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The traditional structure-function paradigm has provided significant insights for well-folded
proteins in which structures can be easily and rapidly revealed by X-ray crystallography beamlines.
However approximately one third of the human proteome are comprised of intrinsically disordered
proteins and regions (IDPs/IDRs) that do not adopt a dominant well-folded structure, and therefore
remain “unseen” by traditional structural biology methods. This Perspective article considers the
challenges raised by the “Dark Proteome”, in which determining the diverse conformational
substates of IDPs in their free states, in encounter complexes of bound states, and in complexes
retaining significant disorder, requires an unprecedented level of integration of multiple and
complementary solution-based experiments that are analyzed with state-of-the art molecular
simulation, Bayesian probabilistic models, and high throughput computation. We envision how
these diverse experimental and computational tools can work together through formation of a
“computational beamline” that will allow key functional features to be identified in IDP structural

ensembles.
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INTRODUCTION

Intrinsic protein disorder can refer to either local, disordered regions of a protein containing one or
more folded domains (IDRs), or global protein disorder without any stable structure along the entire
sequence (IDPs). IDPs/IDRs, which are estimated to make up approximately one-third of the human
genome!, pose new challenges for the structure-function paradigm since they take advantage of
their disordered state to interact with numerous partners for signaling, regulation and transcription®
8. At the same time disease-related proteins are highly enriched in IDRs, including those that are
central to neurodegenerative disorders such as Parkinson’s disease, Huntington’s disease, prion
diseases, and Alzheimer’s disease (AD), as well as cancer-associated proteins that have a primary
function in regulatory protein interactions.’

The greater biological challenge posed by the IDP class of proteins relative to the singular
folded counterpart is that the disorder in their free and bound complex states is integral to their
function. In their monomeric or unbound forms, IDPs adopt neither a single nor a small number of
stable folded conformations, and their energy landscape of the free IDP lacks a deep minimum,
unlike that of a folded globular protein.!!! Nonetheless, the structural characterization of an IDP in
its free state is paramount to understanding the biology of the static or dynamic complexes that it
forms with other ordered or disordered proteins. Depending on the dissociation constant, Kp, there
can be a significant population of the unbound form even in the crowded cell for some IDPs.!? A
high degree of disorder and rapid interconversion between states is necessary for different IDRs to
become accessible or inaccessible to binding and/or post-translational modifications important for
regulation and signaling in the protein complex'®. In describing the disorder-to-order transitions that
can occur when disordered proteins fold upon binding to their targets, Arai and co-workers have
found that the sub-populations of the unbound protein ensemble influence the mechanism of
complex formation'4, a conclusion that needs to be further examined for a range of different IDP
systems. In regards the recent discovery of a small molecule drug that in cellular models of
a—synuclein-mediated dysfunction points to a potential strategy for treating Parkinson’s disease'”,
the accurate determination of the conformational ensemble of the free protein might aid in a
corresponding molecular interpretation of how such a drug works, and therefore how best to target
other disease-related IDPs.

The biological activity of an IDP is typically identified by the protein complexes that it
forms: an IDP can make both “static” (well-ordered) and/or “dynamic” (disordered) interactions

with different sites on the target protein surface. Many intrinsically disordered proteins contain



short amphipathic motifs, termed molecular recognition elements (MoRFs)!'®, which fold into
regular secondary structures such as a-helix or B-strand or adopt irregular structures upon binding
to their targets. An important feature of the recognition elements in many IDPs is that they exhibit
conformational plasticity, i.e. they can fold into different structures on binding to different targets.
Additional dynamic interactions involving adjacent regions to the MoRFs of the IDP frequently
enhance the binding affinity, enabling them to interact with multiple targets and to create
accessibility of sites for post-translational modification.

IDPs can bind with high specificity but modest affinity®’, an attribute that enables
spontaneous dissociation or displacement after signaling is complete.”!71 This is supported by the
fact that when comparing IDPs to folded proteins, their average affinity is indeed lower than for
folded proteins®’, and while the distribution of Kp shows considerable overlap between IDPs and
folded proteins?’, the definition of high specificity needs to be put in perspective. In particular, to
obtain the same overall degree of specificity given by a disordered sequence, which can wrap
around a target and provide extremely large contact area, a folded protein binding a smaller
interaction surface would have to have larger specificity per unit area.

The dynamics within a complex with multiple exchanging interacting elements can also
facilitate displacement, particularly for cases with higher affinity interactions. One such example is
the low nM affinity complex of the eukaryotic translation initiation factor 4E and the disordered 4E-
binding protein 2 (4E-BP2).2! This complex involves two adjacent elements of 4E-BP2, a canonical
4E-binding helical motif and a less regular C-terminal region, that appear to dynamically exchange
on the millisecond-microsecond timescale, facilitating phosphorylation at the interface required to

break the complex?

and enable translation to proceed. Another functionally important dynamic
complex involves the disordered Sicl cyclin-dependent kinase inhibitor and the Cdc4 subunit of an
SCF ubiquitin ligase. Phosphorylation of ~6 or more of the 9 sites on Sicl enables low micromolar
affinity binding. Dynamic exchange of each site on and off of Cdc4 facilitates ultrasensitive binding
leading to controlled degradation and a sharp cell-cycle switch, as well as efficient multi-site
ubiquitination.?>2> A further illustration of the dynamic complexes that IDPs can form is found with
the disordered regulatory (R) region of the cystic fibrosis transmembrane conductance regulator
(CFTR), that acts as an interaction hub with both intramolecular and intermolecular partners to
integrate input for controlling CFTR channel activity.?%?” One of these partners, 14-3-3p, involved

in CFTR processing, has two binding sites within its dimer into which 9 phosphorylated segments

of the CFTR R region dynamically exchange.?® Thus, structural characterization of IDPs/IDRs in



both free and bound forms, with a range of dynamics and disorder, is paramount to understanding
their biology, and expansion of the structure-function paradigm to a structural ensemble is a
necessary consideration for this class of protein.

