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The traditional structure-function paradigm has provided significant insights for well-folded 

proteins in which structures can be easily and rapidly revealed by X-ray crystallography beamlines. 

However approximately one third of the human proteome are comprised of intrinsically disordered 

proteins and regions (IDPs/IDRs) that do not adopt a dominant well-folded structure, and therefore 

remain “unseen” by traditional structural biology methods. This Perspective article considers the 

challenges raised by the “Dark Proteome”, in which determining the diverse conformational 

substates of IDPs in their free states, in encounter complexes of bound states, and in complexes 

retaining significant disorder, requires an unprecedented level of integration of multiple and 

complementary solution-based experiments that are analyzed with state-of-the art molecular 

simulation, Bayesian probabilistic models, and high throughput computation. We envision how 

these diverse experimental and computational tools can work together through formation of a 

“computational beamline” that will allow key functional features to be identified in IDP structural 

ensembles. 
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INTRODUCTION 

Intrinsic protein disorder can refer to either local, disordered regions of a protein containing one or 

more folded domains (IDRs), or global protein disorder without any stable structure along the entire 

sequence (IDPs). IDPs/IDRs, which are estimated to make up approximately one-third of the human 

genome1-4, pose new challenges for the structure-function paradigm since they take advantage of 

their disordered state to interact with numerous partners for signaling, regulation and transcription5-

8. At the same time disease-related proteins are highly enriched in IDRs, including those that are 

central to neurodegenerative disorders such as Parkinson’s disease, Huntington’s disease, prion 

diseases, and Alzheimer’s disease (AD), as well as cancer-associated proteins that have a primary 

function in regulatory protein interactions.9  

The greater biological challenge posed by the IDP class of proteins relative to the singular 

folded counterpart is that the disorder in their free and bound complex states is integral to their 

function. In their monomeric or unbound forms, IDPs adopt neither a single nor a small number of 

stable folded conformations, and their energy landscape of the free IDP lacks a deep minimum, 

unlike that of a folded globular protein.10,11 Nonetheless, the structural characterization of an IDP in 

its free state is paramount to understanding the biology of the static or dynamic complexes that it 

forms with other ordered or disordered proteins. Depending on the dissociation constant, KD, there 

can be a significant population of the unbound form even in the crowded cell for some IDPs.12 A 

high degree of disorder and rapid interconversion between states is necessary for different IDRs to 

become accessible or inaccessible to binding and/or post-translational modifications important for 

regulation and signaling in the protein complex13. In describing the disorder-to-order transitions that 

can occur when disordered proteins fold upon binding to their targets, Arai and co-workers have 

found that the sub-populations of the unbound protein ensemble influence the mechanism of 

complex formation14, a conclusion that needs to be further examined for a range of different IDP 

systems. In regards the recent discovery of a small molecule drug that in cellular models of 

a-synuclein-mediated dysfunction points to a potential strategy for treating Parkinson’s disease15, 

the accurate determination of the conformational ensemble of the free protein might aid in a 

corresponding molecular interpretation of how such a drug works, and therefore how best to target 

other disease-related IDPs. 

The biological activity of an IDP is typically identified by the protein complexes that it 

forms: an IDP can make both “static” (well-ordered) and/or “dynamic” (disordered) interactions 

with different sites on the target protein surface. Many intrinsically disordered proteins contain 



 

short amphipathic motifs, termed molecular recognition elements (MoRFs)16, which fold into 

regular secondary structures such as a-helix or β-strand or adopt irregular structures upon binding 

to their targets. An important feature of the recognition elements in many IDPs is that they exhibit 

conformational plasticity, i.e. they can fold into different structures on binding to different targets. 

Additional dynamic interactions involving adjacent regions to the MoRFs of the IDP frequently 

enhance the binding affinity, enabling them to interact with multiple targets and to create 

accessibility of sites for post-translational modification.  

IDPs can bind with high specificity but modest affinity6,7, an attribute that enables 

spontaneous dissociation or displacement after signaling is complete.6,7,17-19 This is supported by the 

fact that when comparing IDPs to folded proteins, their average affinity is indeed lower than for 

folded proteins20, and while the distribution of KD shows considerable overlap between IDPs and 

folded proteins20, the definition of high specificity needs to be put in perspective. In particular, to 

obtain the same overall degree of specificity given by a disordered sequence, which can wrap 

around a target and provide extremely large contact area, a folded protein binding a smaller 

interaction surface would have to have larger specificity per unit area.  

The dynamics within a complex with multiple exchanging interacting elements can also 

facilitate displacement, particularly for cases with higher affinity interactions. One such example is 

the low nM affinity complex of the eukaryotic translation initiation factor 4E and the disordered 4E-

binding protein 2 (4E-BP2).21 This complex involves two adjacent elements of 4E-BP2, a canonical 

4E-binding helical motif and a less regular C-terminal region, that appear to dynamically exchange 

on the millisecond-microsecond timescale, facilitating phosphorylation at the interface required to 

break the complex22 and enable translation to proceed. Another functionally important dynamic 

complex involves the disordered Sic1 cyclin-dependent kinase inhibitor and the Cdc4 subunit of an 

SCF ubiquitin ligase. Phosphorylation of ~6 or more of the 9 sites on Sic1 enables low micromolar 

affinity binding. Dynamic exchange of each site on and off of Cdc4 facilitates ultrasensitive binding 

leading to controlled degradation and a sharp cell-cycle switch, as well as efficient multi-site 

ubiquitination.23-25 A further illustration of the dynamic complexes that IDPs can form is found with 

the disordered regulatory (R) region of the cystic fibrosis transmembrane conductance regulator 

(CFTR), that acts as an interaction hub with both intramolecular and intermolecular partners to 

integrate input for controlling CFTR channel activity.26,27 One of these partners, 14-3-3b, involved 

in CFTR processing, has two binding sites within its dimer into which 9 phosphorylated segments 

of the CFTR R region dynamically exchange.28 Thus, structural characterization of IDPs/IDRs in 



 

both free and bound forms, with a range of dynamics and disorder, is paramount to understanding 

their biology, and expansion of the structure-function paradigm to a structural ensemble is a 

necessary consideration for this class of protein. 

