

Coulomb potential and energy of a uniformly charged cylindrical shell

Orion Ciftja^{1,*} and Josep Batle²

¹*Department of Physics, Prairie View A&M University, Prairie View, Texas 77446, USA*

²*Departament de Física, Universitat de les Illes Balears,
07122 Palma de Mallorca, Balearic Islands, Spain*

(Dated: September 5, 2018)

Knowledge of electrical potential and energy is important to systems where electrostatic forces play a role. We calculate exactly the electrostatic potential of a uniformly charged cylindrical shell at an arbitrary point in space as well as its electrical energy. The expressions derived are applicable to cylindrical models containing charged particles and certain biological systems with cylindrical symmetry. An explicit analytical formula is provided for the total energy in terms of a class of special functions known as generalized Hypergeometric functions. The expressions when written in one-dimensional integral form are very suitable for numerical calculations.

PACS numbers: 73.43.Cd, 73.20.Dx, 73.21.La.

I. INTRODUCTION

One of the most interesting problems in electrostatics is the calculation of the electrostatic potential created by either a finite system of point charges, or by a macroscopic charged body^{1–4}. This problem is inherently linked to that of how much electrostatic energy is stored in systems containing interacting charges^{5–12}. Systems consisting of point charges interacting with a Coulomb potential are widespread in nature. Therefore, the calculation of the total electrostatic energy, namely, the calculation of the Coulomb self-energy contained in such systems is a problem of utmost importance in many physical disciplines. While the methodology is well known, the possibility to obtain exact analytic results depends heavily into the details of the system under consideration, geometry and how charges are distributed^{13,14}. This means that, under general conditions, the problem is very difficult. As a consequence, there are few analytic results that apply to systems with an arbitrary number of point charges. Among few exceptions, we mention the case of one-dimensional (1D) ionic crystals¹⁵.

If charge distribution in a given object is characterized by some charge density, the final answer to the question of what is the electrostatic potential or energy of such a body hinges upon one's ability to calculate the integral expressions for the related quantities. This is the real world of charged bodies made of a variety of different materials that can have any arbitrary shape or form. It turns out that solving the problem of how charge ends up distributed in a conductor or an insulator is analytically impossible if the body under consideration is arbitrarily shaped. In addition to that, finding the equilibrium charge distribution even in a regular body is not a simple problem in general¹⁶. There are only few cases where the equilibrium charge distribution is known analytically and they comprise the likes of a thin two-dimensional (2D) conducting disk or a three-dimensional (3D) conducting spherical shell. Other scenarios, including the simple-looking problem of what is the exact charge distribution along a 1D wire still do not have a definitive an-

swer^{17–20}. A more realistic counterpart to a 1D wire system is either a solid cylinder with a given volume charge distribution or a cylindrical shell, namely, an infinitely thin hollow cylinder containing some surface charge distribution over the lateral surface.

These two systems are very important because many electric devices contain either solid cylinders or cylindrical shells as their components. The equilibrium charge distribution in such systems is impossible to obtain analytically. Therefore, simplifying assumptions are needed. Assuming a uniform charge distribution is often best. Alternatives include assuming a uniform potential (conducting material) and choosing a simple, spatially varying charge distribution (linear, quadratic, etc.). The assumption of uniform charge distribution over the volume of a solid cylinder led to an analytic result for this particular case²¹. In this work, we follow the same assumption and show that exact analytic expressions are also possible for the case of a uniformly charged cylindrical shell. A uniformly charged cylindrical shell model is a natural extension of the uniformly charged ring model with the additional benefit of incorporating a finite length in the third dimension. We introduce mathematical transformations that rely on certain auxiliary functions which enable us to calculate exactly the electrostatic potential and the total energy stored in a uniformly charged cylindrical shell with arbitrary length and radius (and no caps). These results can be useful to numerical studies²² or studies of finite systems of electrons caged, for instance, in charged nano-tubes or charged nano-cylinders.

The article is organized as follows. In Section II we introduce the model and explain the details of a mathematical method that leads to a closed form expression for the electrostatic potential created by a uniformly charged cylindrical shell at an arbitrary point in space. In Section III we expand the earlier mathematical calculations and obtain an exact analytical expression for the total electrostatic energy, the Coulomb self-energy, contained in such a body. In Section IV we briefly discuss the key findings and present some concluding remarks.

