Coulomb potential and energy of a uniformly charged cylindrical shell
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Knowledge of electrical potential and energy is important to systems where electrostatic forces
play a role. We calculate exactly the electrostatic potential of a uniformly charged cylindrical shell
at an arbitrary point in space as well as its electrical energy. The expressions derived are applicable
to cylindrical models containing charged particles and certain biological systems with cylindrical
symmetry. An explicit analytical formula is provided for the total energy in terms of a class of
special functions known as generalized Hypergeometric functions. The expressions when written in
one-dimensional integral form are very suitable for numerical calculations.
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I. INTRODUCTION

One of the most interesting problems in electrostatics is
the calculation of the electrostatic potential created by ei-
ther a finite system of point charges, or by a macroscopic
charged body'™. This problem is inherently linked to
that of how much electrostatic energy is stored in sys-
tems containing interacting charges® '2. Systems consist-
ing of point charges interacting with a Coulomb potential
are widespread in nature. Therefore, the calculation of
the total electrostatic energy, namely, the calculation of
the Coulomb self-energy contained in such systems is a
problem of utmost importance in many physical disci-
plines. While the methodology is well known, the pos-
sibility to obtain exact analytic results depends heavily
into the details of the system under consideration, geom-
etry and how charges are distributed!®'4. This means
that, under general conditions, the problem is very dif-
ficult. As a consequence, there are few analytic results
that apply to systems with an arbitrary number of point
charges. Among few exceptions, we mention the case of
one-dimensional (1D) ionic crystals®®.

If charge distribution in a given object is characterized
by some charge density, the final answer to the question
of what is the electrostatic potential or energy of such a
body hinges upon one’s ability to calculate the integral
expressions for the related quantities. This is the real
world of charged bodies made of a variety of different
materials that can have any arbitrary shape or form. It
turns out that solving the problem of how charge ends up
distributed in a conductor or an insulator is analytically
impossible if the body under consideration is arbitrar-
ily shaped. In addition to that, finding the equilibrium
charge distribution even in a regular body is not a sim-
ple problem in general'®. There are only few cases where
the equilibrium charge distribution is known analytically
and they comprise the likes of a thin two-dimensional
(2D) conducting disk or a three-dimensional (3D) con-
ducting spherical shell. Other scenarios, including the
simple-looking problem of what is the exact charge dis-
tribution along a 1D wire still do not have a definitive an-

swer!720. A more realistic counterpart to a 1D wire sys-
tem is either a solid cylinder with a given volume charge
distribution or a cylindrical shell, namely, an infinitely
thin hollow cylinder containing some surface charge dis-
tribitution over the lateral surface.

These two systems are very important because many
electric devices contain either solid cylinders or cylindri-
cal shells as their components. The equilibrium charge
distribution in such systems is impossible to obtain ana-
lytically. Therefore, simplifying assumptions are needed.
Assuming a uniform charge distribution is often best.
Alternatives include assuming a uniform potential (con-
ducting material) and choosing a simple, spatially vary-
ing charge distribution (linear, quadratic, etc.). The as-
sumption of uniform charge distribution over the volume
of a solid cylinder led to an analytic result for this partic-
ular case?!. In this work, we follow the same assumption
and show that exact analytic expressions are also possi-
ble for the case of a uniformly charged cylindrical shell.
A uniformly charged cylindrical shell model is a natural
extension of the uniformly charged ring model with the
additional benefit of incorporating a finite length in the
third dimension. We introduce mathematical transfor-
mations that rely on certain auxiliary functions which
enable us to calculate exactly the electrostatic poten-
tial and the total energy stored in a uniformly charged
cylindrical shell with arbitrary length and radius (and
no caps). These results can be useful to numerical stud-
ies?? or studies of finite systems of electrons caged, for in-
stance, in charged nano-tubes or charged nano-cylinders.

The article is organized as follows. In Section II we
introduce the model and explain the details of a mathe-
matical method that leads to a closed form expression for
the electrostatic potential created by a uniformly charged
cylindrical shell at an arbitrary point in space. In Sec-
tion IIT we expand the earlier mathematical calculations
and obtain an exact analytical expression for the total
electrostatic energy, the Coulomb self-energy, contained
in such a body. In Section IV we briefly discuss the key
findings and present some concluding remarks.
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FIG. 1: Schematic view of a uniformly charged cylindrical
shell. The elementary charge, d@’ localized at 7’ creates an
elementary electrostatic potential at some arbitrary point in
space.

