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a b s t r a c t 

We present a deep learning, computer vision algorithm constructed for the purposes of identifying and 

classifying charged particles in camera image sensors. We apply our algorithm to data collected by the 

Distributed Electronic Cosmic-ray Observatory (DECO), a global network of smartphones that monitors 

camera image sensors for the signatures of cosmic rays and other energetic particles, such as those pro- 

duced by radioactive decays. The algorithm, whose core component is a convolutional neural network, 

achieves classification performance comparable to human quality across four distinct DECO event topolo- 

gies. We apply our model to the entire DECO data set and determine a selection that achieves ≥90% 

purity for all event types. In particular, we estimate a purity of 95% when applied to cosmic-ray muons. 

The automated classification is run on the public DECO data set in real time in order to provide classified 

particle interaction images to users of the app and other interested members of the public. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

The ubiquity of smartphone devices worldwide has sparked 

an explosion in the field of distributed sensors; their widespread 

adoption has effectively instrumented global population centers 

with a variety of detectors. The CMOS image sensors in modern 

smartphones are based on similar semiconductor technology to 

that found in professional telescopes and particle physics detectors, 

enabling them to detect cosmic rays and other ionizing charged 

particles. These particles have long been a background nuisance 

for CCDs used in astronomical cameras [1] , however several recent 

projects including the Distributed Electronic Cosmic-ray Observa- 

tory [2] seek to use this background as signal for both scientific 

and educational purposes. It may be possible for such networks 

of smartphones to detect extensive air showers created by ultra- 

high energy cosmic rays (UHECR) above 10 20 eV, if challenging user 

density targets are met [3] . This is a powerful and cost-effective 

way to extend UHECR measurements to higher energies, but there 
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are substantial hurdles to achieving this goal [4] . Since it is also 

possible to detect local radioactivity with camera sensors [5] , net- 

works of smartphones could be used as radiation monitors. More 

exotic analyses have also been proposed, such as searching for cor- 

related extensive air showers created when an ultra-high-energy 

photon interacts with the heliosphere [6] . One major hurdle limit- 

ing these scientific pursuits is accurate and efficient particle iden- 

tification, which is necessary to reject the radioactive background 

for cosmic-ray measurements or vice-versa for radiation measure- 

ments. In this paper we describe a computer vision algorithm de- 

veloped to identify the charged particles detected by camera im- 

age sensors. We then apply it to the data set produced by the Dis- 

tributed Electronic Cosmic-ray Observatory (DECO) [2,7] , the first 

publicly available cosmic-ray smartphone application. 

DECO detects cosmic rays by way of an Android application 

that began beta testing in October 2012 and was released pub- 

licly in September 2014. DECO is designed to detect ionizing ra- 

diation that traverses silicon image sensors in smartphones. The 

resulting dataset consists of images recorded by users worldwide 

( Fig. 1 ) that contain evidence of charged particle interactions. 

Due to the diverse ecosystem of Android phones on the market, 

the systematic variation in data taking conditions, and the vari- 

ety of particle event morphologies, classification of DECO events 
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Fig. 1. World map showing the global network of DECO users. Dots indicate data 

taking locations and span 80 different countries. Every continent including Antarc- 

tica is represented. Lines of data points, such as those in Antarctica and west of 

the Americas, indicate users running DECO on plane flights. Map plotted with a 

Kavrayskiy VII projection and up to date as of December 2017. 

presents a unique challenge. Our initial work using straight cuts 

to classify events in the highly heterogeneous dataset was mod- 

erately successful in classifying some event types, but identifying 

a cosmic-ray muon sample with high purity proved challenging. 

We present a computer vision algorithm based on a convolutional 

neural network for classifying DECO events. Additional cosmic-ray 

cell phones apps mentioned above could also benefit from the ap- 

proach described here. We presented initial results from our CNN 

classification in [8] . More recently, during preparation of this pa- 

per, Borisyak et al. [9] appeared and describes a CNN algorithm 

intended for use as an online cosmic-ray muon trigger. 

2. DECO App 

The DECO detection technique uses similar ionization-detecting 

semiconductor technology to that found in the silicon trackers of 

professional particle physics experiments [10,11] . Ionizing charged 

particles that travel through the sensitive region (i.e. depleted re- 

gion) of a phone’s image sensor are detected via the electron-hole 

pairs they create. The DECO app, which can be run on any Android 

device with Android version ≥ 2.1, is designed to be run with 

the camera face down or covered in order to minimize contami- 

nation from background light. While running, the app repeatedly 

takes long-duration ( ∼50 ms) exposures and runs them through 

a two-stage filter to search for potentially interesting events. This 

filter first searches a low-resolution image for N pixels above an 

intensity threshold, and if passed, analyzes a high-resolution im- 

age in the same manner. The intensity is the sum of the red, blue, 

and green color values (RGB) for each pixel. Images that pass both 

filters are tagged as “events” and are automatically uploaded to 

a central database for offline analysis. Additionally, the app has a 

“minimum bias” data stream that saves one image every five min- 

utes per device for offline calibration and noise studies. In partic- 

ular, they are used to determine the appropriate value of N for 

the online filter to select potentially interesting events. The app’s 

online filter is simple and efficient in order to maximize livetime, 

while more detailed analyses of images are performed offline. The 

DECO data can be browsed using a public website [12] , where 

users can perform queries using various metadata including time 

stamp (UTC), latitude and longitude (rounded to nearest 0.01 ° for 

privacy), event vs. minimum bias categorization, Android phone 

model, and device ID. 

