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On the Separability of Ergodic Fading MIMO
Channels: A Lattice Coding Approach
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Abstract— This paper addresses point-to-point communication
over block-fading channels with independent fading blocks.
When both channel state information at the transmitter and
receiver (CSIR) are available, most achievable schemes use
separable coding, i.e., coding independently and in parallel over
different fading states. Unfortunately, separable coding has draw-
backs, including large memory requirements at both communi-
cation ends. In this paper, a lattice coding and decoding scheme
is proposed that achieves the ergodic capacity without separable
coding, with lattice codebooks and decoding decision regions that
are universal across channel realizations. We first demonstrate
this result for fading distributions with discrete, finite support
whose sequences are robustly typical. Results are then extended
to continuous fading distributions, as well as multiple-input
multiple-output (MIMO) systems. In addition, a variant of the
proposed scheme is presented for the MIMO ergodic fading
channel with CSIR only, where we prove the existence of a
universal codebook that achieves rates within a constant gap
to capacity for finite-support fading distributions. The gap is
small compared with other schemes in the literature. Extension
to continuous-valued fading is also provided.

Index Terms—Ergodic capacity, lattice codes, separable

coding, MIMO.

I. INTRODUCTION

OR the band-limited Additive White Gaussian Noise
(AWGN) channel, approaching capacity with manageable
complexity has been extensively studied [1]-[8]. McEliece
and Stark [9] established the ergodic capacity of the Gaussian
fading channel with CSIR only. Goldsmith and Varaiya [10]
extended the result for full CSI (both CSIT and CSIR).
The capacity of the ergodic fading MIMO channel with
isotropic fading and CSIR was established by Telatar [11] and
Foschini and Gans [12]. For a survey of related results please
see Biglieri ef al. [13].
Under fading and in the presence of CSIT, one straight-
forward capacity approaching technique is separable cod-
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ing, i.e., coding independently and in parallel over differ-
ent fading states of the channel [10], [14]. Unfortunately,
in practice separable coding imposes heavy costs that are
further magnified in the presence of low-probability fading
states. In particular either rate loss due to discarding low
probability fading states, or loss of coding performance due to
shorter block lengths, must be tolerated. In addition, separable
coding requires operating multiple encoders and decoders with
different transmission rates in parallel, which requires large
memory at both communication ends. Thereby, achieving the
ergodic capacity of block-fading channels without separable
coding remains an important and interesting question.!

This paper shows that non-separable lattice coding and
decoding achieve the ergodic capacity of the block fading
SISO channel. At the transmitter, the symbols of the codeword
are permuted across time. Time-varying Minimum Mean-
Square Error (MMSE) scaling is used at the receiver, followed
by a decoder that is universal for all fading realizations drawn
from a given fading distribution. Thus, the codebook and deci-
sion regions are fixed across transmissions; the only channel-
dependent blocks are the permutation and the MMSE scaling.
We first highlight the main ideas of the proposed scheme in
the context of a heuristic channel model that motivates the
proposed approach. We then generalize the solution to all
fading distributions whose realizations are robustly typical,
and to continuous distributions via a bounding argument. The
results are then extended to MIMO block-fading channels.

A lattice coding and decoding scheme is also proposed for
the ergodic fading MIMO channel with CSIR only, where
the channel coefficients are drawn from a discrete distrib-
ution with finite support. In this setting, channel-matching
decision regions are proposed, where we use a worst case
error bounding technique to show the existence of a universal
lattice codebook that achieves rates within a constant gap to
capacity for all fading realizations. The gap is infinitesimal in
some special cases. We also extend the scheme to continuous-
valued fading, and show that the rates achieved are close to
capacity under Rayleigh fading.

Lattice coding has an extensive literature. De Buda
addressed the optimality of lattice codes for the AWGN
channel [15], a result later corrected by Linder et al. [16].
Loeliger [17] proved the achievability of % log(SNR) with lat-
tice coding and decoding. Urbanke and Rimoldi [18] showed

It was pointed out in [13] that under maximum likelihood decoding the
ergodic capacity of point-to-point channels with CSIT can be attained using
Gaussian signaling without separable coding. However, one cannot directly
conclude that the same result holds for non-Gaussian (structured) codebooks.
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the achievability of %]og(l + SNR) with maximum like-
lihood decoding. Erez and Zamir [19] showed that lattice
coding and decoding achieve the capacity of the AWGN
channel, where the ingredients of the achievable scheme
include nested lattice codes in addition to common randomness
via a dither variable and MMSE scaling at the receiver.
Erez et al. [20] also proved the existence of lattices with
good properties that achieve the performance promised in [19].
El-Gamal ef al. [21] showed that nested lattice codes achieve
the white-input capacity, as well as the optimal diversity-
multiplexing tradeoff, of the AWGN MIMO channel with
fixed channel coefficients. Recently, Zhan ef al. [22] pro-
posed a novel technique that is based on nested lattice
codes together with infeger-forcing linear receivers, where the
receiver decodes integer combinations of the signals at each
antenna, similar to the compute-and-forward technique [23].
Ordentlich and Erez showed that in conjunction with a pre-
coder that is independent of the channel, integer-forcing can
operate within a constant gap to the MIMO capacity [24].
In [25, Sec. 4.5] Vituri analyzed the performance of lattice
codes under fading channels without power constraint. Under
ergodic fading and CSIR only, Luzzi and Vehkalahti [26]
recently showed that a class of lattices belonging to a family
of division algebra codes achieve rates within a constant
gap to capacity, however, this gap can be large. In [27],
a lattice coding scheme was proposed whose decoder does
not depend on the fading realizations, achieving rates within
a constant gap to capacity. The results in both [26] and [27]
are limited to channels with isotropic fading, i.e., the opti-
mal input covariance matrix is a scaled identity. Lately,
Liu and Ling [28] showed that polar lattices achieve the
capacity of the SISO i.i.d. fading channel. Campello ef al. [29]
also proved that lattices constructed from algebraic codes
achieve the SISO ergodic capacity. Unfortunately neither [28]
nor [29] are easily extendable to MIMO channels.

The remainder of the paper is organized as follows.
Section II establishes the notation and provides an overview
of lattices and typicality. Section III presents the lattice coding
scheme under full CSI, and Section IV under CSIR only.
Section V provides a concluding summary.