Structures of biomolecules have driven functional insight into molecular biology and 

biochemistry ever since Watson and Crick advanced the structural model of DNA, and 

computational models are integral to rendering structural and dynamical information relevant to 

structure and function. The idea of ensemble structure modeling is, of course, also relevant for 

folded proteins and their unfolded states, exemplified by studies starting 25 years ago by Kuriyan et 

al.29 and continued more recently by the groups of Vendruscolo and Dobson30,31 and De Groot and 

Grubmuller32. Nilges and co-workers33 first introduced Bayesian inference to derive a probability 

distribution for the folded structure using NMR, and along with other research groups probabilistic 

frameworks have become an important theoretical contribution to the problem of ensemble structure 

determination.34-39  

For folded proteins, the first structures determined by X-ray40, NMR41 and cryoEM42 helped 

propel their continued development into robust techniques for providing a concrete, predictive and 

conceptually straightforward model for the structure-function relationship. For example, scientists 

at protein crystallography beamlines have defined an increasingly automated workflow of tasks 

needed to solve the 3D structures of folded globular and membrane proteins and complexes: 

determining crystallization conditions; X-ray data collection from protein crystals; model building, 

refinement, and validation.43,44 Computational methods have also advanced to become critical 

partners to experiment in providing further insight through study of protein dynamics, folding 

kinetics, lead optimization in drug design, and the transition state energetics for enzymatic 

mechanisms.  

However, IDPs are not amenable to static structural determination methods such as X-ray 

and electron crystallography and microscopy40,42,45,46, necessitating an adjustment in the core 

methodology of protein structure determination for the so-called “dark proteome” that can capture 

their dynamics and disorder. Nuclear magnetic resonance (NMR) and Small Angle X-ray Scattering 

(SAXS) are the experimental tools of choice for characterizing the solution structure and dynamics 

of IDPs in an aqueous environment23,46,47. Even so, since IDPs typically interconvert between 

conformations on the ~ns-ms timescale, most solution based experimental observables are highly 

averaged and thus obscure the characterization of the conformational sub-states of an IDP that are 

tied to biological function. Structural descriptions of IDPs/IDRs are highly underdetermined, that is, 



 

their number of degrees of freedom will far exceed the number of experimental restraints. Since 

experiments alone will likely be unable to provide a detailed structural ensemble, it is important to 

build the connection between the averaged experimental observables over the IDP structural 

ensemble to the conformational sub-populations within the ensemble6,48-54 using state-of-the-art 

computational methods and models31,55.  

The quantitative challenge in understanding IDPs is how to build models of even more 

diverse structural ensembles relative to their folded counterparts, that allow researchers to gain 

insight into their nature, to form hypotheses about their functional roles and to target them for small 

drug therapeutics. Thus in analogy to crystallographic beamlines and their role in streamlining 

protein crystallography, we propose that the IDP community could develop a “computational 

beamline” to build up the requisite experimental and computational tools to model structural 

ensembles for a broad class of IDPs and IDRs and their complexes. The computational beamline 

would serve in several roles including as a repository for information from the best experimental 

techniques such as NMR and SAXS, to examine whether other techniques such as circular 

dichroism (CD), infrared (IR), electron paramagnetic resonance (EPR) and double electron-electron 

resonance (DEER), fluorescence resonance energy transfer (FRET), and mass spectrometry (MS) 

can add valuable information, and to combine relevant experimental data with the best theoretical 

tools such as de novo molecular dynamics54-58, Markov State models59,60, Monte Carlo methods to 

sample side chain ensembles61, Bayesian probabilistic analysis10,34,62, and quantum mechanical 

methods to predict NMR observables63.  

In this Perspective we examine the current state of experimental approaches and 

computational methods applied to the IDP problem, and what future directions can be usefully 

advanced within each area. Finally, we envision how the two approaches can be combined into a 

powerful new resource that would culminate in a “data analysis end-station” that would develop and 

apply new correlative methods to yield quantitative insight into key structural aspects that define the 

free and complexed IDPs to their functionally relevant states. 

 

EXPERIMENTAL METHODS AND FUTURE INNOVATIONS 

The current experimental solution methods for characterizing protein intrinsic disorder include IR, 

CD, MS, single molecule fluorescence spectroscopy, Wide Angle X-ray scattering (WAXS), and 

the primary techniques of NMR and SAXS7,50. CD and IR spectroscopy report on the amount of 

secondary structure and hydrodynamic techniques such as SAXS, gel filtration, and dynamic light 



 

scattering (DLS) report on the radius of gyration or hydrodynamic radius. Lack of a cooperative 

folding transition and proteolytic sensitivity are also attributes of IDPs and some of their complexes 

that are useful in forming a complete picture of a certain level of disorder.  

NMR observables that can be used to restrain the IDP structural ensemble include chemical 

shifts of backbone and side chain nuclei, which aid in structural assignments and probe 

conformational information through their surrounding environment, spin-spin couplings (J-

couplings) which independently report on dihedral angles, and residual dipolar couplings (RDCs) 

which have been used to describe the relative orientation of spatially separated regions of a 

disordered protein64-70. These types of measurements are highly useful in describing local and/or 

short-range interactions of the bound and free IDP state, while global descriptors of order/disorder 

are usefully defined through SAXS or SANS experiments for categorization of a free IDP into 

collapsed semi-ordered ensembles, collapsed disordered ensembles, or extended disordered 

ensembles1,2,4,50, based on the distribution of heavy atom distances. Additional NMR and ESR 

experiments such as through-space dipole-dipole interactions that give rise to the Nuclear 

Overhauser Effect (NOE), and paramagnetic relaxation enhancements (PRE) from an attached spin 

label71, as well as the more recent DEER-EPR72,73 experiments, are in principle information-rich 

since they report on both local and non-local tertiary structure contacts that would be valuable in 

restraining the IDP ensemble.  

