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Community Detection With Side Information: Exact
Recovery Under the Stochastic Block Model

Hussein Saad, Student Member, IEEE, and Aria Nosratinia

Abstract—The community detection problem involves making
inferences about node labels in a graph, based on observing the
graph edges. This paper studies the effect of additional, non-
graphical side information on the phase transition of exact re-
covery in the binary stochastic block model with n nodes. When
side information consists of noisy labels with error probability
«, it is shown that phase transition is improved if and only if
log(l_T“) = Q(log(mn)). When side information consists of re-
vealing a fraction 1 — € of the labels, it is shown that phase transi-
tion is improved if and only if log(1/€) = Q(log(n)).For amore
general side information consisting of K features, two scenarios
are studied, first, K is fixed while the likelihood of each feature
with respect to corresponding node label evolves with n, and, sec-
ond, the number of features K varies with n but the likelihood of
each feature is fixed. In each case, we find when side information
improves the exact recovery phase transition and by how much.
In the process of deriving inner bounds, a variation of an efficient
algorithm is proposed for community detection with side informa-
tion that uses a partial recovery algorithm combined with a local
improvement procedure.

Index Terms—Community detection, stochastic block model,
side information, exact recovery.

I. INTRODUCTION

HE problem of learning or detecting community struc-

tures in random graphs has been studied in statis-
tics [1]-[5], computer science [6]-[10] and theoretical statistical
physics [11], [12]. Detection of communities on graphs is mo-
tivated by applications including finding like-minded people in
social networks [13], improving recommendation systems [14],
and detecting protein complexes [15]. Among the different ran-
dom graph models [16], [17], the stochastic block model (SBM)
is widely used in the context of community detection [18]. This
extension of the Erdos-Renyi model consists of n nodes that
belong to two communities, each pair of nodes connected with
probability p if the pair belongs to the same community, and
with probability g otherwise. The prior distribution of the node
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labels is identical and independent, and often uniform (labels
are equi-probable). The goal of community detection is to re-
cover/detect the labels upon observing the graph edges.

Random graphs experience measure concentration in the re-
covery of labels [18], i.e., for some underlying graph distribu-
tions, recovered labels will become reliable as the size of data
set increases, and for others they do not. The boundary of this
phenomenon is often described as a phase transition [18]. The
location of this phase transition and the set of graphs that fall
inside the region described by it, is an important indicator of the
broad class of graph-based problems that are reliably solvable
in the context of community detection. Much of the theoretical
work on community detection [18]-[28] concentrates on char-
acterizing this phase transition and understanding its properties.

The literature on community detection has, for the most
part, concentrated on purely graphical observations. However,
in many practical applications, non-graphical relevant informa-
tion is available that can aid the inference. For example, social
networks such as Facebook and Twitter have access to much in-
formation other than the graph edges. A citation network has the
authors’ names, keywords, and abstracts of papers, and therefore
may provide significant additional information beyond the co-
authoring relationships. Fig. 1 illustrates standard community
detection as well as community detection with side information.
This paper presents new results on the utility of side informa-
tion in community detection, in particular shedding light on the
conditions under which side information can improve the phase
transition of community detection, and the magnitude of the
improvement.

Community detection outcomes fall into several broad cate-
gories in terms of residual error as the size of the graph n grows,
enumerated here in increasing order of strength: Correlated re-
covery refers to community detection that performs better than
random guessing [19]-[23]. Weak recovery means the fraction
of misclassified labels in the graph vanishes with probability
converging to one [24]-[26]. Exact recovery means correct re-
covery of all nodes with probability converging to one [18], [27],
[28]. This paper concentrates on the exact recovery metric.!

A few results have recently appeared in the literature on the
broader community detection problem in the presence of addi-
tional (non-graphical) information. Mossel and Xu [29] studied
the behavior of belief propagation detector in the presence of

'Furma]l)r, let e, denote the number of misclassified nodes. Then,
correlated recovery means limp .o P(5- < 0.5) = 1. Weak recovery
means lim, ., P(%- < ) =1 for all positive . Exact recovery means
limp oo Pen = 0) = 1.
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Fig. 1. (top) standard community detection (bottom) Community detection
with side information.

noisy label information. Cai ef al. [30] studied the effect of
knowing a growing fraction of labels on correlated and weak
recovery. Neither of [29], [30] includes a converse, so they do
not establish phase transition. Kadavankandy ef al. [31] studied
the single-community problem with noisy label observations,
showing weak recovery in the sparse regime. Kanade ef al. [32]
showed that partial observation of labels is unhelpful to the cor-
related recovery phase transition if a vanishing portion of labels
are available. The exact recovery metric is not addressed in these
works, and they do not establish a phase transition under side
information.?

In the interest of completeness, we also mention the follow-
ing works even though they have a very different perspective.
In statistics, several works have appeared on model-matching to
real data consisting of both graphical and non-graphical obser-
vations, where additional information such as “annotation™ [34],
“attributes™ [35], or “features” [36] has been considered. These
works aim at model matching to real (finite) data sets, and pro-
pose a parametric model that expresses the joint probability dis-
tribution of the graphical and non-graphical (attribute/feature)
observations. Although the focus of these papers is very differ-
ent from the present paper, they nevertheless show the interest of
the broader community in modeling side-information for graph-
based inference.

The following observations further motivate this work. For
the exact recovery metric, the effect of side information has
not been comprehensively studied. Even for correlated recovery
and weak recovery, the effect of side information has only been
studied for belief propagation, which is not enough to establish
phase transition. In the context of binary labels, only binary side

2 Arguably the closest result in the literature to our work can be found in [33,
Theorem 4], which is discussed in Section V-B.

information (possibly with erasures) has been studied. Practical
scenarios motivate the study of more general side information
whose alphabet does not match the number/identity of commu-
nities. Also of interest is side information consisting of several
(potentially non-binary) features, which has not been thoroughly
investigated either in the context of belief propagation or max-
imum likelihood, although [33, Theorem 4] opened the subject
in a special setting.

II. SYSTEM MODEL AND CONTRIBUTIONS

We consider the binary symmetric stochastic block model,
with community labels denoted 1 and —1. The number of nodes
in the graph is denoted with n. The node labels are independent
and identically distributed across n, with 1 and —1 labels having
equal probability. If two nodes belong to the same community,
there is an edge between them with probability p = alﬂgﬁ(ﬂ, and
if they are from different communities, there is an edge between
them with probability g = b@. Finally, for each node one
or more scalar random variables are observed containing side
information. Conditioned on node labels, the side information
of different nodes are assumed to be independent of each other
and of the graph edges. Three models for this side information
are considered.

In the first model, for each node, a scalar side information is
observed which is the true label with probability (1 — «) and
its complement (false) with probability o, where a € (0,0.5).
In the second model, for each node, a scalar side information
is observed which is the true label with probability 1 — € or 0
(erased) with probability e, where € € (0, 1). In the third model,
we consider side information consisting of K random variables
(features) with finite cardinalities My, k € {1,..., K}.

The observed graph is denoted by G, the vector of nodes’ true
assignment by x*, and the nodes’ side information by vector ¢y
when each node has a scalar side information, or with collection
of length-n vectors yg, k= 1,..., K when side information
for each node consists of K features. The goal is to recover the
node assignment x* from the observation of the graph G and
side information.

In this paper, exact recovery is considered in the dense regime,
i.e., when p = al—°§1 and ¢ = bl—°§1 with constants a > b >
0. In this regime the exact recovery phase transition without
side information is (\/a — \/1_3)2 > 2 [27]. We investigate the
question: when and by how much can side information affect the
phase transition threshold of exact recovery? The contributions
of this paper are as follows:

1) When side information consists of observing node la-

bels with erasure probability e € (0,1), we show that
if log(e) = o(log(n)), the phase transition is not im-
proved by side information. On the other hand, if log(e) =
—pBlog(n) + o(log(n)) for some 3 > 0, i.e., O(log(n)),
a necessary and sufficient condition for exact recovery is
(Va—vb)? +28 > 2.