II. ELECTROSTATIC POTENTIAL OF A
UNIFORMLY CHARGED CYLINDRICAL SHELL

We consider a uniformly charged infinitely thin hollow
cylinder, namely, a cylindrical shell with radius R and
length L. The cylindrical shell under consideration has
no caps. The lateral surface of the cylindrical shell is uni-
formly filled with positive charge, ). Thus, the surface
charge density on the lateral surface of the cylindrical
shell is written as:
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Because of the axial symmetry of the problem, we choose
a cylindrical system of coordinates where 77 = p'+ kz
is a 3D vector, p = zx + ]y is its 2D counterpart in
polar coordinates and i, j k are unit vectors for the x Y, 2
directions, respectively. For such a choice, x = p cos(cp),
y = p sin(p) where p = |p] > 0 and ¢ is the polar angle.
In a compact notation, we denote the 3D vector as 77 =
(7, z). The coordinative system is chosen in such a way
that the cylindrical shell is represented by the following
region/domain:

Consider an elementary charge d@Q’ at the location,
7' = (p’,2’') somewhere on the lateral surface of the
cylindrical shell. The elementary electrostatic poten-
tial created by d@’ at some arbitrary point in space
represented by vector, ¥ = (p,2) can be written as:
dV (F) = k.dQ'/|F — 7¥'| where k. is Coulomb’s electric
constant. A schematic presentation of the system under
consideration is given in Fig. 1. The electrostatic poten-
tial created by the entire cylindrical shell will depend on
p and z (but not on ¢ due to axial symmetry) as well
as radius R and length L. Therefore, we denote it as

V(p,z, R, L) and write:
L 27
= keaR/ dz’/ dy’
0 0

where 2 is the domain of integration in Eq.(2) and 7/ =
(p’,z") is such that || = R

ke d@’
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Integrals of this form are often encountered in studies
of potential theory, but closed form solutions are rarely
possible. In order to calculate the integral above, one
expands 1/|7 — 7’| using the following formula (see pg.
565 of Ref. 23 or pg. 140 of Ref. 24):

e Z / dk ¥ ™ (P1=92) T (k py) I (k po) e F171 =221 (4)
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where J,,(x) are Bessel functions of the first kind of inte-
gral m-th order, i = v/—1 is the imaginary number and,
as seen from the context, k is a dummy variable (not to

be confused with the unit vector, ¥ mentioned earlier).

Note that, for this specific case, 71 = 7, 7o = 7' and
p2 = p’ = R. At this juncture, it is straightforward to
notice that integration over the angular variable, ¢’ can
be easily carried out resulting in the expression:
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Note that: k.o (27 R) = k. Q/L. Therefore, the result
in Eq.(5) can be written as:

Vip,z,R,L) = % /OOO dk Jo(k p) Jo(k R) g(k, z, L) ,
(6)

where

L
g(k,z, L) :/0 dz’ e H==="1 (7)

represents an auxiliary function. The 1D integral expres-
sion in Eq.(6) is compact and very convenient for numer-
ical calculations. One may also use it as a starting point
to derive the corresponding result for a uniformly charged
ring in the L — 0 limit. One can verify by L'Hopital’s
Rule that:
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where g(k, z, L) is given from Eq.(10). Another equally
good choice of a coordinative system would have been
one as follows:

L L
O<p<or 5 —g<z<+5. (12)
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The electrostatic potential in such a case would be given

by Eq.(6) but with g(k,z,L) = ijL//; dz' e F==="l We
leave it as exercise to the reader to calculate the auxiliary
function, g(k, z, L) for such a case. It is easy to verify
that the electrostatic potential becomes an even function
of z with the choice of a symmetric region/domain as in

Eq.(12).

III. ELECTROSTATIC ENERGY OF A
UNIFORMLY CHARGED CYLINDRICAL SHELL

We assume Coulomb interaction between elementary
charges localized on the lateral surface of a cylindrical

J

Based on Eq.(8) one concludes that in the L — 0 limit
one has:

V(p’Z7R7L - 0) = keQ /Oo dk Jo(k'p) Jo(k‘R) e_klzl .
0
(9)

The result in Eq.(9) represents the electrostatic potential
created by a uniformly charged ring with radius R and
charge @ [see Eq.(10) of Ref. 25].

From now on, we assume that L # 0. For this assump-
tion, one has:

1 .
g(k,z,L) = Z (2 —ekz e+k(z_L)) L#0. (10)

Note that g(k,z = 0,L) = g(k,z = L,L). This is a
reflection of the fact that V(p,z = 0,R,L) = V(p,z =

L,R,L). The value of the electrostatic potential on the
lateral surface of the cylindrical shell can be written as:

keLQ /OOO dk [Jo(k R)? g(k, 2, L) | (1)

(

shell with radius, R and length, L. Since the total elec-
trostatic energy, namely, the Coulomb self-energy, of a
uniformly charged cylindrical shell will depend on both
radius and length, we denote it as U(R,L). Based on
these considerations, we write:
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where o is the surface charge density on the lateral sur-
face, dA; = Rdy; dz; are surface elements, dQ; = o dA;
are elementary charges, ¢ = 1,2 is an index and 2 is the
domain of integration in Eq.(2). Given the choice of the
coordinative system, we write:

2 L L 27 2T
e 1
U(R, L) = m/ le/ dZQ/ d(p1 ngQ = S - (14)
2 0 0 0 0 |71 — 72|
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The integration over the angular variables is carried out
by using the following formula:

27 27 1
/ d‘Pl/ dps 75— =
0 0 |71 — 75

(QW)Q/O die Jo(k p1) Jo(k pp) e Flzr==2l (1)

One must recall that, in this case, p; = R (i = 1,2).



