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Abstract—Seismologists are increasingly adopting data mining

and machine learning techniques to detect weak earthquake signals

in large seismic data sets. The detection performance of these new

methods, especially their sensitivity and false detection rate,

depends on the choice of feature representation for waveform data.

We have previously introduced Fingerprint and Similarity

Thresholding (FAST), a new method for waveform-similarity-

based earthquake detection that uses a pattern mining approach to

detect earthquake signals without template waveforms. FAST has

two key steps: fingerprint extraction and efficient indexing for

similarity search. In this work, we focus on FAST fingerprint

extraction: the method used to map short-duration waveforms to a

set of features, called waveform fingerprints, used for detection.

We describe the FAST fingerprint extraction method, a data-

adaptive variation on the Waveprint audio fingerprinting method

tailored for use in continuous seismic data. We compare the per-

formance of the FAST fingerprint extraction method with existing

fingerprinting techniques designed for audio identification. To

overcome the challenges associated with using limited or incom-

plete event catalogs to evaluate detection algorithms, we propose a

framework for quantifying the performance of different fingerprint

extraction methods in the context of blind similarity-based detec-

tion. Our framework uses computational experiments on

benchmark data sets, constructed with known event waveforms, to

compute a measure of fingerprint effectiveness. We use this

framework to show that, among the audio fingerprinting schemes

considered in this work, our proposed FAST fingerprint extraction

method achieves the most consistent performance in distinguishing

similar, low signal-to-noise earthquake waveforms from noise in

waveform data sets from eight stations in the Northern California

Seismic Network.

Key words: Earthquake detection, seismology, audio finger-

printing, feature extraction, time-series analysis, similarity search.

1. Introduction

Earthquake detection, the task of identifying

earthquake signals in continuously recorded ground

motion data from one or more stations in a seismic

network, is a challenging and fundamental task in

seismology. Waveform cross-correlation, also refer-

red to as template matching, is a widely used and

highly sensitive method for detecting weak earth-

quake signals (Gibbons and Ringdal 2006).

Waveform cross-correlation is limited to detecting

events with waveforms similar to those of known

events, and these template waveforms are derived

from earthquake catalogs that are often incomplete.

To overcome this limitation, Yoon et al. (2015)

introduced Fingerprint and Similarity Thresholding

(FAST), a general detector based on waveform sim-

ilarity. FAST1 is the first detector based on waveform

similarity that is capable of identifying events with

unknown sources in long-duration (large-T) data sets

of up to 10 years (Rong et al. 2018).

FAST is inspired by algorithms used for content-

based audio search and retrieval tasks, such as iden-

tifying songs directly from noisy audio waveform

data recorded on a mobile phone (Wang 2003; Baluja

and Covell 2008). FAST is an uninformed (unsu-

pervised) detector and does not require template

waveforms. The FAST detection model, like wave-

form cross-correlation, is based on the observation

that earthquakes with similar sources produce similar

waveforms. In the absence of template waveforms,

FAST labels any pair of waveforms with high simi-

larity as candidate earthquakes, relying on the

assumption that noise waveforms are mutually
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dissimilar (in contrast, waveform cross-correlation

requires high similarity to a known template wave-

form). FAST identifies candidate earthquakes by

using locality-sensitive hashing (LSH) (Andoni and

Indyk 2006), a randomized algorithm for computa-

tionally efficient similarity search, to find pairs of

similar waveforms in single-channel continuous data.

The FAST detection pipeline is made up of

algorithmic modules, each of which can be inde-

pendently tuned or optimized. Single-station FAST

has two key steps: fingerprint extraction and efficient

similarity search (see Fig. 1); an overview of the

single-station FAST detection method is presented in

Yoon et al. (2015). In the fingerprint extraction step,

FAST computes a set of features, called a waveform

fingerprint, for each short-duration sliding window in

the single-channel continuous waveform data, and

performs similarity search over this collection of

waveform fingerprints. Waveform fingerprints are

used as proxies for the raw waveform signals in the

FAST similarity search step. Therefore, the perfor-

mance of FAST will depend on our ability to extract

appropriate features as inputs to similarity search for

unsupervised earthquake detection. This work focu-

ses on the fingerprint extraction step and extends the

preliminary results of Bergen et al. (2016).

The efficient similarity search step, which is

optimized for large-T detection in Rong et al. (2018),

depends only on the choice of similarity metric for

the waveform fingerprints, and not on the feature

extraction algorithm itself. Bergen and Beroza (2018)

present a multi-station extension to FAST, which

combines the single-station FAST detection results to

reduce false detections among the candidate events.

Extending FAST over a network requires running

FAST separately on data from each station, so the

FAST feature extraction method is designed for use

on single-station data [multi-station feature extraction

is addressed in the supplement of Bergen and Beroza

(2018)].

Earthquake detection is an active area of research,

and in recent years there has been growing interest in

machine learning and data mining approaches for

event detection and seismic signal analysis. The

performance of these methods can be critically

dependent on the selection of appropriate waveform

features. In the related field of audio signal process-

ing, there is an extensive body of literature dedicated

to methods for extracting features, called audio fin-

gerprints, from raw audio waveform data for audio

classification and identification (Cano et al. 2005).

However, the topic of feature extraction for seismic

Figure 1
Main processing steps in the FAST earthquake detection method (Yoon et al. 2015). The input to FAST is continuous ground motion data

from a single channel, usually with some basic pre-processing such as bandpass filtering. The FAST detector has two key steps: Fingerprint

Extraction, which is the subject of this work, and Efficient Similarity Search. The Efficient Similarity Search step uses locality-sensitive

hashing (Andoni and Indyk 2006) to build an index or ‘‘database’’ of waveform fingerprints and query the database to identify similar

waveforms (Yoon et al. 2015; Bergen et al. 2016; Bergen and Beroza 2018; Rong et al. 2018)
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signals has received less attention. Valentine and

Trampert (2012) analyze the appropriateness of

autoencoder neural networks for extracting compact

waveform features from which the earthquake

waveforms can be reconstructed. Holtzman et al.

(2018) use an unsupervised learning approach to

extract fingerprints for a set of earthquake waveforms

that reveal subtle differences and relationships

between events. Both studies apply their analysis

only to event waveforms rather than to continuous

data, and neither focuses on the task of discriminating

earthquake signals from noise.

The focus of this work is feature extraction for the

specific task of earthquake detection via blind simi-

larity search in long-duration continuous seismic

waveform data sets. We discuss the desirable prop-

erties of waveform fingerprints in the context of

similarity search, and present the fingerprint extrac-

tion method used in FAST and alternate methods

from the audio fingerprinting literature. One of the

inherent challenges in developing new earthquake

detection algorithms is the lack of ground truth data,

an objective reference data set for measuring algo-

rithm performance. Existing event catalogs, the

closest thing to such a reference data set that is

available, are known to be incomplete and thus do not

accurately label all segments in the continuous

waveform data as either earthquake signals or noise/

non-earthquake signals. Without an objective per-

formance metric, it is difficult to assess and compare

the performance of different detection algorithms.

Thus, in order to evaluate the relative performance of

different fingerprinting schemes, we introduce a

framework for quantifying the relative effectiveness

of different feature extraction methods for similarity-

based detection using computational experiments.

We use our proposed framework to demonstrate that

the procedure used to extract FAST waveform fin-

gerprints produces a lower false alarm rate and

enables the detection of lower signal-to-noise events

than the alternative methods considered. Our analysis

framework provides a template for other researchers

who wish to optimize and validate feature represen-

tations of seismic waveform data for use in machine

learning or data mining techniques.