Structures of biomolecules have driven functional insight into molecular biology and
biochemistry ever since Watson and Crick advanced the structural model of DNA, and
computational models are integral to rendering structural and dynamical information relevant to
structure and function. The idea of ensemble structure modeling is, of course, also relevant for
folded proteins and their unfolded states, exemplified by studies starting 25 years ago by Kuriyan et
al.? and continued more recently by the groups of Vendruscolo and Dobson???*! and De Groot and
Grubmuller®. Nilges and co-workers®® first introduced Bayesian inference to derive a probability
distribution for the folded structure using NMR, and along with other research groups probabilistic
frameworks have become an important theoretical contribution to the problem of ensemble structure
determination.>*3°

For folded proteins, the first structures determined by X-ray*’, NMR*!' and cryoEM*? helped
propel their continued development into robust techniques for providing a concrete, predictive and
conceptually straightforward model for the structure-function relationship. For example, scientists
at protein crystallography beamlines have defined an increasingly automated workflow of tasks
needed to solve the 3D structures of folded globular and membrane proteins and complexes:
determining crystallization conditions; X-ray data collection from protein crystals; model building,
refinement, and validation.*** Computational methods have also advanced to become critical
partners to experiment in providing further insight through study of protein dynamics, folding
kinetics, lead optimization in drug design, and the transition state energetics for enzymatic
mechanisms.

However, IDPs are not amenable to static structural determination methods such as X-ray

and electron crystallography and microscopy?:+2:43-46

, necessitating an adjustment in the core
methodology of protein structure determination for the so-called “dark proteome” that can capture
their dynamics and disorder. Nuclear magnetic resonance (NMR) and Small Angle X-ray Scattering
(SAXS) are the experimental tools of choice for characterizing the solution structure and dynamics
of IDPs in an aqueous environment>#*%*’_ Even so, since IDPs typically interconvert between
conformations on the ~ns-ms timescale, most solution based experimental observables are highly
averaged and thus obscure the characterization of the conformational sub-states of an IDP that are

tied to biological function. Structural descriptions of IDPs/IDRs are highly underdetermined, that is,



their number of degrees of freedom will far exceed the number of experimental restraints. Since
experiments alone will likely be unable to provide a detailed structural ensemble, it is important to
build the connection between the averaged experimental observables over the IDP structural

6,48-54

ensemble to the conformational sub-populations within the ensemble using state-of-the-art

computational methods and models®!'3.

The quantitative challenge in understanding IDPs is how to build models of even more
diverse structural ensembles relative to their folded counterparts, that allow researchers to gain
insight into their nature, to form hypotheses about their functional roles and to target them for small
drug therapeutics. Thus in analogy to crystallographic beamlines and their role in streamlining
protein crystallography, we propose that the IDP community could develop a “computational
beamline” to build up the requisite experimental and computational tools to model structural
ensembles for a broad class of IDPs and IDRs and their complexes. The computational beamline
would serve in several roles including as a repository for information from the best experimental
techniques such as NMR and SAXS, to examine whether other techniques such as circular
dichroism (CD), infrared (IR), electron paramagnetic resonance (EPR) and double electron-electron
resonance (DEER), fluorescence resonance energy transfer (FRET), and mass spectrometry (MS)
can add valuable information, and to combine relevant experimental data with the best theoretical
tools such as de novo molecular dynamics®*>%, Markov State models®*®°, Monte Carlo methods to

sample side chain ensembles®, Bayesian probabilistic analysis!®-3#62

, and quantum mechanical
methods to predict NMR observables®,

In this Perspective we examine the current state of experimental approaches and
computational methods applied to the IDP problem, and what future directions can be usefully
advanced within each area. Finally, we envision how the two approaches can be combined into a
powerful new resource that would culminate in a “data analysis end-station” that would develop and
apply new correlative methods to yield quantitative insight into key structural aspects that define the

free and complexed IDPs to their functionally relevant states.

EXPERIMENTAL METHODS AND FUTURE INNOVATIONS

The current experimental solution methods for characterizing protein intrinsic disorder include IR,
CD, MS, single molecule fluorescence spectroscopy, Wide Angle X-ray scattering (WAXS), and
the primary techniques of NMR and SAXS”’. CD and IR spectroscopy report on the amount of

secondary structure and hydrodynamic techniques such as SAXS, gel filtration, and dynamic light



scattering (DLS) report on the radius of gyration or hydrodynamic radius. Lack of a cooperative
folding transition and proteolytic sensitivity are also attributes of IDPs and some of their complexes
that are useful in forming a complete picture of a certain level of disorder.

NMR observables that can be used to restrain the IDP structural ensemble include chemical
shifts of backbone and side chain nuclei, which aid in structural assignments and probe
conformational information through their surrounding environment, spin-spin couplings (J-
couplings) which independently report on dihedral angles, and residual dipolar couplings (RDCs)
which have been used to describe the relative orientation of spatially separated regions of a
disordered protein®7°. These types of measurements are highly useful in describing local and/or
short-range interactions of the bound and free IDP state, while global descriptors of order/disorder
are usefully defined through SAXS or SANS experiments for categorization of a free IDP into
collapsed semi-ordered ensembles, collapsed disordered ensembles, or extended disordered
ensembles! >+ based on the distribution of heavy atom distances. Additional NMR and ESR
experiments such as through-space dipole-dipole interactions that give rise to the Nuclear
Overhauser Effect (NOE), and paramagnetic relaxation enhancements (PRE) from an attached spin
label’!, as well as the more recent DEER-EPR7>73 experiments, are in principle information-rich
since they report on both local and non-local tertiary structure contacts that would be valuable in
restraining the IDP ensemble.