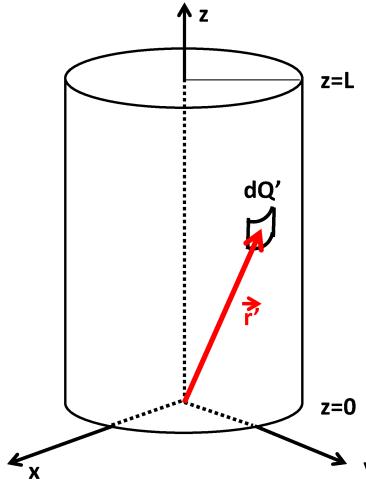


FIG. 1: Schematic view of a uniformly charged cylindrical shell. The elementary charge, dQ' localized at \vec{r}' creates an elementary electrostatic potential at some arbitrary point in space.

II. ELECTROSTATIC POTENTIAL OF A UNIFORMLY CHARGED CYLINDRICAL SHELL

We consider a uniformly charged infinitely thin hollow cylinder, namely, a cylindrical shell with radius R and length L . The cylindrical shell under consideration has no caps. The lateral surface of the cylindrical shell is uniformly filled with positive charge, Q . Thus, the surface charge density on the lateral surface of the cylindrical shell is written as:

$$\sigma = \frac{Q}{2\pi R L}. \quad (1)$$

Because of the axial symmetry of the problem, we choose a cylindrical system of coordinates where $\vec{r} = \vec{\rho} + \vec{k}z$ is a 3D vector, $\vec{\rho} = \vec{i}x + \vec{j}y$ is its 2D counterpart in polar coordinates and $\vec{i}, \vec{j}, \vec{k}$ are unit vectors for the x, y, z directions, respectively. For such a choice, $x = \rho \cos(\varphi)$, $y = \rho \sin(\varphi)$ where $\rho = |\vec{\rho}| \geq 0$ and φ is the polar angle. In a compact notation, we denote the 3D vector as $\vec{r} = (\vec{\rho}, z)$. The coordinative system is chosen in such a way that the cylindrical shell is represented by the following region/domain:

$$\Omega : \rho = R ; 0 \leq \varphi \leq 2\pi ; 0 \leq z \leq L. \quad (2)$$

Consider an elementary charge dQ' at the location, $\vec{r}' = (\vec{\rho}', z')$ somewhere on the lateral surface of the cylindrical shell. The elementary electrostatic potential created by dQ' at some arbitrary point in space represented by vector, $\vec{r} = (\vec{\rho}, z)$ can be written as: $dV(\vec{r}) = k_e dQ' / |\vec{r} - \vec{r}'|$ where k_e is Coulomb's electric constant. A schematic presentation of the system under consideration is given in Fig. 1. The electrostatic potential created by the entire cylindrical shell will depend on ρ and z (but not on φ due to axial symmetry) as well as radius R and length L . Therefore, we denote it as $V(\rho, z, R, L)$ and write:

$$V(\rho, z, R, L) = \int_{\Omega} \frac{k_e dQ'}{|\vec{r} - \vec{r}'|} = k_e \sigma R \int_0^L dz' \int_0^{2\pi} d\varphi' \frac{1}{|\vec{r} - \vec{r}'|}, \quad (3)$$

where Ω is the domain of integration in Eq.(2) and $\vec{r}' = (\vec{\rho}', z')$ is such that $|\vec{\rho}'| = R$.

Integrals of this form are often encountered in studies of potential theory, but closed form solutions are rarely possible. In order to calculate the integral above, one expands $1/|\vec{r} - \vec{r}'|$ using the following formula (see pg. 565 of Ref. 23 or pg. 140 of Ref. 24):

$$\frac{1}{|\vec{r}_1 - \vec{r}_2|} = \sum_{m=-\infty}^{+\infty} \int_0^{\infty} dk e^{im(\varphi_1 - \varphi_2)} J_m(k \rho_1) J_m(k \rho_2) e^{-k|z_1 - z_2|}, \quad (4)$$

where $J_m(x)$ are Bessel functions of the first kind of integral m -th order, $i = \sqrt{-1}$ is the imaginary number and, as seen from the context, k is a dummy variable (not to be confused with the unit vector, \vec{k} mentioned earlier).