2. Background

2.1. Fingerprinting

Feature extraction refers to the process of map-

ping an input data object to a set of features. A

fingerprint is a compact signature that represents an

object, such as a data file or high-dimensional data

vector (Broder 1993). Fingerprinting or fingerprint

extraction is a form of feature extraction that follows

two general properties: (1) if two fingerprints, f ðx1Þ
and f ðx2Þ, corresponding to data objects x1 and x2, are

different from each other (i.e. not identical), then the

original data objects x1 and x2 are also different, and

(2) if x1 and x2 are different, then there should be a

low probability that they map to the same fingerprint:

f ðx1Þ 6¼ f ðx2Þ)x1 6¼ x2 ð1Þ

P f ðx1Þ ¼ f ðx2Þ½ � � 1 if x1 6¼ x2: ð2Þ

These properties allow fingerprints to act as nearly

unique identifiers, similar to the most commonly

understood definition of (human) fingerprints, the

ridge patterns on human fingers (Pankanti et al.

2002). Fingerprints are often used in conjunction with

hashing in information search and retrieval tasks;

applications include document fingerprints for

detecting plagiarism and duplicate webpages (Man-

ber 1994; Broder 1997), acoustic or audio

fingerprints for identifying audio recordings directly

from the waveforms rather than from metadata (Cano

et al. 2005), and molecular fingerprints for finding

similar molecular structures in chemical databases

(Willett et al. 1998).

2.2. Waveform Fingerprints for Similarity Search

In this work, we are interested specifically in

waveform fingerprints, features that represent short-

duration seismic waveform data, and are used as

inputs to the efficient similarity search step in FAST

for waveform-similarity-based earthquake detection.

Waveform fingerprints should be tailored for use in

similarity search, and to the particular characteristics

of seismic data and the earthquake detection problem.

• Waveform fingerprints should distinguish earth-

quake signals from noise. In earthquake detection
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via similarity search, earthquake signals are dis-

tinguished from noise by high similarity to one or

more other earthquake waveforms. The fingerprint-

ing scheme should map similar earthquake

waveforms to similar fingerprints and map noise

waveforms to fingerprints with low similarity to

other noise fingerprints; we describe fingerprinting

schemes that satisfy this property as discriminative

for similarity search. Note that features that work

well for supervised waveform classification, where

features should map earthquakes and noise wave-

forms into different regions in the feature space,

may not be suitable features for use in similarity-

based detection.

• The fingerprinting scheme must be paired with an

appropriate similarity measure. The similarity

measure should be appropriate based on the

characteristics of the fingerprints (e.g. real-valued

vs. binary, sparse vs. dense) and suitable for use in

an efficient search method [e.g. LSH or k-d tree

(Bentley 1975)]; examples include the Jaccard,

Hamming, and cosine similarities (Leskovec et al.

2014), and lp norms (Datar et al. 2004).

• A good fingerprinting scheme needs to be robust to

the types of distortions that are expected in the data

set of interest. For earthquake detection, finger-

prints should be robust to high levels of noise and

differences in signal amplitude. In this work we

focus on methods that extract features from the

time-frequency representation (spectrogram) of the

signal, as these are more robust to small phase

shifts than time-domain features.

• The fingerprinting scheme should produce finger-

prints that maintain similarity over long time

periods, as activity along faults persists over long

timescales, and ideally should be fixed for the full

time duration. Care should be taken with adaptive

or dynamic fingerprinting schemes to ensure that

similar waveforms separated by long time periods

will produce fingerprints with high similarity.

• The fingerprinting scheme should not require prior

waveform information, since the FAST detection

method is designed to be effective even when no

template waveforms are available. The fingerprint-

ing scheme may be either data-agnostic (i.e. not

dependent on any properties or characteristics of

the data) or data-driven, so long as it does not

incorporate any label information.

3. Methods

3.1. Audio Fingerprinting

Audio fingerprints are a compact representation of

audio waveform data, including music, speech, or

other sound recordings (Alı́as et al. 2016). Among

previous work on fingerprinting for information

retrieval and similarity search tasks, audio finger-

printing in particular provides a good starting point

for the development of earthquake waveform finger-

prints—there are structural similarities between the

data (oscillatory signals with frequent zero-crossings

and temporal variations in amplitude and frequency

content), and both applications require fingerprints

that are robust to small variations and additive noise.

In this work we focus on three well-known,

effective audio fingerprinting methods: the landmark-

based (Wang 2003), Philips (Haitsma and Kalker

2002), and Waveprint (Baluja and Covell 2008)

methods. These methods and the FAST fingerprint

extraction method are summarized in Fig. 2. In Sect.

5 we compare the performance of these fingerprinting

schemes for seismic waveform data in the context of

earthquake detection by blind similarity search.

3.1.1 Landmark Method

The landmark-based algorithm (Wang 2003, 2006),

developed to identify audio clips recorded by a cell

phone microphone for the Shazam mobile app, relies

on the assumption that energy peaks in the time-

frequency representation of the audio signal are key

features that can be used to identify an audio clip and

are invariant to additive noise. The algorithm iden-

tifies key points, defined as local maxima in the

spectrogram, and builds hashes from the constella-

tions based on the relative positions of these key

points. The search and identification step scans a

database to find sequences of multiple matching

hashes.

1040 K. J. Bergen and G. C. Beroza Pure Appl. Geophys.



3.1.2 Philips Method

The Philips audio fingerprinting method (Haitsma

and Kalker 2002) converts short segments of audio

waveforms to a dense binary fingerprint. The Philips

scheme computes the spectrogram, E, and then

obtains a binary representation, F, from the sign of

the derivatives of the signal energy; from Eq. (1) in

Haitsma and Kalker (2002):

F½n;m� ¼
1 if E½n;m� þ E½n� 1;mþ 1�ð Þ

[ E½n;mþ 1� þ E½n� 1;m�ð Þ
0 otherwise

8
><

>:

ð3Þ

This binary representation is then divided into fin-

gerprints with a sliding window along the time axis.

The similarity between these dense binary finger-

prints (those with roughly equal numbers of 0s and

1s) is measured by the Hamming similarity. The

Hamming similarity of bit strings (fingerprints) A and

B, each of dimension N, is the fraction of the N bits

that are identical in both strings:

HammingðA;BÞ ¼ #fi : A½i� ¼ B½i�; i ¼ 1; . . .;Ng
N

¼ 1� A� B

N
:

ð4Þ

3.1.3 Waveprint Method

The Waveprint method (Baluja and Covell 2008) for

audio identification takes an image processing

approach to extracting audio fingerprints. Waveprint

compresses sliding windows along the time dimen-

sion of the spectrogram (spectral images) using a

discrete wavelet transform, a technique for image

compression and denoising (Donoho and Johnstone

1994). The sign values of the largest wavelet

coefficients are encoded in a sparse, binary finger-

print. This approach is robust against additive noise

because the wavelet transform typically concentrates

the signal energy in a relatively small number of

wavelet coefficients, with the noise captured by detail

coefficients that have smaller values and are not

retained when the largest coefficients are selected.

Figure 2
A comparison of three audio fingerprinting methods and the FAST feature extraction method. The landmark algorithm is similar to that used

in the Shazam audio identification system (Wang 2003) and uses hash codes derived from peaks in the spectrogram. The Philips algorithm

(Haitsma and Kalker 2002) is a dense binary fingerprint that uses the sign of the time and frequency derivatives to compute the fingerprint.