The joint application of SAXS and NMR to study the structural ensemble of IDPs has been
pioneered based on a number of developments in North America and Europe. The SAXS program
Ensemble Optimization Method (EOM) by Bernado, Svergun, Blackledge and collaborators was
designed to work with NMR observables for IDPs’#76, and ENSEMBLE from the Forman-Kay
group works with multiple different types of data including NMR and SAXS for IDPs’"-’8, The
SIBYLS group in the U.S. has developed SAXS analysis for the characterization of large IDRs.”-8!,
including the analysis programs BilboMD and MES®?, which have provided novel and disease
relevant insights into IDRs. Data deposited into the SIBYLS based SAXS data repository®’
bioisis.net was mined for the development of quantitative measures of flexibility®* and the
extraction of mass®! even when flexibility is present.

However in all cases we are still faced with new challenges in applying these solution-based
techniques to IDPs. For example, the data for optimal characterization of IDPs lie at the extremes of
typical SAXS data for folded proteins since for their molecular weight, IDPs can be extremely

extended, thereby requiring very low-Q data from SAXS for the characterization of maximum



dimensions. For example while typical SAXS data collection standards occur in the Q range of 0.01
to 0.32A! with exposure times of 1 second, for IDPs SAXS data is taken down to a lower Q value
of 0.005 A" and with exposure times rising to tens of seconds. IDPs can also benefit from WAXS
since localized structural features generally occur over shorter length scales creating features in the
high Q region of the spectrum.

For NMR the generally poor chemical shift dispersion (particularly in the 'H dimension) can
be mitigated with optimized pulse sequences for IDPs*®. The pronounced motional averaging of
NOEs has limited the use of NOEs, and yet the information about intermediate range NOEs may be
particularly important in defining conformational ensembles. For example, NOE data collected for
the AP40 and AP42 peptides contained ~1100 and ~700 crosspeaks, respectively, but only ~20% of
these can be uniquely determined from experimental information alone, due to chemical shift
ambiguity, and most of these are due to short-range intraresidue, sequential, and i to i+2 contacts®’.
With the addition of *C/!>N labeling for resolution in 3D or 4D experiments it becomes possible to
assign many more NOE cross-peaks, adding new experimental constraints for ensemble generation;
for example particular combinations of hydrophobic amino acids labeled with '3C for the unfolded
state N-terminal SH3 domain of Drk proved to be valuable in these studies®6-53.

Further progress can be made with techniques like PRE which has been valuable in
detecting transient interactions, particularly intermolecular interactions®*. The power of this
approach comes from the fact that close proximity to an unpaired electron (on a metal or nitroxide
group covalently bound to the protein) causes a large increase in relaxation rate that is dependent on
the inverse sixth power of the distance from the spin label. By labeling one binding partner with the
relaxation agent, and the other with isotopes such as !N for selective NMR detection,
characterization of even transient complexes is possible.”® This approach can also be applied to
investigate short-lived intramolecular contacts in IDPs, since the transient folding leads to proximity
of the electron and nuclei, and is again observed through changes in relaxation. But there are some
caveats to this approach that requires careful calibration when applied to IDPs. First, because of the
covalent attachment of the relaxation agent it can never get very far from the region of the peptide
where it is attached, so there is always locally enhanced relaxation, although more interesting are
the sites of enhanced relaxation that are far, in the sense of covalent structure, from the attachment
site. The relaxation agents are invariably larger than an amino acid sidechain, and interactions of the
agent with other amino acids may affect the sensitive energy landscape of the IDP. This requires

additional controls to assess whether this occurs using chemical shifts and NOE spectra of the



modified peptide, or even better a diamagnetic version using a reduced spin label, or diamagnetic
metal substituting for the paramagnetic one in a chelator, and comparing with the unmodified IDP.
Nonetheless when carefully calibrated, a number of high quality PRE experiments have been

successfully carried out on IDPs’!!

, and thus these experimental methods are particularly
promising — a conclusion which has been nicely reviewed elsewhere®?.

DEER gives the distance distribution between two nitroxides” or metal (Gd™)** labeled
sites, complementing PRE data where it can be difficult to unambiguously separate spatial and
temporal components of the distance distribution function. However, DEER measurements have
challenges when applied to IDPs. For DEER measurements the electron relaxation rates must be
reduced by rapid freezing to form a glass at liquid N temperatures, and a concern is whether
freezing as well as the addition of the two labels, which may also involve mutations to create the
labeling sites, perturbs the distribution of conformers present in the unlabeled IDP in solution. A
second challenge in analysis of DEER data on IDPs is extraction of distance from the dipolar echo
modulation pattern, although existing analysis tools are available such as the DeerAnalysis2013
software®®. IDPs inherently will give rise to a broad distance distribution for the pairwise electron-
electron interactions, so the number of parameters to be extracted from the data is inherently larger
than for folded proteins, where in favorable cases a single, narrow distance distribution applies. A
priori, it remains unclear how robust such an analysis will be when taking into account the limited
signal-to-noise, and possible systematic sources of error resulting from finite pulse widths and
orientational selection at high magnetic fields. Therefore, substantial experimental work is needed
to fully explore the potential of DEER in the analysis of IDPs. We note the significant analogy of

96-98 rather than nitroxides

EPR DEER to optical FRET experiments using attached fluorescent dyes
or metals to IDPs; thus FRET can also be useful for restraining the IDP ensembles if the similar
challenges described for the DEER measurements can be overcome.