The joint application of SAXS and NMR to study the structural ensemble of IDPs has been 

pioneered based on a number of developments in North America and Europe. The SAXS program 

Ensemble Optimization Method (EOM) by Bernado, Svergun, Blackledge and collaborators was 

designed to work with NMR observables for IDPs74-76, and ENSEMBLE from the Forman-Kay 

group works with multiple different types of data including NMR and SAXS for IDPs77,78. The 

SIBYLS group in the U.S. has developed SAXS analysis for the characterization of large IDRs.79-81, 

including the analysis programs BilboMD and MES82, which have provided novel and disease 

relevant insights into IDRs. Data deposited into the SIBYLS based SAXS data repository83 

bioisis.net was mined for the development of quantitative measures of flexibility84 and the 

extraction of mass81 even when flexibility is present. 

However in all cases we are still faced with new challenges in applying these solution-based 

techniques to IDPs. For example, the data for optimal characterization of IDPs lie at the extremes of 

typical SAXS data for folded proteins since for their molecular weight, IDPs can be extremely 

extended, thereby requiring very low-Q data from SAXS for the characterization of maximum 



 

dimensions. For example while typical SAXS data collection standards occur in the Q range of 0.01 

to 0.32Å-1 with exposure times of 1 second, for IDPs SAXS data is taken down to a lower Q value 

of 0.005 Å-1 and with exposure times rising to tens of seconds. IDPs can also benefit from WAXS 

since localized structural features generally occur over shorter length scales creating features in the 

high Q region of the spectrum.  

For NMR the generally poor chemical shift dispersion (particularly in the 1H dimension) can 

be mitigated with optimized pulse sequences for IDPs85. The pronounced motional averaging of 

NOEs has limited the use of NOEs, and yet the information about intermediate range NOEs may be 

particularly important in defining conformational ensembles. For example, NOE data collected for 

the Aβ40 and Aβ42 peptides contained ~1100 and ~700 crosspeaks, respectively, but only ~20% of 

these can be uniquely determined from experimental information alone, due to chemical shift 

ambiguity, and most of these are due to short-range intraresidue, sequential, and i to i+2 contacts57. 

With the addition of 13C/15N labeling for resolution in 3D or 4D experiments it becomes possible to 

assign many more NOE cross-peaks, adding new experimental constraints for ensemble generation; 

for example particular combinations of hydrophobic amino acids labeled with 13C for the unfolded 

state N-terminal SH3 domain of Drk proved to be valuable in these studies86-88.  

Further progress can be made with techniques like PRE which has been valuable in 

detecting transient interactions, particularly intermolecular interactions89. The power of this 

approach comes from the fact that close proximity to an unpaired electron (on a metal or nitroxide 

group covalently bound to the protein) causes a large increase in relaxation rate that is dependent on 

the inverse sixth power of the distance from the spin label. By labeling one binding partner with the 

relaxation agent, and the other with isotopes such as 15N for selective NMR detection, 

characterization of even transient complexes is possible.90 This approach can also be applied to 

investigate short-lived intramolecular contacts in IDPs, since the transient folding leads to proximity 

of the electron and nuclei, and is again observed through changes in relaxation. But there are some 

caveats to this approach that requires careful calibration when applied to IDPs. First, because of the 

covalent attachment of the relaxation agent it can never get very far from the region of the peptide 

where it is attached, so there is always locally enhanced relaxation, although more interesting are 

the sites of enhanced relaxation that are far, in the sense of covalent structure, from the attachment 

site. The relaxation agents are invariably larger than an amino acid sidechain, and interactions of the 

agent with other amino acids may affect the sensitive energy landscape of the IDP. This requires 

additional controls to assess whether this occurs using chemical shifts and NOE spectra of the 



 

modified peptide, or even better a diamagnetic version using a reduced spin label, or diamagnetic 

metal substituting for the paramagnetic one in a chelator, and comparing with the unmodified IDP. 

Nonetheless when carefully calibrated, a number of high quality PRE experiments have been 

successfully carried out on IDPs71,91, and thus these experimental methods are particularly 

promising – a conclusion which has been nicely reviewed elsewhere92. 

DEER gives the distance distribution between two nitroxides93 or metal (Gd+3)94 labeled 

sites, complementing PRE data where it can be difficult to unambiguously separate spatial and 

temporal components of the distance distribution function. However, DEER measurements have 

challenges when applied to IDPs. For DEER measurements the electron relaxation rates must be 

reduced by rapid freezing to form a glass at liquid N2 temperatures, and a concern is whether 

freezing as well as the addition of the two labels, which may also involve mutations to create the 

labeling sites, perturbs the distribution of conformers present in the unlabeled IDP in solution. A 

second challenge in analysis of DEER data on IDPs is extraction of distance from the dipolar echo 

modulation pattern, although existing analysis tools are available such as the DeerAnalysis2013 

software95. IDPs inherently will give rise to a broad distance distribution for the pairwise electron-

electron interactions, so the number of parameters to be extracted from the data is inherently larger 

than for folded proteins, where in favorable cases a single, narrow distance distribution applies. A 

priori, it remains unclear how robust such an analysis will be when taking into account the limited 

signal-to-noise, and possible systematic sources of error resulting from finite pulse widths and 

orientational selection at high magnetic fields. Therefore, substantial experimental work is needed 

to fully explore the potential of DEER in the analysis of IDPs. We note the significant analogy of 

EPR DEER to optical FRET experiments using attached fluorescent dyes96-98 rather than nitroxides 

or metals to IDPs; thus FRET can also be useful for restraining the IDP ensembles if the similar 

challenges described for the DEER measurements can be overcome. 

