Pure Appl. Geophys. 176 (2019), 1037-1059
© 2018 Springer Nature Switzerland AG
https://doi.org/10.1007/s00024-018-1995-6

[ Pure and Applied Geophysics

@ CrossMark

Earthquake Fingerprints: Extracting Waveform Features for Similarity-Based Earthquake
Detection

KARrIANNE J. BErGen'? and GreGory C. Beroza®

Abstract—Seismologists are increasingly adopting data mining
and machine learning techniques to detect weak earthquake signals
in large seismic data sets. The detection performance of these new
methods, especially their sensitivity and false detection rate,
depends on the choice of feature representation for waveform data.
We have previously introduced Fingerprint and Similarity
Thresholding (FAST), a new method for waveform-similarity-
based earthquake detection that uses a pattern mining approach to
detect earthquake signals without template waveforms. FAST has
two key steps: fingerprint extraction and efficient indexing for
similarity search. In this work, we focus on FAST fingerprint
extraction: the method used to map short-duration waveforms to a
set of features, called waveform fingerprints, used for detection.
We describe the FAST fingerprint extraction method, a data-
adaptive variation on the Waveprint audio fingerprinting method
tailored for use in continuous seismic data. We compare the per-
formance of the FAST fingerprint extraction method with existing
fingerprinting techniques designed for audio identification. To
overcome the challenges associated with using limited or incom-
plete event catalogs to evaluate detection algorithms, we propose a
framework for quantifying the performance of different fingerprint
extraction methods in the context of blind similarity-based detec-
tion. Our framework wuses computational experiments on
benchmark data sets, constructed with known event waveforms, to
compute a measure of fingerprint effectiveness. We use this
framework to show that, among the audio fingerprinting schemes
considered in this work, our proposed FAST fingerprint extraction
method achieves the most consistent performance in distinguishing
similar, low signal-to-noise earthquake waveforms from noise in
waveform data sets from eight stations in the Northern California
Seismic Network.
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1. Introduction

Earthquake detection, the task of identifying
earthquake signals in continuously recorded ground
motion data from one or more stations in a seismic
network, is a challenging and fundamental task in
seismology. Waveform cross-correlation, also refer-
red to as template matching, is a widely used and
highly sensitive method for detecting weak earth-
quake signals (Gibbons and Ringdal 2006).
Waveform cross-correlation is limited to detecting
events with waveforms similar to those of known
events, and these template waveforms are derived
from earthquake catalogs that are often incomplete.
To overcome this limitation, Yoon et al. (2015)
introduced Fingerprint and Similarity Thresholding
(FAST), a general detector based on waveform sim-
ilarity. FAST' is the first detector based on waveform
similarity that is capable of identifying events with
unknown sources in long-duration (large-T) data sets
of up to 10 years (Rong et al. 2018).

FAST is inspired by algorithms used for content-
based audio search and retrieval tasks, such as iden-
tifying songs directly from noisy audio waveform
data recorded on a mobile phone (Wang 2003; Baluja
and Covell 2008). FAST is an uninformed (unsu-
pervised) detector and does not require template
waveforms. The FAST detection model, like wave-
form cross-correlation, is based on the observation
that earthquakes with similar sources produce similar
waveforms. In the absence of template waveforms,
FAST labels any pair of waveforms with high simi-
larity as candidate earthquakes, relying on the
assumption that noise waveforms are mutually

" FAST code available at https:/github.com/stanford-
futuredata/FAST.
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dissimilar (in contrast, waveform cross-correlation
requires high similarity to a known template wave-
form). FAST identifies candidate earthquakes by
using locality-sensitive hashing (LSH) (Andoni and
Indyk 2006), a randomized algorithm for computa-
tionally efficient similarity search, to find pairs of
similar waveforms in single-channel continuous data.
The FAST detection pipeline is made up of
algorithmic modules, each of which can be inde-
pendently tuned or optimized. Single-station FAST
has two key steps: fingerprint extraction and efficient
similarity search (see Fig. 1); an overview of the
single-station FAST detection method is presented in
Yoon et al. (2015). In the fingerprint extraction step,
FAST computes a set of features, called a waveform
fingerprint, for each short-duration sliding window in
the single-channel continuous waveform data, and
performs similarity search over this collection of
waveform fingerprints. Waveform fingerprints are
used as proxies for the raw waveform signals in the
FAST similarity search step. Therefore, the perfor-
mance of FAST will depend on our ability to extract
appropriate features as inputs to similarity search for
unsupervised earthquake detection. This work focu-
ses on the fingerprint extraction step and extends the
preliminary results of Bergen et al. (2016).
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The efficient similarity search step, which is
optimized for large-T detection in Rong et al. (2018),
depends only on the choice of similarity metric for
the waveform fingerprints, and not on the feature
extraction algorithm itself. Bergen and Beroza (2018)
present a multi-station extension to FAST, which
combines the single-station FAST detection results to
reduce false detections among the candidate events.
Extending FAST over a network requires running
FAST separately on data from each station, so the
FAST feature extraction method is designed for use
on single-station data [multi-station feature extraction
is addressed in the supplement of Bergen and Beroza
(2018)].

Earthquake detection is an active area of research,
and in recent years there has been growing interest in
machine learning and data mining approaches for
event detection and seismic signal analysis. The
performance of these methods can be critically
dependent on the selection of appropriate waveform
features. In the related field of audio signal process-
ing, there is an extensive body of literature dedicated
to methods for extracting features, called audio fin-
gerprints, from raw audio waveform data for audio
classification and identification (Cano et al. 2005).
However, the topic of feature extraction for seismic
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Figure 1
Main processing steps in the FAST earthquake detection method (ﬂgoon et al. 2015). The input to FAST is continuous ground motion data
from a single channel, usually with some basic pre-processing such as bandpass filtering. The FAST detector has two key steps: Fingerprint
Extraction, which is the subject of this work, and Efficient Similarity Search. The Efficient Similarity Search step uses locality-sensitive
hashing (Andoni and Indyk 2006) to build an index or “database” of waveform fingerprints and query the database to identify similar
waveforms (Yoon et al. 2015; Bergen et al. 2016; Bergen and Beroza 2018; Rong et al. 2018)
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signals has received less attention. Valentine and
Trampert (2012) analyze the appropriateness of
autoencoder neural networks for extracting compact
waveform features from which the earthquake
waveforms can be reconstructed. Holtzman et al.
(2018) use an unsupervised learning approach to
extract fingerprints for a set of earthquake waveforms
that reveal subtle differences and relationships
between events. Both studies apply their analysis
only to event waveforms rather than to continuous
data, and neither focuses on the task of discriminating
earthquake signals from noise.