The integration of multiple solution-based experimental techniques on IDPs requires
optimization from both a data acquisition and analysis perspective. For example, while each
individual SAXS measurement does not contain as much information as a high resolution NMR
measurement, NMR and EPR are “low” throughput techniques whereas SAXS and DLS data can be
collected and analyzed much more quickly. To illustrate, ideal IDP concentrations for NMR can be
rapidly identified through the analysis of high throughput solution results generated by SAXS for

oligomerization and DLS to determine the maximum concentrations allowed before signals of

aggregation are apparent. Part of the growing resurgence of SAXS as a technique is that many



measurements allow for relative comparisons on how structure changes with sequence and
conditions — typical of many IDP projects. These ideas have been advanced by Hura and co-workers
through formulation of a general heatmap based method” for comprehensively viewing several
SAXS data sets and application to the human DNA mismatch repair protein MutS which contains
300 flexible amino-acids (Figure 1).

Although there have been many NMR studies on IDPs, and some have included other data
such as SAXS, there have not been extensive and systematic evaluations of the value of different
types and combinations of data in defining the IDP conformational ensemble. However a few
approaches are starting to emerge that deal with this important issue. One is a study® that
performed ENSEMBLE calculations for three IDPs based on a variety of experimental inputs,
including chemical shifts, RDCs, PREs, and SAXS. Comparison of ensembles calculated with
subsets of the experimental data missing defined types were used to quantify which measurements
most affected secondary structure, tertiary contacts and molecular size distribution, and hence are
high priorities for data acquisition to restrain IDP structural ensembles. It was found that secondary
structure was most strongly restrained using *C® chemical shifts and to some degree using *Juntq
couplings, whereas the accuracy of calculated tertiary structure is dependent on the number of PRE
distance restraints used.”” RDCs were found to provide a small but significant probe of short- to
medium-range tertiary structure whereas SAXS was important for restraining the size distribution.”

At the same time, if the chemical shifts are not highly dispersed along the sequence of a
particular IDP, such as is found for the amyloid-p peptides®’, then the chemical shifts have more
limited value as a experimental refinement input or as a validation measure.> In addition, the
optimization phase of methods such as ENSEMBLE"”7® and ASTEROIDS* rely on heuristic back-
calculation methods such as SHIFTX2!% for chemical shifts, PALES'"! for RDCs, and mere
structural approximations to NMR observables such as NOEs, even though the dynamical origins of
NOE intensities can be better used for determining the IDP ensemble®. Alternative approaches
based on Bayesian probabilistic modeling can offer a more solid foundation for examining the

10,62

usefulness of experimental data types'”°~ as described in the next section.

COMPUTATIONAL METHODS AND FUTURE INNOVATIONS
An important area of IDP research is to build robust all-atom models of IDP ensembles that can
successfully interface with experimental data to provide predictions of the structural ensembles of

IDP monomers and their complexes. One approach is to identify sets of conformers that in



aggregate agree with experimental data, to derive the IDP structural ensemble. Such “experimental
data knowledge” methods are the foundation of NMR structure determination of folded proteins
using experimentally derived constraints based on NOE data, RDCs, J-couplings and chemical
shifts, embodied in software packages such as CANDID!'??, CYANA!* X-Plor-NIH!*4105 and
TALOS!'%, Most often, experimental data knowledge approaches for IDPs start with an extensive
set of statistical coil conformations derived from software platforms such as Flexible-Meccano!'?’
and TraDES!%, which can generate both coil- an/or various structure-biased conformers. This basis
set of structures is then culled for the subset of conformations and their populations that are in best
agreement with experimental data to create the IDP ensemble. Examples are the energy-minima
mapping and weighting method!®-!'%) ENSEMBLE""8, and ASTEROIDS*’. ASTEROIDS uses a
genetic search algorithm to select structures that together best match experimental chemical shifts,
PREs, or RDCs*7%8 while the ENSEMBLE method’”-7887:88 selects structures from the starting pool
using a Monte Carlo algorithm with an energy-weighting scheme for each type of experimental
input. These programs contain modules for several different experimental data types. For example,
ENSEMBLE is able to accommodate data from a very wide range of sources including chemical
shifts, RDCs, PREs, J-couplings, NOEs and relaxation rate-derived contact densities, as well as
SAXS”” and hydrodynamic radii (Ry) from NMR, size exclusion chromatograph or dynamic light
scattering.

In addition to the ENSEMBLE and ASTEROIDS approaches that use experimental data for
conformational selection, a number of researchers have combined experiment and computation,
applying knowledge from NMR to restrain the IDP ensemble generated during an MD
trajectory®®!!1-114 For example, MD simulations have been combined with RDC restraint data for
folded proteins, which then allows for the analysis of other features of the ensemble, such as
conformational fluctuations. NMR restrained MD has also been applied to IDPs such as
a—synuclein by incorporating distance restraints derived from PRE experiments to guide the MD so
that the radius of gyration distribution of the ensemble is in good agreement with the experimental
value!!l,

While conformer creation and selection methods such as TraDES'®%, ENSEMBLE’"-78,
Flexible-Meccano!?” and ASTEROIDS*” have proven very useful to the IDP community, qualitative
changes are required in the theoretical approach to IDP structure solvers. First, IDP ensemble
construction has typically relied on low-complexity statistical coil descriptions that are not