2) When side information consists of observing node la-
bels with error probability o € (0,0.5), if ¢ = log(=2)
is o(log(n)), then the phase transition is not improved
by side information. On the other hand, if ¢ = S log(n) +
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o(log(n)), B > 0,i.e.,O(log(n)), necessary and sufficient
conditions for exact recovery are derived as follows:

{n(a,b,ﬁ) >2 when 3 < @
T(a—b)
B>1 when 3 > —5—~

with the following parameters defined for convenience:
+
n(abB) 2atbts— 2+ L (ﬁ) (1)

T T\y-5
T 2 log (%) 2Bt abl?
An early version of this result appeared in [37].

3) When side information consists of K features each with
finite and fixed cardinality, two scenarios are considered:
(1) K is fixed while the conditional distribution of each
feature varies with n. In this scenario, we study how the
quality of each feature must evolve as the size of the
graph grows, so that phase transition can be improved.
(2) K varies with n while the conditional distribution of
features is fixed. In this scenario, the quality of the features
is independent of n, and we study how many features are
needed in addition to the graphical information, so that
the phase transition can be improved.

4) Sufficient conditions are provided via an efficient algo-
rithm employing partial recovery and a local improve-
ment using both the graph and the side information. The
two-step recovery algorithm without side information ap-
peared in [18], [27], [38]. In this paper, it is refined and
generalized in the presence of side information.

Remark 1: In earlier community detection problems [18],
[27], LLRs do not depend on n even though individual likeli-
hoods (obviously) do. This was very fortunate for calculating
asymptotics. In the presence of side information, this conve-
nience disappears and LLRs will now depend on n, creating
complications in bounding error event probabilities en route to
finding the threshold in the asymptote of large n. Overcoming
this technical difficulty is part of the contributions of this paper.

To illustrate the results of this paper, Figs. 2 and 3 show the
error exponent for the side information consisting of partially
revealed labels or noisy label observation, as a function of 3. It
is observed that the value of 3 needed for recovery depends on
a, b. For the partially revealed labels, when (/a — v/b)? < 2,
the critical Fis 1 — %(\/E — +/b)%. For noisy label observations,
when (/a — V/b)? < 2, the value of critical 3 can be determined
as follows: if n(a, b, T{“‘ =b) ) > 2, then the critical 3 is the so-

lution to 5 = 2. On the other hand, if n(a, b, T{a J ) < 2, then
the critical 3 is one.

(@)

ITI. Noisy LABEL SIDE INFORMATION

In this section, side information consists of a noisy version
of the label that with probability « € (0, 0.5) fails to match the
true label.

We begin by calculating the maximum likelihood rule for
detecting the communities under side information. The max-
imum likelihood detector without side information [27] is

1 T T T T T T T
0.5 \
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Fig. 2. Error exponent for noisy label observations as a function of 3.
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Fig. 3. Error exponent of partial label observation as a function of j3.

the minimizer of the number of edges between two detected
communities, subject to both detected communities having
size . The set of nodes belonging to the two communi-
ties are denoted with A and B, ie., A 2 {¢ :z; =1} and
B £ {i:x; = —1}. E(A) denotes the number of edges whose
two vertices belong to community A, and F(B) the number of
edges whose two vertices belong to community B. The total

number of edges in the graph is denoted E;. Also, define:
J(A)2 [{ieA:y =1}
J.(B)2|{ie B:y; =1}

Then, the log-likelihood function can be written as:

log (P(G, y|z)) Y log (P(Gla)) + log (P (ylx))
—E(A)-

(pE{A]+E{B)q B)(l p)g(g)—E(A)—E(B}

= log

(1- q)$—53+E(A)+E(B)) +1log ((1 — a)’+(A)+I-(B)
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aﬂ—J+(A)—J—(B))

Y R4 T(EA) +EB))(1+0(1) + (], (4) + J_(B))

3

where (a) holds because G,y are independent given x. In
(b), all terms that are independent of = have been collected
into a constant R, and log(p (- '”) has been approximated by

(14 o(1))T', which is made p0551ble because (1 — p), (1 —q)
both approach 1 as n — oo. The difference between Eq. (3)
and the likelihood function without side information is the
term ¢(J; (A) + J_(B)) and a constant nlog « that is hidden
inside R.

The following lemma characterizes a lower bound on the
probability of failure of the maximum likelihood detector. Let
E][-, ] denote the number of edges between two sets of nodes.?

Lemma 1: Let A and B denote the true communities. Define
the following events:

F £ {Maximum Likelihood Detector fails}
Fy 2{3i€ A:T(E[i,B] — E[i,A]) —cy; > T}

Then, Fy N Fg = F.

_ Proof: Define two new communities {i = A\{i} U {j} and
B=B\(j}u{i}. I log(P(G,ylA,B))>1log(P(C,y|
A, B)) it means maximum likelihood chooses incorrectly and
therefore fails. We show that this happens under F'y N Fg.

Let A;; ~ Bern(q) be a random variable representing the
existence of the edge between nodes ¢ and j. Then, using (3):

log (P(G,y|A, B))

=R+T(E(A)+E(B)) +c(J, (A) + J (B))
=R+T(E(A) + E(B)) +c(J(A) + J_(B))
+T(E[j,A] - E[j, B] + E[i, B] - E[i, A]) + c(y; — i)

— 9T A,

(a)
> log (P(G, ylA, B)) + 2T(1 - A;j)

(0)
> log (P(G,y|A, B)) ®

where (a) holds by the assumption that Fy N Fiz happened and
(b) holds because (1 — A;;) > 0andT" > 0. The inequality (b)
implies the failure of maximum likelihood. O

A. Necessary Conditions

Theorem 1: Define ¢ = log(1=2 —=). The maximum likelihood
failure probability is bounded away from zero if:

(v/a — vb)? < 2 when ¢ = o(log(n))

n(a,b, B) < 2when ¢ = (8 + o(1)) log(n),0 < 8 < L&)
Bg<1 when ¢ = (8 + o(1)) log(n), 3 > T(ﬂg_b)

3For economy of notation, in the arguments of E|[-, -] we represent singleton
sets by their single member.

Proof: Since x* is generated uniformly, the ML detec-
tor is optimal in error probability. Hence, if ML fails with
nonzero probability, every other detector must fail with nonzero
probability. So it suffices to establish the error probability
of ML. The main difficulty in bounding the error probabil-
ity of ML is the dependency between the graph edges. To
overcome this dependency, we follow steps that are broadly
similar to [27], but our bounding techniques involve Chernoff
type arguments and Cramer and Sanov large deviation princi-
ples that are more compact than combinatorial techniques of
[27].

Definition 1: Let H be a subset of A with |H| =
define the following events for each node i € H:

A = {E[i,H] < %}

g’ (m) 2nd

FlT = {TE[@A\H] o+ T+ TS < T B]}

and the following events defined on H:
A = Nien Ai
F? = Ujey Ff

Lemma2: fP(F¥)>1—6and P(A) > 1—§ford < 1,
then there exists a positive 8’ so that P(F) > §'.
Proof: Clearly AN F# = F,. Hence,
P(Fy) > P(F) + P(A)—1> 126

By the symmetry of the graph and the side information, P
(Fp) 2 1—26§ as well. Also, by Lemma 1 F4y N Fp = F.
Then:

P(F)=P(Fa)+P(Fp)—1=>1—-45

For § < 1, P(F) is bounded away from zero. |
Lemma 3: lim,_,,, P(A) =1
Proof: Let W; ~ Bern(p). Then:

i—1 Tog3(n)

log(n)
P(ASY=P W; + W; > ————
= Parrd] log(log(n))
O] log(n)
og(n
<P j > 0B _
2 W12 Togllog(m))

—log(n)
) Tog(Tog(n)

1 log’(n)
= ( alog(log(n))

via a multiplicative form of Chernoff bound, stating that a se-
quence of n i.i.d random variables X;, P(3_7" | X; > tpu) <
(£)~**, where p = nE[X]. Thus, by union bound:

logg(n) —login}

n 1 ogllog(n
P(A)=1- ]0g3 (n) (Ealog(log(n)))
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TABLEI
ALGORITHM FOR EXACT RECOVERY

1: Start with graph & and side information y

4: Initialize A < A’ and B + B’.