The focus of this work is feature extraction for the
specific task of earthquake detection via blind simi-
larity search in long-duration continuous seismic
waveform data sets. We discuss the desirable prop-
erties of waveform fingerprints in the context of
similarity search, and present the fingerprint extrac-
tion method used in FAST and alternate methods
from the audio fingerprinting literature. One of the
inherent challenges in developing new earthquake
detection algorithms is the lack of ground truth data,
an objective reference data set for measuring algo-
rithm performance. Existing event catalogs, the
closest thing to such a reference data set that is
available, are known to be incomplete and thus do not
accurately label all segments in the continuous
waveform data as either earthquake signals or noise/
non-earthquake signals. Without an objective per-
formance metric, it is difficult to assess and compare
the performance of different detection algorithms.
Thus, in order to evaluate the relative performance of
different fingerprinting schemes, we introduce a
framework for quantifying the relative effectiveness
of different feature extraction methods for similarity-
based detection using computational experiments.
We use our proposed framework to demonstrate that
the procedure used to extract FAST waveform fin-
gerprints produces a lower false alarm rate and
enables the detection of lower signal-to-noise events
than the alternative methods considered. Our analysis
framework provides a template for other researchers
who wish to optimize and validate feature represen-
tations of seismic waveform data for use in machine
learning or data mining techniques.
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2. Background

2.1. Fingerprinting

Feature extraction refers to the process of map-
ping an input data object to a set of features. A
fingerprint is a compact signature that represents an
object, such as a data file or high-dimensional data
vector (Broder 1993). Fingerprinting or fingerprint
extraction is a form of feature extraction that follows
two general properties: (1) if two fingerprints, f(x;)
and f(x,), corresponding to data objects x; and x,, are
different from each other (i.e. not identical), then the
original data objects x; and x, are also different, and
(2) if x; and x, are different, then there should be a
low probability that they map to the same fingerprint:

f(x1) #f(xa)=x1 # x2 (1)

[F"[f(xl) :f()C2)] <1 if X1 7é X2. (2)

These properties allow fingerprints to act as nearly
unique identifiers, similar to the most commonly
understood definition of (human) fingerprints, the
ridge patterns on human fingers (Pankanti et al.
2002). Fingerprints are often used in conjunction with
hashing in information search and retrieval tasks;
applications include document fingerprints for
detecting plagiarism and duplicate webpages (Man-
ber 1994; Broder 1997),
fingerprints for identifying audio recordings directly
from the waveforms rather than from metadata (Cano
et al. 2005), and molecular fingerprints for finding
similar molecular structures in chemical databases
(Willett et al. 1998).

acoustic or audio

2.2. Waveform Fingerprints for Similarity Search

In this work, we are interested specifically in
waveform fingerprints, features that represent short-
duration seismic waveform data, and are used as
inputs to the efficient similarity search step in FAST
for waveform-similarity-based earthquake detection.
Waveform fingerprints should be tailored for use in
similarity search, and to the particular characteristics
of seismic data and the earthquake detection problem.

e Waveform fingerprints should distinguish earth-
quake signals from noise. In earthquake detection
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via similarity search, earthquake signals are dis-
tinguished from noise by high similarity to one or
more other earthquake waveforms. The fingerprint-
ing scheme should map similar earthquake
waveforms to similar fingerprints and map noise
waveforms to fingerprints with low similarity to
other noise fingerprints; we describe fingerprinting
schemes that satisfy this property as discriminative
for similarity search. Note that features that work
well for supervised waveform classification, where
features should map earthquakes and noise wave-
forms into different regions in the feature space,
may not be suitable features for use in similarity-
based detection.

e The fingerprinting scheme must be paired with an
appropriate similarity measure. The similarity
measure should be appropriate based on the
characteristics of the fingerprints (e.g. real-valued
vs. binary, sparse vs. dense) and suitable for use in
an efficient search method [e.g. LSH or k-d tree
(Bentley 1975)]; examples include the Jaccard,
Hamming, and cosine similarities (Leskovec et al.
2014), and [, norms (Datar et al. 2004).

e A good fingerprinting scheme needs to be robust to
the types of distortions that are expected in the data
set of interest. For earthquake detection, finger-
prints should be robust to high levels of noise and
differences in signal amplitude. In this work we
focus on methods that extract features from the
time-frequency representation (spectrogram) of the
signal, as these are more robust to small phase
shifts than time-domain features.

e The fingerprinting scheme should produce finger-
prints that maintain similarity over long time
periods, as activity along faults persists over long
timescales, and ideally should be fixed for the full
time duration. Care should be taken with adaptive
or dynamic fingerprinting schemes to ensure that
similar waveforms separated by long time periods
will produce fingerprints with high similarity.

e The fingerprinting scheme should not require prior
waveform information, since the FAST detection
method is designed to be effective even when no
template waveforms are available. The fingerprint-
ing scheme may be either data-agnostic (i.e. not
dependent on any properties or characteristics of
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the data) or data-driven, so long as it does not
incorporate any label information.

3. Methods

3.1. Audio Fingerprinting

Audio fingerprints are a compact representation of
audio waveform data, including music, speech, or
other sound recordings (Alias et al. 2016). Among
previous work on fingerprinting for information
retrieval and similarity search tasks, audio finger-
printing in particular provides a good starting point
for the development of earthquake waveform finger-
prints—there are structural similarities between the
data (oscillatory signals with frequent zero-crossings
and temporal variations in amplitude and frequency
content), and both applications require fingerprints
that are robust to small variations and additive noise.

In this work we focus on three well-known,
effective audio fingerprinting methods: the landmark-
based (Wang 2003), Philips (Haitsma and Kalker
2002), and Waveprint (Baluja and Covell 2008)
methods. These methods and the FAST fingerprint
extraction method are summarized in Fig. 2. In Sect.
5 we compare the performance of these fingerprinting
schemes for seismic waveform data in the context of
earthquake detection by blind similarity search.

3.1.1 Landmark Method

The landmark-based algorithm (Wang 2003, 2006),
developed to identify audio clips recorded by a cell
phone microphone for the Shazam mobile app, relies
on the assumption that energy peaks in the time-
frequency representation of the audio signal are key
features that can be used to identify an audio clip and
are invariant to additive noise. The algorithm iden-
tifies key points, defined as local maxima in the
spectrogram, and builds hashes from the constella-
tions based on the relative positions of these key
points. The search and identification step scans a
database to find sequences of multiple matching
hashes.
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Figure 2
A comparison of three audio fingerprinting methods and the FAST feature extraction method. The landmark algorithm is similar to that used
in the Shazam audio identification system (Wang 2003) and uses hash codes derived from peaks in the spectrogram. The Philips algorithm
(Haitsma and Kalker 2002) is a dense binary fingerprint that uses the sign of the time and frequency derivatives to compute the fingerprint.
The FAST feature extraction uses a modified version of the Waveprint (Baluja and Covell 2008) method