Boltzmann weighted and do not contain any important dynamical information® that can be



compared to NMR observables such as relaxation rates and NOEs. Second, our ability to back-
calculate NMR or SAXS data from structures is actually very poor, thus losing an important
discriminator for selecting an IDP structural ensemble that is most consistent with the abundant

5362 Third, characterizing both

availability of chemical shift and scalar coupling experimental data.
the free and bound IDP ensembles is important to understanding their biology, and the
computational techniques must be able to accurately describe the range of environments from
solvent-exposed disordered monomer ensembles through to protein-protein complexes where the
IDP folds or remains partially or fully disordered. Thus we require higher accuracy in IDP ensemble
generation using robust force fields and advanced sampling methods, including appropriate
accounting of timescales, and increased sensitivity of back-calculations with high quality NMR
spectral simulation tools. Finally, due to the under-determined nature of the IDP problem, we need
to utilize statistical approaches, such as Bayesian analysis!!>!!®, to rank alternate IDP
conformational ensembles to determine the most probable one based on agreement with the
experimental data.

To illustrate this confluence of issues, Brookes and Head-Gordon developed a Bayesian
approach to determine the most probable IDP structural ensemble model that takes full advantage of
experimental data, their known errors and variances, and the quality of the theoretical back-
calculation from structure to experimental observables.®? The experimental inferential structure
determination (EISD) method is formulated to determine the most probable structure (for folded
proteins) or structural ensemble (for IDPs) by decomposing the posterior probability distribution
p(X,&|D,I) using Bayes’ Theorem:

p(X,¢1D,1) < p(D|X,$, Dp|1Dp(X|1) (1)

where p(D|X, ¢, 1) is the conditional probability that relates X = {X (j)}?;l, a structural ensemble

containing N structures, to a set of M experimental data observations D = {d;}}*,. The parameters
of the Bayesian model are the set of so-called “nuisance” parameters, &, which are uncertain values
that cannot be determined directly from the data, such as the uncertainties in the experimental
measurements or back-calculation equations. / represents any prior information about the system,
such as experimental information embodied in p(&|I), or structural information via p(X|I) in
which the latter is typically modeled as either a uniform (uninformative) prior or using Boltzmann
weighting that requires a robust energy function.

One of the primary advances of the EISD model is that we use all of the available

information about the separate distributions of different experimental data types. We utilize the



variable quality with which we can back-calculate these observables, o, from structure, X 0 —

{oi(j )}?’il by optimizing within the experimental and back-calculation “nuisance” parameters that are

treated as random variables with known Gaussian distributions, p(é(exp)i) and p(é(back)i),

respectively. More specifically, the posterior probability can be modeled as follows

logp(X,¢1D, ) clogp(X|I) + X2, log [p(diloi. $u Dp (ﬁ(ex,,)i) p (é(back)i)] )

where

AN . _ 6)) N
p(diloy € {0} ,fi,l):{ LI it oy, = <F (o aen)
J=1 0 otherwise

and < > denotes an average over the candidate IDP ensemble of structures used to back-calculate
experimental observables, since all that is known for a given NMR measurement on an IDP is that it
corresponds to an average of that measurement over every structure in the ensemble.

We applied the EISD Bayesian method to evaluate the relative probabilities of 7
qualitatively different structural ensembles for the AB42 IDP monomer: one random coil ensemble
generated from TraDES!%, one ensemble generated from a replica exchange simulation (de novo
MD), one statistical coil ensemble that incorporates bioinformatics knowledge about independent
local secondary structure at each residue (Pred-SS)*°, and four ensembles generated by adding
experimental restraints from NMR (RDCs, NOEs, scalar couplings, and chemical shifts) operating
on the de novo MD and Pred-SS ensembles using ENSEMBLE (MD-ENS1, MD-ENS2, MD-ENS4,
and Pred-SS-ENS)’788%° We used only two NMR data types: chemical shifts and J-

COllplil’lgSSS’57’l 17,118

, and an uninformative uniform structural prior was used to generate the results
shown in Figure 2.

Figure 2 indicates that the rankings of the A structural ensembles primarily depend on our
ability to quantitatively back-calculate from structure to observable, in this case using SHIFTX2!%

for chemical shifts and the Karplus equation for 3-bond couplings!!®

J(¢)=Acos’(¢p—60)+ Bcos(¢p—60)+C @

where ¢ represents a dihedral angle of interest, and A, B, C are typically parameterized on folded
proteins!2-122, A comparison of Figures 2a and 2b show that using chemical shifts and J-couplings
on their own result in a large difference in the structural ensemble rank order. When they are used
together in Eq. (2), the relative rankings among ensembles are qualitatively unchanged from using

J-couplings alone (Figure 2c). However, whether using J-couplings alone or together with chemical



shifts in the Bayesian model, it still is not possible to differentiate between the extended RC
ensemble, equivalent to a protein under high denaturant conditions, and the collapsed and structured
MD ensembles that would be representative of low denaturant conditions.