5: For every node i modify A and B as follows:
Flip membership if i € A and Eg, [i, B] > Eg,[i, A] + &v;
Flip membership if i € B and Eg, [i, 4] > Eg,[i, B] — S

2: Generate an Erdos-Renyi graph Hy with edge probability %. Use it to partition G into G1 = G'N Hy and Gz = G Hf.
3: Apply weak recovery algorithm [21] on G, calling the resulting communities A’/B’.

6: Check size of communities. If |A’| # | A| or equivalently |B'| # | B|, discard changes via A < A’ and B « B'.

_ 1 _ (log(n)-3log(log(n))

log(n)log(ae) log(n)
splnlostar)  togtn) (3logtlogtn))—log(log(log(nm)]
€

=1— e—?log(n)+o(log(n))

|
Lemma 4: For any 0 € (0,1) and for sufficiently large n, if
P(FZ) > 22 1og(L), then P(FH) > 1 — 6.
Proof: Because FH areii.d.:

P(F") =P(Uien F{") =1 = P(Nierr (F7)°)

—1-[(1- P(EH))WI.-"T](%%})

>1— [(1 _ P(I;;:H)) mifu]—logé (6)

where the last inequality holds by the statement of the Lemma.
If P(FH) is o(1), then the quantity inside the bracket tends to
e1 and the result follows. If P(F) is not o(1), then from
Eq. (6) it follows that P(F) — 1 and again the result of the
Lemma holds. |

The following lemma completes the proof of Theorem 1.

Lemma 5: For sufficiently large n, P(FH ) > n;g;& log($)
for § € (0,1), if one of the following is satisfied:

(va — vb)? < 2 when ¢ = o(log(n))
n(a,b, ) < 2 when ¢ = (8 + o(1))log(n),0 < 3 < T(ag—b)

_ T (a—b)

B<1 when ¢ = (8 + o(1))log(n), 8 > =5~
Proof: See Appendix A. |
Combining Lemmas 2, 3, 4, 5 concludes the proof of the
theorem. |

B. Sufficient Conditions

Sufficient conditions are derived via a two-step algorithm
whose first step uses a component from [21], a method based
on spectral properties of the graph that achieves weak recovery.

We start with an independently generated random graph H;
built on the same n nodes where each candidate edge has prob-
ability 1 gl?ﬂ}. The complement of H, is denoted Hy. Then G
is partitioned as follows: G; = G N Hy and Go = G N Ha. Gy
will be used for the weak recovery step, G5 for local modifi-
cation. The partitioning of G allows the two steps to remain
independent.

We perform a weak recovery algorithm [21] on G;. Since

G is a graph with connectivity parameters (22, 22, the weak

v

{0\
/ \%

Lo
Fig.4. Two types of error events for the two-stage algorithm. The node in the
top half of the figure is misclassified in weak recovery, and remains uncorrected

via local modification. The node at the bottom half is correctly classified in
weak recovery, but is mistakenly flipped by local modification.

recovery algorithm is guaranteed to return two communities A,
B’ that agree with the true communities A, B on at least (1 —
4(D))n nodes so that limp ., 6(D) = 0 (i.e., weak recovery).
A sufficient condition for that to happen [21], e.g., is D =
O(loglogn).

The community assignments are locally modified as follows:
foranodei € A, flip its membership if the number of G edges
betweeniand B’ is greater than or equal the number of G» edges
between i and A’ plus ~y;. Fornode j € B', flip its membership
if the number of G5 edges between j and A’ is greater than or
equal the number of G, edges between j and B minus 7y If
the number of flips in the two clusters are not the same, keep the
clusters unchanged. The detailed algorithm is shown in Table I.

Theorem 2: With probability approaching one as n grows,
the algorithm above successfully recovers the communities if:

(\/a - \/‘!—7)2 > 2., when ¢ = o(log(n))
n(a,b,3) > 2whenc = (3 + 0(1)) log(n),0 < B < T(a2_b)
B> 1 when ¢ = (8 + o(1))log(n), g > L&)

Proof: We first upper bound the misclassification probability
of a node assuming Hs is a complete graph, then adjust the
bound to account for the departure of Hs from a complete
graph.

Fig. 4 shows the mis-classification conditions: an error hap-
pens either when the weak recovery was correct and is over-
turned by the local modification, or when the weak recovery
is incorrect and is not corrected by local modification. Let
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W ~ Bern(p)and Z ~ Bern(q) represent edges inside a com-
munity and across communities, respectively. Lety; € {1, —1}
with probabilities (1 — a), o, respectively. For simplicity, we
will write ¢ instead of §(D). Then, the mis-classification prob-
ability is:

P, = P(node i is mislabeled)

)

To adjust for the fact that H» is not complete, the following
Lemma is used, noting that Hy = HY.

Lemma 6: With high probability, the degree of any node in
H; is at most ED(E)
Proof: Let {Y;}i—1,_ .. n be a sequence of i.i.d. Bernoulli

random variables with parameter 7‘97 Define Y =Y 7Y,
Then, E[Y] =

W and hence, by Chernoff bound:

2Dn
P(Y > < e tre” ®)
log(n)

Thus, by using a union bound:
2Dn
B log(n)

<e +10g(n)

2D
P | 3 a node degree > )
( B 7 Tog(m)

— 0
n—od
O
Having bounded from below the degree of Hs, the correct
error probability (for the incomplete H>) can be arrived at by
removing no more than o_g(ﬂn terms from the summations on
the right hand side of (7). If we remove exactly 2= terms,
the following upper bound on error probability is obtained:

(1-9)%

P, slP( Z zk+ZWk

(1—5)3.—1_(”19“ n i 1_(_T§
C
> > W; Zi+=vui) O
- j=1 o j=1 J+Tyl) ©

The following lemma shows an upper bound on P,.
Lemma 7:

n—r(Va-Vb) +o(1) 4 pp—(1+92(1))

when ¢ = o(log(n))
n—Lﬂ(ﬂ,b‘.S)+0(1) + n_(l"'ﬂ{l))

whenc = (8 +0(1))log(n), 0< B <
“3n@bp) o) 4 pB 4 p-(1+92(1)

L when ¢ = (8 + o(1))log(n) , 8>

a.b)

a.b)

Proof: See Appendix B. |

A simple union bound yields:
nl-t(va—vh)? +o(1),

when ¢ = o(log(n))
1——17(:1 b,G)+o{l)

when ¢ = Blog(n), 0 < 3 < @
nl—,S+o(1),
L when ¢ = Blog(n) , B > @
(10)

P (failure) < <

For the last case, 3 > 1 remains sufficient because of the fol-
lowing lemma.

Lemma8: 3>1=n>2.