3.1.2 Philips Method

The Philips audio fingerprinting method (Haitsma
and Kalker 2002) converts short segments of audio
waveforms to a dense binary fingerprint. The Philips
scheme computes the spectrogram, E, and then
obtains a binary representation, F, from the sign of
the derivatives of the signal energy; from Eq. (1) in
Haitsma and Kalker (2002):

1 if (E[n,m]+En—1,m+ 1))
Fln,m] = > (E[n,m+ 1]+ E[n — 1,m])
0 otherwise

3)

This binary representation is then divided into fin-
gerprints with a sliding window along the time axis.
The similarity between these dense binary finger-
prints (those with roughly equal numbers of Os and
1s) is measured by the Hamming similarity. The
Hamming similarity of bit strings (fingerprints) A and
B, each of dimension A, is the fraction of the N bits
that are identical in both strings:

#{i:

Hamming(A,B) =

3.1.3 Waveprint Method

The Waveprint method (Baluja and Covell 2008) for
audio identification takes an image processing
approach to extracting audio fingerprints. Waveprint
compresses sliding windows along the time dimen-
sion of the spectrogram (spectral images) using a
discrete wavelet transform, a technique for image
compression and denoising (Donoho and Johnstone
1994). The sign values of the largest wavelet
coefficients are encoded in a sparse, binary finger-
print. This approach is robust against additive noise
because the wavelet transform typically concentrates
the signal energy in a relatively small number of
wavelet coefficients, with the noise captured by detail
coefficients that have smaller values and are not
retained when the largest coefficients are selected.
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3.2. Our Approach: FAST Waveform Fingerprints

The FAST waveform fingerprints are extracted
using a modified version of the Waveprint feature
extraction algorithm. The steps in the FAST feature
extraction method and the modifications tailored for
seismic data are discussed in the sections below.

In adapting audio processing techniques to seis-
mic data, it is important to account for differences
between the data, tasks, and constraints. Seismic
event waveforms are relatively short in duration
(typically seconds to tens of seconds), have a lower
sampling rate (100 Hz vs. 44,100 Hz), and contain a
narrower range of frequencies than audio data. Thus,
overall, audio data tends to be richer and have more
distinct spectral signatures compared to seismic data.
Additionally, in the earthquake detection task, the
signals of interest in the continuous waveform data
tend to be infrequent, representing a rare class in a
data set dominated by noise, while in audio identi-
fication tasks we do not expect a large number of
fingerprints (either in the database or queries) to
contain only noise.

3.2.1 FAST Fingerprint Extraction

The input to FAST is single-channel continuous
waveform data. No template waveforms or label
information is available to the algorithm. Each short-
duration waveform is converted into a sparse binary
fingerprint using the procedure described below (see
Bergen 2018 for additional details).

0. Data pre-processing We apply a fixed bandpass
filter to the continuous waveform data to remove
frequencies that contain high levels of noise,
especially narrow-band noise, or frequencies that
do not contain useful information for the detection
task.

1. Spectrogram We transform the time series data to
the spectrogram, a time-frequency representation
computed with the short-time Fourier transform.
The spectrogram has a window length of wy s and
a lag between windows of length /5 s. Although
the original Waveprint algorithm uses logarithmi-
cally spaced frequency bins, for seismic data we
use linear spacing in the frequency domain. We
truncate the spectrogram frequency range when
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appropriate; inclusion of frequency bands contain-
ing high-amplitude noise or those outside the
passband can hurt detection performance.

2. Spectral images We divide the spectrogram into short
(wr s) overlapping segments ({; s lag) and resize
spectral images to fixed dimensions: d; frequency
bins and d, time bins (e.g. d; = 32 and d, = 64).
The dimensions should be fixed for all fingerprints
in the data set, and each dimension should be a
power of 2 (ie. dy,dy€{x|x=2"for

some integer n}) to simplify the computation of
the Haar transform in the next step.

3. Haar wavelet transform For each spectral image,
we compute the two-dimensional discrete Haar
wavelet transform (Mallat 2008) to produce a
wavelet image. The Haar wavelet transform
computes moving averages and moving differ-
ences at multiple scales in a signal or image.

4. Coefficient standardization We standardize the
value of each wavelet coefficient, based on the
distribution of values the coefficient takes over the
full data set. For the ith fingerprint, the value of
the jth wavelet coefficient, ij, is replaced with a
standardized value:

"9 (5)

where a; and b; are measures of the center and
spread, respectively, of the distribution of the jth
wavelet coefficient. We consider two standard-
ization schemes, one using the mean and standard
deviation (Z score), and the other using the median
and median absolute deviation (MAD) (Hampel
1974):

Z score:  a; = [ = N ¢
/2

Ny

1 ( (i) 2
SR )
N/pz ! !

i=1

MAD: q; = median(X}”),

2

(@) (@) @
by = median(‘)(j — median()(j ) D,

where Nj, is the number of fingerprints in the data
set. Before the statistics are computed, each of the
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wavelet images should be scaled to Frobenius
norm 1. Because the properties of the noise-dom-
inated continuous waveform data vary by station,
it is necessary to perform the coefficient stan-
using Z score/MAD
computed separately for each channel.

dardization statistics
Coefficient standardization is a new step intro-
duced for FAST feature extraction and is not
included in the original Waveprint method. Based
on the results presented in Sect. 5, the MAD
statistics are used by default for coefficient stan-
dardization in FAST fingerprint extraction.

5. Coefficient selection We select the K standardized
wavelet coefficients that are largest in magnitude;
these correspond to the most anomalous Haar
coefficients for each spectral image. K is typically
selected in the range of 10-40% (which will
produce a fingerprint sparsity of 5-20%).

6. Conversion to binary For the selected coefficients,
we retain only the sign value and set all other
coefficients to zero. We convert the sign values to
binary using two bits per coefficient (4 — 01,
— — 10, and 0 — 00), resulting in sparse binary
fingerprints of dimension D =2-d;-d, with
K non-zeros.

Because this fingerprinting scheme generates sparse,
binary fingerprints, we measure the similarity
between the resulting waveform fingerprints using a
metric called the Jaccard similarity:

B |A N B|

Jaccard(A,B) = AUB]

(8)

Jaccard similarity is a similarity measure for com-
paring sets, here the sets of active (non-zero)
coefficients in the fingerprints.

3.2.2 Haar Coefficient Standardization

The FAST fingerprint extraction method largely
follows the Waveprint method, with the addition of
the coefficient standardization step that is applied to
the Haar wavelet coefficients prior to coefficient
selection. We explored the use of other wavelet
representations, but none of them exceeded the
performance we obtained using the Haar basis. The
necessity of the coefficient standardization step for
the FAST fingerprints comes down to a key
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difference between seismic and audio data: in con-
tinuous seismic data, noise-only signals make up the
majority of the data set (and, by extension, the
majority of waveform fingerprints), while the signals
of interest, earthquakes, are infrequent. FAST iden-
tifies candidate earthquakes by searching for all pairs
of similar waveform fingerprints. Since most of the
fingerprints extracted from continuous data corre-
spond to noise signals, it is critical that noise
fingerprints have low mutual similarity for FAST to
be effective.