II. PRELIMINARIES

A. Notation and Definitions

Throughout the paper we use the following notation. Bold-
face lowercase letters denote column vectors and boldface
uppercase letters denote matrices. The sets of real numbers
and integers are denoted by R,Z, respectively. AT denotes
the transpose of matrix A. a; is element i of a. det(A) and
tr(A) denote the determinant and trace of the square matrix A,
respectively. I,, is the size-n identity matrix. 0, and 1,
denote the all-zero and all-one n x n matrices, respectively.
P, E denote probability and expectation, respectively, and P,
represents error probability. B,(g) is an n-dimensional ball
of radius ¢ and the volume of shape A is Vol(A). kT =
max{k,0}. |A| denotes the number of elements in set A.
Unless otherwise specified, all logarithms are in base 2.
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B. Lattice Codes

A lattice A is a discrete subgroup of R™ which is closed
under reflection and real addition. The fundamental Voronoi
region V' of the lattice A is defined by

= n. 1 — =
V={seR .argglelﬂﬂs All = 0}. 1
The second moment per dimension of A is defined as
1
2 2
= — s||*ds. 2
ST /v el @)

Every s € R" can be uniquely written as s = A + e where
A € A, e €V, with ties broken in a systematic manner. The
quantizer is then defined by

Qu(s) = A, 3
Define the modulo-A operation corresponding to V as follows
[s]modA £ s — Qy(s). )

The modulo-A operation also satisfies
[s+t]| modA = [s + [t]modA] modA Vs, t € R™. (5)

The lattice A is nested in A; if A C A;. We employ the class
of nested lattice codes proposed in [19]. For completeness,
the lattice construction is outlined as follows:

1) Draw an i.i.d. vector g = [g1,...,gn]T whose elements

ifse A+ V.

are uniformly distributed on the set {0,1,...,¢ — 1},
where g is a large prime number.
2) Define the codebook C = {z e " z =

[gB8] modg, B=0,...,q—1}.
3) Apply Construction A to lift C to R™ such that
AN =qC+2Z"
A self-similar pair of nested lattices is used such that the
coarse lattice A = nA’, where the scaling factor 7 assures
A has second moment p, and A; = 1A = WLTA where
7 scales the fundamental volume of A; to achieve rate R given
by
1 Vol(V)
TSR ©
and V,V; are the Voronoi regions of the coarse and fine
lattices, respectively. The ensemble of nested lattice pairs
employed above have been shown to be simultaneously good
for AWGN coding, packing, covering and quantization [20].
The covering goodness of A is defined by

Vol(Ba(R.))
Vol(Bn(Ry))

where the covering radius R, is the radius of the smallest
sphere spanning V and R; is the radius of the sphere whose
volume is equal to Vol()).

Definition 1 [21, Th. 1]: Let f : R™ — R be a Riemann
integrable function of bounded support (ie., f(z) = 0 if
|z| exceeds some bound). An ensemble of lattices {A} with
fundamental volume Vol(V) satisfies the Minkowski-Hlawka
Theorem if for any € > 0 there exists a lattice with dimension n
such that

B[ Y f2)] -

zeA,z#0

R 2

lim 1 log @]

n—0o0 1

<e (8

1
Vol (V) /R., f(z)dz
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Lemma 1 [21, Th. 2]: The ensemble of nested lattice
pairs of [19] satisfies the Minkowski-Hlawka Theorem at large
dimension n.

A key ingredient of the lattice coding scheme proposed
in [19] is using common randomness (dither) d, drawn uni-
formly over V), in conjunction with the lattice code. The
following lemma from [19] is key to the development of the
results in this paper.

Lemma 2 [19, Lemma 1]: For any point t € V that is
independent of a dither d drawn uniformly over a lattice
Voronoi region V, the point @ £ [t — d| modA is uniformly
distributed over V and is also independent of t.

C. Typicality

We briefly review robust typicality [30, Appendix] and
weak typicality [31, Ch. 3.1]. Consider a probability distri-
bution P on the discrete domain 4 = {aq, a0, ..., 0}

Definition 2: A §-robustly typical set Té‘q) according to P
is the set of all sequences x € A™ that satisfy

[ng — nPr| < dnPy, (&)
forallk € {1,...,x}, where Py, stands for P(ay) and ny, the
number of coordinates of x that are equal to .

Long random sequences drawn i.i.d. are with high proba-
bility robustly typical according to the underlying distribution,
as indicated by the following result.

Lemma 3 [30, Lemma 17]: The probability of a sequence x
of length n not being é-robustly typical is upper bounded by

X
P(z ¢ TS) < 3" P(jni — nPe| > 6nPy)
k=1
< 2xe” /3, (10)
where pi = min Py, is the smallest non-zero probability in P.
Weak typicality [31] is defined here via entropy rates.
Definition 3: An e-weakly typical set TE(W) with respect to a
sequence of probability distributions P(z1,...,zy) is defined
as the set of all vectors © = [11,...,zy] that satisfy

2—n(ﬁ.(:|:)+e) < IP(:B) < g—n (?i(:l:)—e)1 11
where R(z) £ lim 1Y —P(x)logP(x) is the entropy
n— 00
rate of the sequence of probability distributions, assuming it
)
€exists.
The probability of an arbitrary sequence of length n being
weakly typical is P(z € E(W)) > 1 — e. The cardinality of

T is bounded by

)| < gn(r@rve), (12)

2A prominent example is when the sequence of probability laws is
stationary.
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III. A CAPACITY ACHIEVING LATTICE CODING SCHEME

Consider a real-valued single-antenna point-to-point channel
with block-fading and i.i.d. Gaussian noise. The received
signal is given by y; = h;z; + w;. The transmission and
reception of a codeword over n channel uses is represented
by

y=Hzx+ w, (13)

where H is an n xn diagonal matrix whose diagonal entries h;
are drawn from a discrete distribution with finite-support H.
The channel coherence length is b with n = n'b, where b is
fixed and n’ is proportional to n. Therefore each codeword
experiences n’ independent fading realizations. The covariance
of the channel is

1, 0 0p
0, 1p 0p
Yh=0 14
h
0p Op ... 1p

Both the transmitter and receiver have full knowledge of
the channel state. The noise w € R™ is zero-mean i.i.d.
Gaussian with covariance I, and is independent of H.
x € R" is the codeword, subject to an average power
constraint 2E[||z|[*] < p.

The ergodic capacity of the real-valued point-to-point
channel is given by [10]

C = %Eh[]og(l—rth*(h))], (15)

where p*(h) denotes the channel-dependent waterfilling power
allocation [10], which satisfies E,[p*(h)] = p. This capacity is
achieved via separable coding [10], which is defined as follows

Definition 4: In a separable coding scheme, the ergodic
Jfading channel over time is demultiplexed into virtual parallel
channels according fo fading states, over which independent
codewords are transmitted. Each codeword is therefore trans-
mitted over multiple occurrences of the same fading state.

To highlight the essential ideas of the proposed scheme we
first address the problem in the context of a heuristic channel
model.

