimal instances. We see
that we can achieve a reduction in execution time by 50%
for a 10% loss in accuracy.

Thresholds: We use a Support Vector Machine (SVM)
classifier [16] for which the score c is calculated as ¢ =
wT x4+ b, where w is a weight vector, b is the bias term, and
z is the HoG feature extracted from a detection proposal.
Features from images of both positive (containing road sign)
and negative (with no road sign) training sets are used to
train the SVM classifier (i.e., find the optimal values for w
and b). Cross-validation is used to determine the threshold
score T, for each road sign over which the probability of
correct detection is high. In Fig. 1(b) we give an example of
how categories for a classifier score are selected. Here, the
SVM scores have been converted to probabilities using Platt
Scaling [12]. Using this graph, we set the threshold classifier
scores for the three categories as cop = 0.9, cge = 0, and
cua = —0.5. We set the value of classifier threshold T, to
be equal to cg4e. The parameter « is set in the interval [0, 1].

Run-time Decision Framework: When a new frame
enters the navigation system, the MDP framework identifies
the good-enough parameters of the object detection algorithm
that give classifier score above the threshold 7. with min-
imum execution time. If after running the object detection
application on the frame with good-enough parameters we
get score greater than 7., we initialize a Kanade-Lucas-
Tomasi (KLT) object tracker [17] with the object location in
that frame. The good-enough parameters given by the MDP
are used in the subsequent frames with the combination of
the results from the KLT tracker on those frames.

Object Tracker: The KLT tracker produces a bounding
box B; for the current frame propagated from the previous
frame, with the results given by the detection algorithm,
which gives another bounding box By from the current
frame. We calculate the overlap between the bounding boxes
from the good-enough object detector B; and the KLT

Fig. 3: One of the areas used in the Robotics Lab, Boston University for collecting
our dataset. The arena simulates a warehouse where human-interpretable signs (road
signs) were used as cues to help the drone navigate the warehouse. Each road sign is
associated with a specific control command.

ATGOSOOO

C31R C21

Fig. 4: Traffic signs from the KUL dataset [11] (with the codes assigned to them in the
dataset) that we have considered for performance evaluation of our proposed solution.

tracker B; using the Intersection over Union (IoU) metric:

BgN By
0(By, B 2
(Ba, By) = B,UB, (2)
The MDP is re-triggered when either the classifier score is
below the threshold T, or when the overlap of the bounding
boxes 0(Bgy, B;) is lower than a pre-defined threshold (0;y,).

III. PERFORMANCE EVALUATION

This section focuses on how our proposed MDP-based
decision framework can reduce the time required for running
object detection algorithms on resource-constrained robots.
We evaluate our solution on publicly available datasets and
data collected by our team via a drone platform.

Experimental Setup: As mentioned in the introduction,
we envision aiding the navigation of robots in a warehouse
by using the same visual cues as humans to execute an
associated control task (e.g., reducing speed, changing direc-
tion). Currently, there is no public dataset for this specific
application; instead, as a proof of concept, we use the KUL
dataset, a traffic road sign dataset [11]. Videos taken from a
moving camera containing traffic signs while traveling along
a road is very similar to those collected by a drone in a
warehouse where road signs can be used to guide its motion.

In addition, to test the performance of our system in more
realistic conditions, we created the BU-RU dataset, based on
a setup similar to a warehouse in the Robotics Lab at Boston
University; see Fig. 3 for an example. The dataset contains
videos of a drone (Parrot Bebop) that simulate a warehouse
where human-interpretable signs (road signs) were used as
cues to help the drone navigate. Each road sign is associated
with a specific control command. We collect videos in three

12
B

10 © * = T T .
o o o
% 8 T
£ sL| © Correct Detections ° o ®]
3 * Incorrect detections
1%}

B cconvivicd o D GID D D [} —

0 O CGInmD oI ap @ a» *
0 | |

. . . .
0 100 200 300 400 500 600 700
Frames
Fig. 5: Illustration of the MDP state space for the object detection algorithm that the
navigation system accesses for an example video sequence from the BU-RU dataset.