The integration of multiple solution-based experimental techniques on IDPs requires 

optimization from both a data acquisition and analysis perspective. For example, while each 

individual SAXS measurement does not contain as much information as a high resolution NMR 

measurement, NMR and EPR are “low” throughput techniques whereas SAXS and DLS data can be 

collected and analyzed much more quickly. To illustrate, ideal IDP concentrations for NMR can be 

rapidly identified through the analysis of high throughput solution results generated by SAXS for 

oligomerization and DLS to determine the maximum concentrations allowed before signals of 

aggregation are apparent. Part of the growing resurgence of SAXS as a technique is that many 



 

measurements allow for relative comparisons on how structure changes with sequence and 

conditions – typical of many IDP projects. These ideas have been advanced by Hura and co-workers 

through formulation of a general heatmap based method79 for comprehensively viewing several 

SAXS data sets and application to the human DNA mismatch repair protein MutSβ which contains 

300 flexible amino-acids (Figure 1).  

Although there have been many NMR studies on IDPs, and some have included other data 

such as SAXS, there have not been extensive and systematic evaluations of the value of different 

types and combinations of data in defining the IDP conformational ensemble. However a few 

approaches are starting to emerge that deal with this important issue. One is a study99 that 

performed ENSEMBLE calculations for three IDPs based on a variety of experimental inputs, 

including chemical shifts, RDCs, PREs, and SAXS. Comparison of ensembles calculated with 

subsets of the experimental data missing defined types were used to quantify which measurements 

most affected secondary structure, tertiary contacts and molecular size distribution, and hence are 

high priorities for data acquisition to restrain IDP structural ensembles. It was found that secondary 

structure was most strongly restrained using 13Cα chemical shifts and to some degree using 3JHNHα 

couplings, whereas the accuracy of calculated tertiary structure is dependent on the number of PRE 

distance restraints used.99 RDCs were found to provide a small but significant probe of short- to 

medium-range tertiary structure whereas SAXS was important for restraining the size distribution.99  

At the same time, if the chemical shifts are not highly dispersed along the sequence of a 

particular IDP, such as is found for the amyloid-β peptides57, then the chemical shifts have more 

limited value as a experimental refinement input or as a validation measure.55 In addition, the 

optimization phase of methods such as ENSEMBLE77,78 and ASTEROIDS47 rely on heuristic back-

calculation methods such as SHIFTX2100 for chemical shifts, PALES101 for RDCs, and mere 

structural approximations to NMR observables such as NOEs, even though the dynamical origins of 

NOE intensities can be better used for determining the IDP ensemble55. Alternative approaches 

based on Bayesian probabilistic modeling can offer a more solid foundation for examining the 

usefulness of experimental data types10,62 as described in the next section. 

 

COMPUTATIONAL METHODS AND FUTURE INNOVATIONS 

An important area of IDP research is to build robust all-atom models of IDP ensembles that can 

successfully interface with experimental data to provide predictions of the structural ensembles of 

IDP monomers and their complexes. One approach is to identify sets of conformers that in 



 

aggregate agree with experimental data, to derive the IDP structural ensemble. Such “experimental 

data knowledge” methods are the foundation of NMR structure determination of folded proteins 

using experimentally derived constraints based on NOE data, RDCs, J-couplings and chemical 

shifts, embodied in software packages such as CANDID102, CYANA103, X-Plor-NIH104,105, and 

TALOS106. Most often, experimental data knowledge approaches for IDPs start with an extensive 

set of statistical coil conformations derived from software platforms such as Flexible-Meccano107 

and TraDES108, which can generate both coil- an/or various structure-biased conformers. This basis 

set of structures is then culled for the subset of conformations and their populations that are in best 

agreement with experimental data to create the IDP ensemble. Examples are the energy-minima 

mapping and weighting method109,110, ENSEMBLE77,78, and ASTEROIDS47. ASTEROIDS uses a 

genetic search algorithm to select structures that together best match experimental chemical shifts, 

PREs, or RDCs47,68 while the ENSEMBLE method77,78,87,88 selects structures from the starting pool 

using a Monte Carlo algorithm with an energy-weighting scheme for each type of experimental 

input. These programs contain modules for several different experimental data types. For example, 

ENSEMBLE is able to accommodate data from a very wide range of sources including chemical 

shifts, RDCs, PREs, J-couplings, NOEs and relaxation rate-derived contact densities, as well as 

SAXS77 and hydrodynamic radii (Rh) from NMR, size exclusion chromatograph or dynamic light 

scattering.  

In addition to the ENSEMBLE and ASTEROIDS approaches that use experimental data for 

conformational selection, a number of researchers have combined experiment and computation, 

applying knowledge from NMR to restrain the IDP ensemble generated during an MD 

trajectory30,111-114. For example, MD simulations have been combined with RDC restraint data for 

folded proteins, which then allows for the analysis of other features of the ensemble, such as 

conformational fluctuations. NMR restrained MD has also been applied to IDPs such as 

α−synuclein by incorporating distance restraints derived from PRE experiments to guide the MD so 

that the radius of gyration distribution of the ensemble is in good agreement with the experimental 

value111.  

While conformer creation and selection methods such as TraDES108, ENSEMBLE77,78, 

Flexible-Meccano107 and ASTEROIDS47 have proven very useful to the IDP community, qualitative 

changes are required in the theoretical approach to IDP structure solvers. First, IDP ensemble 

construction has typically relied on low-complexity statistical coil descriptions that are not 

Boltzmann weighted and do not contain any important dynamical information55 that can be 



 

compared to NMR observables such as relaxation rates and NOEs. Second, our ability to back-

calculate NMR or SAXS data from structures is actually very poor, thus losing an important 

discriminator for selecting an IDP structural ensemble that is most consistent with the abundant 

availability of chemical shift and scalar coupling experimental data.55,62 Third, characterizing both 

the free and bound IDP ensembles is important to understanding their biology, and the 

computational techniques must be able to accurately describe the range of environments from 

solvent-exposed disordered monomer ensembles through to protein-protein complexes where the 

IDP folds or remains partially or fully disordered. Thus we require higher accuracy in IDP ensemble 

generation using robust force fields and advanced sampling methods, including appropriate 

accounting of timescales, and increased sensitivity of back-calculations with high quality NMR 

spectral simulation tools. Finally, due to the under-determined nature of the IDP problem, we need 

to utilize statistical approaches, such as Bayesian analysis115,116, to rank alternate IDP 

conformational ensembles to determine the most probable one based on agreement with the 

experimental data.  