A. The Random Location Channel

We define a channel model, called the random location
channel, where in each block of length n, denoted h ES
[h1,. .., hy], the empirical frequency of occurrence of each
channel state perfectly matches the underlying probability
distribution. Channel coefficients h; take values from the
set H £ {b1,..., b3 }. Consider sequences [hi, ..., hy| that
satisfy ny, = nPy,. The random location channel draws from
this set of sequences with equal probability. Thus, the channel
is by construction perfectly robustly-typical. The transmitter
knows non-causally the number of occurrences of each h; in
h, however, their location is random, and only known causally
at both the transmitter and receiver (full CSI). The model
provides a stepping stone for the achievable scheme proposed
for the ergodic channel in Section III-B, and serves to illustrate
its underlying intuitions.
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Theorem 1: For the random location channel defined
above, the rate

IH|

R<§;pslog(1+h§ (16)

P*(bs))

is achievable using non-separable latfice coding, where j1, rep-
resents the frequency of occurrence of coefficient value b

such that Zmll pe =1, and p*(h) is the waterfilling power
allocation for channel coefficient b drawn from 'H.

Proof: Encoding: Nested lattice codes are used where
A C A;. The transmitter emits a lattice point £ € Ay that is
dithered with d which is drawn uniformly over V. The dithered
codeword is as follows

z=[t—d modA=t—d+A, )

where A = —Qy(t —d) € A from (4). The coarse lattice
A < R™ has a second moment p. The codeword is then
multiplied by two cascaded matrices as follows

r=DVez, (18)

where V' is a permutation matrix and D) is a diagonal
matrix with D;; = /p*(h:)/p, where p*(h;) is the optimal
waterfilling power allocation for the fading coefficient |h;|,
as given in [10]. Hereafter we use p} as a short-hand notation
for p*(h;). We show in Appendix A that the average power
constraint of &’ is approximately the same as x.

Decoding: The received signal y is multiplied by a
matrix U € R"*™ cascaded with an inverse permutation
matrix VT, and the dither is removed as follows

y =VUy+d
=+ (VIUHDV - I)c+VTUw+d
=t+A+(VIUHDV —I,)z +VTUw,

=t+A+z, (19)

where

z2 (VIUHDV - I,)z+ V' Uw, (20)
and z is independent of ¢ from Lemma 2.
The receiver matrix U is chosen to be the MMSE matrix
given by
U =pHD(I, + pH>D?*)~'. (21)
U is diagonal, where U;; = pDj;hi/(1 + pD2 h?). Now,
the diagonal elements of U are

pP; hi

U. =
ii 1—|—p*h2

(22)
With a slight abuse of notation, define the permutation func-
tion 7 such that (hx(1), hx(2),. .., hx(m)) represent the chan-
nel coefficients arranged in ascending order of the magnitudes.
Consider permutation matrix V' such that H . 2 vTHV,
where the diagonal entries of H 5 are hy(;. See Appendix B
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for further details on V. From (20) and (21), z; are given
by?

-1 PP iy (i)

2= ey (23)

Prlae T1 Prha 1
The following lemma, whose proof can be found in

Appendix C, elaborates some geometric properties of z.
Lemma 4: For any € > 0 and ~y > 0, there exists n- . such

that for all n > ny ,

P(z ¢ Q) <1, (24)
where () is an n-dimensional ellipsoid, given by
Q2 {scR" : 787 's < (1+€)n}, (25)

and ¥ is a diagonal matrix whose diagonal elements are given
by

Su= b — 26
; P;(g)hi(i) +1 o
Now, we apply a version of the ambiguity decoder proposed

in [17], defined by an ellipsoidal decision region 2 in (25).4

The decoder chooses ¢ € A; if and only if the received

point falls exclusively within the decision region of the lattice

point tie,y et+ 0
Probability of Error: As shown in [17, Th. 4], on averaging

over the ensemble of fine lattices £ of rate R whose con-

struction follows Section II-B, the probability of error can be
bounded by

1 Vol(£2)

Z] Z,:: P, <P(z¢ Q)+ (1+96) VoI(V)

= Vol(Q)
Vol(V)’

for any § > 0, and the equality follows from (6). This is a
union bound involving two events: the event that z is outside
the decision region, i.e., {z ¢ €} and the event that z is in
the intersection of two decision regions {y’ € {t; + Q} N
{t2+ Q}}, where t1, t2 € Ay are two distinct lattice points.
From Lemma 4, the first term in (27) is bounded by 7.
Consequently, the error probability can be bounded by

Z P, <v+(1+ 5)2’““53%,

—P(z ¢ Q)+ (1+06)2" @7

28
] (28)

for any +,d > 0. The volume of (2 is given by

n - 1 3
Vol(2) = (1 + €) % Vol (B(/np)) ([:Il m) . (29)
The second term in (28) is then bounded by

& Vol(B(,/p))
Vol(V)

T mn 1
(1+6)2"R(1 +¢) /2(1] *h2+1)
VoI(B(!Cnp)})_,’_E)

=(1+8)2 " (- om (=55 (30)

3Since waterfilling dedicates more power to channels with larger magnitude,
h? > h? implies p} h? > p3h? [10].

40} is a bounded measurable region of R™ [17].
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where
n

1 1 1
a 7log(l-l—f)_%bg(il:—llm)_ﬁ

s
I

-1 1 - %72
— log(1+€) + %glog(l—l—pihi) —R.

[H]
-1 ]
710g(1+e)+Qszzgnslog(lwshs) R,

(3D

and (31) follows from the structure of the random location
channel. From (7), since the lattice A is good for covering,
the first term of the exponent in (30) vanishes. From (30),
whenever £ is a positive constant we have P, — 0 as n — oo.
Hence, positive £ can be achieved as long as

H|
1 Hp 2 1 ’
R<3 ?:1: pslog(l + pih,) — S log(l+e) —€,  (32)

where ¢, ¢/ diminish with n. The existence of a fine lattice that
achieves the probability of error averaged over the ensemble
of lattices L is straightforward. The outcome of the decoding
process is the lattice point t, where in the event of successful
decoding the noise is eliminated and from (19), t=t+ A
On applying the modulo-A operation on 1,

[t] modA = [t + A] modA = t, (33)

where the second equality follows from (5) since A € A.
Following in the footsteps of [21], it can be shown that the
error probability of the Euclidean lattice decoder is upper
bounded by the error probability of the ellipsoidal decision
region in (25). The Euclidean lattice decoder is given by

A -1

t= in ||[Xz (v —t)|? 34
arg min [|X7= (y" — )%, (34)

followed by the modulo-A operation in (33). This concludes

the proof of Theorem 1. O

B. Ergodic Fading

Now, we are ready to address the ergodic fading channel
whose channel coefficients are drawn from a discrete distrib-
ution with finite support. Unlike the random location channel
discussed earlier, in the following the number of occurrences
of oy, within a block is no longer fixed.