The original Waveprint method represents a
waveform using the largest-magnitude wavelet coef-
ficients, but when applied to noise-dominated seismic
data sets this representation is inefficient; a small
subset of wavelet coefficients regularly take large
values and are frequently selected, while a larger
number of coefficients are almost never selected (see
Fig. 3 for examples of coefficient distributions). In a
representative data set with 10% sparsity, 16% of the
coefficients are active in at least 1 in 4 fingerprints,
while half of all coefficients are active in fewer than 1
in 100 fingerprints (Bergen et al. 2016). This
inefficiency results in higher similarity between pairs
of noise fingerprints (Fig. 4), and negatively impacts
detection sensitivity by making it more difficult to
identify pairs of similar low signal-to-noise (SNR)
earthquake waveforms.

Coefficient standardization can be viewed as a
balancing of the coefficient distributions, transform-
ing the distribution of each coefficient to be centered
around zero and have roughly the same spread. This
increases the probability of selection for coefficients
that originally were centered at zero with a small
variance (or MAD), but decreases the probability of
selection for coefficients that were originally centered
away from zero or had large variance. The updated
FAST fingerprint representation is more efficient:
after MAD standardization is applied to the example
data set described above, each coefficient is active in
5-15% of all waveform fingerprints, and there are no
longer coefficients that are frequently or rarely active.
The underlying assumption when we perform this
balancing of the coefficient distributions is that it will
not hurt detection performance by substantially
reducing the similarity between the fingerprints of
similar earthquake waveforms; we show in Sect. 5
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Figure 3
Distribution of wavelet coefficient values across all a noise and b earthquake fingerprints extracted for station NC.CCOB for 3 of the 2048
wavelet coefficients. Note that the same 3 wavelet coefficients (left to right: coefficient nos. 64, 322, and 273) are shown for both noise (top)
and earthquake (bottom) waveforms; noise and earthquake waveform data were separated for comparison. For some coefficients there is not a
significant difference between the coefficient distributions for noise and earthquake waveforms, but often the distribution for earthquakes has a
different spread (right panel) or a different center or skew (center and left panels). For the purposes of coefficient standardization, each of
these distributions is modeled by two parameters: the mean and standard deviations (Z score) or median and median absolute deviation
(MAD). a Examples of distributions of wavelet coefficient values for noise waveforms. Most of the distributions are strongly peaked (right),
but some are less strongly peaked (left) or asymmetrical (center). b Examples of distributions of wavelet coefficient values for earthquake
waveforms. As in the case of noise waveforms, most of the wavelet coefficient distributions for earthquake waveforms are strongly peaked.
The wavelet coefficient distributions for earthquakes often differ from the corresponding distribution for noise

that, empirically, this approach does preserve simi-
larity for earthquakes (Fig. 4).

4. Experiments

In order to select the best feature extraction
method and optimize any necessary parameter values
(e.g. the sparsity parameter, K, for Waveprint and
FAST fingerprints), we require a means of quantify-
ing the performance of each method in the context of
similarity search. In this section we describe a test for
comparing the performance of different feature
extraction methods. In the next section we use this
benchmark test to compare three audio fingerprinting

methods (Sect. 3.1) and the FAST feature extraction
method for use in waveform similarity search.

4.1. Benchmark Data Set

To compare the effectiveness of different finger-
printing schemes for waveform similarity search, we
need examples of known earthquake and noise
waveforms for performance evaluation. The best
fingerprint extraction method and optimal parameter
settings can vary by station depending on the local
noise properties, so we use multiple data sets to
reduce bias and determine the method with the best
overall performance. We compile a benchmark data
set containing earthquake waveforms and segments
of background noise from each of eight different
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(a)
703333 0.08254
Original Z-score
: .
0.7937 0.8349 0.8519
Figure 4

Comparison of Waveprint and FAST fingerprinting schemes applied to a background noise and b similar earthquake waveforms. Each row
displays the fingerprints extracted from corresponding waveform data, and each column represents a different fingerprinting scheme: Original
refers to the Waveprint scheme with no coefficient standardization step; Z score and MAD refer to standardization with the mean and standard
deviation or median and median absolute deviation, respectively. Pixels in white and red represent the active/selected coefficients, with those
in red indicating the intersection of fingerprints for each of the two distinct waveforms under the same fingerprinting scheme. All waveform
data below are from station BK.SAO and represent a duration of 16 s. a Fingerprints corresponding to two noise signals. The Jaccard
similarities between fingerprints are: 0.33 (original), 0.08 (Z score), and 0.06 (MAD). Fingerprints corresponding to noise waveforms have
lower similarity after coefficient standardization compared to the original fingerprints. b Fingerprints corresponding to two similar earthquake
signals: the first waveform corresponds to a real event; the second waveform is a copy of the event waveform embedded in noise at SNR 5.0
(as illustrated in Fig. 6). The Jaccard similarities between fingerprints are: 0.79 (original), 0.83 (Z score), and 0.85 (MAD). Fingerprints
corresponding to similar waveforms maintain high similarity after coefficient standardization

stations. The stations, shown in Fig. 5, are selected
for geographic diversity within the northern Califor-
nia region and to ensure availability of a relatively
high number of event waveforms.

For each of the eight stations, we create an
“earthquake” and a “noise” waveform data set. All
data are taken from the 8.5-year period from 1
January 2008 to 31 May 2016. For both earthquake
and noise waveform data, we use the vertical channel
data, apply a 1-10 Hz bandpass filter, and decimate
to 20 Hz. We apply the same bandpass filter for each

station because we want to ensure good performance
even if the optimal bandpass filter is not selected.
The earthquake waveform data is taken from
catalog events in the Northern California Seismic
Network (NCSN) phase-pick catalog (NCEDC 2014).
We include only events magnitude 2.0 and larger. For
each event in the NCSN catalog, we download a
2-min segment of waveform data (when available):
the 60 s leading up to the P-wave arrival and the 60 s
after the P arrival. To ensure that the earthquake data
set contains events with clear waveforms, we include
events only if (1) the wave arrival appears close to the
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Locations of the eight selected stations used in benchmark data sets to compare performance of feature extraction methods: Parkfield
(BK.PKD), Hollister (BK.SAO), Calaveras Fault (NC.CCOB), San Francisco Peninsula (BK.JRSC), San Ramon (NC.CBR), Napa Valley
(BK.CVS), Mammoth (NC.MCB), and Geysers geothermal field (NC.GDXB). Created with Google Maps

Table 1

Benchmark waveform data sets

Station Number of waveforms in data set
Earthquakes Noise (N¢ and N)
BK.PKD 1972 3083
BK.SAO 2271 3094
NC.CCOB 1691 2851
BK.JRSC 1824 3092
NC.CBR 1069 2469
BK.CVS 3012 2974
NC.MCB 1276 3051
NC.GDXB 1991 3080
Total 15,106 23,694

“Earthquakes” refers to the number of medium-to-high SNR cat-
alog events in the data set for each station. “Noise” refers to the
number of “clean” or “lively” background noise segments (with
likely earthquakes excluded) in the data set for each station

expected P arrival time and (2) the STA/LTA ratio
(Allen 1982) (with window lengths 1 and 30 s)
exceeds a threshold value of 5.0 at some time up to

15 s after the P arrival. The number of earthquake
waveforms included in the benchmark from each of
the selected stations is given in Table 1, and the event
epicenter locations are shown in Figs. 12 and 13 in
the Appendix.