Proof: Let a+b—p—2L+£ 1og(§f§) = 9(a,b, ).
Then, from the definition of n:

n(a,b, B) — 28 = ¢(a,b, §) (1)

Since ¥(a, b, 3) is convex in (3, it can be shown that at the
optimal 37, log(=+= ﬁ,) =T'. Using this fact and substituting
in (11):

*

n(a,b,8) =28 > a+b— % (12)
By the definition of ~: v+ 5 = ‘“’T . Using the fact that
1 +g, =2 Jeads to & = (,T‘,"b% 7 Wthh implies that ~*
bT + 5% Hence by substituting in (12):

na,b,8) —28>a—b-2% (13)

Also, it can be shown that at 3%, v* = 3*(%L). This implies that

B3 = m Substituting in (13) leads to: n(a, b, ) — 23 = 0,
which implies that > 2 when § > 1. |
Combining the last lemma with (10) concludes the proof. H

IV. PARTIALLY REVEALED LABELS

In this section, we consider side information consisting of par-
tially revealed labels, where e € (0, 1) is the proportion of labels
that remains unknown despite the side information. Tight nec-
essary and sufficient conditions are presented for exact recovery
under this type of side information. Similar to the noisy la-
bel side information, we begin by expressing the log-likelihood
function. For a given side information vector y, P(y|z) =0
if a label contradicts the side information.* All label vectors
x that do not contradict side information and satisfy the bal-
anced prior, have the same conditional probability. Thus, for all
x that have non-zero conditional probability, the log-likelihood
function can be written as:

log (P(G,y|z)) € log (P(Gla)) +log (P(ylz))

Y R+ T(EA) + E(B))(1+0(1) (14)

where (a) holds because G, y are independent given x. In (b),
all terms that are independent of @ have been collected into a

“We say a label contradicts the side information if the side information is not
an erasure and it disagrees with the label.
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constant R, and log(%{%) has been approximated by (1 +

o(1))T’, which is made possible because (1 — p), (1 — g) both
approach 1 as n — ooc.

The following lemma shows that if the graph includes at least
one pair of nodes that have more connections to the opposite-
labels than similar-labels and if their side information is an
erasure, the maximum likelihood detector will fail.

Lemma 9: Define the following events:

Fy={3icA: (E[i,B]-E[i,A]) > landy; = 0}
FB = {EIJ €B: (E[_],A] _E[J:B]] z ]-andyj :0}
Then, F4y NFg = F.

_ Proof: From the sets fl, B, we swap the nodes i, j, producing
A=A\{i}u{j} and B= B\{j} U {i}. We intend to show
that subject to observing the graph G and the side information
vy, the likelihood of A, B is larger than the likelihood of A, B,
therefore under the condition F4 N Fz, maximum likelihood
will fail.

Let A;; ~ Bern(q) be a random variable representing the
existence of the edge between nodes i and j. Then, from (14):

log (P(G,y|A, B)) = R+T(1+0(1))(E(A) + E(B))
=R+T(1+0(1))(E(A) + E(B)) + T(1 +o(1))
x (E[j,A] - E[i, A] — E[j, B] + E[i, B] — 24,;)

2 log (P(G,y|4, B)) + 2T(1 + o(1))(1 — Ayy)

(15)

where (a) holds by the assumption that F4 N Fp happened and
(b) holds because (1 — A;;) > 0and T > 0. The inequality (b)
implies the failure of maximum likelihood. |

®)
> log (P(G,y|A, B))

A. Necessary Conditions

Theorem 3: The maximum likelihood failure probability is
bounded away from zero if:

1) log(e) = o(log(n)) and (/@ — Vb)? < 2

2) log(e) = —(B+o(1))log(n), B>0, and 3(\a—

Vb2 +B8< 1.

Proof: Let H be a subset of A with |H| = ﬁm. Consider
the following modification to Definition 1:
_log(n) < Eli,B]}
log log(n)
It is not difficult to show that Lemmas 2, 3, 4 remain valid un-
der this modification. To complete the proof, it is sufficient to

Ff ={y;=0}n{E[,A\H] +1+

find conditions under which P(FH) > wg;ﬁ log(%) asymp-
totically (in n) for all 6 € (0, 1).
3
Lemma 10: For sufficiently large n, P(FH) > @ log
(%) for § € (0,1), if one of the following is satisfied:

(va— vb)? < 2, when log(e) = o(log(n))
(Va—vb)?+28<2,
when log(e) = —(8+ o(1)) log(n),3 >0
Proof: See Appendix C. |

Combining Lemma 10 with the modified form of Lem-
mas 2, 3, and 4, concludes the proof of the theorem. [ |

B. Sufficient Conditions

This section shows sufficient conditions for exact recovery
by introducing an algorithm whose exact recovery conditions
are identical to Section I'V-A. The first stage of the algorithm
is the same as Section III-B. The second stage involving local
modification is new and is described below.

The community assignments are locally modified for each
node 1 as follows: (a) if A’/B’ membership contradicts side in-
formation y;, flip node membership or (b) if y; = 0, re-assign
membership of i to the community A’/B’ to which it is con-
nected with more edges. After going through all nodes, if the
the number of flips in two communities A’, B’ are not the same,
void all local modifications.

Theorem 4: The algorithm described above successfully re-
covers the communities with high probability if:

(va — Vb)? > 2, when log(e) = o(log(n))
(Va—Vvb)? +28> 2,
when log(e) = —(8 + o(1)) log(n),3 >0

Proof: Let P. = PP(node i to be misclassified). Following
the same analysis as in the proof of Theorem 2:

(1-6)% 53
D Zet) Wi
k=1 k=1
(1—5);;—,%11

>

=1

R:SEP(

n 2D
6?_111[;"1; n

D

=1

W; + Zj) (16)

Using Lemma 7 and strengthening ¢ = o(log(n)) to ¢ =0,
equation (16) can be upper bounded as follows:

P < en—s(Va-vb)? + n-(1+2(1) 17

Thus, according to asymptotic behavior of e:
n-F(Va-VB)i+o(1) 4 p-(1+0(1)

when log(e) = o(log(n))
Pe =< 1 2
n~r(Va-VB) =B 4 p-(1+0(D)

when log(e) = —(8+o(1))log(n) , 3 >0
A simple union bound yields:
nl—3(Va-VB)*+o(1)
when log(e) = o(log(n))
nl-3(va—vh)??—p+o(1)
when log(e) = —(8 + o(1)) log(n), B >0
|

P (failure) <

V. MORE GENERAL SIDE INFORMATION

We now generalize the side information random variable such
that each node observes K features (side information) each has
arbitrary fixed and finite cardinality My, k € {1,..., K}. The
alphabet for each feature k is denoted with {uf,u§, .-, u}, }.
Denote, for each node i and feature k, P(y; x = uf,, |z; = 1)
= aﬁ?mk and P(y;p = by, |zi = —1)=o* ,, ,mee{l,...,
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M}, where of | >0, af  >0and Y0 ok =
Sk aof , =1forallk e {1, ..., K'}. All features are as-
sumed to be independent conditioned on the labels. We first
consider the case where K is fixed while o® . m, and a* .m, are
varying with n for my, € {1,..., My} and k € {1,. K} To
ensure that the quality of the side information is increasing with
n, assume that of , and of , for my € {1,..., My} and
ke {1,...,K} are constant or monotonic in n. Second, we
consider the case where K is varying with n while a’jﬁm , and
of .. are fixed for my € {1,..., My} and k€ {1,...,K}.
To ensure that the quality of the side information is increasing
with n, assume that K is non-decreasing with n. Necessary and
sufficient conditions for exact recovery that are tight except for
one special case are provided.

First the log-likelihood function is presented. For feature k, let
thenumberof {i € A : y; =k }and{i € B:y;p = uk }
be J, uk, (A) and J‘”v’h (B), respecuvely Then, by using snmlar
ideas as in (3):

log (P(G,y1,¥2,- .., Yk|T))
=R+ T(E(A) + E(B)) (1+0(1))

LYY

k=1m;=1

(A)log (ak ) + Ty (B)log (ot )

(18)

Definition 2: The side information LLR for outcome my, of
feature % is denoted:

The LLR produced by the side information for each node i is a
random variable which we denote with &; where h; =), A,
and h;;. is the LLR of feature k for node 1.