While adding additional data types such as SAXS or PREs to the EISD model would
certainly help to overcome this problem, the abundant availability of chemical shift and scalar
coupling data would be better used if back-calculations were more robust. For example, although
improvements realized by SHIFTX2!% over SHIFTX!? were significant for folded proteins with
the introduction of structural homology information, the level of difference between the SHIFTX2
and SHIFTX calculators is negligible as we have shown for the AB42 example®?, since structural
homology plays no role for IDPs. Even for scalar couplings, Karplus anticipated that further
refinements of Eq. (4) were necessary for quantitative prediction, such as the inclusion of electron
orbital and dipolar electron spin terms, a more careful choice of underlying electronic structure
methods, consideration of chemical substitutions when applied to other molecules, the number of
bonds separating spins, and dependence on additional geometric features such as bond angles or
other dihedral angles''®. Although some studies have adopted some of these suggestions, there is
still a primary focus on use of the original Karplus equation to predict J-couplings of folded and
flexible peptides and proteins, where the constants A, B, and C must capture the large variations in
dihedral fluctuations across many peptide and protein data sets'?>!24,

Accordingly, quantitative back-calculations of the NMR and SAXS observables are clearly a
necessary objective to make better use of the experimental data in order to generate tighter spatial
restraints for discriminating among alternative structural ensemble models. To be more specific,

computational predictions of chemical shifts in proteins, such as SHIFTX2!% and Sparta'?

, rely on
knowledge-based algorithms that employ sequence and/or structural information together with
experimental NMR data for folded proteins. Their residual error is typically only about 3-fold
smaller than the typical range of such shifts, and orders of magnitude larger than the experimental
uncertainty in the measured chemical shift values. As such their applicability to partially or fully
extended IDP conformations is clearly limited, and improvements are highly desirable and may well
be absolutely necessary. As Case recently commented'?%: “Although quantum calculations of
chemical shifts in proteins have not yet reached the level of accuracy obtained by empirical models,

there are good reasons to push forward. Quantum models allow study of unusual conformations,

including fibrils (and) partially disordered systems”.



Therefore a future challenge is to deploy (and further develop) high accuracy QM-based
methods for scalar couplings, and environment-dependent '3C, 'H, and >N NMR chemical shifts,
accounting for more than intervening dihedral angles and backbone ¢ and y torsion angles,
respectively, at tractable computational cost for characterizing the structural diversity of IDP
ensembles. However, there are three distinct challenges to improving chemical shift and scalar
coupling back-calculation accuracy. At the basic level, common-place density functional theory
(DFT) suffers from inadequate accuracy'?’ for chemical shifts!?® because of fundamental
limitations: rigororously, the functional must depend not just upon the density, but also on the
paramagnetic current density!'?’, or the field itself!*?, which is an unsolved challenge at present.

Another way to push forwards is via wave function methods'3!

, which are far superior to present-
day DFT for chemical shift calculations (~10X higher accuracy'??) while advances in QM treatment
of spin-spin couplings®® would need to occur simultaneously.

To illustrate we have compared the chemical shift prediction capabilities of DFT (using the
B3LYP functional) to that possible with second order Mgller-Plesset perturbation theory (MP2)
when benchmarked against a highly accurate CCSD(T) calculation (Table 1). Using a small blocked
dipeptide whose conformational space is spanned by its backbone ¢ and y dihedral angles, the
chemical shifts are computed for every atom of four diverse conformers (B sheet, extended, a helix,
vy turn) using all three levels of theory with the cc-pVTZ basis set. The RMSD in the chemical shifts
is calculated relative to small molecule primary references (CH4, NH3, H>O, and H> for C, N, O, and
H, respectively) and relative to a secondary reference which is the planar conformer.

Focusing on 1*C NMR, the results in Table 1 show that MP2 yields RMS errors that are over
7 times smaller than B3LYP. This gap is preserved when using the secondary reference, showing
that MP2 yields greater fidelity to the reference for the biologically relevant shifts in each atom
relative to its value in the reference planar environment. Therefore, given a bonding motif, the MP2
method does very well (less than 0.1 ppm relative RMSD for '3C) at predicting how the chemical
shift will change due to changes in bond lengths, angles, and dihedral angles. Given databases of
environment-dependent calculated NMR chemical shifts of this quality or better, there is clearly
scope for building more accurate software tools for NMR chemical shift prediction from structure in
the future. This will require incorporation of other environmental effects, including hydrogen
bonding.

These theoretical and methodological advances all operate on a three-dimensional

conformation, and thus they will be dependent on the generation of representative and complete IDP



structural ensembles. While methods such as Flexible-Meccano!?” and TraDES!®® are valuable for
generation of random coil conformers, molecular dynamics simulations are capable of generating a
true Boltzmann weighted ensemble if the underlying energy surface is accurate and if sampling on
this surface is complete. However, presently available energy functions that work well for folded
proteins are imperfect when applied to IDPs. Because there are many degrees of freedom to sample
over ns-ms timescales, MD simulations rely on computationally cheap fixed-charge force fields that
allow for adequate sampling of the conformational space of an IDP. However, given the range of
IDP environments including extreme solvent exposure in the monomer state through to buried
residue interactions at the IDP-protein complex interface, a number of new protein and water fixed
charge force fields offer better balance for the energetics of relative conformational energies and
peptide-water interactions.!3*!3® Alternatively, polarizable force field offer the best future hope for

139,140 gince they have the necessary physics to respond to a range of IDP

more accuracy
environments experienced by the free as well as bound states of an IDP. However, polarizable
models come with an increase in computational expense that in turn limits needed sampling.
Nonetheless, recent efforts to reduce the computational expense of polarizable models are starting
to take hold'*!, and thus will be an important future direction in the simulation of robust IDP
structural ensembles.