08
o MDP-Approach
o7 * _Fixed Parameter| : 55 O MDP-Approach
£ * * _Fixed Parameter
2 Fad 5 ooom L) omm-
2o *
E . Bas
g 8
S0 F oo NS e s = oam
*
£ 1 s 5
B * % o 8|8
5 * g’ o IS S
2. ¥ o« é * .g?é& & | 8 oo m T
302 S, o " £
° - %%, o &
S N D e W @g L2
2. il E Sl
S 5 % By 8 Il T ;-
°
C 9,
Py 4
v]
W W0 B 8 100 120 W0 10 10 20 e e R T)
Frames Frames

Fig. 6: Comparison of performance for an example video sequence in terms of (a) IoU
of ground truth with detected locations; (b) Frames per second achieved for an object
detection algorithm by parameter selection versus fixed parameter approach.

different locations in the lab, namely, an hallway, a dedicated
flying arena, and an office area. In each case, the drone is
tele-operated with a laptop through a WiFi connection. The
resulting dataset contains scenarios with different conditions
in terms of clutter and illumination (see Figs. 2)

Data Preprocessing: We give now a few more details
about the two datasets used in this work.

KUL Dataset: In Fig. 4 we show the different road signs
used in our evaluation. This set of signs was selected to span
sufficient shape variability while appearing often enough
in the dataset (i.e., in a sufficiently high number of video
frames) so to have statistically relevant results. We extract
the portion of the video frames from the dataset which
continuously include the selected signs. Typically only one
road sign per video frame is present, with few exceptions.
These extracted videos are, in average, 40 frames long. Since
the original dataset does not provide the ground truth location
of the objects in all the video frames, we manually annotated
this information in our smaller videos. Unfortunately, given
the limits of the instances in which a sign appears contin-
vously in the KUL videos, this dataset is not sufficient to
fully test our MDP-based approach. Thus, we have collected
a new dataset with longer sequences.

BU-RU Dataset: The video streams for this dataset were
shot by a 14 mega-pixel 180° fisheye camera on a Parrot
Bebop drone. The raw video stream is cropped and rectified
to a plain video with about 80° (horizontal) by 50° (vertical)
field of view. The quality of the video stream is limited to
480 x 270px at 30fps. We collected 10 videos each for
different values of background clutter (low, medium, high).
Each video is about 10s long (i.e., around 300 frames). We
also collected 6 videos in poorly illuminated locations, where
each video is also 10 s long. We also collected 200 negative
training images with no road signs in them. Our framework
is run on a laptop with an Intel i7 CPU 3.4 GHz processor.

MDP States for an Example Video Sequence: We now
present an example video sequence to show the advantage

of selecting different parameters for road sign detection for
HoG object detection algorithm. We choose a sequence from
the BU-RU dataset. When the first frame arrives, the MDP
decision framework is triggered and good-enough parameters
{BB, bsize, csize, nhist} are selected by the MDP. If after
executing the object detection algorithm with these param-
eters the classifier score is greater than the threshold T,
then the navigation system uses the same set of parameters
for the next frame otherwise the MDP is triggered again.
In Fig. 5 we can see that due to the temporal correlation
between frames, the same parameter values (i.e., state) are
reused for multiple video frames.

Note that, while the drone is processing a particular frame,
all the other incoming frames are dropped until the drone
finishes its processing. Our decision framework focuses on
reducing the time taken to process each frame so that the
number of frames processed is closer to the incoming frame
rate. We now compare the performance of our MDP-based
framework against a fixed choice of parameters; for the latter,
we use the tuple {1000,2,8,9} as in [18]. The deviation of
the detected road sign from the ground truth is shown in
Fig. 6(a). We see that our framework achieves up to 6 fps,
while the fixed parameter approach tops out at 2fps, as
shown in Fig. 6(b). This is because our framework adapts the
parameters using the first few frames, lowering the execution
time for the other frames.

Achieving Real-time Performance: Even with the in-
corporation of our approach, the processing rate achievable
through pure object detection is far below the frame rate
of the drone platform (301ps). To improve our real-time
performance and also improve the IoU between detected
object and ground truth, we can choose to not trigger the
MDP for every new frame. After the MDP finishes adapting
from the first few frames, we can check the classifier score
achieved on the successive frame: if this score is greater than
the predefined threshold 7, the KLT tracker is initialized
with the detected object. Here, instead of discarding the
remaining frames during processing, as we did earlier, we
run the KLT tracker on these frames in parallel.