To illustrate this confluence of issues, Brookes and Head-Gordon developed a Bayesian 

approach to determine the most probable IDP structural ensemble model that takes full advantage of 

experimental data, their known errors and variances, and the quality of the theoretical back-

calculation from structure to experimental observables.62 The experimental inferential structure 

determination (EISD) method is formulated to determine the most probable structure (for folded 

proteins) or structural ensemble (for IDPs) by decomposing the posterior probability distribution 

𝑝(𝑋, 𝜉|𝐷, 𝐼) using Bayes’ Theorem: 

  𝑝(𝑋, 𝜉|𝐷, 𝐼) ∝ 𝑝(𝐷|𝑋, 𝜉, 𝐼)𝑝(𝜉|𝐼)𝑝(𝑋|𝐼)            (1) 

where 𝑝(𝐷|𝑋, 𝜉, 𝐼) is the conditional probability that relates 𝑋 = {𝑋(-)}-/01 , a structural ensemble 

containing N structures, to a set of M experimental data observations 𝐷 = {𝑑3}3/04 . The parameters 

of the Bayesian model are the set of so-called “nuisance” parameters, ξ, which are uncertain values 

that cannot be determined directly from the data, such as the uncertainties in the experimental 

measurements or back-calculation equations. I represents any prior information about the system, 

such as experimental information embodied in 𝑝(𝜉|𝐼), or structural information via 𝑝(𝑋|	𝐼) in 

which the latter is typically modeled as either a uniform (uninformative) prior or using Boltzmann 

weighting that requires a robust energy function.   

One of the primary advances of the EISD model is that we use all of the available 

information about the separate distributions of different experimental data types. We utilize the 



 

variable quality with which we can back-calculate these observables, o, from structure, 𝑋(-) ⟶

{𝑜3
(-)}3/04  by optimizing within the experimental and back-calculation “nuisance” parameters that are 

treated as random variables with known Gaussian distributions, 𝑝 8x(9:;)<= and 𝑝 8x(>?@A)<=, 

respectively. More specifically, the posterior probability can be modeled as follows 

log 𝑝(𝑋, 𝜉|𝐷, 𝐼) ∝ log 𝑝(𝑋|𝐼) + ∑ log G𝑝(𝑑3|𝑜3, 𝜉3, 𝐼)𝑝 8x(9:;)<= 	𝑝 8x(>?@A)<=H
4
3/0 	     (2) 

where  

𝑝 I𝑑3|𝑜3 ∈ K𝑜3
(-)L

-/0

1
, 𝜉3, IN = O 1		if			𝑑3 + x(9:;)< =	< 𝑓 8𝑜3

(-), x(>?@A)<= >-/0
1

0																																																																							otherwise
											 (3) 

and < > denotes an average over the candidate IDP ensemble of structures used to back-calculate 

experimental observables, since all that is known for a given NMR measurement on an IDP is that it 

corresponds to an average of that measurement over every structure in the ensemble.  

We applied the EISD Bayesian method to evaluate the relative probabilities of 7 

qualitatively different structural ensembles for the Aβ42 IDP monomer: one random coil ensemble 

generated from TraDES108, one ensemble generated from a replica exchange simulation (de novo 

MD)55, one statistical coil ensemble that incorporates bioinformatics knowledge about independent 

local secondary structure at each residue (Pred-SS)55, and four ensembles generated by adding 

experimental restraints from NMR (RDCs, NOEs, scalar couplings, and chemical shifts) operating 

on the de novo MD and Pred-SS ensembles using ENSEMBLE (MD-ENS1, MD-ENS2, MD-ENS4,  

and Pred-SS-ENS)77,88,99. We used only two NMR data types: chemical shifts and J-

couplings55,57,117,118, and an uninformative uniform structural prior was used to generate the results 

shown in Figure 2. 

Figure 2 indicates that the rankings of the Aβ structural ensembles primarily depend on our 

ability to quantitatively back-calculate from structure to observable, in this case using SHIFTX2100 

for chemical shifts and the Karplus equation for 3-bond couplings119  

                                               (4) 

where f represents a dihedral angle of interest, and A, B, C are typically parameterized on folded 

proteins120-122. A comparison of Figures 2a and 2b show that using chemical shifts and J-couplings 

on their own result in a large difference in the structural ensemble rank order. When they are used 

together in Eq. (2), the relative rankings among ensembles are qualitatively unchanged from using 

J-couplings alone (Figure 2c). However, whether using J-couplings alone or together with chemical 

J φ( ) = Acos2 φ − 60( ) + Bcos φ − 60( ) +C



 

shifts in the Bayesian model, it still is not possible to differentiate between the extended RC 

ensemble, equivalent to a protein under high denaturant conditions, and the collapsed and structured 

MD ensembles that would be representative of low denaturant conditions.  