There is always tension between potential energy surface accuracy and adequate sampling of
conformational space of an IDP due to its heterogeneous nature, as both increase computational
cost. This requires that we develop sampling methods that converge faster to the Boltzmann
weighted ensemble for an IDP. Generalized Ensemble (GE) Methods that use temperature, ionic

142-153 will be important for

strength, dielectric constant, and protonation states as the scaling variable
IDPs. Markov State Model (MSM) approaches combined with adaptive sampling (AS) such as the
MinCounts!>* algorithm can be tailored to sample the heterogeneous states of IDPs, including those
lacking preferential structure and those with partial folding>%-!54133,

The MinCounts method is a means for pushing sampling to slow, orthogonal degrees of
freedom — even those that haven't been discovered yet. Mincounts looks at the counts of transitions
seen in MD simulations that started in state i and ended up in state j after some lag time At, and runs
more simulations at states with few counts. This has been shown to be the most effective scheme for
adaptive sampling as shown in Figure 3.!°% and has been applied to numerous systems, including
simple models (where sampling can be tested exactly as a “gold standard” is known) as well as in

MD simulations of protein folding, protein unfolded states, and protein conformational change.



Using these sampling methods and the Folding@home distributed computing project, the Pande lab
has simulated the conformational change of kinases!>® and GPCRs!*® on the submillisecond
timescale.®

In addition to backbone degrees of freedom, the generation of side chain ensembles for
folding upon binding intermediates and IDP complexes will be necessary. However theoretical
approaches for sampling the low energy alternative side chain arrangements of a protein is a
difficult problem, and while molecular dynamics (MD) simulations give a good description of side
chain conformational change on the nanosecond to microsecond level'>’, the experimental estimates
indicate that the timescales are much longer. Therefore to circumvent the sampling issues imposed

158-160

by MD, many groups have resorted to advanced Monte Carlo (MC) schemes which are

designed to more exhaustively sample the Boltzmann weighted populations of side chain

repackings, especially in the interior of the protein that may undergo low-probability rotamer
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transitions and have been shown to extend into the microsecond to millisecond time scale.

We have recently introduced a new Monte Carlo Side Chain Ensemble (MC-SCE)®
approach for calculating side chain ensembles, entropy, and mutual information that is more

quantitative compared to past efforts, by using a better convergent Rosenbluth sampling scheme, an
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augmented Dunbrack library , a robust physics-based energy function using an implicit solvent

model, and side chain rotamer sampling on a ensemble of backbone structures using backrub

sampling!’

. We have now used our MC-SCE algorithm to generate tens of thousands different side
chain packings for hundreds of different protein backbones, including protein-protein complexes for
60 different protein systems. These include cryogenically cooled and room temperature X-ray
crystallographic structures for CypA and H-Ras!6416

Eglin-C, and DHFR binary complexes of E:THF and E:FOL, in which we found overall excellent

as well as NMR J-coupling data for CypA and

agreement across the full range of X-ray and NMR data 64166167 (see Figure 4). Although the
MSM/AS and MC-SCE methods have been primarily validated and then used for prediction on
folded proteins, their extension to IDPs is clearly the next frontier for generation of more complete

structural ensembles.

CREATING A COMPUTATIONAL BEAMLINE FOR IDPS
The traditional structural biology approach of crystal structure visualization and analysis operations
done on a single set of coordinates ultimately fails when applied to IDP ensembles. The goal of an

IDP computational beamline is to better connect observed structural or dynamical motifs derived



from the interplay of experiment and computation into functional relevance for free IDPs and their
bound complexes. We envision a central resource that will integrate experimental and simulation
data, simulation codes, and analysis tools across the IDP research community (Figure 5). The
computational beamline will run workflows of software to create structural ensembles, store and
index the variety of data types that help create, restrain, and/or validate ensembles, and collect
analyses into an analysis end station that would formulate hypotheses about the relevance of
structural ensembles to biological function.

To scale up the execution of software tools from a handful of manually managed runs to
thousands of runs continuously executing on parallel computing resources, the computational
beamline will use proven scientific workflow software. For example, The Materials Project has
developed a high-throughput workflow software called FireWorks®® that has run millions of
materials science calculations on supercomputers at national laboratories and cloud resources such
as in the NSF XSEDE project. Scientific workflow software like FireWorks automatically manages
multi-step, branching, and iterative calculations, and can continuously launch and monitor new
calculations from a queue spanning months of time and many millions of compute hours.

While more sophistication in workflow software will dramatically increase the capability to
perform experiments and gather new data, this scale of computation will also introduce new
challenges: re-creating and debugging runs is no longer within the capacity of a single person’s
memory. In order to know exactly which code produced which result, there must be a disciplined
curation of all the relevant software tools used and developed in the IDP community, including
methodology such as ENSEMBLE, QM back-calculations, Bayesian analysis, and advanced
methods to derive the detailed structural ensembles of IDPs and their complexes using new force
fields and backbone and side chain sampling methods. We envision that workflow software like
FireWorks could be used to take an IDP of interest and combine multiple methodologies into a
single workflow, then run that workflow in parallel and for a large number of timesteps on a cluster
or supercomputer, automatically collecting all the results generated during the run.

The computational beamline workflows will enable automated and systematic collection of
the results of the calculations into a central data repository, and a second type of “data-intensive”
workflow will perform the same function to continuously collect and normalize the available
experimental data. Consequently, the computational beamline data repository will integrate all
available experimental data, all spectral simulations, and finally calculated ensemble data into an

integrated data resource. The data repository would develop methods to ingest and organize a wide



variety of experimental data (i.e. SAXS, NMR, FRET, DEER-EPR, etc) and conformer ensembles,
with data categorized and coded according to a common vocabulary. Use of industry-standard
database technologies will provide powerful and flexible search capabilities. Data sharing to

external databases such as Biolsis (bioisis.net)®’, pE-DB!%®, and BMRB (www.bmrb.wisc.edu)!'®

could be performed from this repository and made accessible to the IDP community.

