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Knowledge of electrical potential and energy is important to systems where electrostatic forces
play a role. We calculate exactly the electrostatic potential of a uniformly charged cylindrical shell
at an arbitrary point in space as well as its electrical energy. The expressions derived are applicable
to cylindrical models containing charged particles and certain biological systems with cylindrical
symmetry. An explicit analytical formula is provided for the total energy in terms of a class of
special functions known as generalized Hypergeometric functions. The expressions when written in
one-dimensional integral form are very suitable for numerical calculations.
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I. INTRODUCTION

One of the most interesting problems in electrostatics is
the calculation of the electrostatic potential created by ei-
ther a finite system of point charges, or by a macroscopic
charged body1–4. This problem is inherently linked to
that of how much electrostatic energy is stored in sys-
tems containing interacting charges5–12. Systems consist-
ing of point charges interacting with a Coulomb potential
are widespread in nature. Therefore, the calculation of
the total electrostatic energy, namely, the calculation of
the Coulomb self-energy contained in such systems is a
problem of utmost importance in many physical disci-
plines. While the methodology is well known, the pos-
sibility to obtain exact analytic results depends heavily
into the details of the system under consideration, geom-
etry and how charges are distributed13,14. This means
that, under general conditions, the problem is very dif-
ficult. As a consequence, there are few analytic results
that apply to systems with an arbitrary number of point
charges. Among few exceptions, we mention the case of
one-dimensional (1D) ionic crystals15.

If charge distribution in a given object is characterized
by some charge density, the final answer to the question
of what is the electrostatic potential or energy of such a
body hinges upon one’s ability to calculate the integral
expressions for the related quantities. This is the real
world of charged bodies made of a variety of different
materials that can have any arbitrary shape or form. It
turns out that solving the problem of how charge ends up
distributed in a conductor or an insulator is analytically
impossible if the body under consideration is arbitrar-
ily shaped. In addition to that, finding the equilibrium
charge distribution even in a regular body is not a sim-
ple problem in general16. There are only few cases where
the equilibrium charge distribution is known analytically
and they comprise the likes of a thin two-dimensional
(2D) conducting disk or a three-dimensional (3D) con-
ducting spherical shell. Other scenarios, including the
simple-looking problem of what is the exact charge dis-
tribution along a 1D wire still do not have a definitive an-

swer17–20. A more realistic counterpart to a 1D wire sys-
tem is either a solid cylinder with a given volume charge
distribution or a cylindrical shell, namely, an infinitely
thin hollow cylinder containing some surface charge dis-
tribitution over the lateral surface.

These two systems are very important because many
electric devices contain either solid cylinders or cylindri-
cal shells as their components. The equilibrium charge
distribution in such systems is impossible to obtain ana-
lytically. Therefore, simplifying assumptions are needed.
Assuming a uniform charge distribution is often best.
Alternatives include assuming a uniform potential (con-
ducting material) and choosing a simple, spatially vary-
ing charge distribution (linear, quadratic, etc.). The as-
sumption of uniform charge distribution over the volume
of a solid cylinder led to an analytic result for this partic-
ular case21. In this work, we follow the same assumption
and show that exact analytic expressions are also possi-
ble for the case of a uniformly charged cylindrical shell.
A uniformly charged cylindrical shell model is a natural
extension of the uniformly charged ring model with the
additional benefit of incorporating a finite length in the
third dimension. We introduce mathematical transfor-
mations that rely on certain auxiliary functions which
enable us to calculate exactly the electrostatic poten-
tial and the total energy stored in a uniformly charged
cylindrical shell with arbitrary length and radius (and
no caps). These results can be useful to numerical stud-
ies22 or studies of finite systems of electrons caged, for in-
stance, in charged nano-tubes or charged nano-cylinders.

The article is organized as follows. In Section II we
introduce the model and explain the details of a mathe-
matical method that leads to a closed form expression for
the electrostatic potential created by a uniformly charged
cylindrical shell at an arbitrary point in space. In Sec-
tion III we expand the earlier mathematical calculations
and obtain an exact analytical expression for the total
electrostatic energy, the Coulomb self-energy, contained
in such a body. In Section IV we briefly discuss the key
findings and present some concluding remarks.
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Note that: ke σ (2π R) = ke Q/L. Therefore, the result
in Eq.(5) can be written as:

V (ρ, z,R, L) =
ke Q

L

∫ ∞

0

dk J0(k ρ) J0(k R) g(k, z, L) ,

(6)
where

g(k, z, L) =

∫ L

0

dz′ e−k|z−z′| , (7)

represents an auxiliary function. The 1D integral expres-
sion in Eq.(6) is compact and very convenient for numer-
ical calculations. One may also use it as a starting point
to derive the corresponding result for a uniformly charged
ring in the L → 0 limit. One can verify by L’Hôpital’s
Rule that:

lim
L→0

g(k, z, L)

L
= e−k|z| . (8)

Based on Eq.(8) one concludes that in the L → 0 limit
one has:

V (ρ, z,R, L = 0) = ke Q

∫ ∞

0

dk J0(k ρ) J0(k R) e−k|z| .