The FAST feature extraction uses a modified version of the Waveprint (Baluja and Covell 2008) method
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3.2. Our Approach: FAST Waveform Fingerprints

The FAST waveform fingerprints are extracted

using a modified version of the Waveprint feature

extraction algorithm. The steps in the FAST feature

extraction method and the modifications tailored for

seismic data are discussed in the sections below.

In adapting audio processing techniques to seis-

mic data, it is important to account for differences

between the data, tasks, and constraints. Seismic

event waveforms are relatively short in duration

(typically seconds to tens of seconds), have a lower

sampling rate (100 Hz vs. 44,100 Hz), and contain a

narrower range of frequencies than audio data. Thus,

overall, audio data tends to be richer and have more

distinct spectral signatures compared to seismic data.

Additionally, in the earthquake detection task, the

signals of interest in the continuous waveform data

tend to be infrequent, representing a rare class in a

data set dominated by noise, while in audio identi-

fication tasks we do not expect a large number of

fingerprints (either in the database or queries) to

contain only noise.

3.2.1 FAST Fingerprint Extraction

The input to FAST is single-channel continuous

waveform data. No template waveforms or label

information is available to the algorithm. Each short-

duration waveform is converted into a sparse binary

fingerprint using the procedure described below (see

Bergen 2018 for additional details).

0. Data pre-processing We apply a fixed bandpass

filter to the continuous waveform data to remove

frequencies that contain high levels of noise,

especially narrow-band noise, or frequencies that

do not contain useful information for the detection

task.

1. Spectrogram We transform the time series data to

the spectrogram, a time-frequency representation

computed with the short-time Fourier transform.

The spectrogram has a window length of ws s and

a lag between windows of length ‘s s. Although

the original Waveprint algorithm uses logarithmi-

cally spaced frequency bins, for seismic data we

use linear spacing in the frequency domain. We

truncate the spectrogram frequency range when

appropriate; inclusion of frequency bands contain-

ing high-amplitude noise or those outside the

passband can hurt detection performance.

2. Spectral imagesWedivide the spectrogram into short

(wf s) overlapping segments (‘f s lag) and resize

spectral images to fixed dimensions: d1 frequency

bins and d2 time bins (e.g. d1 ¼ 32 and d2 ¼ 64).

The dimensions should be fixed for all fingerprints

in the data set, and each dimension should be a

power of 2 (i.e. d1; d2 2 fx j x ¼ 2n for

some integer ng) to simplify the computation of

the Haar transform in the next step.

3. Haar wavelet transform For each spectral image,

we compute the two-dimensional discrete Haar

wavelet transform (Mallat 2008) to produce a

wavelet image. The Haar wavelet transform

computes moving averages and moving differ-

ences at multiple scales in a signal or image.

4. Coefficient standardization We standardize the

value of each wavelet coefficient, based on the

distribution of values the coefficient takes over the

full data set. For the ith fingerprint, the value of

the jth wavelet coefficient, X
ðiÞ
j , is replaced with a

standardized value:

X
ðiÞ
j  

X
ðiÞ
j � aj

bj

; ð5Þ

where aj and bj are measures of the center and

spread, respectively, of the distribution of the jth

wavelet coefficient. We consider two standard-

ization schemes, one using the mean and standard

deviation (Z score), and the other using the median

and median absolute deviation (MAD) (Hampel

1974):

Z score: aj ¼ lj ¼
1

Nfp

XNfp

i¼1
X
ðiÞ
j ;

bj ¼ rj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

Nfp

XNfp

i¼1
X
ðiÞ
j � lj

� �2

v
u
u
t ;

ð6Þ

MAD: aj ¼ median
i

X
ðiÞ
j

� �
;

bj ¼ median
i

X
ðiÞ
j � median

i
X
ðiÞ
j

� ��
�
�

�
�
�

� �

;
ð7Þ

where Nfp is the number of fingerprints in the data

set. Before the statistics are computed, each of the
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wavelet images should be scaled to Frobenius

norm 1. Because the properties of the noise-dom-

inated continuous waveform data vary by station,

it is necessary to perform the coefficient stan-

dardization using Z score/MAD statistics

computed separately for each channel.

Coefficient standardization is a new step intro-

duced for FAST feature extraction and is not

included in the original Waveprint method. Based

on the results presented in Sect. 5, the MAD

statistics are used by default for coefficient stan-

dardization in FAST fingerprint extraction.

5. Coefficient selection We select the K standardized

wavelet coefficients that are largest in magnitude;

these correspond to the most anomalous Haar

coefficients for each spectral image. K is typically

selected in the range of 10–40% (which will

produce a fingerprint sparsity of 5–20%).

6. Conversion to binary For the selected coefficients,

we retain only the sign value and set all other

coefficients to zero. We convert the sign values to

binary using two bits per coefficient (þ ! 01,

� ! 10, and 0! 00), resulting in sparse binary

fingerprints of dimension D ¼ 2 � d1 � d2 with

K non-zeros.

Because this fingerprinting scheme generates sparse,

binary fingerprints, we measure the similarity

between the resulting waveform fingerprints using a

metric called the Jaccard similarity:

JaccardðA;BÞ ¼ jA \ Bj
jA [ Bj ð8Þ

Jaccard similarity is a similarity measure for com-

paring sets, here the sets of active (non-zero)

coefficients in the fingerprints.

3.2.2 Haar Coefficient Standardization

The FAST fingerprint extraction method largely

follows the Waveprint method, with the addition of

the coefficient standardization step that is applied to

the Haar wavelet coefficients prior to coefficient

selection. We explored the use of other wavelet

representations, but none of them exceeded the

performance we obtained using the Haar basis. The

necessity of the coefficient standardization step for

the FAST fingerprints comes down to a key

difference between seismic and audio data: in con-

tinuous seismic data, noise-only signals make up the

majority of the data set (and, by extension, the

majority of waveform fingerprints), while the signals

of interest, earthquakes, are infrequent. FAST iden-

tifies candidate earthquakes by searching for all pairs

of similar waveform fingerprints. Since most of the

fingerprints extracted from continuous data corre-

spond to noise signals, it is critical that noise

fingerprints have low mutual similarity for FAST to

be effective.

The original Waveprint method represents a

waveform using the largest-magnitude wavelet coef-

ficients, but when applied to noise-dominated seismic

data sets this representation is inefficient; a small

subset of wavelet coefficients regularly take large

values and are frequently selected, while a larger

number of coefficients are almost never selected (see

Fig. 3 for examples of coefficient distributions). In a

representative data set with 10% sparsity, 16% of the

coefficients are active in at least 1 in 4 fingerprints,

while half of all coefficients are active in fewer than 1

in 100 fingerprints (Bergen et al. 2016). This

inefficiency results in higher similarity between pairs

of noise fingerprints (Fig. 4), and negatively impacts

detection sensitivity by making it more difficult to

identify pairs of similar low signal-to-noise (SNR)

earthquake waveforms.

Coefficient standardization can be viewed as a

balancing of the coefficient distributions, transform-

ing the distribution of each coefficient to be centered

around zero and have roughly the same spread. This

increases the probability of selection for coefficients

that originally were centered at zero with a small

variance (or MAD), but decreases the probability of

selection for coefficients that were originally centered

away from zero or had large variance. The updated

FAST fingerprint representation is more efficient:

after MAD standardization is applied to the example

data set described above, each coefficient is active in

5–15% of all waveform fingerprints, and there are no

longer coefficients that are frequently or rarely active.