Note that, for this specific case, $\vec{r}_1 = \vec{r}$, $\vec{r}_2 = \vec{r}'$ and $\rho_2 = \rho' = R$. At this juncture, it is straightforward to notice that integration over the angular variable, φ' can be easily carried out resulting in the expression:

$$V(\rho, z, R, L) = k_e \sigma (2\pi R) \int_0^L dz' \int_0^{\infty} dk J_0(k \rho) J_0(k R) e^{-k|z - z'|}. \quad (5)$$

Note that: $k_e \sigma (2\pi R) = k_e Q/L$. Therefore, the result in Eq.(5) can be written as:

$$V(\rho, z, R, L) = \frac{k_e Q}{L} \int_0^\infty dk J_0(k \rho) J_0(k R) g(k, z, L) , \quad (6)$$

where

$$g(k, z, L) = \int_0^L dz' e^{-k|z-z'|} , \quad (7)$$

represents an auxiliary function. The 1D integral expression in Eq.(6) is compact and very convenient for numerical calculations. One may also use it as a starting point to derive the corresponding result for a uniformly charged ring in the $L \rightarrow 0$ limit. One can verify by L'Hôpital's Rule that:

$$\lim_{L \rightarrow 0} \frac{g(k, z, L)}{L} = e^{-k|z|} . \quad (8)$$

Based on Eq.(8) one concludes that in the $L \rightarrow 0$ limit one has:

$$V(\rho, z, R, L = 0) = k_e Q \int_0^\infty dk J_0(k \rho) J_0(k R) e^{-k|z|} . \quad (9)$$

The result in Eq.(9) represents the electrostatic potential created by a uniformly charged ring with radius R and charge Q [see Eq.(10) of Ref. 25].

From now on, we assume that $L \neq 0$. For this assumption, one has:

$$g(k, z, L) = \frac{1}{k} \left(2 - e^{-kz} - e^{+k(z-L)} \right) ; \quad L \neq 0 . \quad (10)$$

Note that $g(k, z = 0, L) = g(k, z = L, L)$. This is a reflection of the fact that $V(\rho, z = 0, R, L) = V(\rho, z = L, R, L)$. The value of the electrostatic potential on the lateral surface of the cylindrical shell can be written as:

$$V(\rho = R, 0 \leq z \leq L, R, L) = \frac{k_e Q}{L} \int_0^\infty dk [J_0(k R)]^2 g(k, z, L) , \quad (11)$$

where $g(k, z, L)$ is given from Eq.(10). Another equally good choice of a coordinative system would have been one as follows:

$$\Omega' : \rho = R ; \quad 0 \leq \varphi \leq 2\pi ; \quad -\frac{L}{2} \leq z \leq +\frac{L}{2} . \quad (12)$$

The electrostatic potential in such a case would be given by Eq.(6) but with $g(k, z, L) = \int_{-L/2}^{+L/2} dz' e^{-k|z-z'|}$. We leave it as exercise to the reader to calculate the auxiliary function, $g(k, z, L)$ for such a case. It is easy to verify that the electrostatic potential becomes an even function of z with the choice of a symmetric region/domain as in Eq.(12).

III. ELECTROSTATIC ENERGY OF A UNIFORMLY CHARGED CYLINDRICAL SHELL

We assume Coulomb interaction between elementary charges localized on the lateral surface of a cylindrical

shell with radius, R and length, L . Since the total electrostatic energy, namely, the Coulomb self-energy, of a uniformly charged cylindrical shell will depend on both radius and length, we denote it as $U(R, L)$. Based on these considerations, we write:

$$U(R, L) = \frac{k_e \sigma^2}{2} \int_{\Omega} dA_1 \int_{\Omega} dA_2 \frac{1}{|\vec{r}_1 - \vec{r}_2|} , \quad (13)$$

where σ is the surface charge density on the lateral surface, $dA_i = R d\varphi_i dz_i$ are surface elements, $dQ_i = \sigma dA_i$ are elementary charges, $i = 1, 2$ is an index and Ω is the domain of integration in Eq.(2). Given the choice of the coordinative system, we write:

$$U(R, L) = \frac{k_e (\sigma R)^2}{2} \int_0^L dz_1 \int_0^L dz_2 \int_0^{2\pi} d\varphi_1 \int_0^{2\pi} d\varphi_2 \frac{1}{|\vec{r}_1 - \vec{r}_2|} . \quad (14)$$

The integration over the angular variables is carried out by using the following formula:

$$\int_0^{2\pi} d\varphi_1 \int_0^{2\pi} d\varphi_2 \frac{1}{|\vec{r}_1 - \vec{r}_2|} = (2\pi)^2 \int_0^\infty dk J_0(k \rho_1) J_0(k \rho_2) e^{-k|z_1 - z_2|} . \quad (15)$$

One must recall that, in this case, $\rho_i = R$ ($i = 1, 2$).