Lemma 11: Define the following events:

Fy={3i e A:T(E[i,B] — E[i,A]) — h; > T}

Fg ={3j € B:T(E[j,Al - E[,B]) + i = T}
Then, Fy N Fg = F.
Proof: The proof is similar to Lemmas 1 and 9. |

A. Fixed Number of Features, Variable Quality

In this section, the number of features K is assumed to be
fixed and we show how noisy the outcomes of the features
should be so that side information changes the phase transi-
tion threshold of exact recovery. We begin with K =1, i.e.
one feature with M outcomes. For each side information out-
come m € {1,..., M}, two quantities affect the phase tran-
sition: the log- llkellhood ratio hy, = log(“* =) and the con-
ditional probability a. ;. An outcome is called informative
if hy, = O(log(n))’ and non-informative if hy, = o(log(n)).
Also, an outcome is called rare if log(o. ,,,) = O(log(n)) and

SWe say h,, = O(logn) when there exists a strictly positive constant C
such that by, < C'log(n) for all sufficiently large n.

not rare if log(a. ,,, ) = o(log(n)). Hence, four different com-
binations are possible. The worst case is when the outcome
is both non-informative and nor rare for both communities,

e.g. noisy labels with a = m We will show that if such
an outcome exists, then side information will not improve the
phase transition threshold. The best case is when the outcome
is informative, and rare for one community but noft rare for the
other. This happens, e.g., under noisy label side information with
a =n"77°() We have two cases in between: (1) an outcome
that is non-informative and rare for both communities, e.g. par-
tial label reveal side information with e = n=7+°(1) and (2) an
outcome that is informative and not rare for both communities.
The last three cases can affect the phase transition threshold un-
der certain conditions. As shown by Theorem 5, phase transition
is characterized by (the evolution of) the following functions of
the statistics of side information.

fi(n) £ th,,, (19)
fo(n) £ Zlog(a+ i) (20)
fs(n) & Zlog(a_m (21)

In the following, the side information outcomes [u}, ..., uk ]

» “m
are represented by their index [m;, ..., mg]| without loss of
generality. Throughout, dependence on n of outcomes and their
likelihood is implicit.

Theorem 5: Assume of, . and o” ., are either constant
or monotonically increasing or decreasing in n. Then, neces-
sary and sufficient conditions for exact recovery depend on side
information statistics in the following manner:

1) If there exists any sequence (over n) of side information
outcomes [my, ..., mg ]| suchthat f;(n), fo(n), f3(n) are
all o(log(n)), then (/@ — /b)? > 2 must hold.

2) If there exists any sequence (over n) of side information
outcomes [my, ..., mg | such that f; (n) = o(log(n)) and
fa(n), fs(n) evolve according to —3log(n) + o(log(n))
with B > 0, then (y/a — v/b)? + 28 > 2 must hold.

3) If there exists any sequence (over n) of side information
outcomes [my, ..., mg] such that f;(n) = 5 log(n) +
o(log(n)) with |3 | < T@ and furthermore fo(n) =
o(log(n)) if #; > 0 and f3(n) = o(log(n)) if B <O,
then n(a, b, | 51|) > 2 must hold.

4) If there exists any sequence (over n) of side information
outcomes [my, ..., mg] such that f;(n) = (3 log(n) +
o(log(n)), || < T'%" and furthermore f5(n) = —f;
log(n) + o(log(n)) if B3 > O and f3(n) = %, log(n) +
o(log(n)) if By < 0, then 7n(a,b,|Bs|) + 26, > 2 must
hold.

Remark 2: The four parts in Theorem 5 are concurrent. For
example, if some side information outcome sequences fall under
Item 3 and some fall under Item 4, then the necessary and suffi-
cient condition for exact recovery is min(7(a, b, |31]), n(a, b, |

Ba]) +28,) > 2.
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Remark 3: When there is any sequence of side informa-
tion outcomes that satisfies fi(n) = Slog(n) + o(log(n)) with
T— (“' 2 < | 3], a sufficient condition easily follows other achiev-
ablllty proofs for Theorem 5, but a matching converse for this
case remains unavailable.

Proof: Converse: Unlike previous sections, the side infor-
mation might not be symmetric. Hence, we need to define the
events of Section ITI-A for both communities A and B. Let H,;
and Hs be subsets of the true communities A and B, respec-

tively, with |Hq| = |Ha| = ﬁm.
Definition 3: Define the following events for nodes i € H;:
log(n)
o = {et < i
F = {TEi, A\Hy) + b + T+ T—2")_ < 7R, B]
loglog(n)
and the following events for nodes j € Hs:
log(n)
a3 = {0 < s
: log(n)
Ha — — <
F; {TE[J,B\HQ] h; +T—|—T oglog(n) TE[j, A]}

and the following overall events:

1 1 2 2
A" = Nicw, 4 A” = Njen, 4]

H H H "
F™' = Usen, Fi™' F™* = Ujen, F}*

Lemmas 2, 3, 4 remain valid according to Definition 3. It re-
g(3)
and P(FJ.H2) > @ ]og(g),asymptot1callyf0rall§ € (0,1).

Lemma 12: Both P(F™") and ]P’(FHE) are greater than

IOE (n) log (%), 6 € (0,1) for sufficiently large n if at least one
of the following conditions holds:

1) If there exists a sequence (over n) of side information
outcomes [my, ..., mg| such that fi(n), fa(n), f3(n)
are all o(log(n)) and concurrently (/@ — v/b)? < 2.

2) If there exists a sequence (over n) of side information
outcomes [my,...,mg]| such that f;(n) = o(log(n)),
and fa(n), fs(n) evolve according to —fFlog(n)+
o(log(n)), 8>0, and concurrently (v/a—vb)2+23 < 2.

3) If there exists a sequence (over n) of side information
outcomes [my, ..., mg | such that fi(n) = 5 log(n) +
o(log(n)), |Bi] < T, and furthermore fo(n) =
o(log(n)) if 1 > 0 and f3(n) = o(log(n)) if 5 <O,
and concurrently n(a, b, |31]) <2.

4) If there exists a sequence (over n) of side information
outcomes [my, ..., mg | such that fi(n) = (3 log(n) +
o(log(n)), |Bs] < T2 and furthermore f;(n) =
—f log(n) + o(log(n)) if B >0 and f3(n)=—P5
log(n) + o(log(n)) if B2 <0, and concurrently
n(a,b, |Ba]) + By < 2.

Proof: Please see Appendix D |

Combining Lemma 12 with Lemmas 2, 3, and 4 modified

according to Definition 3, concludes the proof of converse.

Achievability: Achievability of Theorem 5 is proven via an

algorithm whose exact recovery conditions are identical to the

mains to show under which conditions P(F/71) > &) l°g ™) 1o

necessary conditions provided in Lemma 12. The first stage
of the algorithm is the same as Section III-B. After the first
stage, we have G5, the side information y,...,yx, A’ and
B'. Locally modify the community assignment as follows: for a
nodei € A, flip its membership if E[i, B'] > E[i, A'] + % and
for node j € B, flip its membership if E[j, A'] > E[j, B'] —
i;i—. If the the number of flips in each cluster is not the same,
keep the clusters unchanged.

Lemma 13: The algorithm described above successfully re-
covers the communities with high probability if the following
are satisfied simultaneously:

1) If there exists a sequence (over n) of side information

outcomes [my, . .., mg | suchthat f; (n), fo(n), f3(n)are
all o(log(n)) and concurrently (/@ — v/b)? > 2.

2) If there exists a sequence (over n) of side information
outcomes [my,...,mg| such that f;(n) = o(log(n)),
and fa(n), fa(n) evolve according to —f3log(n)+
o(log(n)), 8 > 0 and concurrently (,/a—v/b)? +23>2.

3) If there exists a sequence (over n) of side information
outcomes [my, ..., mg] such that f;(n) = 3 log(n) +
o(log(n)), 81| <TYF, and furthermore fy(n) =
o(log(n)) if 1 > 0 and f3(n) = o(log(n)) if B <0,
and concurrently n(a, b, |51]|) > 2.