Theorem 2: Non-separable lattice coding achieves the
ergodic capacity of block-fading channels whose channel coef-
ficients are drawn from an arbitrary discrete distribution with
Jinite-support, when channel state information is available at
all nodes.

Proof: The proof appears in Appendix D; here we provide
a sketch. We follow a best effort approach in designing the
permutation matrix V. In order to account for the ordering
errors, we use a fixed decision region Qy that is slightly larger
than Q) (the decision region resulting from perfect channel
ordering, which is non-realizable due to the causality of the
channel knowledge). However, when the channel is robustly
typical, the total number of ordering errors is negligible at
large n, and hence the rate loss incurred by using larger
decision regions vanishes. O
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The extension of Theorem 2 to complex-valued channels is
straightforward, using techniques similar to [32, Th. 2]. The
channel would then be ordered with respect to the magnitude
of channel coefficients.

C. Extension to Continuous-Valued Fading

In order to extend the arguments to continuous-valued
fading channels, we assume the fading distribution possesses
a finite second moment. We note that with full CSI, the infor-
mation density contributed by each transmission is a strictly
increasing function of the absolute value of the fading coef-
ficient. First, let § = |h|?pn/p denote the squared channel
gain times the normalized waterfilling power allocation for
that channel gain. Thus, we can partition the continuous
values § into L + 1 sets Gy = [g¢_1, ge], where go = 0 and
gr.+1 = oo. For any sequence of channel gains g drawn from
a continuous distribution, we quantize g to the lower limit
of the bracket G; to which it belongs, producing a discrete
random variable g taking values over the set {go, g1,---,9L}-
Note that the independence of the continuous-valued fading
realizations guarantees the independence of the discrete-valued
counterparts, and hence robust typicality would still apply.
We show that the rate R supported by the discrete-valued
channel g is within a gap to capacity that can be bounded
as follows

C — R = E[log(1 + pg)] — E[log(1 + pg)]

1+pg. . N
= Ellog( pﬁ)lg < gr]P(g < gr)

1+p
1+

+ Ello
[log( n

P9 NG >grlPG>gr)  (35)

PgL
L
)}f=1

1+ pge

1+ pge—1

Py |\ - -
g>g.)P(g> gL

2 )l > 91lP(G > o1)

1+
_|_
L
< max { log (1 + p(ge — gf—l))}

1
~ =1
PEG=9L)yo s 0 1PG > 1)
1+ pgr

< 7 +Eflog(1 + 2 ;Lgl' )3 > gr]P(G > gr)

=7 +Euog(g%)|§ > gu]P(§ > g1)

1

< ma.x{log(

+ E[log(

+ Ellog(1 +

<t c(% D)PG>g)  (36)
Eol o
<7+ C(m I)P(g > QL) (3?)
<+ Ella Lo (38)
gL

1
(36) follows since log,(x) < = — 1 for all x > 0 and (37)
follows from the law of total expectation. «; vanishes when
max{gr—ge_1}5, < %, while ~y; vanishes when g7, > E[g].
Note that a necessary condition for 2 to vanish is that
Elg] is finite.

L
where ¢ £ loge, and 7; £ max { log (1 +plge— gg_l)) }e—
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The gap is bounded more tightly when the distribution of g
has a vanishing tail. For instance, when g is exponential,

Elglg > -
C-R< ’n-l—c(% —1)P(§ > g1
Elg+ _
< +c(¥ PG> a)  (39)
L
<t 2 g (40)
arL

which vanishes exponentially with gr.. (39) follows since g is
exponentially distributed and hence memoryless.

To summarize, the gap bounding argument can be described
as follows: Given L + 1 channel quantization bins, we bound
the total rate loss due to quantization by the rate loss in each
of the bins. The first L terms bound the amount of loss in rate
by the input-output information density at the highest versus
the lowest channel gain in each bracket Gy,...,Gp. This
strategy will not work for the final bin because the channel
gain in G4y is unbounded, instead we use the total rate
contributed by the bin G111 as a bound. Fortunately, this term
also vanishes at large gz, since the probability of occurrence
of such fading values is small enough.

D. Extension to MIMO

The result in Theorem 2 can be extended to an M x N
MIMO channel with full CSI. The received signal at time i is
given by

Yy, = Hiz; +w;, (41)

where H; € RV*M is the channel-coefficient matrix.

Theorem 3: Lattice codes achieve the ergodic capacity of
the MIMO block fading channel with channel state information
available at both fransmitter and receiver. This result holds for
both discrete-valued and continuous-valued channels.

Proof: Since H; are known perfectly, the transmitter
and receiver can transform the MIMO channel into S £
min{ M, N} SISO parallel channels via singular-value decom-
position. The SISO individual capacities can be achieved as
shown in Section III-B. Let the singular-value decomposition
of H; be H; = B;L;FT, where B; € RV*N, F; ¢
RM>M are orthonormal matrices representing the left and
right eigenvalue matrices of H ;, respectively. L; is an N x M
rectangular diagonal matrix with & non-zero values on the
main diagonal. Hence, at the receiver, the received signal is
spatially equalized as follows

7, = Bly;, (42)

and at the transmitter, the signal is spatially precoded such
that

xTr; = F«jf‘ég. (43)
From (41)—(43), ¢, can be represented by
Y; = Lix; + wy, (44)

where ; £ B?wi € RN is ii.d. Gaussian, since B; is
orthonormal. Each element in §; € RY is then

g9 =0 5 =1,...,8, (45)
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where fgl), fgz), ceey f&s) represent the singular values of H;
in descending order. The received signal in (45) is equivalent
to a set of S parallel channels, whose individual capacities can
be achieved similar to Section III-B via transmitting S simulta-
neous lattice codebooks across antennas. The final step would
be allocating the optimal power policy, which is waterfilling
over time and space, as follows [33, Sec. 8.2.3]. Assuming that
the joint probability distribution of £V ... ¢(5) is known,
the power of stream ¢ at time 7 is given by

W _ .1 4y
P ={c (f(.b))z} ) (46)
where ¢ is chosen such that
S
1 .
¢ Effe- O y1=P, @7)
=1 i

and P is the average power constraint. The extension to
continuous-valued channels is similar to SISO and is omitted.
This concludes the proof of Theorem 3. O