While adding additional data types such as SAXS or PREs to the EISD model would 

certainly help to overcome this problem, the abundant availability of chemical shift and scalar 

coupling data would be better used if back-calculations were more robust. For example, although 

improvements realized by SHIFTX2100 over SHIFTX123 were significant for folded proteins with 

the introduction of structural homology information, the level of difference between the SHIFTX2 

and SHIFTX calculators is negligible as we have shown for the Aβ42 example62, since structural 

homology plays no role for IDPs. Even for scalar couplings, Karplus anticipated that further 

refinements of Eq. (4) were necessary for quantitative prediction, such as the inclusion of electron 

orbital and dipolar electron spin terms, a more careful choice of underlying electronic structure 

methods, consideration of chemical substitutions when applied to other molecules, the number of 

bonds separating spins, and dependence on additional geometric features such as bond angles or 

other dihedral angles119. Although some studies have adopted some of these suggestions, there is 

still a primary focus on use of the original Karplus equation to predict J-couplings of folded and 

flexible peptides and proteins, where the constants A, B, and C must capture the large variations in 

dihedral fluctuations across many peptide and protein data sets122,124.  

Accordingly, quantitative back-calculations of the NMR and SAXS observables are clearly a 

necessary objective to make better use of the experimental data in order to generate tighter spatial 

restraints for discriminating among alternative structural ensemble models. To be more specific, 

computational predictions of chemical shifts in proteins, such as SHIFTX2100 and Sparta125, rely on 

knowledge-based algorithms that employ sequence and/or structural information together with 

experimental NMR data for folded proteins. Their residual error is typically only about 3-fold 

smaller than the typical range of such shifts, and orders of magnitude larger than the experimental 

uncertainty in the measured chemical shift values. As such their applicability to partially or fully 

extended IDP conformations is clearly limited, and improvements are highly desirable and may well 

be absolutely necessary. As Case recently commented126: “Although quantum calculations of 

chemical shifts in proteins have not yet reached the level of accuracy obtained by empirical models, 

there are good reasons to push forward. Quantum models allow study of unusual conformations, 

including fibrils (and) partially disordered systems”.  



 

Therefore a future challenge is to deploy (and further develop) high accuracy QM-based 

methods for scalar couplings, and environment-dependent 13C, 1H, and 15N NMR chemical shifts, 

accounting for more than intervening dihedral angles and backbone f and y torsion angles, 

respectively, at tractable computational cost for characterizing the structural diversity of IDP 

ensembles. However, there are three distinct challenges to improving chemical shift and scalar 

coupling back-calculation accuracy. At the basic level, common-place density functional theory 

(DFT) suffers from inadequate accuracy127 for chemical shifts128 because of fundamental 

limitations: rigororously, the functional must depend not just upon the density, but also on the 

paramagnetic current density129, or the field itself130, which is an unsolved challenge at present. 

Another way to push forwards is via wave function methods131, which are far superior to present-

day DFT for chemical shift calculations (~10X higher accuracy132) while advances in QM treatment 

of spin-spin couplings63 would need to occur simultaneously. 

To illustrate we have compared the chemical shift prediction capabilities of DFT (using the 

B3LYP functional) to that possible with second order Møller-Plesset perturbation theory (MP2) 

when benchmarked against a highly accurate CCSD(T) calculation (Table 1). Using a small blocked 

dipeptide whose conformational space is spanned by its backbone f and y dihedral angles, the 

chemical shifts are computed for every atom of four diverse conformers (β sheet, extended, α helix, 

γ turn) using all three levels of theory with the cc-pVTZ basis set. The RMSD in the chemical shifts 

is calculated relative to small molecule primary references (CH4, NH3, H2O, and H2 for C, N, O, and 

H, respectively) and relative to a secondary reference which is the planar conformer. 

Focusing on 13C NMR, the results in Table 1 show that MP2 yields RMS errors that are over 

7 times smaller than B3LYP. This gap is preserved when using the secondary reference, showing 

that MP2 yields greater fidelity to the reference for the biologically relevant shifts in each atom 

relative to its value in the reference planar environment. Therefore, given a bonding motif, the MP2 

method does very well (less than 0.1 ppm relative RMSD for 13C) at predicting how the chemical 

shift will change due to changes in bond lengths, angles, and dihedral angles. Given databases of 

environment-dependent calculated NMR chemical shifts of this quality or better, there is clearly 

scope for building more accurate software tools for NMR chemical shift prediction from structure in 

the future. This will require incorporation of other environmental effects, including hydrogen 

bonding.    

These theoretical and methodological advances all operate on a three-dimensional 

conformation, and thus they will be dependent on the generation of representative and complete IDP 



 

structural ensembles. While methods such as Flexible-Meccano107 and TraDES108 are valuable for 

generation of random coil conformers, molecular dynamics simulations are capable of generating a 

true Boltzmann weighted ensemble if the underlying energy surface is accurate and if sampling on 

this surface is complete. However, presently available energy functions that work well for folded 

proteins are imperfect when applied to IDPs. Because there are many degrees of freedom to sample 

over ns-ms timescales, MD simulations rely on computationally cheap fixed-charge force fields that 

allow for adequate sampling of the conformational space of an IDP. However, given the range of 

IDP environments including extreme solvent exposure in the monomer state through to buried 

residue interactions at the IDP-protein complex interface, a number of new protein and water fixed 

charge force fields offer better balance for the energetics of relative conformational energies and 

peptide-water interactions.133-138 Alternatively, polarizable force field offer the best future hope for 

more accuracy139,140 since they have the necessary physics to respond to a range of IDP 

environments experienced by the free as well as bound states of an IDP. However, polarizable 

models come with an increase in computational expense that in turn limits needed sampling. 

Nonetheless, recent efforts to reduce the computational expense of polarizable models are starting 

to take hold141, and thus will be an important future direction in the simulation of robust IDP 

structural ensembles. 

There is always tension between potential energy surface accuracy and adequate sampling of 

conformational space of an IDP due to its heterogeneous nature, as both increase computational 

cost. This requires that we develop sampling methods that converge faster to the Boltzmann 

weighted ensemble for an IDP. Generalized Ensemble (GE) Methods that use temperature, ionic 

strength, dielectric constant, and protonation states as the scaling variable142-153 will be important for 

IDPs. Markov State Model (MSM) approaches combined with adaptive sampling (AS) such as the 

MinCounts154 algorithm can be tailored to sample the heterogeneous states of IDPs, including those 

lacking preferential structure and those with partial folding59,154,155.  