The noise waveform data are sampled from the
continuous data. For each day in the 8.5-year period,
we select a 2-min time interval at random and
download the continuous waveform data (when
available). These “noise” segments may contain
regional or teleseismic earthquakes or other transient
signals, so we apply an additional data cleaning step.
We label each segment as either “clean noise” (N¢),
“lively noise” (N), or “non-noise” (Ns) (see
Appendix 7.2). Non-noise are segments of data that
likely contain signals from regional earthquake
arrivals, earthquake codas, or teleseismic waves;
these segments are removed from the noise data set.
Clean noise segments are those with relatively
uniform signal energy across the interval, while
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lively noise segments have more variation in signal
energy.

4.2. Extracting Waveform Fingerprints

All of the fingerprint extraction methods initially
convert the continuous waveform data into the time-
frequency domain. The computation and processing
of the spectrogram is the same across all methods,
with the exception of the choice of window function.
All spectrograms use a window length wy = 10.0 s
and a window lag ¢; = 0.1 s, and have 32 linearly
spaced frequency bins (33 for Philips to produce 32
bins in the derivative).

In the Philips, Waveprint, and FAST fingerprints
we use a fingerprint window wy = 10.0 s. The
Waveprint and FAST fingerprints have dimension
D = 4096 and the Philips fingerprints have dimen-
sion D =3200. For the Waveprint and FAST
fingerprints we vary the value of sparsity parameter,
K, from 50 to 800 for parameter testing, but we fix the
value K = 400 when comparing different fingerprint
extraction methods. In the benchmark data sets,
earthquakes are oversampled, so we use only the
noise waveforms to compute the Z score and MAD
statistics for the FAST fingerprints.

The landmark-based method computes hashes
rather than fingerprints. Key points are selected by
identifying local maxima in the spectrogram using a
maximum filter (with a minimum distance of 1.5 Hz
along the frequency axis and 1 s along the time axis).
The hash constellations are formed between each key
point and other local maxima within a target region
that includes any local maxima that both occurs 1-10
s after the key point and has a frequency coordinate
within a 4 Hz range.

4.3. Performance Metrics

To evaluate the performance of different finger-
print extraction methods for earthquake detection, we
require a metric to quantify the degree to which a
fingerprinting scheme is discriminative for similarity
search. A fingerprinting scheme is discriminative if
(1) under the fingerprinting scheme, two similar
earthquake waveforms are mapped to fingerprints that
have high similarity, and (2) an arbitrary pair of noise
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waveforms are mapped to fingerprints that have low
similarity. We quantify these criteria using two
metrics: fingerprint accuracy and baseline similarity,
respectively.

4.3.1 Quantifying Accuracy and Baseline Similarity

In the discussion that follows, let x() € RM be the ith
earthquake waveform, represented in the time domain
with M samples, and let n/) € RM be the jth noise
waveform. Let F : R? — {0,1}" represent the fin-
gerprint extraction operation, and let o be a scaling
factor that controls the signal-to-noise ratio (o is not a
fixed value but varies to produce the desired signal-
to-noise ratio; see Appendix 7.1).

Fingerprint accuracy is a measure of the quality
of the fingerprints of earthquake waveforms for
similarity-based detection under additive noise. In
our benchmark test we consider the challenging
detection task of identifying two similar event
waveforms, both at low SNR, because we would like
our fingerprinting scheme to be discriminative for
weak earthquake signals. We compare the finger-
prints of two versions of the same earthquake
waveform, x(), (high signal-to-noise, from “earth-
quake” waveform data set) embedded in two
different noise segments, n) and n®), both at low
SNR (see Fig. 6):

accuracy(i,j, k) = sim(f(ocjx(i) + 1y, Flogx) + n<k))>,

©))
where noise segments n'), n*) € N are only drawn
from the “clean noise” data set from the same station
as the earthquake waveform x(). Here, sim(-,-) rep-
resents the relevant similarity measure: number of
matching hashes for landmark method, Hamming
similarity for the Philips method, and Jaccard simi-
larity for the Waveprint and FAST fingerprints.
Waveform fingerprints should be effective even
when the earthquake waveforms are not perfectly
aligned; this is necessary for good performance in
continuous data when the lag between adjacent
fingerprints may be large compared to the sampling
rate. To make our tests more representative of the
detection challenges in continuous data, we compare
fingerprints for similar waveforms with a time offset



1048 K. J. Bergen and G. C. Beroza

Original Waveform

%MMWMWWW
Noise-added Waveform B N H

Noise-added Waveform C

A AU Gk b bttt A
ANAPAAAANAN N | Mﬁw I M“ dl vf ANV WA syraavna

SNR 5.0

L 1 L L

0 10 20 30 40
time (s)

Figure 6
Original earthquake waveform is shown in the top row (blue). This
original waveform is scaled down and embedded in three different
intervals containing only sensor-recorded background noise, form-
ing the three “noise-added” copies of the waveform in the bottom
three rows, at a lower signal-to-noise ratio than the original
waveform (SNR 5.0)

(applied before extracting fingerprints). We use
offsets ranging from O to 10 samples, corresponding
to the maximum offset for continuous data sampled at
20 Hz with a fingerprint lag of 1.0 s. These offsets
only apply to the Philips, Waveprint, and FAST
fingerprints, as the notion of a fingerprint lag is not
applicable to the landmark-based hash method.

To measure the similarity between fingerprints
extracted from noise waveforms, we define the
baseline similarity between the kth and /th noise
waveforms as:

baseline (k, ) = sm(f(n<’<>), f(n“))), (10)

where noise segments n®), n(¥) € (N\; UN) are
” and “lively” noise. The
baseline similarity is an important statistic because
the threshold for what will be considered high accu-
racy for earthquake waveform fingerprints is
determined relative to typical similarities between
fingerprints for noise waveforms.

To obtain the baseline similarity distribution, we
compare 1,000,000 pairs of noise fingerprints (some
noise fingerprints may belong to multiple pairs) per
station. For measuring the accuracy distribution, the
number of pairs of fingerprints is proportional to the
number of earthquake waveforms available from a
given station (see Table 1). A separate distribution of
values for fingerprint accuracy and baseline similarity

drawn from both “clean

Pure Appl. Geophys.