After carrying out the angular integration one has:

$$U(R, L) = \frac{k_e (\sigma 2\pi R)^2}{2} \int_0^L dz_1 \int_0^L dz_2 \int_0^\infty dk [J_0(kR)]^2 e^{-k|z_1-z_2|} . \quad (16)$$

Given that the uniform surface charge density is written

as $\sigma 2\pi R = Q/L$, one can rewrite Eq.(16) as:

$$U(R, L) = \frac{1}{2} \frac{k_e Q^2}{L^2} \int_0^\infty dk [J_0(kR)]^2 \int_0^L dz_1 \int_0^L dz_2 e^{-k|z_1-z_2|} . \quad (17)$$

Note the following integral, $\int_0^L dz_1 \int_0^L dz_2 e^{-k|z_1-z_2|}$ that appears in Eq.(17). Such an integral was encountered before²¹ when dealing with the problem of a uniformly charged solid cylinder (a solid cylinder where a total charge of Q spread uniformly over its volume). By using the same notation as in Ref. 21 one denotes:

$$f(k, L) = \int_0^L dz_1 \int_0^L dz_2 e^{-k|z_1-z_2|} = \frac{2L}{k} \left(1 + \frac{e^{-kL} - 1}{kL} \right) . \quad (18)$$

The next step in the process is to introduce another auxiliary function of the form:

$$F(kL) = \frac{f(k, L)}{L^2} = \frac{2}{kL} \left(1 + \frac{e^{-kL} - 1}{kL} \right) . \quad (19)$$

The new function in Eq.(19) depends only on the product of k with L , namely, does not depend separately on k and L . Having adopted this notation, one can write the result for the electrostatic energy of a uniformly charged cylindrical shell, namely, Coulomb self-energy, in a rather compact form as:

$$U(R, L) = \frac{k_e Q^2}{2} \int_0^\infty dk [J_0(kR)]^2 F(kL) , \quad (20)$$

where

$$F(x) = \frac{2}{x^2} \left(x + e^{-x} - 1 \right) . \quad (21)$$

The auxiliary function, $F(x)$ has the following limiting values for $x \rightarrow 0$ ($L \rightarrow 0$) and for $x \rightarrow \infty$ ($L \rightarrow \infty$):

$$\lim_{x \rightarrow 0} F(x) = 1 \quad ; \quad \lim_{x \rightarrow \infty} F(x) = 0 . \quad (22)$$

It is easy to see that in the $L \rightarrow 0$ limit:

$$U(R, L=0) = \frac{k_e Q^2}{2} \int_0^\infty dk [J_0(kR)]^2 = \infty , \quad (23)$$

consistent with the known fact that the Coulomb self-energy of a uniformly charged ring is divergent. Similarly, it is straightforward to see that in the $R \rightarrow 0$ limit:

$$U(R=0, L) = \frac{k_e Q^2}{2L} \int_0^\infty dx F(x) = \infty , \quad (24)$$

consistent with the other known fact that the Coulomb self-energy of a 1D uniformly charged wire diverges.

By assuming $L \neq 0$ one can rewrite the expression in Eq.(20) as:

$$U(R, L \neq 0) = \frac{k_e Q^2}{2L} \int_0^\infty dx [J_0(\alpha x)]^2 F(x) , \quad (25)$$

where

$$\alpha = \frac{R}{L} \geq 0 \quad ; \quad L \neq 0 , \quad (26)$$

denotes a non-negative dimensionless real parameter. The parameter, α represents the ratio between the radius of the cylindrical shell with respect to its length. Note that $\alpha = 1/a$ if parameter, a is defined as $a = L/R$ (Note that the parameter $a = L/R$ was used to express the Coulomb self-energy of a uniformly charged solid cylinder). The expression in Eq.(25) for the Coulomb self-energy of a uniformly charged cylindrical shell is very convenient in 1D integral form.