4) If there exists a sequence (over m) of side infor-
mation outcomes [mi,...,mg| such that fi(n)=
Bolog(n) + o(log(n)), |G| < TYF2, and further-
more fa(n) = —05 log(n) + o(log(n)) if B2 >0 and
fa(n) = =4 log(n) + o(log(n)) if B2 < 0, and concur-
rently n(a, b, |3s]) + 85 > 2.

Proof: Define P, = PP(node i to be misclassified). Follow-

ing similar analysis as in the proof of Lemma 2 leads to:

M, Ms K

P < %( RO W Z H(ﬂ'+m

mi=1ms=1 myg =1k=1

5 K pk
xP(Z(Zs—Wz)zZ o
1 M, M- K

+2( B DI D ZH(O‘ )

my=1ma=1 mig =1k=1

+ ¥n log(n)))

. (i(zI W) > — Zhg‘*wﬂlog(n)))

(22)

where v, = o(1).

Similar to Lemma 7, it can be shown that any term inside the

nested sum in (22) is upper bounded by:

1) n-r(V@a-vB)*+o(1) if there exists a sequence (over m)
of side information outcomes [my,...,mg] such that
fi(n), fa(n), fa(n) are all o(log(n)).

2) n-r(Va-vB)-G+o(l) if there exists a sequence (over n)
of side information outcomes [my,...,mg] such that
fi(n) = o(log(n)) and fo(n), f3(n) evolve according to
—plog(n) + o(log(n)), B>0
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3) n- @b 151 +0(1) if there exists a sequence (over n) of
side information outcomes [m;, . .., mg| such that f; (n)
= f1 log(n)+ o(log(n)), |B1|<T 52 and furthermore
fm) =o(log(n))if By>0and fy(n) =o(log(n)) i f1<0.

4) n-Tn(@b.1820)-F3+0(1) if there exists a sequence (over n)
of side information outcomes [mj,...,mg]| such that

f1(n) = B log(n) + oflog(n)), |B| < T3 and
furthermore fo(n) = —f; log(n) + o(log(n)) if B2 >0

and f3(n) = — B4 log(n) + o(log(n)) if B2 < 0.
Since K and {M,k=1,..., K} are fixed, a union bound
over the nodes concludes the proof of Lemma 13. O
This concludes the proof of achievability. |

We now give an example of side information with K = 1 and
fixed cardinality and analyze the effect of the evolution of the
distribution of side information with growing n.

Consider the weakly symmetric side information whose tran-
sition probability matrix P(y|z) is defined as follows: every
row of the transition matrix PP(-|z) is a permutation of ev-
ery other row, and all the column sums ) P(y|z) are equal.
Since the labels are either 1 or —1, all the column sums are
%. Without loss of generality, assume the first row P(y|z =
+1) is arranged in descending order, i.e., P(y;11|z = +1) =
P(y;|xr =+1),1 <1 < M — 1. Thus, for even M (odd M fol-
low similarly), by the weakly symmetry property of ]P’(y|J:)'
oy +oas 1 = Fandh = —hy 41,1 <1 < AL Thus,
if h% = [Flog(n) + o(log(n)), i.e., h% = O(log(n)), thls im-
plies that h; = O(log(n)) for all 1 <1< M, and hence,
this maps to the third case of Theorem 5. In other words,
n(a,b,|B]) > 2 is necessary and sufficient for exact recovery
(assuming |3 < & Tla-b)). On the other hand, if hM is in the

order of o(log(n)), thls maps to the first case of Theorem 5,
and hence, side information does not change the exact recovery
phase transition.

B. Varying Number of Fixed-Quality Features

In this section, of ,, and o ,, are independent of n. We
study how many features K are needed so that side information
can improve the phase transition threshold of exact recovery. We
show that when K = o(log(n)), side information will not im-
prove the phase transition of exact recovery. A direct extension
of our result shows that with K = O(log(n)), side information
can improve the phase transition, but this result is omitted here
both in the interest of brevity and in part because it can be con-
sidered a straight forward extension of [33, Theorem 4] which
showed the result in the special case of K = log(n).

Theorem 6: Assume that M, k = M and all features are i.i.d.
conditioned on the labels. Let of % m, and aof ,m, benon-zeroand
independent of n. Then, if K = o(log(n)), (y/a — vb)? > 2is
necessary and sufficient for exact recovery.

Proof: Converse: Using Definition 3, it remains to show un-

der what conditions P (F/"') > IDgS (™) Jog(1) and P(F") >
IOE (n) log($) asymptotically for all d €(0,1).

Lemma 14: For K — o(log(n)), both P(F{"") and P(F;™)
are greater than 1‘333% log($), 6 € (0,1) for sufficiently large

nif (va — vb)? < 2.

Proof: Let W; ~ Bern(p), Z; ~ Bern(g). Then, in a man-
ner similar to Lemmas 12, 15:

P(F™)

> IP(;:[Z Wy > M4 s )
Z 1~ Wil z = 0
~ T log log(n)

K log(E, [c-"iskn)
- Tog(n)

(23)

< o~ log(m)(1+o(1) (sup, SF2-L($) ~4(§)

where E_, [e~*% ] is the moment generating function of the side
information LLR, for feature k of node 7, conditioned on z; = 1.
Since K = o(log(n)), substituting in (23) leads to:

p(ﬂHl) > e~ log(n)(1+0(1)) (suprcr 252 —2($) ~5(§)™)

n—%(ﬁ—\/b_)2+0(1) (24)

where the last inequality holds by evaluating the supre-
3
mum. Thus, if L(va —vB)? <1, P(FM) > e oLy
6 € (0, 1) for sufficiently large n.
Similarly,

P(F[™)

Klug{E_[c”‘J‘kn)

og(n

< o log(n)(1+0(1)) (sup,cr S -§(3) ~4(3) -

> n—%(ﬁ—\/g)2+0(1) (25)
Thus, §(v/a — vb)* < 1implies P(F*) > n;gl& log (%) for
all 4 € (0, 1) for sufficiently large n. |

Combining Lemmas 2, 3, 4, 14 concludes the proof of con-
Verse.

Achievability: It is known that %(\/E - \/3)2 > 1is sufficient
if the only observation was the graph. Combining this with the
converse completes the proof. |

APPENDIX A
PROOF OF LEMMA 5

Define ! = £ and I'(t) £ log(E x [¢"*]) for a random variable
X. Then,

P(F)
z LR e log(n)
:]P’( Zy — Wk_cinTJrT%)
k=1 k=1 ° Og(n)
>P Z%}[Z W)z e + T+ TS
S\t e loglog(n)
1 & 1 log(n)
J— —_— - - > T loglog(n)
=1 Q)P(l [Zk Wil = E(C+T+Tloglog(’ﬂ)))
P li[z Wil > 3 T+ 72
+aP( 7 e T T Toglog(n)
(;) (1— a)e! (t1a1-T(er)+1t116) (1—-o0(1))
+ ae! (;;az—r(t;mtald)u —o(1)) (26)
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where (a) uses Lemma 15 in Appendix E and the follow-

2
oeT0) gy 2 L(e+ T+ Tklel) + 4,

. e o A
ing definitions: § = Tog log(n)

ay & }(—c+ T +Tpfos) + 6, and:
t] = argsup (ta; — I'(t)), t; = argsup (tas — ['(t))

The supremum at ¢] is calculated as follows; ¢; is obtained
similarly.

ta, — T(t) = ta; — log (1 —q (1 - (%)t))
~log (1 p (1 - (%)_t)) 27)

The right hand side is concave in ¢, so we set the derivative to
ZEro:

_ Tay To($)
Pl -(3)Y) T1-p(1-($))
_log(n) 2¢ 2T ar 2
" (log(n) og(n) " Toglog(m) ' iog? (m)
Ty Ta(2)* )
1—q(1-(3)) 1-p(1-(3)")
=0 (28)