Figure 7
Distributions used to characterize the trade-off between true

positives and false positives. Green distributions show values of
baseline similarity for pairs of noise fingerprints; blue distributions
show accuracy measure for pairs of earthquakes embedded in noise
at SNR 2.0. Data shown are from station BK.SAO. a Original
Waveprint fingerprints (no coefficient standardization) with spar-
sity parameter K = 400. b FAST fingerprints (modified Waveprint
with Z score coefficient standardization) with K = 400. ¢ FAST
fingerprints (modified Waveprint with MAD coefficient standard-
ization) with K =400. d Philips fingerprints. Because these
fingerprints are dense binary fingerprints, the similarity of pairs
of noise fingerprints is centered around 0.5, which is the expected
Hamming similarity for two dense binary fingerprints with bits
selected at random. e Landmark-based hashes. Similarity is
quantified by the number of matching hash values, and is
represented as counts rather than a quantity between 0 and 1 (as
in the Jaccard similarity for Waveprint or Hamming similarity for
Philips)

are computed using waveform data from each of the
eight stations.

4.3.2 ROC Curve and Truncated-AUC

For a fingerprint extraction scheme to be effective for
similarity-based detection in long-duration data, we
require both high accuracy for fingerprints and low
baseline similarity to limit false detections. We
characterize the trade-off between false detections
and missed detections using a receiver operating
characteristic (ROC) curve. For a given Jaccard
similarity threshold, 7, we define the true positive rate
(TPR,) as the fraction of earthquake waveform pairs
for which the accuracy exceeds the threshold, and we
define the false positive rate (FPR,) as the fraction of
noise waveform pairs for which the baseline similar-
ity exceeds the same threshold (see Fig. 7). The true
and false positive rates should be interpreted with
caution with respect to detection in continuous data,
as TPR and FPR do not account for the non-linear
relationship between Jaccard similarity and the
probability of detection in LSH-based similarity
search. The ROC curve traces the values (FPR.,
TPR,) for all choices of threshold 7 between 0 and 1
for Philips and Waveprint variants (for landmark-
based features, the threshold values are counts).

One commonly used measure to summarize the
overall detection performance across the full range of
threshold values is the area under the ROC curve
(AUC) (Bradley 1997). Because high values for the
FPR are not appropriate for the earthquake detection
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task, we use a truncated version of the AUC that
considers only the area under the section of the curve
corresponding to small values of the FPR:
FPR € [0,FPR,,,x]; we normalize the truncated-
AUC so that its maximum possible value is always
1 for any choice of FPR,,x (see Fig. 8).

5. Results

We compare the performance of audio finger-
printing and FAST fingerprinting schemes for
earthquake detection: (1) landmark-based features,
(2) Philips fingerprints, (3) Waveprint fingerprints,
and FAST fingerprints with coefficient standardiza-
tion using (4) Z score or (5) MAD statistics. Figure 9
shows a comparison of five fingerprinting schemes on
the benchmark waveform data sets for eight stations
using the truncated-AUC metric.

ROC curve

1,0?_"_

o
o

o
o

I
IS

e—e Waveprint (original)
e—eo \Waveprint (Zscore)
e—o

True positive rate (TPR)

Waveprint (MAD)
Philips
e—eo |andmark

0.2

0.000 0.002 0.004 0.006 0.008
False positive rate (FPR)

Figure 8
Comparison of ROC curve for different fingerprinting schemes.
The area under each curve (with appropriate normalization) gives
the truncated-AUC (FPR <0.01) statistic used in Fig. 9 for each
method. Data shown are for the data set from station BK.SAO with
earthquake waveforms at SNR 2.0. A separate ROC curve is
computed for each station and method. ROC curves are generated
from distributions in Fig. 7 by plotting the fraction of baseline
similarity (green) distribution exceeding a given threshold to the
fraction of the fingerprint accuracy (blue) distribution exceeding
the same threshold, for all thresholds from O to 1 (or 0-20 for
landmark method) for each method
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At a higher SNR of 5.0, the Philips method and all
Waveprint variants perform consistently well across
the eight benchmark data sets. As the SNR is lowered
to 2.0 and 1.0, the performance of all of the finger-
printing schemes degrades, and for some schemes
there is more variation in performance, with a large
performance gap between the best- and worst-case
performance on the eight benchmark data sets.

At lower SNR (1.0-2.0), FAST fingerprints
(MAD) achieve the best and most consistent perfor-
mance; this scheme has the best worst-, average-, and
best-case performance compared to the other meth-
ods. The Philips fingerprints also perform well in the
low SNR case. At low SNR, the Waveprint and FAST
fingerprints (Z score) achieve similar performance on
average, but the FAST (Z score) scheme has more
variation in performance compared to the original
Waveprint method; on some data sets the FAST
(Z score) scheme performs well, but on others its
performance is very poor. In all cases, the landmark-
based method performs poorly, even for signals in the
higher SNR case. The box plots in Fig. 9 demonstrate
that there can be significant variation in performance
for fingerprinting schemes applied to data from dif-
ferent stations. The ranking of which fingerprinting
schemes have the strongest performance may also
vary by station.

Note that caution should be taken in interpreting
the false and true positive rates for continuous data.
The TPR and FPR are computed on the true Jaccard
similarity values, and do not account for the fact that
the probability of detection varies with the Jaccard
similarity in FAST’s LSH-based similarity search.
Using the Jaccard similarity values gives a measure
of the fingerprinting scheme effectiveness that is
independent of the choice of the similarity search
method or parameters, making it possible to draw
general conclusions about the relative effectiveness
of different approaches.

5.1. Parameter Testing

The approach that we have outlined above can
also be used to compare and optimize parameter
values for a given fingerprinting scheme. The
performance of the FAST (MAD) fingerprinting
scheme is not particularly sensitive to changes in
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Figure 9
Relative performance of five fingerprinting schemes on the benchmark data sets. Box plots show variation in truncated-AUC measure over the
data sets from eight stations. Each panel shows results for different signal-to-noise ratio (SNR) values for the earthquake signals: 5.0, 2.0, and
1.0 (top to bottom)

most of the parameter values (e.g. the choice of
wavelet basis), with the exception of one key
parameter: the sparsity parameter K. Ideally, finger-
prints should be as sparse as possible (i.e. have few
non-zero values, low K) to enable efficient search, but
must remain sensitive to weak earthquake signals. A
comparison of the performance with different values
of K (Fig. 10) shows that values in the range of
K =300-500 (out of 4096 coefficients in binary
fingerprint), corresponding to 10% sparsity, are
optimal for the FAST fingerprints with MAD-ad-
justed coefficients.