The underlying assumption when we perform this

balancing of the coefficient distributions is that it will

not hurt detection performance by substantially

reducing the similarity between the fingerprints of

similar earthquake waveforms; we show in Sect. 5
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that, empirically, this approach does preserve simi-

larity for earthquakes (Fig. 4).

4. Experiments

In order to select the best feature extraction

method and optimize any necessary parameter values

(e.g. the sparsity parameter, K, for Waveprint and

FAST fingerprints), we require a means of quantify-

ing the performance of each method in the context of

similarity search. In this section we describe a test for

comparing the performance of different feature

extraction methods. In the next section we use this

benchmark test to compare three audio fingerprinting

methods (Sect. 3.1) and the FAST feature extraction

method for use in waveform similarity search.

4.1. Benchmark Data Set

To compare the effectiveness of different finger-

printing schemes for waveform similarity search, we

need examples of known earthquake and noise

waveforms for performance evaluation. The best

fingerprint extraction method and optimal parameter

settings can vary by station depending on the local

noise properties, so we use multiple data sets to

reduce bias and determine the method with the best

overall performance. We compile a benchmark data

set containing earthquake waveforms and segments

of background noise from each of eight different

(a)

(b)

Figure 3
Distribution of wavelet coefficient values across all a noise and b earthquake fingerprints extracted for station NC.CCOB for 3 of the 2048

wavelet coefficients. Note that the same 3 wavelet coefficients (left to right: coefficient nos. 64, 322, and 273) are shown for both noise (top)

and earthquake (bottom) waveforms; noise and earthquake waveform data were separated for comparison. For some coefficients there is not a

significant difference between the coefficient distributions for noise and earthquake waveforms, but often the distribution for earthquakes has a

different spread (right panel) or a different center or skew (center and left panels). For the purposes of coefficient standardization, each of

these distributions is modeled by two parameters: the mean and standard deviations (Z score) or median and median absolute deviation

(MAD). a Examples of distributions of wavelet coefficient values for noise waveforms. Most of the distributions are strongly peaked (right),

but some are less strongly peaked (left) or asymmetrical (center). b Examples of distributions of wavelet coefficient values for earthquake

waveforms. As in the case of noise waveforms, most of the wavelet coefficient distributions for earthquake waveforms are strongly peaked.

The wavelet coefficient distributions for earthquakes often differ from the corresponding distribution for noise

1044 K. J. Bergen and G. C. Beroza Pure Appl. Geophys.



stations. The stations, shown in Fig. 5, are selected

for geographic diversity within the northern Califor-

nia region and to ensure availability of a relatively

high number of event waveforms.

For each of the eight stations, we create an

‘‘earthquake’’ and a ‘‘noise’’ waveform data set. All

data are taken from the 8.5-year period from 1

January 2008 to 31 May 2016. For both earthquake

and noise waveform data, we use the vertical channel

data, apply a 1–10 Hz bandpass filter, and decimate

to 20 Hz. We apply the same bandpass filter for each

station because we want to ensure good performance

even if the optimal bandpass filter is not selected.

The earthquake waveform data is taken from

catalog events in the Northern California Seismic

Network (NCSN) phase-pick catalog (NCEDC 2014).

We include only events magnitude 2.0 and larger. For

each event in the NCSN catalog, we download a

2-min segment of waveform data (when available):

the 60 s leading up to the P-wave arrival and the 60 s

after the P arrival. To ensure that the earthquake data

set contains events with clear waveforms, we include

events only if (1) the wave arrival appears close to the

Figure 4
Comparison of Waveprint and FAST fingerprinting schemes applied to a background noise and b similar earthquake waveforms. Each row

displays the fingerprints extracted from corresponding waveform data, and each column represents a different fingerprinting scheme: Original

refers to the Waveprint scheme with no coefficient standardization step; Z score and MAD refer to standardization with the mean and standard

deviation or median and median absolute deviation, respectively. Pixels in white and red represent the active/selected coefficients, with those

in red indicating the intersection of fingerprints for each of the two distinct waveforms under the same fingerprinting scheme. All waveform

data below are from station BK.SAO and represent a duration of 16 s. a Fingerprints corresponding to two noise signals. The Jaccard

similarities between fingerprints are: 0.33 (original), 0.08 (Z score), and 0.06 (MAD). Fingerprints corresponding to noise waveforms have

lower similarity after coefficient standardization compared to the original fingerprints. b Fingerprints corresponding to two similar earthquake

signals: the first waveform corresponds to a real event; the second waveform is a copy of the event waveform embedded in noise at SNR 5.0

(as illustrated in Fig. 6). The Jaccard similarities between fingerprints are: 0.79 (original), 0.83 (Z score), and 0.85 (MAD). Fingerprints

corresponding to similar waveforms maintain high similarity after coefficient standardization
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expected P arrival time and (2) the STA/LTA ratio

(Allen 1982) (with window lengths 1 and 30 s)

exceeds a threshold value of 5.0 at some time up to

15 s after the P arrival. The number of earthquake

waveforms included in the benchmark from each of

the selected stations is given in Table 1, and the event

epicenter locations are shown in Figs. 12 and 13 in

the Appendix.

The noise waveform data are sampled from the

continuous data. For each day in the 8.5-year period,

we select a 2-min time interval at random and

download the continuous waveform data (when

available). These ‘‘noise’’ segments may contain

regional or teleseismic earthquakes or other transient

signals, so we apply an additional data cleaning step.

We label each segment as either ‘‘clean noise’’ (NC),
‘‘lively noise’’ (NL), or ‘‘non-noise’’ (NS) (see

Appendix 7.2). Non-noise are segments of data that

likely contain signals from regional earthquake

arrivals, earthquake codas, or teleseismic waves;

these segments are removed from the noise data set.

Clean noise segments are those with relatively

uniform signal energy across the interval, while

Figure 5
Locations of the eight selected stations used in benchmark data sets to compare performance of feature extraction methods: Parkfield

(BK.PKD), Hollister (BK.SAO), Calaveras Fault (NC.CCOB), San Francisco Peninsula (BK.JRSC), San Ramon (NC.CBR), Napa Valley

(BK.CVS), Mammoth (NC.MCB), and Geysers geothermal field (NC.GDXB). Created with Google Maps

Table 1

Benchmark waveform data sets

Station Number of waveforms in data set

Earthquakes Noise (NC and NL)

BK.PKD 1972 3083

BK.SAO 2271 3094

NC.CCOB 1691 2851

BK.JRSC 1824 3092

NC.CBR 1069 2469

BK.CVS 3012 2974

NC.MCB 1276 3051

NC.GDXB 1991 3080

Total 15,106 23,694

‘‘Earthquakes’’ refers to the number of medium-to-high SNR cat-

alog events in the data set for each station. ‘‘Noise’’ refers to the

number of ‘‘clean’’ or ‘‘lively’’ background noise segments (with

likely earthquakes excluded) in the data set for each station
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lively noise segments have more variation in signal

energy.

4.2. Extracting Waveform Fingerprints

All of the fingerprint extraction methods initially

convert the continuous waveform data into the time-

frequency domain. The computation and processing

of the spectrogram is the same across all methods,

with the exception of the choice of window function.

All spectrograms use a window length ws ¼ 10:0 s

and a window lag ‘s ¼ 0:1 s, and have 32 linearly

spaced frequency bins (33 for Philips to produce 32

bins in the derivative).