We use as template of the road sign an average of several
images obtained from the training data. We continue to track
until the normalized distance between the histograms of the
template and detected region by the tracker is greater than a
predefined threshold T, (equal to 0.5 in our experiments).
In Fig. 7 we see that this leads to a significant improvement,
with performance in the 10 to 30 fps range; this is due to the
fact that the KLT tracker is computationally much cheaper
than the object detector alone. Fig. 7(b) also shows that the
MDP (shown by black dots) is triggered when the normalized
pairwise-distance between the histograms of the template and
detected region by the tracker is below T,,.

In Fig. 7(a) we see that this approach leads to an im-
provement in performance and we get up to 30 fps for
some frames and the lower bounds on FPS achieved for
this sequence is 10 fps with IoU for majority of frames.
Also, Fig. 7(b) shows that the MDP (shown by black dots) is
triggered when the pairwise distance between the histograms
of the template and detected region by the tracker is below
T,,. KLT tracker is computationally cheaper and gives us
higher FPS performance than using only an object detector.
However, object trackers accumulate error during runtime
(drift) and typically fail if the object disappears from the
camera view. Hence, a combination of detector and tracking

Average

Good Enough

Codes P E [s] P E [s] Speed- Accuracy
Thresholds Value up[%] Loss [%]
Re-trigger MDP 100 frames
Re-initilize KLT 10 frames Al4 085 1.854+03 071 159+03 14.05 16.40
Score thresh 7, (KUL) 0 B5 0.57 221 +£0.11 046 26+ 051 -
Score thresh 7, (BU-RU) 1 Dla 1 2.1 +0.13 0.78 1.10 =0.02 40.1 22.0
Access MDP per image 3 El 099 21+£028 095 2.14+0.06 457 4.0
KLT thresh 0y, 05 Cl 0.75 206 £0.16 061 159 0.1 228 6.7
Template matching 1}, 05 C43 0.82 2.09 +£0.05 0.60 195+ 001 6.7 26.8
Max. object proposals 2000 C3IR 085 204 +0.16 080 189 +0.7 74 5.0
ToU for evaluation 05 C21 050 188 +0.1 050 156+0.1 17.0 0

TABLE I: Various thresholds considered in the performance
evaluation of our solution.

o

loU of detection with ground truth
°

Frames Per Second

0 50 100 150 200 250 %y 0«
Frames

(a) (b)

Fig. 7: Real-time performance of up to 30 fps for some frames and the lower bound of
10 fps for frames in a sequence when MDP based parameter selection is implemented
along with tracker. The IoU is greater than 0.4 for majority of frames.

(b)

Fig. 8: Video frames from one of the video sequences in the KUL dataset. The tracker
was initialized using the location from given by the detector in (a) ¢ frame. The tracker
has drifted away from the object location in the (b) ¢ 4+ 5 frame and should be re-
initialized via location generated by object detection algorithm.

helps in achieving high performance with low execution
time. Our solution brings further benefits in reducing time
by choosing parameters of the object detection algorithm
adaptively. Figure 8 gives an example of how we cannot
solely rely on the tracker and so we use a combination of
detector and tracker.

Although the KLM tracker is computationally cheaper, it
is prone to accumulating errors during runtime (drift), and
typically fail if the object disappears from the camera view
(see Figure 8 for an example). Hence, a combination of de-
tector and tracking helps in achieving high performance with
low execution time. Our solution brings further benefits by
choosing parameters of the detection algorithm adaptively:

Performance on the KUL Dataset: We measure quan-

TABLE II: KUL dataset: Comparison of precision and execution time of road signs (codes) in KUL dataset
for fixed parameters [18] and good-enough parameters given by MDP approach for object detection algorithm.

titatively the performance benefits in terms of execution
time and accuracy of our proposed MDP-based approach for
selecting good-enough parameters. The different thresholds
considered in our performance evaluation are shown in Ta-
ble I. We quantify the benefits of approximation in Table II.
Here the execution time corresponds to the time taken to run
the object detection workflow per frame. The results show
that approximation at the parameter level can indeed bring
benefits in terms of execution time for the KUL dataset. The
first column of the table indicates the codes of these roads
signs used in the dataset as shown in Fig. 4; for most of
the traffic signs we get a gain in execution time for a small
penalty of accuracy. For instance, for road signs E1, C1, and
C31R, and C21 we are able to get a speed up (in percentage)
of 45.7, 22.8, and 7.4, and 17.0 and accuracy loss of 4.0,
6.7, 5.0, and 0.0, respectively.