After carrying out the angular integration one has:

U(R,L) =

Given that the uniform surface charge density is written

J

U(R,L)

Note the following integral, fOL dz fOL dzy e Flz1—22 that
appears in Eq.(17). Such an integral was encountered
before?! when dealing with the problem of a uniformly
charged solid cylinder (a solid cylinder where a total
charge of @ spread uniformly over its volume). By using
the same notation as in Ref. 21 one denotes:

klz1—z2| _ 2L _kL
L) TRIELTE2 1
ik, / dzl/ dzo e 5 < + L

(18)
The next step in the process is to introduce another aux-
iliary function of the form:

k, L kL
-2+ ) . w

The new function in Eq.(19) depends only on the product
of k with L, namely, does not depend separately on k
and L. Having adopted this notation, one can write the
result for the electrostatic energy of a uniformly charged
cylindrical shell, namely, Coulomb self-energy, in a rather
compact form as:

F(kL) =

U(R,L) = kefz /0 Tk kR F(KL) . (20)
where
F@%:;Kx+€”—l). (21)

The auxiliary function, F'(x) has the following limiting
values for x — 0 (L — 0) and for z — oo (L — o0):

iL)II%)F(x)Zl ; lim F(z)=0. (22)
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It is easy to see that in the L — 0 limit:
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as 021 R = Q/L, one can rewrite Eq.(16) as

1 2
Qk;f/ dk [Jo(kR)] /dzl/ dzg e Fli=2l (17)
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consistent with the known fact that the Coulomb self-
energy of a uniformly charged ring is divergent. Similarly,
it is straightforward to see that in the R — 0 limit:

ke Q2 / dz F(z (24)

UR=0,L) =

‘consistent with the other known fact that the Coulomb

self-energy of a 1D uniformly charged wire diverges.

By assuming L # 0 one can rewrite the expression in
Eq.(20) as:

kQ2

U(R,L #0) = /da: Uo(az)? F(z), (25)

where

>0
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denotes a non-negative dimensionless real parameter.
The parameter, « represents the ratio between the radius
of the cylindrical shell with respect to its length. Note
that o = 1/a if parameter, a is defined as a = L/R (Note
that the parameter a = L/R was used to express the
Coulomb self-energy of a uniformly charged solid cylin-
der). The expression in Eq.(25) for the Coulomb self-
energy of a uniformly charged cylindrical shell is very
convenient in 1D integral form.

The calculation of the remaining 1D integral in Eq.(25)
is easy numerically but very difficult analytically. It in-
volves the same type of generalized hypergeometric func-
tions?62® and techniques similar to the case of a uni-
formly charged solid cylinder?!. In the following, we re-
port the final result, by skipping the details:
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In the above expression, the function
pFy(ar,ag, -+ ,ap;bi,be, -+ ,by;2) represents a gen-
eralized Hypergeometric function (or series) where p = 4
is the number of numerator parameters aq,...,ap,
J

qu (ala az,

where the variable, z can be either real or complex. In
the above expression, (a), = ala+1)---(a +n + 1)
(n=1,2,...) is the so-called Pochhammer symbol where
(a)o = 1. Few more details on the generalized Hypergeo-
metric functions can be found in Appendix B of Ref. 21.

IV. CONCLUSION

We introduced a mathematical approach that yields
compact expressions for the electrostatic potential and
the electrostatic Coulomb energy of a uniformly charged
infinitely thin hollow cylinder, namely, a cylindrical shell.
The final results are given in general terms as a func-
tion of the arbitrary radius and length of the cylindri-
cal shell. It is assumed that the total charge is uni-
formly distributed over the lateral surface of the cylin-
drical shell (that has no caps). The general expressions
obtained through this approach reproduce in closed form
the known results for the case of a uniformly charged
ring and a uniformly charged 1D wire. The results ob-
tained can simplify both analytical work and computa-
tional coding of related electrostatic problems of this na-
ture. The current result for the total energy of a uni-
formly charged cylindrical shell together with that of a
uniformly charged solid cylinder can be useful to various
systems with cylindrical symmetry that arise in several
fields?°=33. The exact compact results for the electro-

3

5122, -4 aQ) +In(4) — 2 ln(a)] . (27)

(

g = 3 is the number of denominator parameters
bi,...,by and z = —4a? is the variable. The generalized
Hypergeometric function or series is defined as:

static potential and electrostatic Coulomb self-energy of
a uniformly charged cylindrical shell can be used to gauge
the accuracy of numerical methods used to study such
systems.

In particular, the study of electrostatics and its influ-
ence on shapes has interesting echoes in biological sys-
tems. For example, axons —long and thin cylinders in
neuron cells— are responsible for conducting electric im-
pulses in the brain due to a voltage difference induced by
Na ion concentrations®?. Likewise, the description of cell
membranes and viruses needs to take into account elec-
trostatic energy considerations®* 3. The treatment of
protein material as dielectric media also requires careful
consideration of electrostatic effects3”:3%. For instance, a
recent study>” predicts an instability of a charged teth-
ered shell that depends on its surface charge density and
the concentration of monovalent salt in the solution into
which it is immersed. The reader is referred to Ref. 39
for updated references in the field.
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