We consider two asymptotic regimes for a:

1) ¢ = o(log(n)). Then, the first four terms on the right hand
side of (28) are o(1). This suggests that t* = %. Hence,
substituting back in (27) leads to:

10 = 3o 1o (1-0(1- )
()

(2) 1 q(1 - (/%))

=21~

. p(1— (/%)

= +
1=a1 = (V3D 1-p(1- (/2
’@((ﬁ — VB +o(1)) 29)

where (a) holds because log(l —x) > = and (b)
holds because both (1 —g(1 — (y/%))) and (1 —q(1 —
(/%)) — 1 as n — oc. Thus, we can bound the term
involving ¢] as follows:

—
o

e—s(:;al—r(z;)+|q|5) > e—1ag(n)(§(ﬁ_ﬁ)z+o(1))
We can similarly bound the term involving ¢35 and substi-
tute both in (26) to get:
P(EH) > n—O.S{\/E—\/E)2+O{1)
Thus, if (/a — Vb)? < 2 — ¢ for some 0 < £ < 2, then

P(FF) > n1+% > 1260 1o0(1) for § € (0, 1) for suf-
ficiently large n. This proves the first case of Lemma 5.

2) ¢ = Blog(n) + o(log(n)), S > 0. Substituting in (28),
this suggests that ¢] = - log(3+2) and t5 = +log(372),

where v = /3 + abT?. Hence, by substituting back
in (27) and following the same ideas as in (29):

1) < 22 g( ) (251:* +b (1 - (%)t)
+a (1 - (%)_P) + 0(1))

:l°gin)(+b+ﬁ—? gl (7+g)+ (1))

log(n
= 280 (10,1, ) + o1)) (30)
We can then bound the term involving ¢ as follows:

e—!(t{al—r(t})ﬂt{ 8) < o252 (n(a.p,6)+0(1))

€

We can similarly bound the term involving £5 and substi-
tute both in (26) to get:

]P(EH) > n—D.Sn(a,b,ﬁ)+o(l) +an—0,sn(a‘b‘_ﬁ)+,3+o(l)

_ n—D.Sn(a,b,ﬁ)+o(l)

Thus, if 7(a,b, ) <2 —¢ for some 0 < e < 2, then
. 3

P(FE) > nt+5 > 98 150(1) for § € (0,1) for suf-

ficiently large n. This proves the second case of Lemma 5.

For the last case of Lemma 5, we begin as in (26) but take

a different approach:

ta]=

P(FH) > ]P’(Z[Zk —Wi] = eyi +T+T
k=1

log(n)
log log(n))

n

=(1 —a)(l - ]P(Z[Zk — W]

k=1

log(n)
: C+T+Tloglog(n)))

. log(n)
T Tlog log(n)))

b33

—|—a(1—]l’(Z[Zk — W] <

k=1
(a)

>1-(1—a)
o« &SP T 2 (4747 ofL ) L iog (E(e 12 -%1))

1 - |
“nsup, o 3 (et THT i) - tog (B(e 127

(3D

— e
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By

P <

where (a) is a Chernoff bound. A direct computation of
the logarithmic term leads to:

log (B [e~*141])

e ol (2) ) s (10 (- ()
P ) )

where (a) follows from the fact that W;, Z; are in-
dependent random variables V7, and (b) holds because
log(1 — z) < —z. Substituting (32) into (31) yields:

P(FH)>1-(1-a)

(32)

o~ 5 sup, o —t(5+o(1))+% (atb-a($) —b($)*)

—Log(n) sup, _ 4 [s(G+0(1))+(a+b—a($)* —b(%)~*)]
(33)

— e

Recall that > 0. Since —t(8+o0(1))+3(a+b—
a(£)" —b(%)™*) is concave in ¢. We find its equilibrium
by taking the derivative:

al rant BT ra\—t
-5 3G

The derivative has a zero at ji, ]og(%g) which is neg-
ative due to positivity of 3, therefore by continuity, the
supremum over ¢ > 0 is achieved at t* = 0. Similarly the
supremum Over s can be calculated via a derivative, find-
ing s* = (& log(LH2 £))*, which is positive as long as
B > T ﬂ Tab)  Since s* = 0 leads to a trivial bound, con-
sider 3 > T{a % and substitute in (31).

=0 (34

P(FEH) Z 1-— (]- — G’)eu — an_%ﬁ(a?bn@)‘fﬁ

B G

using « = n~7. Hence, if 3 <1—¢; and 7 > 1+ &,
then P(FH)>n'(n® —n=2)> 28 Wog(l) for
6 € (0,1) for sufficiently large n. This proves the third
and last case of Lemma 5.

APPENDIX B
PROOF OF LEMMA 7
upper bounding P, we get:

(1-6)% (1-6) 5 —2tgn

C
P( > zk+zwk ) W+ 2
% 5% (1-8)3 ~rxtar ™
P( Zi+y Wi > _Z w; +T-‘f=)
k=1 k=1 i=1
% '2; 6n+10%?;rn
]P’( Ly Wi, + Z W; > Tyx)
k=1 k=1 j=1

955

Deﬁrling ’i;f} = m

P < P(Z(Zk -Wi) = %y«b - d)]og(n))

k=1
6n+10%?;rn
+P( > W= d)log('n))
i=1
— (- )P (3% - W) 2 5~ vog(n))
k=1

wf2

+aP(§(Zk W) > —% - '(,blog(n))

)
+p(
Similar to Lemma 3, we use a multiplicative Chernoff bound on
the sum of i.i.d. random variables W;:

Y W;>glog(n)

=1

n+ %ﬁ-n
) (35)

m t _t.;_,[

> W >tu S(—) , m=mE[W,].
€

j=1

where m = dn + 7—)-71 i = a(dlog(n) + 2D) and we set

log(n
log(n)
t= m% to gﬁt.
dn42on
Loty — log(n)
1
("3 w2 st < ()
= ae(d log(n) 4+ 2D)
login)
_( Y ) Ve (5
= ———
ade(l + §—10g(n))
Lilog(a) | 00+ gTAT)  log(8)+ floglog(§)
_ log(n)(\/log(?]+ Vlee($) N
g (1T o)
—n =) (36)

where we used limp_m 6 = 0. Since there exists D sufficiently

og(1 +ﬂm)
(5)

Toz <1,

large such that

6n+1‘%?ﬁn
P( D = zf»log(nJ) < p~(1+90)

Jj=1

(37

Chernoff bound can be applied to the first term in (35):

wa]2

(1- o:)]P’( (Zk = Wi) 2 = — wlog(n))

k=1

+aP(§Z(Zk SLOEE ).

k=1
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1] 1 g(n) =
(S) (1—a)e T SWPu>0 2t (rrgmy—¥)+atb-belt —ae™

lﬂl;{ﬂ}

+ ae

SUP;y o 2f2 (— ppgry —¥)+a+b—be'2 —ae'2 (38)

where (a) holds because log(l — x) < —z. Since ¥y — 0 as
D — oo, 7 can be replaced by o(1) for sufficiently large D. We
consider the following asymptotic regimes for a.
1) Ifc = o(log(n)), this suggests that t; = t5 = 2T Hence,
(38) can be upper bounded by:

n—%(ﬁ—\/b_)2+0(1) (39)
2) If ¢ = Blog(n) + o(log(n)), for 0 < B < La=t) then it
can be shown that ¢} = log(%2) and t; = log( 5,
where v = /32 + abT?2. Hence,

bounded by:

(38) can be upper

(2 — @)~ T(@:b.B)+o(1) (40)

3) If ¢ = Blog(n), for 3 > @, then it can be shown
thatt] = log(%ﬁ) and t5 = 0. Hence, (38) can be upper
bounded by:

(1 — a)n-3n(@bB)+o(l) 4 ,—F (41)

The last three equations and (37), substituting in (35), con-
cludes the proof of the lemma.