IV. THE MIMO CHANNEL WITHOUT CSIT

In this section we consider the M x N MIMO point-to-
point channel with CSIR only. The received signal at time
is given by y, = H,;x; + w;, where H; € RV*M is the
channel-coefficient matrix at time 2. For convenience channels
gains are taken to be real-valued; the extension to complex-
valued channels is straight forward and similar to [32]. The
channel experiences block fading with coherence length b,
thus H; are identically distributed, and any two of them are
independent if and only if taken from different fading blocks.
For convenience, we also define H to obey the same distri-
bution, standing in for the prototypical MIMO channel gain
matrix without reference to a specific time. Each codeword
consists of n channel uses, where n is an integer multiple of
the fading block length, i.e., n = n’b. The transmitter knows
the channel distribution, including the coherence length, but
not the channel realizations. ; € RM is the transmitted vector
at time ¢, where the codeword

T .7 T]T

¢ £ [zf a],...ay (48)

is transmitted throughout n channel uses and satisfies
E[||x||?] < np. Unlike the achievable scheme in Section III-B,
each codeword is transmitted across both space and time. The
noise w € RV™ defined by w £ [w],..., wI]T is zero-
mean i.i.d. Gaussian with covariance I p,. For convenience
we define the SNR per transmit antenna to be o’ £ p/M. The
ergodic capacity of the MIMO channel is given by [33]

C = max L Eg[logdet(In + HK-H")],

tr(Kz)<p 2 “9

where K is the covariance matrix of each super-symbol x;.
For a sequence of channel coefficients { H;} ; drawn from
an underlying distribution, weak law of large numbers implies
that for each positive n and €, a finite n exists such that

1 — ,
IP(l o Z:; log det (I + o' HT H,)

_%E[logdet(IM + p'HTH)” > n) <§€ (30
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Hence, the expression o> ., logdet (Ix + p'H; H;)
approaches its statistical mean with high probability as
n grows. Hereafter we denote the left-hand side probability
in (50) by B,

Lemma 5: Consider a MIMO channel y = H,x + w,
where H, £ diag(H,,...,H,), and Hy,...,H, are
realizations of a stationary and ergodic process, and are only
known at the receiver. Then there exists at least one lattice
codebook that achieves rates satisfying

1 T
R < E]E[logdet(IM—i—pH H)| —n, (51)
with an arbitrary error probability P, < €", such that
both n, €’ diminish at large n.

Proof: Encoding: Nested lattice codes are used, where the
coarse lattice A € RM™ has second moment p'. The codeword
is composed of n super-symbols x; each of length M,
as shown in (48), which are transmitted throughout n channel
uses.

Decoding: The received signal can be expressed in the
form y = H.x + w, where H; is a block-diagonal matrix
whose diagonal block ¢ is H,;. The received signal y is
multiplied by U, € RVN"*Mn and the dither is removed as
follows

Yy £U{y+d
=t+A+2z, (52)
where
22 (UTH, — Iz + Uw, (53)

and t is independent of z, according to Lemma 2. U is then
a block-diagonal matrix, where the M x N equalization matrix
at time ¢ is the MMSE matrix given by

Ui=p(In+pHHT) 'H,. (54)
From (20),(54), z; € RM is expressed as

zZ; = —(I_M' +,0!H3'Hi)_1:ci
+p'H] (In + ' H:H] ) w;, (55)

where z £ [2T, ..., 2T]T. We apply a version of the ambigu-
ity decoder proposed in [17], defined by an ellipsoidal decision
region () € RM™_ as follows

0L {v eRM™ . T3y < (1 +7)Mn}, (56)

where ¥ is a block-diagonal matrix, whose diagonal block 7,
3, is given by
B2 /(I + P HTH;) . (57)

Let ©; 2 I,y + p’HT H;. The volume of  is then

Vol(£2) = (1+7) %" Vol (Barn (v/Mng/)) Hdet('l'i)%l-
i=1
(58)
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Error Probability: As shown in [17, Th. 4], on averaging
over the ensemble of fine lattices £ of rate R that belong to
the class proposed in Section II-B,

Vol(£2)
Vol(V4)
Vol(£2)
Vol(V)’

for any 6 > 0, where (59) follows from (6). This is a
union bound involving three events: the event that the average
throughput achieved by the channel sequence is bounded away
from its statistical mean by more than 7, and the event that
the noise vector is outside the decision region, i.e., z ¢ ) and
the event that the post-equalized point is in the intersection
of two decision regions, ie., {y' € {t: + Q} N {t2 + Q}},
where t1, t2 € Ay are two distinct lattice points. From (50),
]Pgﬂ,) < ¢ for any € > 0 at large n. Following in the footsteps
in Appendix C, P(z ¢ ) < € for any € > 0 for large n. Let
¢ £ &+ ¢ The error probability can then be bounded by

1
EZP&<1E°§;’;*'3+111°(z¢Q)+(1+5)
L

=P 4 P(z ¢ Q) + (14 0)2"F (59)

"oA 1 ’ nR VOI(Q)
= — P 1+446)2 60
for any «,d > 0. The second term in (60) is then
—n| —R+:L 3" | logdet(¥;)— ”’)
favgéQ ﬂ'( 3 1 log det(¥;)—e , (61)
where
g A l log (VOI(BMrﬂ( V an!)))
n Vol(V)

1
+ log(1+7)% + ~log(1+4) (62)

From (7), the first term in (62) vanishes, and so do the second
and third terms as n increases. The probability of error
averaged over the codebooks in £ is bounded by

noA r
€ =€ + €ap-

(63)

Then there exists at least one codebook that achieves
R < 5537  logdet(¥;), which converges to (51). The
remainder of the proof follows Section III-A. O

Note that Lemma 5 does not imply the rate in (51) is univer-
sally achievable, since it does not guarantee the existence of a
single codebook that achieves this rate for all fading sequences
drawn from an underlying distribution. A similar approach
was adopted in [34], whose universality is not conclusive.
In the sequel we discuss the rates achievable using universal
codebooks. Similar to Section IIT we first address channels
with finite-support fading distributions and then extend the
result to continuous-valued, unbounded fading.

A. Finite-Support Fading Distributions

We address point-to-point block-fading channels with coher-
ence length b, whose channel coefficients are drawn from a dis-
crete distribution with finite-support H. The following result
utilizes the weak typicality arguments provided in Section II-C
to show the existence of a nested pair of lattice codes that
achieve rates within a constant gap to ergodic capacity.
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Theorem 4: For a stationary and ergodic block-fading
M x N MIMO channel with coherence interval b and fad-
ing coefficients drawn from a finite-support distribution Pp,
a universal nested lattice code exists that achieves rates within
a constant gap A £ MNp(H) bits per channel use of the
ergodic capacity, where h(H) is the entropy rate of the fading
process.

Proof: Lemma 5 ensures the existence of one codebook
in £ that achieves the rate in (51) with error probability that
is less than €”. We now show that if we allow a multiplicative
increase in the error probability, numerous codebooks in £ can
support the rate R in (51).