Performance with Varying Clutter and Illumination:
Here we test the performance of our solution under different
values of background clutter and illumination on our BU-RU
dataset. In Fig. 9(a,b,c) we show the performance of the MDP
when the background clutter is low (e.g., as in Fig. 2(a)) and
when the background clutter is high (e.g., as in Fig. 2(c)).
We quantify the background clutter using [15] as 4.05+0.53
for high clutter, and 2.0 4+ 0.63 for low clutter.

We compare the following scenarios: (i) Detection via
fixed parameters (we run the object detection algorithm
on each frame with the same parameters); (ii) Random
parameter selection with tracker (detection is done using
a random parameter tuple); (iii) MDP-based detection (we
adapt the object detection parameters using our MDP, using
the same parameters as long as the IoU of location detected
by tracker and object detector is higher than a pre-defined
threshold 6;5); (iv) Fixed parameter detection with tracking
(fixed parameters are used for object detection, but the object
detector is only run when the overlap of location detected
by object tracker and template is less than a pre-defined
threshold 7},); and finally (v) MDP-based detection with
tracking (as the previous one, but the parameters of the object
detector are identified by the MDP).

Background Clutter: Figure 9(a) shows results for low
background clutter condition. The fixed parameter approach
(Scenario 1) of [18] has the best performance but it also takes
the highest execution time. The MDP approach (Scenario iii)
brings 39% gain in time 4% loss in accuracy. In the case

o
3
o
[3)

Accuracy (F1-Score)
Execution Time [s]

Accuracy (F1-Score)

Ho05 1r 105

o
o

Execution Time [s]
Accuracy (F1-Score)
Execution Time [s]

1 2 3 4 5 1 2 3

Scenarins

(a) (b)

Scenarios

4 5 1 2 3 4 5

Scenarins

(©

Fig. 9: BU-RU dataset: Performance of object detection in a video under different scenarios, (i) Fixed parameter, (ii) Random parameter, (iii) MDP-based parameter, (iv) Fixed
parameter and tracking, and (v) MDP-based approach and tracking for different conditions (a) low and (b) high background clutter; (c) poor illumination.

where tracking is used (scenarios (i) and (iv)), we see that
MDP based brings further gains in execution time of 35%.
Triggering the MDP only at specific intervals (Scenario (v))
when the performance of tracker fails gives us a 50%
better performance than triggering the MD at every frame
(Scenario (iii)). The benefits of the MDP approach are visible
also in the case of high background clutter, as shown in
Fig. 9(b). In particular, we see that MDP-based approach
with tracking (Scenario (v)) brings a 38% gain in execution
time at a cost of 2% loss in accuracy.

Poor Illumination: In Fig. 9(c) we show the performance
of the MDP when the illumination is low (e.g., as in
Fig. 2(e)). We see that MDP approach (Scenario (iii)) again
achieves a gain of 35% in comparison to fixed parameter
approach (Scenario (i)). However, along with the tracker
both fixed parameter and MDP-based approach give similar
results because detector is not triggered frequently and is
able to achieve acceptable performance (overlap of tracker
and template above T,,) with the tracker. As, a result the
execution time of this two scenarios is significantly lower
than other results (since the tracker is computationally much
cheaper than the object detector).

IV. CONCLUSIONS

We presented a new method to handle the problem of
resource constraints in mobile robots. Specifically, we tar-
geted the object detection problem and presented a solution
based on Markov Decision Processes to select the parameters
of computationally-intensive computer vision algorithms and
bring benefits in terms of time and energy for long-term
object-detection in videos. We showed the benefit of our
formulation in a robot navigation setting with experiments on
a public dataset and a new dedicated dataset via experiments.
We showed a decrease in execution time of object detection
and tracking application by 20 — 70% with an accuracy of
98 — 100% with respect to the fixed parameters approach
used in previous works.