6. Discussion and Conclusions

6.1. Audio Fingerprints for Earthquake Detection

Among the three audio fingerprinting methods,
the landmark-based features perform poorly on
seismic data even at high SNR, while both the
Philips and Waveprint fingerprints perform well
when applied to seismic data. Each of these three
approaches captures spectrogram features at different
scales; the landmark-based features only capture a
few prominent points, the Philips fingerprints contain
only local information (derivatives) in the spectro-
gram, and Waveprint captures information about
different-sized patches (from local to global) within
the spectrogram.
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Figure 10
Parameter testing: the horizontal axis is the value of the sparsity pirameter, K, which corresponds to the number of non-zero values in the
binary fingerprint (out of 4096). As K increases, the fingerprints are less sparse, which makes them less compact to store, and the runtime of
the efficient similarity search step of FAST tends to increase. The optimal range for K is 300-500, which corresponds to 7—-12% sparsity. The
vertical axis is a measure of how discriminative the resulting fingerprints are, as measured by the true positive rate (TPR) for a fixed false
positive rate of 0.01%. Box plots show variation in performance over the waveform data sets from eight different stations

The landmark-based features perform poorly
because local maxima in the spectrogram are not
appropriate features for characterizing earthquake
waveforms. Even for two earthquake waveforms that
are nearly identical in the time domain, there may be
limited correspondence between the spectrogram
peaks for the two events (Fig. 11). This approach
misses important information for detection, as
P-wave arrivals correspond to intervals with increas-
ing signal energy rather than energy maxima, and
thus generate very few key points.

The Philips fingerprints are also essentially local
features based on the derivatives of the spectrogram.
An advantage of the Philips method is that each
feature contains only information from two neigh-
boring frequency bins, so relatively few features will
be affected by the presence of persistent narrow-band
noise, making this approach robust to a poor choice
of bandpass filter. In contrast, because the Waveprint
fingerprints and FAST variant effectively treat the
spectrogram as an image, and search for similar
images using features at multiple scales, these
approaches may be more prone to false detections

or missed detections in the presence of strong narrow-
band noise. The dense binary Philips fingerprints are
associated with Hamming similarity measure, so it
requires a different similarity search implementation
from that shared by the Waveprint and FAST
fingerprints.

The fingerprint extraction method that demon-
strates the most consistent performance at low SNR is
the FAST fingerprints, a modified version of the
Waveprint method, with wavelet coefficients stan-
dardized using the MAD  statistics. The
standardization step improves detection performance
of the original Waveprint method because coefficient
standardization induces a more uniform distribution
of fingerprints in the continuous data set, with the
effect of lowering the similarity between fingerprints
corresponding to noise while maintaining high sim-
ilarity between earthquake fingerprints. Although the
standardization was originally implemented using the
mean and standard deviation (Yoon et al. 2015), our
recommendation is to use the median and MAD
statistics for coefficient standardization in FAST
fingerprints.
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Ilustration of the appropriateness of local maxima in the spectrogram as features for waveform similarity search for the earthquake detection
problem. The lower panel shows two events with nearly identical waveforms, plotted in green (foreground) and black (background), and
normalized to equal amplitude. The upper panel shows the spectrogram corresponding to the green event waveform, with the local maxima, or
key points, identified by the landmark-based algorithm marked with green and black diamonds (corresponding to the green and black event
waveforms, respectively). Although the green and black waveforms are nearly identical in the time domain, the key points for these two events
have limited correspondence with each other. Local maxima in the spectrogram work well for music audio signals, which are typically
localized in frequency and time, but these features are not as useful for identifying similar earthquake waveforms. Colormap is plotted on a log

6.1.1 Computational Concerns

The metric used to compare different feature extrac-
tion methods (Sect. 4.3) is a measure of how
discriminative the resulting fingerprints are for
waveform similarity search, but this measure does
not capture other advantages or disadvantages of
these methods with respect to our task. Our ultimate
aim is to select a feature representation that will
enable earthquake detection via blind search for
similar earthquake waveforms in long-duration data.
An important factor in selecting a feature extraction
method is whether the chosen approach can be scaled
to large data sets; the computational cost of feature
extraction, the compactness of the feature represen-
tation, the effect on similarity search memory usage,
and runtime must also be considered in selecting a

fingerprinting scheme for use in waveform similarity
search. The runtime for fingerprint extraction should
not be prohibitive for data sets with durations on the
order of months to years, though a slower feature
extraction method that can be computed in a parallel
or distributed manner would also be acceptable.

The need to estimate the median and MAD
statistics for the distribution of each wavelet coeffi-
cient is a disadvantage of the FAST fingerprint
extraction scheme from a computational standpoint.
For large data sets, this can be partially addressed by
computing the statistics on a sample of fingerprints
rather than the entire data set. However, since the
computational bottleneck in the FAST detection
pipeline is often the similarity search step, it may
be desirable to select a slightly slower feature
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extraction method if this choice of fingerprinting
scheme will result in a speed-up in the similarity
search runtime. The slight increase in runtime
required to compute FAST fingerprints compared to
Waveprint (due to the extra standardization step) can
actually reduce the overall runtime if it results in
fingerprints that are more uniformly distributed and
produces fewer of the spurious matches that can
significantly slow similarity search runtime.

Ten years of continuous data with a 1-s fingerprint
lag corresponds to over 300 million fingerprints per
channel. These fingerprints must be stored in memory
to create the set of hash tables for the search index
used in efficient similarity search. The fingerprint
representation should be compact, requiring a rela-
tively small number of bits to store each fingerprint.
For FAST fingerprints of dimension D = 4096 with
sparsity parameter K = 400, the storage requirement
is 2 x 4096 = 8192 bits (binary representation) or
16 x 400 = 6400 bits (integer representation) per
second of continuous data; this corresponds to 250-
325 GB (gigabytes) to store fingerprints for 10 years
of data. The Philips fingerprints have a computational
advantage over the Waveprint and FAST fingerprints
in this respect. While each Philips fingerprint requires
2 x 32 x 100 = 6400 bits to store, there is significant
overlap between the representation of adjacent
fingerprints, so that in practice the storage require-
ment is only 2 x 32 x 10 = 640 bits per second of
continuous data, or 25GB for 10 years of continuous
data, a factor of 10 reduction compared to the FAST
fingerprints.

6.2. Feature Learning for Waveform Similarity
Search

All of the fingerprinting methods discussed in this
work are examples of “hand-engineered” features;
they apply a set of fixed transformations that were
selected based on expert knowledge of the properties
of audio data and that have been demonstrated to
perform well in practice. The three audio fingerprint-
ing methods are data-independent, while the FAST
fingerprints are modified to include an additional
data-adaptive component. As an extension of the
work presented in the previous sections, we investi-
gated the use of fully data-driven approaches to

Pure Appl. Geophys.

feature extraction for waveform-similarity-based
earthquake detection. Approaches that attempt to
learn an optimal feature representation for a data set
from the data itself are called feature learning or
representation learning methods (Bengio et al. 2013)
in machine learning. Learned feature representations
have the potential to produce more discriminative
fingerprints because they can be optimized for a
given data set.