The calculation of the remaining 1D integral in Eq.(25) is easy numerically but very difficult analytically. It involves the same type of generalized hypergeometric functions²⁶⁻²⁸ and techniques similar to the case of a uniformly charged solid cylinder²¹. In the following, we report the final result, by skipping the details:

$$U(\alpha) = \frac{k_e Q^2}{2L} \left[-2 + \frac{8\alpha}{\pi} - \alpha^2 {}_4F_3 \left(\frac{1}{2}, 1, 1, \frac{3}{2}; 2, 2, 2; -4\alpha^2 \right) + \ln(4) - 2\ln(\alpha) \right]. \quad (27)$$

In the above expression, the function ${}_pF_q(a_1, a_2, \dots, a_p; b_1, b_2, \dots, b_q; z)$ represents a generalized Hypergeometric function (or series) where $p = 4$ is the number of numerator parameters a_1, \dots, a_p ,

$q = 3$ is the number of denominator parameters b_1, \dots, b_q and $z = -4\alpha^2$ is the variable. The generalized Hypergeometric function or series is defined as:

$${}_pF_q(a_1, a_2, \dots, a_p; b_1, b_2, \dots, b_q; z) = \sum_{n=0}^{\infty} \frac{(a_1)_n (a_2)_n \cdots (a_p)_n}{(b_1)_n (b_2)_n \cdots (b_q)_n} \frac{z^n}{n!}, \quad (28)$$

where the variable, z can be either real or complex. In the above expression, $(a)_n = a(a+1)\cdots(a+n-1)$ ($n = 1, 2, \dots$) is the so-called Pochhammer symbol where $(a)_0 = 1$. Few more details on the generalized Hypergeometric functions can be found in Appendix B of Ref. 21.

IV. CONCLUSION

We introduced a mathematical approach that yields compact expressions for the electrostatic potential and the electrostatic Coulomb energy of a uniformly charged infinitely thin hollow cylinder, namely, a cylindrical shell. The final results are given in general terms as a function of the arbitrary radius and length of the cylindrical shell. It is assumed that the total charge is uniformly distributed over the lateral surface of the cylindrical shell (that has no caps). The general expressions obtained through this approach reproduce in closed form the known results for the case of a uniformly charged ring and a uniformly charged 1D wire. The results obtained can simplify both analytical work and computational coding of related electrostatic problems of this nature. The current result for the total energy of a uniformly charged cylindrical shell together with that of a uniformly charged solid cylinder can be useful to various systems with cylindrical symmetry that arise in several fields^{29–33}. The exact compact results for the electro-

static potential and electrostatic Coulomb self-energy of a uniformly charged cylindrical shell can be used to gauge the accuracy of numerical methods used to study such systems.

In particular, the study of electrostatics and its influence on shapes has interesting echoes in biological systems. For example, axons –long and thin cylinders in neuron cells– are responsible for conducting electric impulses in the brain due to a voltage difference induced by Na ion concentrations³³. Likewise, the description of cell membranes and viruses needs to take into account electrostatic energy considerations^{34–36}. The treatment of protein material as dielectric media also requires careful consideration of electrostatic effects^{37,38}. For instance, a recent study³⁹ predicts an instability of a charged tethered shell that depends on its surface charge density and the concentration of monovalent salt in the solution into which it is immersed. The reader is referred to Ref. 39 for updated references in the field.

Acknowledgments

The research of one of the authors (O. Ciftja) was supported in part by National Science Foundation (NSF) Grants No. DMR-1410350 and DMR-1705084. J. Batle acknowledges fruitful discussions with Joana Rosselló, Maria del Mar Batle and Regina Batle.

* Electronic address: ogciftja@pvamu.edu

¹ O. Ciftja, J. Electrostat. **76**, 127 (2015).

² O. Ciftja, J. Electrostat. **71**, 102 (2013).

³ O. Ciftja, Eur. J. Phys. **32**, L55 (2011).

⁴ O. Ciftja and I. Hysi, Appl. Math. Lett. **24**, 1919 (2011).

⁵ R. Beringer, Phys. Rev. **131**, 1402 (1963).