(9)
The result in Eq.(9) represents the electrostatic potential
created by a uniformly charged ring with radius R and
charge Q [see Eq.(10) of Ref. 25].

From now on, we assume that L 6= 0. For this assump-
tion, one has:

g(k, z, L) =
1

k

(

2− e−k z − e+k(z−L)
)

; L 6= 0 . (10)

Note that g(k, z = 0, L) = g(k, z = L,L). This is a
reflection of the fact that V (ρ, z = 0, R, L) = V (ρ, z =
L,R,L). The value of the electrostatic potential on the
lateral surface of the cylindrical shell can be written as:

V
(

ρ = R, 0 ≤ z ≤ L,R,L
)

=
ke Q

L

∫ ∞

0

dk [J0(k R)]
2
g(k, z, L) , (11)

where g(k, z, L) is given from Eq.(10). Another equally
good choice of a coordinative system would have been
one as follows:

Ω ′ : ρ = R ; 0 ≤ ϕ ≤ 2π ; −
L

2
≤ z ≤ +

L

2
. (12)

The electrostatic potential in such a case would be given

by Eq.(6) but with g(k, z, L) =
∫ +L/2

−L/2
dz ′ e−k|z−z ′|. We

leave it as exercise to the reader to calculate the auxiliary
function, g(k, z, L) for such a case. It is easy to verify
that the electrostatic potential becomes an even function
of z with the choice of a symmetric region/domain as in
Eq.(12).

III. ELECTROSTATIC ENERGY OF A

UNIFORMLY CHARGED CYLINDRICAL SHELL

We assume Coulomb interaction between elementary
charges localized on the lateral surface of a cylindrical

shell with radius, R and length, L. Since the total elec-
trostatic energy, namely, the Coulomb self-energy, of a
uniformly charged cylindrical shell will depend on both
radius and length, we denote it as U(R,L). Based on
these considerations, we write:

U(R,L) =
ke σ

2

2

∫

Ω

dA1

∫

Ω

dA2
1

|~r1 − ~r2|
, (13)

where σ is the surface charge density on the lateral sur-
face, dAi = Rdϕi dzi are surface elements, dQi = σ dAi

are elementary charges, i = 1, 2 is an index and Ω is the
domain of integration in Eq.(2). Given the choice of the
coordinative system, we write:

U(R,L) =
ke (σ R)2

2

∫ L

0

dz1

∫ L

0

dz2

∫ 2π

0

dϕ1

∫ 2π

0

dϕ2
1

|~r1 − ~r2|
. (14)

The integration over the angular variables is carried out
by using the following formula:

∫ 2π

0

dϕ1

∫ 2π

0

dϕ2
1

|~r1 − ~r2|
=

(2π)2
∫ ∞

0

dk J0(k ρ1) J0(k ρ2) e
−k|z1−z2| . (15)

One must recall that, in this case, ρi = R (i = 1, 2).
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After carrying out the angular integration one has:

U(R,L) =
ke (σ 2πR)2

2

∫ L

0

dz1

∫ L

0

dz2

∫ ∞

0

dk [J0(kR)]
2
e−k|z1−z2| . (16)

Given that the uniform surface charge density is written as σ 2π R = Q/L, one can rewrite Eq.(16) as:

U(R,L) =
1

2

ke Q
2

L2

∫ ∞

0

dk [J0(kR)]
2
∫ L

0

dz1

∫ L

0

dz2 e−k|z1−z2| . (17)

Note the following integral,
∫ L

0
dz1

∫ L

0
dz2 e−k|z1−z2| that

appears in Eq.(17). Such an integral was encountered
before21 when dealing with the problem of a uniformly
charged solid cylinder (a solid cylinder where a total
charge of Q spread uniformly over its volume). By using
the same notation as in Ref. 21 one denotes:

f(k, L) =

∫ L

0

dz1

∫ L

0

dz2 e
−k|z1−z2| =

2L

k

(

1 +
e−k L − 1

k L

)

.