Acknowledgment: This work was supported by the NSF
NRI Award No. I1S-1734362.

REFERENCES

[1] A. Paolillo, A. Faragasso, G. Oriolo, and M. Vendittelli, “Vision-based
maze navigation for humanoid robots,” Autonomous Robots, vol. 41,
no. 2, pp. 293-309, 2017.

[2] B. D. Gouveia, D. Portugal, D. C. Silva, and L. Marques, “Computa-
tion sharing in distributed robotic systems: A case study on SLAM,”
IEEE Transactions on Automation Science and Engineering, vol. 12,
no. 2, pp. 410422, 2015.

[3] G. Mohanarajah, V. Usenko, M. Singh, R. D’Andrea, and M. Waibel,
“Cloud-based collaborative 3D mapping in real-time with low-cost
robots,” IEEE Transactions on Automation Science and Engineering,
vol. 12, no. 2, pp. 423-431, 2015.

[4] D. Hunziker, M. Gajamohan, M. Waibel, and R. D’ Andrea, “Rapyuta:
The Roboearth Cloud Engine,” in Proc. of IEEE International Confer-
ence on Robotics and Automation (ICRA), Karlsruhe, Germany, May
2013.

[5] O.Zweigle, R. van de Molengraft, R. d’Andrea, and K. Hdussermann,
“RoboEarth: Connecting Robots Worldwide,” in Proc. of ACM Inter-
national Conference on Interaction Sciences: Information Technology,
Culture and Human, Seoul, Korea, 2009.

[6] L. Paletta, G. Fritz, and C. Seifert, “Q-learning of sequential attention
for visual object recognition from informative local descriptors,”
in Proceedings of the 22nd international conference on Machine
learning. ACM, 2005, pp. 649-656.

[7]1 S. Karayev, M. Fritz, and T. Darrell, “Anytime recognition of objects
and scenes,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2014, pp. 572-579.

[8] Y. Xiang, A. Alahi, and S. Savarese, “Learning to track: Online multi-
object tracking by decision making,” in IEEE International Conference
on Computer Vision, 2015, pp. 4705-4713.

[91 K. M. Kitani, B. D. Ziebart, J. A. Bagnell, and M. Hebert, “Activity
forecasting,” in European Conference on Computer Vision. Springer,
2012, pp. 201-214.

[10] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, 1. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” arXiv preprint arXiv:1312.5602, 2013.

[11] M. Mathias, R. Timofte, R. Benenson, and L. Van Gool, “Traffic sign
recognition-How far are we from the solution?” in Proc. of IEEE
International Conference on Neural Networks (IJCNN), Dallas, TX,
USA, 2013.

[12] J. Platt, “Probabilistic outputs for support vector machines and com-
parisons to regularized likelihood methods,” Advances in Large Margin
Classifiers, vol. 10, no. 3, pp. 61-74, 1999.

[13] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, vol. 1. IEEE, 2005,
pp. 886-893.

[14] C. L. Zitnick and P. Dollér, “Edge boxes: Locating object proposals
from edges,” in Proc. of European Conference on Computer Vision
(ECCV), Zurich, Switzerland, 2014.

[15] R. Rosenholtz, Y. Li, J. Mansfield, and Z. Jin, “Feature Congestion: A
Measure of Display Clutter,” in Proc. of the ACM SIGCHI conference
on Human Factors in Computing Systems, Portland, Oregon, USA,
2005.

[16] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learn-
ing, vol. 20, no. 3, pp. 273-297, 1995.

[17] C. Tomasi and T. Kanade, “Detection and tracking of point features,”
International Journal of Computer Vision, vol. 9, no. 3, pp. 137-154,
1991.

[18] B. Alexe, T. Deselaers, and V. Ferrari, “Measuring the objectness of
image windows,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 34, no. 11, pp. 2189-2202, 2012.

	Introduction
	Proposed Work
	Performance Evaluation
	Conclusions
	References