Lemma 6: For the channel under study in Lemma 5,
at least %1 |L| codebooks in L achieve the rate R in (51)
with at most ke” error probability, for any v € Z7T
where k < |L|.

Proof: We expurgate codebooks from £ as follows. First,
arrange the codebooks in descending order of the error proba-
bility €1, ..., €gjon the MIMO channel defined in Lemma 5.
Then, discard the first 2|£| codebooks. From (63), the error
probability of each of the remaining £=1|£| codebooks is then
bounded by € + Keayg, as follows

IL]/k IL]|
Lleawe = Y e tesicyn+ Y, e

=1 =2+|L|/K
IL]/k

= Z €t eyic)/m = 1+ - |£|)El+|£|/5: (64)
=1

Hence,
€14|L] /6 =< ﬁ €avg < K €avg- (65)
I£]

Since €|r;/x = €14|c|/x for any £ > 1, each of the
last =1 |£| codebooks in £ have error probability that does
not exceed € + ke < ke''. O

To summarize, Lemma 6 shows that given a channel
matrix H ., a constant fraction of all codebooks in £ achieves
the rate in (51), e.g., for k = 100, at least 99% of the
codebooks in £ incur no more than 100e” error probability,
where €¢” can be made arbitrarily small by increasing n.
Note that the proof technique in Lemma 6 is not limited to
lattice codes, and can be used for other random ensembles of
codebooks.

Now, assume a stationary and ergodic block-fading
MIMO channel with " blocks, whose M Nn' distinct channel
coefficients are drawn according to a distribution P(H % with a
finite support of size |H|. The e-weakly typical set v (H)of
channel sequences H ; is denoted hereafter by TE(H). We aim
at answering the following question: under what rates can a
single codebook in £ achieve vanishing error probability for
all channel sequences H; TE(H )2

Denote by £; the set of codebooks that achieve at most xe”
error probability for the channel matrix H gj) indexed by j.
Recall the cardinality of each of these sets is “=1 |£|. The
event that no codebook is universal over typical channel

3¢ in (60) is independent of the codebook, so the average over codebooks
is also €.
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sequences can be represented by either of the following two
conditions:

LinLyn..
LU L5U

|TfH)| d):

UL g =L, (66)

&
where A° denotes the complement of the set .4. Hence,
it can be shown via a union bound that

] c 1
|£] U --Uf' (H}|| < —|*C| |Te(H)|a (67)

Hence, from (66) a umversal codebook with negligible error
probability is guaranteed to exist, as long as k > |TEH)|
On substituting in (60), (61),

P. = P(c|H, € TI") P(H, € T(™)
+P(e|H, # TOD) B(H, ¢ T)
< P(elH, € T) 4 P(H, ¢ TE¥)
< ke+€ +ep
< 2_ﬂ'(_R‘l'%E[lOEdEtUM-‘r,O'HTH)]—%1Dg|TE(H)|_Em_n)
+ e + €1, (68)
where P(H, ¢ TE(H)) £ er. Based on weak typicality

arguments in Section II-C, |TE(H)| < QMNH'(MHHET)

reliable rates can be achieved as long as

. Hence,

R < %]E[]ogdet(IM +pH"H)]

N (k) - ex) — e,
where €'/, er and n can be made arbitrarily small by increas-
ing n. Since the third term in (68) diminishes with n, there
exists n. € Z1 such that for all n > n., P, in (68) satisfies
P. < 2¢. The final step to complete the proof is showing
that the number of possible channel matrices H . does not
exhaust |L|, otherwise k > |TE | cannot be guaranteed.
From the lattice construction in [20, Sec. III], there exists
at least ¢" generator matrices that generate unique lattices,
where ¢ is the size of the prime field from which the lattice
is drawn. Since \/nf¢g — 0 as n — oo, a lower bound
on |£| is n™/2. Since the number of possible channels cannot

exceed |TE(H)| < QIWNH(-"!(H)-FET) where 2M’N(?i(H)+ET) is
non-increasing with n, there exists 7 € Z* such that for
n/2 5 gMNn(AH) ter) Hence, 5 > T s

(69)

"nr

all n > n, n
guaranteed for large enough n.

The previous result depicts the gap to capacity for channels
whose optimal input signal covariance is p'I j;. The extension
to channel distributions whose optimal input covariance is non-
white, i.e., not a scaled identity, is straightforward. Let K"
denote the optimal input covariance matrix, i.e., Kz* =
argmax C' given in (49). The transmitted codeword is then

T]T.’

@2 [Ky %a], .. Ky 2] (70)

where x is drawn from a nested lattice code whose coarse lat-
tice A € RM™ has a unit second moment. Hence, the received
signal can be expressed by

1
1
H,K;"?x; +w;
H;z; + w;,

Y =
L

(7D
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Fig. 1. Achievable rates for the 2 x 2 discrete-fading MIMO channel.

where H; £ H.K, *3
achievable

. From (71) the following rates are

R< E[logdet (Iv + H"H)| ——h(H)

= §IE[logdet (In + HK."H)| - @h(ﬂ)
which is the optimal value of the expression in (49). This
concludes the proof of Theorem 4. O

Corollary 1: The gap to capacity in Theorem 4 can be
bounded from above by Nlog|H| bits per channel use,
where 'H is the supporting set of the channel coefficients.

Proof: The proof follows directly from Theorem 4 since
h(H) < log [H]. O

The performance of the proposed scheme is investigated
under a 2 x 2 MIMO block-fading channel with b = 20
and |H| = 103, where the channel coefficients are drawn
uniformly and independently from uniformly-spaced values
within range [—5, 5]. For this scenario A < 2 bits per channel
use. Rates are plotted in Fig, 1 and compared with the white-
input capacity, as well as the rates achieved by the algebraic
lattice scheme in [26] and the lattice coding scheme in [27].
The proposed scheme is shown to outperform the baseline
schemes for moderate and high SNR values.

B. Continuous-Valued, Unbounded Fading Distributions

The techniques developed in Section IV-A produce rates
within a gap to capacity that is tied to the number of dis-
tinct fading states, and hence cannot be directly applied to
continuous-valued channels. The main idea of this section is a
refinement of the technique developed in Section III-C, where
the scheme is designed for a quantized version of a continuous-
valued channel so that it can also work on the continuous-
valued channel itself. The quantized channel gains are derived
by mapping the continuous channel gains in each quantization
interval to the lower end of that interval. In this manner the
magnitude of each continuous-valued channel coefficient is
larger than its quantized counterpart, so it is easy to show that
the encoder/decoder performance over the continuous channel
is no worse than the performance over the quantized channel.
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The disadvantage of this strategy is that it forfeits the power
in the tail of the fading distribution, and also within each
quantization interval it cannot utilize the fading gain that is
beyond the lower end of that interval. Unlike the perfect
CSIT case in Section III-C, the quantization cannot be made
arbitrarily fine since the universality penalty that follows from
the discrete channel analysis is proportional to the number
of fading states. We now develop the strategy in more detail
and show that with careful optimization of the quantization
intervals, one can produce performance guarantees that come
very close to capacity.