(18)
The next step in the process is to introduce another aux-
iliary function of the form:

F (k L) =
f(k, L)

L2
=

2

k L

(

1 +
e−k L − 1

k L

)

. (19)

The new function in Eq.(19) depends only on the product
of k with L, namely, does not depend separately on k
and L. Having adopted this notation, one can write the
result for the electrostatic energy of a uniformly charged
cylindrical shell, namely, Coulomb self-energy, in a rather
compact form as:

U(R,L) =
ke Q

2

2

∫ ∞

0

dk [J0(kR)]
2
F (k L) , (20)

where

F (x) =
2

x2

(

x+ e−x − 1
)

. (21)

The auxiliary function, F (x) has the following limiting
values for x → 0 (L → 0) and for x → ∞ (L → ∞):

lim
x→0

F (x) = 1 ; lim
x→∞

F (x) = 0 . (22)

It is easy to see that in the L → 0 limit:

U(R,L = 0) =
ke Q

2

2

∫ ∞

0

dk [J0(kR)]
2
= ∞ , (23)

consistent with the known fact that the Coulomb self-
energy of a uniformly charged ring is divergent. Similarly,
it is straightforward to see that in the R → 0 limit:

U(R = 0, L) =
ke Q

2

2L

∫ ∞

0

dxF (x) = ∞ , (24)

consistent with the other known fact that the Coulomb
self-energy of a 1D uniformly charged wire diverges.

By assuming L 6= 0 one can rewrite the expression in
Eq.(20) as:

U(R,L 6= 0) =
ke Q

2

2L

∫ ∞

0

dx [J0(αx)]
2
F (x) , (25)

where

α =
R

L
≥ 0 ; L 6= 0 , (26)

denotes a non-negative dimensionless real parameter.
The parameter, α represents the ratio between the radius
of the cylindrical shell with respect to its length. Note
that α = 1/a if parameter, a is defined as a = L/R (Note
that the parameter a = L/R was used to express the
Coulomb self-energy of a uniformly charged solid cylin-
der). The expression in Eq.(25) for the Coulomb self-
energy of a uniformly charged cylindrical shell is very
convenient in 1D integral form.

The calculation of the remaining 1D integral in Eq.(25)
is easy numerically but very difficult analytically. It in-
volves the same type of generalized hypergeometric func-
tions26–28 and techniques similar to the case of a uni-
formly charged solid cylinder21. In the following, we re-
port the final result, by skipping the details:
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U(α) =
ke Q

2

2L

[

−2 +
8α

π
− α2

4F3

(

1

2
, 1, 1,

3

2
; 2, 2, 2;−4α2

)

+ ln(4)− 2 ln(α)
]

. (27)

In the above expression, the function

pFq (a1, a2, · · · , ap; b1, b2, · · · , bq; z) represents a gen-
eralized Hypergeometric function (or series) where p = 4
is the number of numerator parameters a1, . . . , ap,

q = 3 is the number of denominator parameters
b1, . . . , bq and z = −4α2 is the variable. The generalized
Hypergeometric function or series is defined as:

pFq (a1, a2, · · · , ap; b1, b2, · · · , bq; z) =

∞
∑

n=0

(a1)n (a2)n · · · (ap)n
(b1)n (b2)n · · · (bq)n

zn

n!
, (28)

where the variable, z can be either real or complex. In
the above expression, (a)n = a(a + 1) · · · (a + n + 1)
(n = 1, 2, . . .) is the so-called Pochhammer symbol where
(a)0 = 1. Few more details on the generalized Hypergeo-
metric functions can be found in Appendix B of Ref. 21.

IV. CONCLUSION

We introduced a mathematical approach that yields
compact expressions for the electrostatic potential and
the electrostatic Coulomb energy of a uniformly charged
infinitely thin hollow cylinder, namely, a cylindrical shell.
The final results are given in general terms as a func-
tion of the arbitrary radius and length of the cylindri-
cal shell. It is assumed that the total charge is uni-
formly distributed over the lateral surface of the cylin-
drical shell (that has no caps). The general expressions
obtained through this approach reproduce in closed form
the known results for the case of a uniformly charged
ring and a uniformly charged 1D wire. The results ob-
tained can simplify both analytical work and computa-
tional coding of related electrostatic problems of this na-
ture. The current result for the total energy of a uni-
formly charged cylindrical shell together with that of a
uniformly charged solid cylinder can be useful to various
systems with cylindrical symmetry that arise in several
fields29–33. The exact compact results for the electro-

static potential and electrostatic Coulomb self-energy of
a uniformly charged cylindrical shell can be used to gauge
the accuracy of numerical methods used to study such
systems.
In particular, the study of electrostatics and its influ-

ence on shapes has interesting echoes in biological sys-
tems. For example, axons –long and thin cylinders in
neuron cells– are responsible for conducting electric im-
pulses in the brain due to a voltage difference induced by
Na ion concentrations33. Likewise, the description of cell
membranes and viruses needs to take into account elec-
trostatic energy considerations34–36. The treatment of
protein material as dielectric media also requires careful
consideration of electrostatic effects37,38. For instance, a
recent study39 predicts an instability of a charged teth-
ered shell that depends on its surface charge density and
the concentration of monovalent salt in the solution into
which it is immersed. The reader is referred to Ref. 39
for updated references in the field.
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