The MinCounts method is a means for pushing sampling to slow, orthogonal degrees of 

freedom – even those that haven't been discovered yet. Mincounts looks at the counts of transitions 

seen in MD simulations that started in state i and ended up in state j after some lag time Dt, and runs 

more simulations at states with few counts. This has been shown to be the most effective scheme for 

adaptive sampling as shown in Figure 3.154, and has been applied to numerous systems, including 

simple models (where sampling can be tested exactly as a “gold standard” is known) as well as in 

MD simulations of protein folding, protein unfolded states, and protein conformational change. 



 

Using these sampling methods and the Folding@home distributed computing project, the Pande lab 

has simulated the conformational change of kinases156 and GPCRs156 on the submillisecond 

timescale.60  

In addition to backbone degrees of freedom, the generation of side chain ensembles for 

folding upon binding intermediates and IDP complexes will be necessary. However theoretical 

approaches for sampling the low energy alternative side chain arrangements of a protein is a 

difficult problem, and while molecular dynamics (MD) simulations give a good description of side 

chain conformational change on the nanosecond to microsecond level157, the experimental estimates 

indicate that the timescales are much longer. Therefore to circumvent the sampling issues imposed 

by MD, many groups have resorted to advanced Monte Carlo (MC) schemes158-160 which are 

designed to more exhaustively sample the Boltzmann weighted populations of side chain 

repackings, especially in the interior of the protein that may undergo low-probability rotamer 

transitions61,159 and have been shown to extend into the microsecond to millisecond time scale.161 

We have recently introduced a new Monte Carlo Side Chain Ensemble (MC-SCE)61 

approach for calculating side chain ensembles, entropy, and mutual information that is more 

quantitative compared to past efforts, by using a better convergent Rosenbluth sampling scheme, an 

augmented Dunbrack library162,163, a robust physics-based energy function using an implicit solvent 

model, and side chain rotamer sampling on a ensemble of backbone structures using backrub 

sampling159. We have now used our MC-SCE algorithm to generate tens of thousands different side 

chain packings for hundreds of different protein backbones, including protein-protein complexes for 

60 different protein systems. These include cryogenically cooled and room temperature X-ray 

crystallographic structures for CypA and H-Ras164,165 as well as NMR J-coupling data for CypA and 

Eglin-C, and DHFR binary complexes of E:THF and E:FOL, in which we found overall excellent 

agreement across the full range of X-ray and NMR data 164,166,167.  (see Figure 4). Although the 

MSM/AS and MC-SCE methods have been primarily validated and then used for prediction on 

folded proteins, their extension to IDPs is clearly the next frontier for generation of more complete 

structural ensembles. 

 

CREATING A COMPUTATIONAL BEAMLINE FOR IDPS 

The traditional structural biology approach of crystal structure visualization and analysis operations 

done on a single set of coordinates ultimately fails when applied to IDP ensembles. The goal of an 

IDP computational beamline is to better connect observed structural or dynamical motifs derived 



 

from the interplay of experiment and computation into functional relevance for free IDPs and their 

bound complexes. We envision a central resource that will integrate experimental and simulation 

data, simulation codes, and analysis tools across the IDP research community (Figure 5). The 

computational beamline will run workflows of software to create structural ensembles, store and 

index the variety of data types that help create, restrain, and/or validate ensembles, and collect 

analyses into an analysis end station that would formulate hypotheses about the relevance of 

structural ensembles to biological function. 

To scale up the execution of software tools from a handful of manually managed runs to 

thousands of runs continuously executing on parallel computing resources, the computational 

beamline will use proven scientific workflow software. For example, The Materials Project has 

developed a high-throughput workflow software called FireWorks53 that has run millions of 

materials science calculations on supercomputers at national laboratories and cloud resources such 

as in the NSF XSEDE project. Scientific workflow software like FireWorks automatically manages 

multi-step, branching, and iterative calculations, and can continuously launch and monitor new 

calculations from a queue spanning months of time and many millions of compute hours.  

While more sophistication in workflow software will dramatically increase the capability to 

perform experiments and gather new data, this scale of computation will also introduce new 

challenges: re-creating and debugging runs is no longer within the capacity of a single person’s 

memory. In order to know exactly which code produced which result, there must be a disciplined 

curation of all the relevant software tools used and developed in the IDP community, including 

methodology such as ENSEMBLE, QM back-calculations, Bayesian analysis, and advanced 

methods to derive the detailed structural ensembles of IDPs and their complexes using new force 

fields and backbone and side chain sampling methods. We envision that workflow software like 

FireWorks could be used to take an IDP of interest and combine multiple methodologies into a 

single workflow, then run that workflow in parallel and for a large number of timesteps on a cluster 

or supercomputer, automatically collecting all the results generated during the run. 

The computational beamline workflows will enable automated and systematic collection of 

the results of the calculations into a central data repository, and a second type of “data-intensive” 

workflow will perform the same function to continuously collect and normalize the available 

experimental data. Consequently, the computational beamline data repository will integrate all 

available experimental data, all spectral simulations, and finally calculated ensemble data into an 

integrated data resource. The data repository would develop methods to ingest and organize a wide 



 

variety of experimental data (i.e. SAXS, NMR, FRET, DEER-EPR, etc) and conformer ensembles, 

with data categorized and coded according to a common vocabulary. Use of industry-standard 

database technologies will provide powerful and flexible search capabilities. Data sharing to 

external databases such as BioIsis (bioisis.net)83, pE-DB168, and BMRB (www.bmrb.wisc.edu)169 

could be performed from this repository and made accessible to the IDP community. 