Concretely, the scheme is similar to the discrete-valued
fading case up to the MMSE scaling in (54), where the
MMSE scaling is pursued using the continuous-valued channel
coefficients. The channel magnitude |h;| is then quantized
into L +1 sets Q¢ = [g¢_1, q¢], where go 2 0 and g1 41 = oo,
and each channel coefficient is quantized to the lower limit
of the bracket @ in which it belongs, producing a discrete
valued sequence. The gap to capacity A = C — R is then
bounded as follows

A < E[log(1 + p|h|?)] — E[log(1 + pg®)] +

L+ plh?
Tt )||h|>qL]P(|h|>qL)

( +i| )||h|ng] (Ihl € Qe), (72)

log (L+1)

1
=3 log (L+1)+]E[log (

+ZIE1

where g is a random variable with support {qo,...,qr}
representing the quantized channel magnitude. The first term
in (72) follows from Corollary 1. The minimization of the gap
to capacity requires the design of a quantizer with L+ 1 levels
as mentioned above that minimizes the sum of the three
terms in (72). Recall in Section III-C we used a uniform
quantizer, which is not necessarily optimal but was sufficient
for our purposes at that point. The optimal quantizer for (72)
may be derived by calculating the slope of the cost function
with respect to each gy and forcing these slopes to be equal
(KKT conditions). In iterative optimization one would update
in each iteration the g, with the largest slope. Since the
cost function involves integration over fading, the cost slopes
can be calculated using the Leibnitz integration rule. These
calculations are somewhat cumbersome, motivating us to find
a more easily described quantizer that also experimentally
yields a small gap after optimization. To this end, we design
a quantizer so that the probability of the fading coefficient
falling into each of its bin is equal, i.e, P(|h| € Q1) =... =
P(|h| € Q). This results in the following simplification in
the cost function

+plh|?
1+ pq

(”p'h' likeQd, @3

1
A < —log (L—l—l) —|—7L]E[log(

b
1 ’}’LZE

where P(|h| > q1) £~ is the complement of the cumulative
distribution function of |h|. Note that v, = e~9% for Rayleigh
fading with normalized gain. Once this structure is fixed,

) 1Al > ac]
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Fig. 2. Comparison of the achievable rates under Rayleigh fading.

only two parameters L,q; need to be optimized. In our
simulations, we use two-dimensional grid search to find L, qr,
that minimize the gap expression in (73). The rates achieved
under Rayleigh block fading with b = 20 are plotted in Fig. 2,
which demonstrates that the gap to capacity is within 0.5 bits
per channel use up to SNR of 60 dB.®

V. CONCLUSION

This paper demonstrates that a precoded lattice coding
scheme achieves the capacity of the fading point-to-point
channel with channel state information at both the transmitter
and the receiver. A key difference with earlier ergodic fad-
ing results is non-separable coding. Furthermore, the deci-
sion regions are fixed for a given channel distribution. The
proposed scheme is first discussed in the context of a
heuristic channel model. The results are then extended to
arbitrary MIMO channel distributions with robustly typical
realizations, and to continuous-valued channels. With CSIR
but no CSIT, an alternative decoding strategy is presented
for block-fading MIMO channels, where channel-matching
decision regions are proposed. Under fading drawn from a
discrete distribution with finite support, the achieved rates
are within an SNR-independent gap to capacity. The scheme
is also extended to continuous-valued fading where it is
shown that achievable rates approach capacity under Rayleigh
fading.

APPENDIX A
PRECODED SIGNAL SATISFIES THE POWER CONSTRAINT
We first present the following lemma, whose proof can be
found in [35].
Lemma 7 [35, Th. 1]: Let {pi,...,05n} be a monoton-
ically increasing sequence of finite positive weights, where

lim Z Bi = oo. Then, for a sequence of random
n—oo __

6Although Fig. 2 indicates that the proposed scheme achieves close-to-
capacity rates under Rayleigh fading, it remains unverified whether it is within
a constant gap to capacity for all SNR.
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variables q, . . ., qn with mean pg,

Bi q] < pg + € (74)
[z:g 1 Be & Z | < Ha
where € > 0 vanishes with n.

We now show that for ' =

DV, %E[”m’”z]
LE[||x[]?] at large n.

1 E[||z’|)?] = 1 E[z"VTD*Vz]
n T
1
= ~Ew [EE,W [a:TW:I:]]
- 1 n
< Ew |[Eqw[> Z 155553” (76)
- i=1
- _1 1l ~ 1 n - )
= ]EW _n£=11Ug Eﬂw [721?:1 ’tf}g Z;wlxi]]
1 1l
<(p+e)Bw |- > i (77)
i=1
=(pte)(l+tete)Spte. (78)

Given the structure of the permutation matrix V' described
in Appendix B, W £ VTD?V is a diagonal matrix with
non-decreasing positive entries wy, ..., w,, and hence (75)

follows. Note that .:r: and W are independent. Define ; =
w; + 8;, where §; = min

{j:k}swj' FWg
Hence, from (76), é; assures all weights w; are positive and
monotonically increasing (77) follows from Lemma 7. (78)
follows since Z —1w; < 1+ ez, where w; represents
the nonnafized waterfilling power allocations, and €3 =

L5 1 6: vanishes with n. Thereby ¢’ — 0 as n — oo.

4 e "y, and v £ wj—wk‘.

APPENDIX B
DESIGNING THE PERMUTATION MATRIX V'

As mentioned in Section III-A, the role of V is re-ordering
the channel coefficients in the diagonal matrix H in ascending
order of the magnitudes. Recall the coefficients take on the
values Bi,...,H3|, where by appears with frequency puy.
Now, define a counter y;(:) < npy, that counts the number of
occurrences of b, after channel use z ’I‘yplcally, when h; = b,
then V'(i,:) is 8%, where m = vk + Z! 11 npy. It easily
follows that V' HV = H, for any H that belongs to the
random location channel model.