Just as in a cyclotron or synchrotron, the scientific impact of a computational beamline aso
depends on the capabilities of the ‘“analysis end-station”, where IDP researchers can derive
knowledge from the integrated experimental and simulation data with new correlative methods that
would enable collaborative and reproducible analyses via flexible interfaces and web-enabled

analysis environments, such as the Jupyter!”®

notebook. The end-station could provide a set of
transformations to extract selected result sets into the formats and parameters that are needed to feed
into other existing or new analysis tools. The analysis end-station could first build upon existing
analysis tools such as DSSP!"!, k-means clustering or Principal Components Analysis, and combine
them with new analysis protocols such as hydrophobic and electrostatic clustering, identification of
regions of compaction or extension, and probabilistic contact maps to define short and long-range
interactions.

We can also envision even more novel analysis tools for IDPs based on kinetic clustering
from Markov State Models (MSMs)**6%154_ Kinetic clustering is a natural outcome of MSMs, and
would bring to the IDP community a much more physical, natural, and biologically relevant means
to conceptualize IDPs, by clustering not due to geometric similarity (which may or may not be
relevant for function), but due to kinetic similarity, i.e. grouping structures together in a cluster if
they rapidly interconvert kinetically, which is a natural and very physical definition for a "state",
versus structures that interconvert more slowly and thus can be classified as distinct sub-
populations. Finally, data mining and machine learning methods will play a particularly important
role in IDPs, especially in determining and understanding key structural or dynamical motifs that
are difficult to identify just by visual inspection, including repeated transient structure and more

sophisticated correlative motions.

SUMMARY
One of the central primary objectives of IDP research is to provide atomic level structural and
dynamical information on the free IDP conformational ensembles and their relationships to the

ensembles of IDP complexes exhibiting a broad range of order to disorder that is important for



understanding their function. Given the fact that IDPs/IDRs are underdetermined systems, and thus
a unique structural ensemble cannot be defined by experiment alone, three important areas for
future progress have been identified. First is large-scale experimental data acquisition, including
defining the most information-rich experimental techniques to provide for discriminatory
information between competing ensemble definitions for IDPs. Second is improving the accuracy of
IDP ensemble model generation (free and bound forms) with (i) advanced molecular simulation
approaches, (i) new QM/MM spectral simulation tools that enhance the discriminatory power of
the solution-based experimental techniques, and (iii) probabilistic models such as recent Bayesian
formulations to provide measures of uncertainty quantification in the experimental and simulation
data generated. Third is centralizing the experimental data and computational tasks into an
automated workflow, including development of a comprehensive set of analysis tools that can
connect observed structural or dynamical motifs with functional relevance to the biological
questions being addressed in a wide range of IDP projects. The need for collaborative teamwork to
create this infrastructure is obvious, as are the ultimate benefits to the IDP and general protein

structural communities.
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TABLES

Table 1: RMSD in ppm of B3LYP DFT and MP2 with respect to CCSD(T) when using small
molecules as the reference (primary) vs. a planar peptide reference (secondary). Four different
conformers of glycine dipeptide are used to explore chemical shift accuracies with respect to

geometrical changes in ¢ and y dihedral angles. All geometries were optimized at the MP2 level of
theory with the ¢ and y dihedral angles constrained to the values shown

Atom DFT MP2
=135

Primary Secondary Primary Secondary

AN C 7.63 0.50 1.08 0.07

. N 17.65 0.40 5.08 0.15

Sammaun o) 32.77 2.73 6.23 1.93
H 0.26 0.06 0.08 0.03



FIGURE CAPTIONS

Figure 1. Heatmap comparing pairs of profiles from multiple experimental techniques including
SAXS, DLS and CD. Each cell is a pair wise comparison between a condition or construct.
Similarity between SAXS curves is measured by the metric V;, and displayed as a gradient color
where red indicates similarity (low V; score) and white indicates dissimilarity. The black square
diagonals are self-comparisons. Adapted with permission from [”°], copyright 2016 Nature

Publishing Group.

Figure 2: logp(X, ¢|D,I) evaluated for X equal to the following qualitatively different ensembles
for the AB42 monomer: random coil (RC), statistical secondary structure (Pred-SS), de novo MD,
and ENSEMBLE optimized ensembles (MD-ENS1, MD-ENS2, MD-ENS4, and Pred-SS-ENS)
using (a) chemical shift data only, (b) J-coupling data only, and (c) J-coupling and chemical shift
data together. Adapted with permission from [®?], copyright 2016 American Chemical Society.

Figure 3. Convergence time for Fs (capped 21 alanine) peptide transition matrix generated with
various hybrid sampling schemes. Time is measured in the number of eigenvalue-based trajectories
needed to converge to an absolute error of 2.00 after 1000 initial trajectories are run from a chosen
sampling method. Absolute error is defined as the sum of absolute deviations in transition matrix
elements. Convergence times for each method were, averaged over 10 simulations, 1) 3913 for pure
eigenvalue-based sampling, 2) 2669 for connectivity-based hybrid sampling, 3) 1107 for even
sampling hybrid sampling, and 4) 286 for min count-based hybrid sampling. Reprinted with

permission from [!34]; copyright 2011 American Chemical Society.

Figure 4. J-coupling constants (a) 3Je,v and (b) 3Jcyco for the DHFR binary product complex
E:THF and (c) *Jeyn and (d) >Jeyco for the DHFR binary product complex E:FOL. The red symbols
are the experimental data from !¢7. The blue symbols are calculated from the MC-SCE ensemble
using backbones from molecular dynamics and the Karplus parameterization from !¢7. Reprinted

with permission from [!]; copyright 2015 Elsevier.

Figure 5. Conceptualization of a Computational Beamline for the IDP community.
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