In the Philips, Waveprint, and FAST fingerprints

we use a fingerprint window wf ¼ 10:0 s. The

Waveprint and FAST fingerprints have dimension

D ¼ 4096 and the Philips fingerprints have dimen-

sion D ¼ 3200. For the Waveprint and FAST

fingerprints we vary the value of sparsity parameter,

K, from 50 to 800 for parameter testing, but we fix the

value K ¼ 400 when comparing different fingerprint

extraction methods. In the benchmark data sets,

earthquakes are oversampled, so we use only the

noise waveforms to compute the Z score and MAD

statistics for the FAST fingerprints.

The landmark-based method computes hashes

rather than fingerprints. Key points are selected by

identifying local maxima in the spectrogram using a

maximum filter (with a minimum distance of 1.5 Hz

along the frequency axis and 1 s along the time axis).

The hash constellations are formed between each key

point and other local maxima within a target region

that includes any local maxima that both occurs 1–10

s after the key point and has a frequency coordinate

within a 4 Hz range.

4.3. Performance Metrics

To evaluate the performance of different finger-

print extraction methods for earthquake detection, we

require a metric to quantify the degree to which a

fingerprinting scheme is discriminative for similarity

search. A fingerprinting scheme is discriminative if

(1) under the fingerprinting scheme, two similar

earthquake waveforms are mapped to fingerprints that

have high similarity, and (2) an arbitrary pair of noise

waveforms are mapped to fingerprints that have low

similarity. We quantify these criteria using two

metrics: fingerprint accuracy and baseline similarity,

respectively.

4.3.1 Quantifying Accuracy and Baseline Similarity

In the discussion that follows, let xðiÞ 2 RM be the ith

earthquake waveform, represented in the time domain

with M samples, and let nðjÞ 2 RM be the jth noise

waveform. Let F : RM ! f0; 1gD
represent the fin-

gerprint extraction operation, and let a be a scaling

factor that controls the signal-to-noise ratio (a is not a

fixed value but varies to produce the desired signal-

to-noise ratio; see Appendix 7.1).

Fingerprint accuracy is a measure of the quality

of the fingerprints of earthquake waveforms for

similarity-based detection under additive noise. In

our benchmark test we consider the challenging

detection task of identifying two similar event

waveforms, both at low SNR, because we would like

our fingerprinting scheme to be discriminative for

weak earthquake signals. We compare the finger-

prints of two versions of the same earthquake

waveform, xðiÞ, (high signal-to-noise, from ‘‘earth-

quake’’ waveform data set) embedded in two

different noise segments, nðjÞ and nðkÞ, both at low

SNR (see Fig. 6):

accuracyði; j; kÞ ¼ sim Fðajx
ðiÞ þ nðjÞÞ; FðakxðiÞ þ nðkÞÞ

� �
;

ð9Þ

where noise segments nðjÞ; nðkÞ 2 NC are only drawn

from the ‘‘clean noise’’ data set from the same station

as the earthquake waveform xðiÞ. Here, simð�; �Þ rep-
resents the relevant similarity measure: number of

matching hashes for landmark method, Hamming

similarity for the Philips method, and Jaccard simi-

larity for the Waveprint and FAST fingerprints.

Waveform fingerprints should be effective even

when the earthquake waveforms are not perfectly

aligned; this is necessary for good performance in

continuous data when the lag between adjacent

fingerprints may be large compared to the sampling

rate. To make our tests more representative of the

detection challenges in continuous data, we compare

fingerprints for similar waveforms with a time offset
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(applied before extracting fingerprints). We use

offsets ranging from 0 to 10 samples, corresponding

to the maximum offset for continuous data sampled at

20 Hz with a fingerprint lag of 1.0 s. These offsets

only apply to the Philips, Waveprint, and FAST

fingerprints, as the notion of a fingerprint lag is not

applicable to the landmark-based hash method.

To measure the similarity between fingerprints

extracted from noise waveforms, we define the

baseline similarity between the kth and ‘th noise

waveforms as:

baseline ðk; ‘Þ ¼ sim FðnðkÞÞ; Fðnð‘ÞÞ
� �

; ð10Þ

where noise segments nðkÞ; nð‘Þ 2 ðNC [ N LÞ are

drawn from both ‘‘clean ’’ and ‘‘lively’’ noise. The

baseline similarity is an important statistic because

the threshold for what will be considered high accu-

racy for earthquake waveform fingerprints is

determined relative to typical similarities between

fingerprints for noise waveforms.

To obtain the baseline similarity distribution, we

compare 1,000,000 pairs of noise fingerprints (some

noise fingerprints may belong to multiple pairs) per

station. For measuring the accuracy distribution, the

number of pairs of fingerprints is proportional to the

number of earthquake waveforms available from a

given station (see Table 1). A separate distribution of

values for fingerprint accuracy and baseline similarity

are computed using waveform data from each of the

eight stations.

4.3.2 ROC Curve and Truncated-AUC

For a fingerprint extraction scheme to be effective for

similarity-based detection in long-duration data, we

require both high accuracy for fingerprints and low

baseline similarity to limit false detections. We

characterize the trade-off between false detections

and missed detections using a receiver operating

characteristic (ROC) curve. For a given Jaccard

similarity threshold, s, we define the true positive rate

(TPRs) as the fraction of earthquake waveform pairs

for which the accuracy exceeds the threshold, and we

define the false positive rate (FPRs) as the fraction of

noise waveform pairs for which the baseline similar-

ity exceeds the same threshold (see Fig. 7). The true

and false positive rates should be interpreted with

caution with respect to detection in continuous data,

as TPR and FPR do not account for the non-linear

relationship between Jaccard similarity and the

probability of detection in LSH-based similarity

search. The ROC curve traces the values (FPRs,

TPRs) for all choices of threshold s between 0 and 1

for Philips and Waveprint variants (for landmark-

based features, the threshold values are counts).

One commonly used measure to summarize the

overall detection performance across the full range of

threshold values is the area under the ROC curve

(AUC) (Bradley 1997). Because high values for the

FPR are not appropriate for the earthquake detection

Figure 6
Original earthquake waveform is shown in the top row (blue). This

original waveform is scaled down and embedded in three different

intervals containing only sensor-recorded background noise, form-

ing the three ‘‘noise-added’’ copies of the waveform in the bottom

three rows, at a lower signal-to-noise ratio than the original

waveform (SNR 5.0)

Figure 7
Distributions used to characterize the trade-off between true

positives and false positives. Green distributions show values of

baseline similarity for pairs of noise fingerprints; blue distributions

show accuracy measure for pairs of earthquakes embedded in noise

at SNR 2.0. Data shown are from station BK.SAO. a Original

Waveprint fingerprints (no coefficient standardization) with spar-

sity parameter K ¼ 400. b FAST fingerprints (modified Waveprint

with Z score coefficient standardization) with K ¼ 400. c FAST

fingerprints (modified Waveprint with MAD coefficient standard-

ization) with K ¼ 400. d Philips fingerprints. Because these

fingerprints are dense binary fingerprints, the similarity of pairs

of noise fingerprints is centered around 0.5, which is the expected

Hamming similarity for two dense binary fingerprints with bits

selected at random. e Landmark-based hashes. Similarity is

quantified by the number of matching hash values, and is

represented as counts rather than a quantity between 0 and 1 (as

in the Jaccard similarity for Waveprint or Hamming similarity for

Philips)

c
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task, we use a truncated version of the AUC that

considers only the area under the section of the curve

corresponding to small values of the FPR:

FPR 2 ½0; FPRmax�; we normalize the truncated-

AUC so that its maximum possible value is always

1 for any choice of FPRmax (see Fig. 8).