Just as in a cyclotron or synchrotron, the scientific impact of a computational beamline aso 

depends on the capabilities of the “analysis end-station”, where IDP researchers can derive 

knowledge from the integrated experimental and simulation data with new correlative methods that 

would enable collaborative and reproducible analyses via flexible interfaces and web-enabled 

analysis environments, such as the Jupyter170 notebook. The end-station could provide a set of 

transformations to extract selected result sets into the formats and parameters that are needed to feed 

into other existing or new analysis tools. The analysis end-station could first build upon existing 

analysis tools such as DSSP171, k-means clustering or Principal Components Analysis, and combine 

them with new analysis protocols such as hydrophobic and electrostatic clustering, identification of 

regions of compaction or extension, and probabilistic contact maps to define short and long-range 

interactions.  

We can also envision even more novel analysis tools for IDPs based on kinetic clustering 

from Markov State Models (MSMs)59,60,154. Kinetic clustering is a natural outcome of MSMs, and 

would bring to the IDP community a much more physical, natural, and biologically relevant means 

to conceptualize IDPs, by clustering not due to geometric similarity (which may or may not be 

relevant for function), but due to kinetic similarity, i.e. grouping structures together in a cluster if 

they rapidly interconvert kinetically, which is a natural and very physical definition for a "state", 

versus structures that interconvert more slowly and thus can be classified as distinct sub-

populations. Finally, data mining and machine learning methods will play a particularly important 

role in IDPs, especially in determining and understanding key structural or dynamical motifs that 

are difficult to identify just by visual inspection, including repeated transient structure and more 

sophisticated correlative motions.  

 

SUMMARY  

One of the central primary objectives of IDP research is to provide atomic level structural and 

dynamical information on the free IDP conformational ensembles and their relationships to the 

ensembles of IDP complexes exhibiting a broad range of order to disorder that is important for 



 

understanding their function. Given the fact that IDPs/IDRs are underdetermined systems, and thus 

a unique structural ensemble cannot be defined by experiment alone, three important areas for 

future progress have been identified. First is large-scale experimental data acquisition, including 

defining the most information-rich experimental techniques to provide for discriminatory 

information between competing ensemble definitions for IDPs. Second is improving the accuracy of 

IDP ensemble model generation (free and bound forms) with (i) advanced molecular simulation 

approaches, (ii) new QM/MM spectral simulation tools that enhance the discriminatory power of 

the solution-based experimental techniques, and (iii) probabilistic models such as recent Bayesian 

formulations to provide measures of uncertainty quantification in the experimental and simulation 

data generated. Third is centralizing the experimental data and computational tasks into an 

automated workflow, including development of a comprehensive set of analysis tools that can 

connect observed structural or dynamical motifs with functional relevance to the biological 

questions being addressed in a wide range of IDP projects. The need for collaborative teamwork to 

create this infrastructure is obvious, as are the ultimate benefits to the IDP and general protein 

structural communities. 
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TABLES 

Table 1: RMSD in ppm of B3LYP DFT and MP2 with respect to CCSD(T) when using small 
molecules as the reference (primary) vs. a planar peptide reference (secondary). Four different 
conformers of glycine dipeptide are used to explore chemical shift accuracies with respect to 
geometrical changes in f and y dihedral angles.  All geometries were optimized at the MP2 level of 
theory with the φ and ψ dihedral angles constrained to the values shown 

	

Atom DFT MP2 

Primary Secondary  Primary Secondary 
C 7.63 0.50 1.08 0.07 
N 17.65 0.40 5.08 0.15 
O 32.77 2.73 6.23 1.93 
H 0.26 0.06 0.08 0.03 

 

  



 

FIGURE CAPTIONS 

Figure 1. Heatmap comparing pairs of profiles from multiple experimental techniques including 

SAXS, DLS and CD. Each cell is a pair wise comparison between a condition or construct. 

Similarity between SAXS curves is measured by the metric Vr, and displayed as a gradient color 

where red indicates similarity (low Vr score) and white indicates dissimilarity. The black square 

diagonals are self-comparisons. Adapted with permission from [79], copyright 2016 Nature 

Publishing Group. 

 

Figure 2: log 𝑝(𝑋, 𝜉|𝐷, 𝐼) evaluated for X equal to the following qualitatively different ensembles 

for the Aβ42 monomer: random coil (RC), statistical secondary structure (Pred-SS), de novo MD, 

and ENSEMBLE optimized ensembles (MD-ENS1, MD-ENS2, MD-ENS4, and Pred-SS-ENS) 

using (a) chemical shift data only, (b) J-coupling data only, and (c) J-coupling and chemical shift 

data together. Adapted with permission from [62], copyright 2016 American Chemical Society. 

 

Figure 3. Convergence time for Fs (capped 21 alanine) peptide transition matrix generated with 

various hybrid sampling schemes. Time is measured in the number of eigenvalue-based trajectories 

needed to converge to an absolute error of 2.00 after 1000 initial trajectories are run from a chosen 

sampling method. Absolute error is defined as the sum of absolute deviations in transition matrix 

elements. Convergence times for each method were, averaged over 10 simulations, 1) 3913 for pure 

eigenvalue-based sampling, 2) 2669 for connectivity-based hybrid sampling, 3) 1107 for even 

sampling hybrid sampling, and 4) 286 for min count-based hybrid sampling. Reprinted with 

permission from [154]; copyright 2011 American Chemical Society. 

 

Figure 4. J-coupling constants (a) 3JCγN and (b) 3JCγCO for the DHFR binary product complex 

E:THF and (c) 3JCγN and (d) 3JCγCO for the DHFR binary product complex E:FOL. The red symbols 

are the experimental data from 167. The blue symbols are calculated from the MC-SCE ensemble 

using backbones from molecular dynamics and the Karplus parameterization from 167. Reprinted 

with permission from [61]; copyright 2015 Elsevier. 

 

Figure 5. Conceptualization of a Computational Beamline for the IDP community.  
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