APPENDIX C
PROOF OF LEMMA 10

Define | = % and let T'(¢) £ log(Ex [¢'*]) for a random vari-
able X. Then,

: FEdw log(n)
.H = - = log log(n)

P(ES) eP(kZ:;(Zk) 2 W)x1+ 1oglog(n))

_ Z%:[Z Wil =1+ log(n)

=T\ & T =T T oglog(n)

D cetlra-ren+riv) (1 _ o(1))

prg E(t‘a r{tt)+|t‘|6)+log ( O(]‘)) (42)
where (a) holds by defining & —ﬁ a=7(1+ Oi:i(;i"j)

+ 4, t} = argsup,.g at — I'(%) and by using Lemma 15 in
Appendix E.
In a manner similar to (27) and (28), it can be shown that
= 17T Substituting in (42) and using log(1 — z) > =
P(EH) > en 0-5(va-Vh)*+o(1) (43)

Whenlog(e) = o(log(n))and (v/a — vb)? < 2 — eforsome
0 < € < 2, for sufficiently large n and all § € (0, 1) we have:

3
P(FH) > i+ > 28 (1)), (%) .
T

This proves the first case of Lemma 10.

When log(e) = —3log(n) + o(log(n)) for positive 3, and
(vVa— vb)? 4+ 28 < 2 — ¢ for some 0 < € < 2, then for suffi-
ciently large n and all § € (0, 1) we have:

3
P(FH)>n1+5 > —l°gn(”) log G)

This proves the second and last case of Lemma 10.

APPENDIX D
PROOF OF LEMMA 12
Let W; ~ Bern(p), Z; ~ Bern(q) and define [ = % and

I'(t) £ log(Ex [¢*]) for a random variable X. Then, we have
the following:

P(E)
ISR T log(n)
- (JZ:;(ZJ) ; W) > 3 +1+ o))

] K k
P(Z[Z; - W] > Zh;’i* +1+M)

= = loglog(n)
(0 g & e t T(t*)+ |t |a)
Ca t+ =
ED DRSS Ha+ me
mi=1mas=1 my =1

(44)
- k
where (a) holds by defining 6 = —Dgﬁﬂ %(Zg 1 h; +
1+ olgoﬁgo(;m') + 06, t* = argsup,;.g at — F(t) and by using
Lemma 15. For convenience a and ¢* have no subscripts even
though both depend on feature outcomes. Similarly,

P(F™) > zl zl zl (Ha+ m)

8—1(t‘a—1"(t‘)+|t*|6) (45)

- ke
where a = %(_ E?:l hmTk +1+ lolgoE:l(gn{n ) +4.
Without loss of generality, we focus on one term of the nested
sum in (44) and (45) Then,
1) If Zk 1 = o(log(n)) and both Zk , log(a® i)
and Ek:l 10g(0’_,m,,) are o(log(n)), then the optimal
t for that term is t* = %T for both (44), (45). Hence,
substituting in (44), (45) leads to:

]p(FiHl) > n—0‘5(ﬁ—\/5)2+0(1) (46)

P(Ff? ) > n—0-5(v/a—vB)*+o(1) 47)

Thus, if (\/a — vb)? < 2 — ¢ for some 0 < £ < 2, then
P(F7") and P(F;™) are both greater than n T >

IOE (n) log () for 6 € (0, 1) for sufficiently large n.
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2) If 355 ki, = o(log(n)), iy log(o ) = ke
log(ai,mk) = —flog(n) + o(log(n)), 3 > 0, then t* =
%T for both (44), (45). Hence, by substituting in (44),
(45):

P(I;;:Hl ) > n-0-5(va—Vvh)*—p+o(1) (48)

P(F[™?) > n 08Wa-Vir=pro®) (49

Thus, if (v/a — vVb)?> +28 < 2 — e forsome 0 < € < 2,
then P(F*) and P (F}H2 ) are both greater than n 1t 7 >
l°g (n) log(3) for & € (0,1) for sufficiently large n.

3) 1 Y4, B, = Blog(n) + oflog(m)),0 < # < T2,
then t*=log(Lt2) for (44) and ¢ = L log(32)
for (45). Hence, by substituting in (44), (45):

E o
P(FH) > e ~tog(n) (0.50(a,0,8) T K-, ek +o(1))

log(ak )
P(Fi?) > o~ 1oa(m) (05n(a.0,6)p-TE_, o= +o(1))

Then,if 3, log(aX ,,,) = o(log(n)), this implies that
- log(at )
Z£=1 WTL —f+ o(1). Hence,

P(F.Hl) > p0-5n(a,b,5)+o(1) (50)
i =

(G1)

Thus, if n(a,b,3) <2 —¢ for some 0 <& < 2, then
P(F™) and ]P’(FHE) are both greater than n'*7 >

l°g (n) log(4) for & € (0, 1) for sufficiently large n.

If Zk:l log(ahmk) = —f log(n) + o(log(n)), this im-
- k

plies that Zi‘:] log(@m,) _

P(E}Hn) > n—O.S'q(a,b,ﬁ)+o(l)

—f3", for some 3" > 0 and

Tog(n)
=8 — [3.Hence,
P(FH) > n0-51(ab8)=p'+o(1) (52)
P )=
P(F) > n—0-5m(a,b,8)+5—p"+o0(1)
— p0-5m(ab,8)—p"+o(1) (53)

Thus, it is clear that if 5(a, b, 3) + 28 < 2 — ¢ for some
0 <& <2, then P(F™") and P(FJ.H2) are both greater

than n~ 17 > @ log(3) & € (0,1) for sufficiently
large n. The case when —T@ < 8 < Oholds similarly.

APPENDIX E
PROOF OF LEMMA 15

Lemma 15: Let X,,..., X, be a sequence of i.i.d random
variables. Define I'(t) = log(E[e!*]). Then, for any a, € € R:

1 - —n|t*a—T(t*)+|t*|e 9%
P(;;Xizﬂ.—f)ze ( ) 1—@

where t* = arg sup, g (ta — I'(t)), X is arandom variable with
the same alphabet as X but distributed according to g—’[‘fgl]

and py, 0 2 are the mean and variance of X, respectively.

Proof:
P lzﬂ:X-> —e|=2Pla— <lzn:X-< +
ni:l i— a €| = a f_ni:l i=a €

= ]P(Il)..

|£3 zi—al<e
(a) o (€5 P ()
~ e—n{m—l"(t)+|t|e)/ ( i dI)
- |$zxi—a|seH Ex [etX]

i=1

‘P(xp)dry -+ - dzy,

n
() e (ta=T(t)+]tle) ]P(a —e< l E X’i <a+ E)
n

i=1

(;) e—n(ta—F{t)+|t|£) (1 _

54

where for all finite E[e'X], (a) is true becuase ef2 % <
en(tatltle) gver the range of integration, (b) holds because
%X—ﬂ)[’%%)— is a valid distribution [39], and (¢) holds by Chebyshev
inequality.

Since (ta —I'(t)) is concave in ¢ [39], to find t* =
argsup,(ta — I'(t)) we set the derivative to zero, finding

= E—XE%‘?;%]-. Also, by direct computation p; = Ex Ec[e:x |

This means that at ¢ = ¢*, we have u; = a. Thus, substituting
back in (54) leads to:

1< o2
P(IN"x 5 g c) > enttaTe)en [ 2%
(n ; P=a 6) =€ ne2

2
In our model € = w and X =T(Z — W), where Z ~

Bern(g) and W ~ Bern(p), where T' = log(%). Hence, J?E _
O(lognﬁ), therefore

n
P (l E X, >a— E) > e M(Ea-T(E)+[t%]e) (1 — 0(1))
n
i=1

which concludes the proof. |
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