5. Results

We compare the performance of audio finger-

printing and FAST fingerprinting schemes for

earthquake detection: (1) landmark-based features,

(2) Philips fingerprints, (3) Waveprint fingerprints,

and FAST fingerprints with coefficient standardiza-

tion using (4) Z score or (5) MAD statistics. Figure 9

shows a comparison of five fingerprinting schemes on

the benchmark waveform data sets for eight stations

using the truncated-AUC metric.

At a higher SNR of 5.0, the Philips method and all

Waveprint variants perform consistently well across

the eight benchmark data sets. As the SNR is lowered

to 2.0 and 1.0, the performance of all of the finger-

printing schemes degrades, and for some schemes

there is more variation in performance, with a large

performance gap between the best- and worst-case

performance on the eight benchmark data sets.

At lower SNR (1.0–2.0), FAST fingerprints

(MAD) achieve the best and most consistent perfor-

mance; this scheme has the best worst-, average-, and

best-case performance compared to the other meth-

ods. The Philips fingerprints also perform well in the

low SNR case. At low SNR, the Waveprint and FAST

fingerprints (Z score) achieve similar performance on

average, but the FAST (Z score) scheme has more

variation in performance compared to the original

Waveprint method; on some data sets the FAST

(Z score) scheme performs well, but on others its

performance is very poor. In all cases, the landmark-

based method performs poorly, even for signals in the

higher SNR case. The box plots in Fig. 9 demonstrate

that there can be significant variation in performance

for fingerprinting schemes applied to data from dif-

ferent stations. The ranking of which fingerprinting

schemes have the strongest performance may also

vary by station.

Note that caution should be taken in interpreting

the false and true positive rates for continuous data.

The TPR and FPR are computed on the true Jaccard

similarity values, and do not account for the fact that

the probability of detection varies with the Jaccard

similarity in FAST’s LSH-based similarity search.

Using the Jaccard similarity values gives a measure

of the fingerprinting scheme effectiveness that is

independent of the choice of the similarity search

method or parameters, making it possible to draw

general conclusions about the relative effectiveness

of different approaches.

5.1. Parameter Testing

The approach that we have outlined above can

also be used to compare and optimize parameter

values for a given fingerprinting scheme. The

performance of the FAST (MAD) fingerprinting

scheme is not particularly sensitive to changes in

Figure 8
Comparison of ROC curve for different fingerprinting schemes.

The area under each curve (with appropriate normalization) gives

the truncated-AUC (FPR � 0:01) statistic used in Fig. 9 for each

method. Data shown are for the data set from station BK.SAO with

earthquake waveforms at SNR 2.0. A separate ROC curve is

computed for each station and method. ROC curves are generated

from distributions in Fig. 7 by plotting the fraction of baseline

similarity (green) distribution exceeding a given threshold to the

fraction of the fingerprint accuracy (blue) distribution exceeding

the same threshold, for all thresholds from 0 to 1 (or 0–20 for

landmark method) for each method
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most of the parameter values (e.g. the choice of

wavelet basis), with the exception of one key

parameter: the sparsity parameter K. Ideally, finger-

prints should be as sparse as possible (i.e. have few

non-zero values, low K) to enable efficient search, but

must remain sensitive to weak earthquake signals. A

comparison of the performance with different values

of K (Fig. 10) shows that values in the range of

K ¼ 300–500 (out of 4096 coefficients in binary

fingerprint), corresponding to 10% sparsity, are

optimal for the FAST fingerprints with MAD-ad-

justed coefficients.

6. Discussion and Conclusions

6.1. Audio Fingerprints for Earthquake Detection

Among the three audio fingerprinting methods,

the landmark-based features perform poorly on

seismic data even at high SNR, while both the

Philips and Waveprint fingerprints perform well

when applied to seismic data. Each of these three

approaches captures spectrogram features at different

scales; the landmark-based features only capture a

few prominent points, the Philips fingerprints contain

only local information (derivatives) in the spectro-

gram, and Waveprint captures information about

different-sized patches (from local to global) within

the spectrogram.

Figure 9
Relative performance of five fingerprinting schemes on the benchmark data sets. Box plots show variation in truncated-AUC measure over the

data sets from eight stations. Each panel shows results for different signal-to-noise ratio (SNR) values for the earthquake signals: 5.0, 2.0, and

1.0 (top to bottom)
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The landmark-based features perform poorly

because local maxima in the spectrogram are not

appropriate features for characterizing earthquake

waveforms. Even for two earthquake waveforms that

are nearly identical in the time domain, there may be

limited correspondence between the spectrogram

peaks for the two events (Fig. 11). This approach

misses important information for detection, as

P-wave arrivals correspond to intervals with increas-

ing signal energy rather than energy maxima, and

thus generate very few key points.

The Philips fingerprints are also essentially local

features based on the derivatives of the spectrogram.

An advantage of the Philips method is that each

feature contains only information from two neigh-

boring frequency bins, so relatively few features will

be affected by the presence of persistent narrow-band

noise, making this approach robust to a poor choice

of bandpass filter. In contrast, because the Waveprint

fingerprints and FAST variant effectively treat the

spectrogram as an image, and search for similar

images using features at multiple scales, these

approaches may be more prone to false detections

or missed detections in the presence of strong narrow-

band noise. The dense binary Philips fingerprints are

associated with Hamming similarity measure, so it

requires a different similarity search implementation

from that shared by the Waveprint and FAST

fingerprints.

The fingerprint extraction method that demon-

strates the most consistent performance at low SNR is

the FAST fingerprints, a modified version of the

Waveprint method, with wavelet coefficients stan-

dardized using the MAD statistics. The

standardization step improves detection performance

of the original Waveprint method because coefficient

standardization induces a more uniform distribution

of fingerprints in the continuous data set, with the

effect of lowering the similarity between fingerprints

corresponding to noise while maintaining high sim-

ilarity between earthquake fingerprints. Although the

standardization was originally implemented using the

mean and standard deviation (Yoon et al. 2015), our

recommendation is to use the median and MAD

statistics for coefficient standardization in FAST

fingerprints.

Figure 10
Parameter testing: the horizontal axis is the value of the sparsity parameter, K, which corresponds to the number of non-zero values in the

binary fingerprint (out of 4096). As K increases, the fingerprints are less sparse, which makes them less compact to store, and the runtime of

the efficient similarity search step of FAST tends to increase. The optimal range for K is 300–500, which corresponds to 7–12% sparsity. The

vertical axis is a measure of how discriminative the resulting fingerprints are, as measured by the true positive rate (TPR) for a fixed false

positive rate of 0.01%. Box plots show variation in performance over the waveform data sets from eight different stations

1052 K. J. Bergen and G. C. Beroza Pure Appl. Geophys.



6.1.1 Computational Concerns

The metric used to compare different feature extrac-

tion methods (Sect. 4.3) is a measure of how

discriminative the resulting fingerprints are for

waveform similarity search, but this measure does

not capture other advantages or disadvantages of

these methods with respect to our task. Our ultimate

aim is to select a feature representation that will

enable earthquake detection via blind search for

similar earthquake waveforms in long-duration data.