APPENDIX C
PROOF OF LEMMA 4

We follow in the footsteps of [19] and [21]. Consider a noise

vector z* € R™ that is closely related to the post-equalizer
noise z as follows

~ Ag+B(pw+ /b — pu),

where g, w* are i.i.d. Gaussian with zero mean and covari-
ances J%I n» In, respectively and crfg is the second moment

(79)



of the smallest sphere covering V. A, B are diagonal matrices
whose diagonal elements are as follows

B. A \/ p:r(i)h"(i)

W= s
Pyl T1

-1

Aii é * 1
Pre(iy Py T1

(80)
It is then easy to show that the auto-correlation matrix 3*
of z* is diagonal, whose elements are given by

2
95

Z* =5 -
" Praphae 1

(81)
Note that 03 = (1 + €')p, where ¢ can be made arbitrar-
ily small by increasing n [19, Lemma 6]. The probability
P(z* ¢ Q) is then equivalent to P(||z(*)|2 > (1 + €”)n),
where z(®) £ $*3" 2*_ Hence, ||2(®)||2 is a chi-squared ran-
dom variable with n degrees-of-freedom. Using the Chernoff
bound [36],

P11 > (1 ¢)n) < mip (e~ (0 sve0-0)y

= (+€")3e %

= 3 (€08 14¢) | (82)
Now, we show that the probability density of z, f.(v) is

upper-bounded (up to a constant) by f.-(v). It was shown

in [19, Lemma 11], that

fe(v) < e fg(v),

where ¢,/n — 0 as n — oo. Hence, faz(v) < € ™fag(v)
and f.(v) < € "f..(v) follow as well, where the former
inequality is obtained using transformation of random vari-
ables whereas the latter inequality is obtained via convolution
of both terms in (79). Hence,

P(z ¢ Q) = /{m f2(v)dv

< efn fz(v)dv
vg0

= e P2 > (1 +€")n)

< e 5 (" tog (1) =22 )

(83)

(84)

where log, is the natural logarithm. Since €” > log,(1 + €”)
for all €’/ > 0 and ¢, /n — 0 as n — oo, the exponent in (84)
remains negative and it can be shown that there exists n.
such that for all n > n., P(z € Q1) < ~. The final step is to
show that the elements of \/o% — p Bw* vanish with n. Let
W = Bw*, and v* £ \/o} — p. Since |B;;| < 1 and w* is
i.i.d. with unit variance, the variance of each of the elements w;
is no more than 1. Using Chebyshev’s inequality [36],

1
POy pmz ) <
P(y/ok — pwi > V4*) <77,

1 gj . 2
——. Since lim oz = p fora
VTE n—oo B P

covering-good lattice, the elements of 4 /erB2 — p Bw* vanish
with n. This concludes the proof of Lemma 4.

for all k >0,
(85)

and (85) follows when x =
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APPENDIX D
PROOF OF THEOREM 2

We bound the total number of channel occurrences that
deviate from nPy in (9) as follows ’

IH] I
D nk — nPy| < onPy = 6n £ ngy,.

k=1 k=1

(86)

From (10), (86) on varying 4, a tradeoff occurs between rngy;
and the total number of J-typical sequences. However, for
the choice § 2 §'nz (=), where &' > 0 and 0 < v < 1,
Nout = §n2+7) is a vanishing fraction of n, and the
probability of non-typical sequences would be upper-bounded
by 2|’H|3—¥. Hence, negligible n,,; can be guaranteed for
almost all sequences satisfying a distribution at large n.

Now we are ready to present the capacity achieving scheme.
The encoding, the choice of D as well as U are identical to
Section ITI-A, i.e., D2 are the normalized optimal power allo-
cations for h; and U;; are the MMSE coefficients. However,
designing the permutation matrix V' is now more challenging,
since the number of occurrences of the different channel values
does not exactly fit the statistical distribution of the channel.
We adopt a best-effort approach to choose V', whose design is
provided in detail in Table I. Briefly, we make a rough assump-
tion that coefficient a occurs exactly nlPy times. Designing
the first n— 4y rows of V' is identical to Appendix V. For the
remaining n,,; rows, one or more slots dedicated for o, may
be exhausted. Hence, we utilize the unoccupied slots dedicated
for a; where j < k, whose channel magnitudes are smaller.
If all are occupied, we utilize the last n,,; time slots available.
This implies that the n,,; channel coefficients with the largest
magnitudes have no dedicated slots.®

Following the permutation operation, we use an ellipsoidal
decision region {2y as follows

ML2{seR" : TS 's<(1+e)n), (87)
where 3 is a diagonal matrix given by
_ ; _ '
5, — P forie{l,...,n— nout} @)
p fori e {n —nou +1,...,n}.

Owing to V, Q® C Q, where Q) is an ellipsoid para-
metrized by a diagonal auto-correlation matrix »(P) whose
elements are in descending order (recall the channel coeffi-
cients are in ascending order), and hence achieves capacity.
Q®) c Q follows since Eg’ ) < 3%, for any ¢, as guaranteed
by the structure of V. Then the achievable rate is

1 — .
R < %Zlog (1+ h2p*(hs)), (89)

i=1
which converges to 1E [log (1+ th*(h))], by the weak law
of large numbers. The final step is to show that the suboptimal

"For simplicity, we assume nP;, and nd are positive integers.
8The structure of V' preserves the power constraint: the precoder design is
identical to Appendix V up to the first 72 — 7104+ entries. The last nou: entries

have negligible impact on the power since lim ut _ o,
n—oo 1
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TABLE I
STEPS OF DESIGNING V' FOR A GENERAL FADING CHANNEL

Design of the permutation matrix V'

Set vour = 0, ») =0 for k= 1,...,[H].

fori=1:n
Set flag = 0.
if hi == oy

Set vV = VS_I) + 1 and Vl(i) = ufi_l) for I # k.
if v < npy
Set V(4,:) to 67, where m = V,Et) + nzz;_ll P;.
Set flag = 1.
else
forj=k—1:-1:1
if v < nP;
Set VJ(.i) = yg‘-_l) + 1 and "t(i) = yt(i_l) for 1 # j.
Set V(i,:) to 6T, where m = v + n 3"} Py.
Set flag = 1.
break;
end
end
if flag=—0
Set vout = Vour + 1.
Set V(i,:) to 8L, where m = vout + |1 — nout).
end
end
end
end

decision region Q; has negligible impact on the achievable
rate. From (6) as well as the error analysis in Section III-A,

the

A

where o(n) satisfies lim

Nout
n

gap A £ C — R is bounded by
1 Vol ()
s (VOl(Q(p) ) ) +o(m)

Nout 1 E :
n Nout .

i=n—Tgut+1

log(l + p:r(n)hfr(n)) +
o(n)

o(n)

n

log(1 + pl(iyha) +
o(n)

El
s

TMout

< (90)

n

= 0. Hence, A vanishes since
n—oo 7
— 0 as n — oo.
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