⁶ V. Jadhao, Z. Yao, C. K. Thomas, and M. O. de la Cruz,

Phys. Rev. E **91**, 032305 (2015).

⁷ O. Ciftja, Res. Phys. **7**, 1674 (2017).

⁸ J. Batle, O. Ciftja, M. Naseri, M. Ghoranneviss, K. Nagata, and T. Nakamura, J. Electrostat. **85**, 52 (2017).

⁹ O. Ciftja, Adv. Math. Phys. **2016**, 7207536 (2016).

¹⁰ O. Ciftja, L. Escamilla, and R. Mills, Adv. Condens. Matter Phys. **2015**, 851356 (2015).

¹¹ O. Ciftja, Phys. Lett. A **375**, 766 (2011).

¹² O. Ciftja, Phys. Lett. A **374**, 981 (2010).

¹³ T. LaFave Jr., J. Electrostat. **71**, 1029 (2013).

¹⁴ O. Ciftja, J. Nanosci. Nanotechnol. **16**, 9964 (2016).

¹⁵ O. Ciftja, S. Rossel, S. Smith, and P. Thomas, Res. Phys. **7**, 3696 (2017).

¹⁶ J. Batle, O. Ciftja, M. Naseri, M. Ghoranneviss, A. Farouk, and M. Elhoseny, Phys. Scr. **92**, 055801 (2017).

¹⁷ J. D. Jackson, Am. J. Phys. **68**, 789 (2000).

¹⁸ J. Batle, O. Ciftja, S. Abdalla, M. Elhoseny, M. Alkham-bashi, and A. Farouk, Eur. J. Phys. **38**, 055202 (2017).

¹⁹ D. J. Griffiths and Y. Li, Am. J. Phys. **64**, 706 (1996).

²⁰ R. H. Good, Am. J. Phys. **65**, 155 (1997).

²¹ O. Ciftja, Physica B **407**, 2803 (2012).

²² O. Ciftja, Phys. Rev. B **95**, 075410 (2017).

²³ G. B. Arfken and H. J. Weber, Mathematical methods for physicists, Fifth Edition (Harcourt/Academic Press, 2001).

²⁴ J. D. Jackson, Classical Electrodynamics, Third Edition Wiley (1999).

²⁵ O. Ciftja, A. Babineaux, and N. Hafeez, Eur. J. Phys. **30**, 623 (2009).

²⁶ Higher Transcendental Functions Volume I, A. Erdélyi, Editor, Pg. 182, McGraw-Hill (1981).

²⁷ Hypergeometric Functions and Their Applications, Texts in Applied Mathematics 8, J. B. Seaborn, Pg. 41 Springer-Verlag (1991).

²⁸ Special Functions for Scientists and Engineers, W. W. Bell, Pg. 207, Dover Publications Inc, Mineola, New York (1996).

²⁹ G. H. Jansen, Nucl. Instrum. Methods Phys. Res. A **298**, 496 (1990).

³⁰ Y. Takahashi, Optik **122**, 1146 (2011).

³¹ P. W. H. de Jager, B. Mertens, E. Munro, E. Cekan, G. Lammer, H. Vonach, H. Buschbeck, M. Zeininger, C. Horner, H. Löschner, G. Stengl, and A. J. Bleeker, Micro-electron. Eng. **53**, 617 (2000).

³² H. Löwen, J. Chem. Phys. **100**, 6738 (1994).

³³ B. Jayaram and D. L. Beveridge, J. Phys. Chem. **94**, 4666 (1990).

³⁴ J. Lidmar, L. Mirny, and D. R. Nelson, Phys. Rev. E **68**, 051910 (2003).

³⁵ A. Šiber, Phys. Rev. E **73**, 061915 (2006).

³⁶ R. Konecny, J. Trylska, F. Tama, D. Zhang, N. A. Baker, C. L. Brooks III, and J. A. McCammon, Biopolymers **82**, 106 (2006).

³⁷ A. Šiber and R. Podgornik, Phys. Rev. E **76**, 061906 (2007).

³⁸ P. Prinsen, P. van der Schoot, W. M. Gelbart, and C. M. Knobler, J. Phys. Chem. B **114**, 5522 (2010).

³⁹ A. L. Božič, A. Šiber, and R. Podgornik, Phys. Rev. E **83**, 041916 (2011).