An important factor in selecting a feature extraction

method is whether the chosen approach can be scaled

to large data sets; the computational cost of feature

extraction, the compactness of the feature represen-

tation, the effect on similarity search memory usage,

and runtime must also be considered in selecting a

fingerprinting scheme for use in waveform similarity

search. The runtime for fingerprint extraction should

not be prohibitive for data sets with durations on the

order of months to years, though a slower feature

extraction method that can be computed in a parallel

or distributed manner would also be acceptable.

The need to estimate the median and MAD

statistics for the distribution of each wavelet coeffi-

cient is a disadvantage of the FAST fingerprint

extraction scheme from a computational standpoint.

For large data sets, this can be partially addressed by

computing the statistics on a sample of fingerprints

rather than the entire data set. However, since the

computational bottleneck in the FAST detection

pipeline is often the similarity search step, it may

be desirable to select a slightly slower feature

Figure 11
Illustration of the appropriateness of local maxima in the spectrogram as features for waveform similarity search for the earthquake detection

problem. The lower panel shows two events with nearly identical waveforms, plotted in green (foreground) and black (background), and

normalized to equal amplitude. The upper panel shows the spectrogram corresponding to the green event waveform, with the local maxima, or

key points, identified by the landmark-based algorithm marked with green and black diamonds (corresponding to the green and black event

waveforms, respectively). Although the green and black waveforms are nearly identical in the time domain, the key points for these two events

have limited correspondence with each other. Local maxima in the spectrogram work well for music audio signals, which are typically

localized in frequency and time, but these features are not as useful for identifying similar earthquake waveforms. Colormap is plotted on a log

scale
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extraction method if this choice of fingerprinting

scheme will result in a speed-up in the similarity

search runtime. The slight increase in runtime

required to compute FAST fingerprints compared to

Waveprint (due to the extra standardization step) can

actually reduce the overall runtime if it results in

fingerprints that are more uniformly distributed and

produces fewer of the spurious matches that can

significantly slow similarity search runtime.

Ten years of continuous data with a 1-s fingerprint

lag corresponds to over 300 million fingerprints per

channel. These fingerprints must be stored in memory

to create the set of hash tables for the search index

used in efficient similarity search. The fingerprint

representation should be compact, requiring a rela-

tively small number of bits to store each fingerprint.

For FAST fingerprints of dimension D ¼ 4096 with

sparsity parameter K ¼ 400, the storage requirement

is 2� 4096 ¼ 8192 bits (binary representation) or

16� 400 ¼ 6400 bits (integer representation) per

second of continuous data; this corresponds to 250–

325 GB (gigabytes) to store fingerprints for 10 years

of data. The Philips fingerprints have a computational

advantage over the Waveprint and FAST fingerprints

in this respect. While each Philips fingerprint requires

2� 32� 100 ¼ 6400 bits to store, there is significant

overlap between the representation of adjacent

fingerprints, so that in practice the storage require-

ment is only 2� 32� 10 ¼ 640 bits per second of

continuous data, or 25GB for 10 years of continuous

data, a factor of 10 reduction compared to the FAST

fingerprints.

6.2. Feature Learning for Waveform Similarity

Search

All of the fingerprinting methods discussed in this

work are examples of ‘‘hand-engineered’’ features;

they apply a set of fixed transformations that were

selected based on expert knowledge of the properties

of audio data and that have been demonstrated to

perform well in practice. The three audio fingerprint-

ing methods are data-independent, while the FAST

fingerprints are modified to include an additional

data-adaptive component. As an extension of the

work presented in the previous sections, we investi-

gated the use of fully data-driven approaches to

feature extraction for waveform-similarity-based

earthquake detection. Approaches that attempt to

learn an optimal feature representation for a data set

from the data itself are called feature learning or

representation learning methods (Bengio et al. 2013)

in machine learning. Learned feature representations

have the potential to produce more discriminative

fingerprints because they can be optimized for a

given data set.

Feature learning encompasses a range of tech-

niques, including matrix factorization (Deerwester

et al. 1990; Lee and Seung 1999), dictionary learning

(Lee et al. 2007), and neural networks (Hinton and

Salakhutdinov 2006). We also considered a related

set of methods called learning to hash (Wang et al.

2014, 2018), a data-dependent alternative to locality-

sensitive hashing for approximate similarity search.

For example, spectral hashing (Weiss et al. 2009)

learns a set of data-dependent projections instead of

using random projections as in locality-sensitive

hashing.

There are a number of challenges that arise when

applying feature learning or learning-to-hash methods

to uninformed waveform-similarity-based earthquake

detection (Bergen 2018).

It may be possible to learn high-quality features

for similarity search using a labeled training set

(collection of known earthquake waveforms). How-

ever, FAST is intended to be an uninformed method

for earthquake detection. One of the properties that

makes FAST particularly useful is that it can be

applied in cases when there is a limited record of past

seismic activity (i.e. the available catalog of template

waveforms is limited or incomplete). Thus the feature

learning approach should not require or assume the

availability of known template waveforms; in the

context of learning algorithms, this means limiting

the approach to unsupervised methods, i.e. those that

do not require labeled training data.

There are many unsupervised methods for feature

learning and learning to hash that do not require

template waveforms, but seismic data sets pose an

additional challenge. Seismic data sets are imbal-

anced, meaning that the events of interest represent a

minority of the signals in continuous data sets

dominated by long periods of noise. Machine learn-

ing tasks with imbalanced data often result in poor
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performance on the minority class (in this case

earthquake signals) because the learning algorithm

has less information about the minority class, and the

training samples from the minority class carry less

weight overall in the learned model (He and Garcia

2009). As a result, it is difficult to learn a feature

representation that produces low similarity between

noise waveforms and high similarity between earth-

quake waveforms with unsupervised feature learning.

The challenges posed by the lack of labeled

training data and the imbalanced, noise-dominated

data make it difficult to provide FAST users with a

single approach or framework for learning features

that can be applied to diverse data sets. Therefore, our

proposed FAST fingerprints, the data-adaptive variant

of the Waveprint with MAD-standardization of the

wavelet coefficients, are designed to be applied to any

data set regardless of the availability of template

waveforms, and take into account the data set

imbalance problem. The coefficient standardization

step in the FAST fingerprint extraction method is

similar to the approach taken by some learning-to-

hash methods: creating balanced hash codes that

distribute the data more evenly in the hash

tables (Weiss et al. 2009; Wang et al. 2010).

6.3. Benchmarking for Performance Evaluation

The approach outlined in Sect. 4 of this work can

be used to evaluate alternative feature extraction

schemes for waveform data beyond the audio finger-

printing methods presented in this work. Our

framework for evaluating performance includes two

key elements: benchmark data sets and an appropriate

performance measure. The use of benchmark wave-

form data sets, containing known examples of noise

and earthquake waveforms, provides a means of

determining the detection performance for weak

events. This allows us to overcome one challenge in

evaluating the performance of algorithms for detect-

ing weak events often missed in existing catalogs: the

lack of ground truth, an objective standard for

measuring detection performance. This framework

provides a way to quantify the effectiveness of each

feature extraction method for separating weak earth-

quake signals from noise in the context of similarity

search. The experiments presented in this work only

test for the distortions in the waveforms due to

additive noise, but a similar framework can be used to

compare fingerprinting schemes with respect to other

criteria.

While our approach allows us to validate the

feature extraction algorithm used in FAST, there

remains the ongoing challenge of assessing detection

performance in continuous data without ground truth.