Feature learning encompasses a range of tech-
niques, including matrix factorization (Deerwester
et al. 1990; Lee and Seung 1999), dictionary learning
(Lee et al. 2007), and neural networks (Hinton and
Salakhutdinov 2006). We also considered a related
set of methods called learning to hash (Wang et al.
2014, 2018), a data-dependent alternative to locality-
sensitive hashing for approximate similarity search.
For example, spectral hashing (Weiss et al. 2009)
learns a set of data-dependent projections instead of
using random projections as in locality-sensitive
hashing.

There are a number of challenges that arise when
applying feature learning or learning-to-hash methods
to uninformed waveform-similarity-based earthquake
detection (Bergen 2018).

It may be possible to learn high-quality features
for similarity search using a labeled training set
(collection of known earthquake waveforms). How-
ever, FAST is intended to be an uninformed method
for earthquake detection. One of the properties that
makes FAST particularly useful is that it can be
applied in cases when there is a limited record of past
seismic activity (i.e. the available catalog of template
waveforms is limited or incomplete). Thus the feature
learning approach should not require or assume the
availability of known template waveforms; in the
context of learning algorithms, this means limiting
the approach to unsupervised methods, i.e. those that
do not require labeled training data.

There are many unsupervised methods for feature
learning and learning to hash that do not require
template waveforms, but seismic data sets pose an
additional challenge. Seismic data sets are imbal-
anced, meaning that the events of interest represent a
minority of the signals in continuous data sets
dominated by long periods of noise. Machine learn-
ing tasks with imbalanced data often result in poor
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performance on the minority class (in this case
earthquake signals) because the learning algorithm
has less information about the minority class, and the
training samples from the minority class carry less
weight overall in the learned model (He and Garcia
2009). As a result, it is difficult to learn a feature
representation that produces low similarity between
noise waveforms and high similarity between earth-
quake waveforms with unsupervised feature learning.

The challenges posed by the lack of labeled
training data and the imbalanced, noise-dominated
data make it difficult to provide FAST users with a
single approach or framework for learning features
that can be applied to diverse data sets. Therefore, our
proposed FAST fingerprints, the data-adaptive variant
of the Waveprint with MAD-standardization of the
wavelet coefficients, are designed to be applied to any
data set regardless of the availability of template
waveforms, and take into account the data set
imbalance problem. The coefficient standardization
step in the FAST fingerprint extraction method is
similar to the approach taken by some learning-to-
hash methods: creating balanced hash codes that
distribute the data more evenly in the hash
tables (Weiss et al. 2009; Wang et al. 2010).

6.3. Benchmarking for Performance Evaluation

The approach outlined in Sect. 4 of this work can
be used to evaluate alternative feature extraction
schemes for waveform data beyond the audio finger-
printing methods presented in this work. Our
framework for evaluating performance includes two
key elements: benchmark data sets and an appropriate
performance measure. The use of benchmark wave-
form data sets, containing known examples of noise
and earthquake waveforms, provides a means of
determining the detection performance for weak
events. This allows us to overcome one challenge in
evaluating the performance of algorithms for detect-
ing weak events often missed in existing catalogs: the
lack of ground truth, an objective standard for
measuring detection performance. This framework
provides a way to quantify the effectiveness of each
feature extraction method for separating weak earth-
quake signals from noise in the context of similarity
search. The experiments presented in this work only
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test for the distortions in the waveforms due to
additive noise, but a similar framework can be used to
compare fingerprinting schemes with respect to other
criteria.

While our approach allows us to validate the
feature extraction algorithm used in FAST, there
remains the ongoing challenge of assessing detection
performance in continuous data without ground truth.
The goal of developing new earthquake detection
algorithms is to outperform existing methods, but the
nature of our task, discovering new events and
sources, makes it inherently difficult to measure
performance. Therefore, an open challenge in earth-
quake detection research is how to validate new
candidate events, specifically how to distinguish true
earthquake signals from transient signals due to local
noise sources such as vehicles, transportation sys-
tems, and air traffic (Diaz et al. 2017; Meng and Ben-
Zion 2018). The development of appropriate bench-
mark data sets and performance measures for
comparing and validating earthquake detection algo-
rithms will be leveraging new
developments in machine learning and data mining
for seismology research.
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Appendix

Signal-to-Noise Ratio

In this work, the signal-to-noise ratio (SNR) is
computed using a 15-s interval of waveform data
following the P-wave arrival. For signal x and noise
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Figure 12
Map plots show the epicenter locations for the events in the earthquake waveform benchmark data set for stations NC.CCOB, NC.MCB,
NC.GDXB, and NC.CBR. The location of each station is marked with a blue triangle, and the event epicenters are shown in red. The set of
earthquakes is selected independently for each station depending on whether a P-phase arrival was recorded in the NCSN phase-pick catalog
for a given event

n, each of duration M = 300 samples (15 s of data
sampled at 20 samples per second), the SNR is given
by:

Pgign
SNR =" where  Pgna
1 & | 2 1 & 5
:MZ‘X[ZH ’ andPnoise:MZM[iH . (11)
=0 i=0

Noise Segment Classification

Noise segments are assigned one of these three
labels based on two criteria: (1) an STA/LTA
threshold, and (2) a uniform energy criterion that
quantifies how uniform the energy is across the 2-min
interval. A noise segment is labeled as “clean” noise
if the maximum STA/LTA ratio in the interval is
below 3.0 and the uniform energy score is below 0.1.
A noise segment is labeled as “non-noise” if the
maximum STA/LTA ratio in the interval exceeds 6.0
or the uniform energy score exceeds 0.2. All other
noise segments are labeled “lively” noise. The
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parameters for short and long windows used in the
STA/LTA ratio are 3 and 45 s, respectively. The
uniform energy score, uY), associated with a noise
segment n¥) of length M samples is defined as:

k

, (12)
where sU[k] = Z(n(j)[i]) )

i=1

and n' is normalized such that ||n¥)||5 = 1. This
value represents the difference between the
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cumulative signal energy over the interval and the
cumulative energy for a signal with uniform energy,
and u takes values between 0 and 0.5, with larger
values associated with larger deviations from uniform
signal energy.

Events in Benchmark Data Set, by Station

The list of events in the benchmark data set and
the corresponding earthquake waveform and noise
data matrices, by station, are available upon request
(see Figs. 12, 13).
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Map plots show the epicenter locations for the events in the earthquake waveform benchmark data set for stations BK.CVS, BK.JRSC,

BK.PKD, and BK.SAO. The location of each station is marked with a blue triangle, and the event epicenters are shown in red. The set of

earthquakes is selected independently for each station depending on whether a P-phase arrival was recorded in the NCSN phase-pick catalog
for a given event
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