The goal of developing new earthquake detection

algorithms is to outperform existing methods, but the

nature of our task, discovering new events and

sources, makes it inherently difficult to measure

performance. Therefore, an open challenge in earth-

quake detection research is how to validate new

candidate events, specifically how to distinguish true

earthquake signals from transient signals due to local

noise sources such as vehicles, transportation sys-

tems, and air traffic (Dı́az et al. 2017; Meng and Ben-

Zion 2018). The development of appropriate bench-

mark data sets and performance measures for

comparing and validating earthquake detection algo-

rithms will be critical for leveraging new

developments in machine learning and data mining

for seismology research.
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Appendix

Signal-to-Noise Ratio

In this work, the signal-to-noise ratio (SNR) is

computed using a 15-s interval of waveform data

following the P-wave arrival. For signal x and noise

Vol. 176, (2019) Earthquake Fingerprints: Extracting Waveform Features 1055



n, each of duration M ¼ 300 samples (15 s of data

sampled at 20 samples per second), the SNR is given

by:

SNR ¼ Psignal

Pnoise

; where Psignal

¼ 1

M

XM

i¼0
jx½i�j2; and Pnoise ¼

1

M

XM

i¼0
jn½i�j2: ð11Þ

Noise Segment Classification

Noise segments are assigned one of these three

labels based on two criteria: (1) an STA/LTA

threshold, and (2) a uniform energy criterion that

quantifies how uniform the energy is across the 2-min

interval. A noise segment is labeled as ‘‘clean’’ noise

if the maximum STA/LTA ratio in the interval is

below 3.0 and the uniform energy score is below 0.1.

A noise segment is labeled as ‘‘non-noise’’ if the

maximum STA/LTA ratio in the interval exceeds 6.0

or the uniform energy score exceeds 0.2. All other

noise segments are labeled ‘‘lively’’ noise. The

Figure 12
Map plots show the epicenter locations for the events in the earthquake waveform benchmark data set for stations NC.CCOB, NC.MCB,

NC.GDXB, and NC.CBR. The location of each station is marked with a blue triangle, and the event epicenters are shown in red. The set of

earthquakes is selected independently for each station depending on whether a P-phase arrival was recorded in the NCSN phase-pick catalog

for a given event

1056 K. J. Bergen and G. C. Beroza Pure Appl. Geophys.



parameters for short and long windows used in the

STA/LTA ratio are 3 and 45 s, respectively. The

uniform energy score, uðjÞ, associated with a noise

segment nðjÞ of length M samples is defined as:

uðjÞ ¼ 1

M

XM

k¼1
sðjÞ½k� � k

M

�
�
�
�

�
�
�
�;

where sðjÞ½k� ¼
Xk

i¼1
nðjÞ½i�

� �2

;

ð12Þ

and nðjÞ is normalized such that jjnðjÞjj22 ¼ 1. This

value represents the difference between the

cumulative signal energy over the interval and the

cumulative energy for a signal with uniform energy,

and u takes values between 0 and 0.5, with larger

values associated with larger deviations from uniform

signal energy.

Events in Benchmark Data Set, by Station

The list of events in the benchmark data set and

the corresponding earthquake waveform and noise

data matrices, by station, are available upon request

(see Figs. 12, 13).

Figure 13
Map plots show the epicenter locations for the events in the earthquake waveform benchmark data set for stations BK.CVS, BK.JRSC,

BK.PKD, and BK.SAO. The location of each station is marked with a blue triangle, and the event epicenters are shown in red. The set of

earthquakes is selected independently for each station depending on whether a P-phase arrival was recorded in the NCSN phase-pick catalog

for a given event
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Alı́as, F., Socoró, J. C., & Sevillano, X. (2016). A review of

physical and perceptual feature extraction techniques for speech,

music and environmental sounds. Applied Sciences, 6(5), 143.

Allen, R. (1982). Automatic phase pickers: Their present use and

future prospects. Bulletin of the Seismological Society of Amer-

ica, 72(6B), S225–S242.

Andoni, A., & Indyk, P. (2006). Near-optimal hashing algorithms

for approximate nearest neighbor in high dimensions. In Foun-

dations of Computer Science, 2006. FOCS’06. 47th Annual IEEE

Symposium on, (pp. 459–468). IEEE.

Baluja, S., & Covell, M. (2008). Waveprint: Efficient wavelet-

based audio fingerprinting. Pattern Recognition, 41(11),

3467–3480.

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation

learning: A review and new perspectives. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 35(8), 1798–1828.

Bentley, J. L. (1975). Multidimensional binary search trees used for

associative searching. Communications of the ACM, 18(9),

509–517.

Bergen, K., Yoon, C., & Beroza, G. C. (2016). Scalable similarity

search in seismology: a new approach to large-scale earthquake

detection. In International Conference on Similarity Search and

Applications (pp. 301–308). Springer, Cham.

Bergen, K. J. (2018). Big Data for Small Earthquakes: Detecting

Earthquakes over a Seismic Network with Waveform Similarity

Search. PhD thesis, Stanford University, Stanford, CA.

Bergen, K. J., & Beroza, G. C. (2018). Detecting earthquakes over

a seismic network using single-station similarity measures.

Geophysical Journal International, 213(3), 1984–1998. https://

doi.org/10.1093/gji/ggy100.

Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., &

Wassermann, J. (2010). ObsPy: A Python toolbox for seismol-

ogy. Seismological Research Letters, 81(3), 530–533.

Bradley, A. P. (1997). The use of the area under the ROC curve in

the evaluation of machine learning algorithms. Pattern Recog-

nition, 30(7), 1145–1159.

Broder, A. Z. (1993). Some applications of Rabin’s fingerprinting

method. In Sequences II, (pp. 143–152). Springer.

Broder, A.Z. (1997). On the resemblance and containment of

documents. In Compression and Complexity of Sequences 1997.

Proceedings, (pp. 21–29). IEEE.

Cano, P., Batlle, E., Kalker, T., & Haitsma, J. (2005). A review of

audio fingerprinting. Journal of VLSI Signal Processing Systems

for Signal, Image, and Video Technology, 41(3 SPEC. ISS.),

271–284.

Datar, M., Immorlica, N., Indyk, P., & Mirrokni, V. S. (2004).

Locality-sensitive hashing scheme based on p-stable distribu-

tions. In Proceedings of the twentieth annual symposium on

computational geometry, (pp. 253–262). ACM.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., &

Harshman, R. (1990). Indexing by latent semantic analysis.

Journal of the American Society for Information Science, 41(6),

391.

Dı́az, J., Ruiz, M., Sánchez-Pastor, P. S., & Romero, P. (2017).

Urban seismology: On the origin of earth vibrations within a city.

Scientific Reports, 7(1), 15296.

Donoho, D. L., & Johnstone, J. M. (1994). Ideal spatial adaptation

by wavelet shrinkage. Biometrika, 81(3), 425–455.

Gibbons, S. J., & Ringdal, F. (2006). The detection of low mag-

nitude seismic events using array-based waveform correlation.

Geophysical Journal International, 165(1), 149–166.

Haitsma, J., & Kalker, T. (2002). A highly robust audio finger-

printing system. Proceedings of the 3rd international society for

music information retrieval conference (ISMIR02), (pp.

107–115).

Hampel, F. R. (1974). The influence curve and its role in robust

estimation. Journal of the American Statistical Association,

69(346), 383–393.

He, H., & Garcia, E. A. (2009). Learning from imbalanced data.

IEEE Transactions on Knowledge and Data Engineering, 21(9),

1263–1284.

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the

dimensionality of data with neural networks. Science, 313(5786),

504–507.
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