Offline analysis of images that pass the app’s online filter begins 

with a contour-finding algorithm to locate clusters of bright pix- 

els. We use the marching squares algorithm, a special case of the 

marching cubes algorithm [13,14] , to search for groups of at least 

Fig. 2. Example of a full camera image that passed online filtering. During offline 

analysis, a contour-finding algorithm is used to identify hit clusters of pixels. In this 

event, two clusters (shown with green contours) were identified for further anal- 

ysis and classification. The color scale represents the pixel intensity, scaled to the 

brightest pixel, after a conversion to grayscale. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this arti- 

cle.) 

10 pixels with a minimum RGB sum of 20. These clusters of pix- 

els are then grouped together at a higher level: any clusters within 

40 pixels of one another are considered a single group. This group- 

ing is to account for electrons which can scatter in and out of the 

camera sensor, creating multiple nearby clusters of pixels with dis- 

tinct contours. Fig. 2 shows an example of the contours found in a 

DECO image with this algorithm. 

2.1. Event types 

There are three categories of charged particle events in the 

DECO dataset: tracks, worms, and spots. These are named accord- 

ing to the convention in [1] , which categorizes events based on 

their morphology. Tracks are long, straight clusters of pixels in 

an image created by high-energy (GeV) minimum-ionizing cos- 

mic rays. These are predominantly cosmic-ray muons at sea level 

and primary cosmic rays (mostly protons) above ∼20,0 0 0 ft al- 

titude [15] . Worms are named for the curved clusters of pixels 

caused by the meandering paths of electrons that have undergone 

multiple Coulomb scattering interactions. These electrons are likely 

the result of local radioactivity. Worms can also be seen as two or 

more nearby, disconnected clusters of pixels, which are the result 

of an electron scattering in and out of the sensitive region of the 

camera sensor. Spots are smaller, approximately circular clusters of 

pixels that can be created by various interactions. They are likely 

predominantly caused by gamma rays that Compton scatter to pro- 

duce a low energy electron that is quickly absorbed. Spots can also 

be produced by alpha particles, which also have a very short range 

in silicon, or by cosmic rays incident normal to the sensor plane. 

Fig. 3 shows the characteristic camera sensor response for each of 

the three interaction signatures detected by DECO. In addition to 

the three particle interaction categories, there are also events due 

to light in the sensor occurring when it is not sufficiently shielded, 

and several categories of noise: hot spots, thermal noise fluctua- 

tions, and large-scale sensor artifacts such as rows of bright pix- 

els [2] . While non-particle events, shown in Fig. 4 , are not partic- 
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Fig. 3. Representative sample of the three distinct types of charged particle events 

that require classification. Tracks and spots, left and right columns, respectively, are 

generally observed to have consistent and predictable features. Worms, middle two 

columns, are observed to have a much wider variety of features, many of which 

present potential classification confusion when compared to track-like and spot-like 

features. Each image above has been converted to grayscale and cropped to 64 ×64 

pixels. 

ularly of interest from an analysis standpoint, they do cause po- 

tential classification confusion. It is worth noting that these event 

categories are motivated both by their morphologies and the po- 

tential physics analyses that would utilize different categories of 

events as signal or background. For example, efficient track identi- 

fication (and worm rejection) is required to detect UHECRs using 

networks of smartphones or to perform cosmic-ray experiments 

in a classroom setting. Worms, on the other hand, would need to 

be identified in order to use DECO or a similar app as a radiation 

monitoring system. 

2.2. Initial classification approach 

Given the numerous event types, both particle and non-particle, 

and the increasing number of images being collected by DECO, 

there is a growing need for a reliable computerized event classi- 

fication system. However, there are several challenges associated 

with characterizing the DECO dataset in a way that requires lit- 

tle human intervention. Due to the inhomogeneity in hardware 1 

and data acquisition conditions, otherwise identical events may be 

detected differently, for example due to fluctuations in brightness, 

background noise, or number of pixels hit. Additionally, DECO par- 

ticle events possess rotational and translational symmetry, which 

must be accounted for by classification algorithms. 

An initial algorithm that classified DECO events used straight 

cuts applied to geometric metrics that were combined to make 

a binary classification: track or non-track. Clusters of pixels were 

identified using the marching squares algorithm described in 

Section 2 . The binary classification identified low-noise images 

with a single cluster of pixels, not containing any sub-clusters (i.e. 

evidence of an electron scattering out of the sensor plane), with a 

minimum area of 10 pixels, and an eccentricity > 0.99, where ec- 

centricity is calculated using image moments as described in [16] . 

The last two requirements were intended to select larger, line- 

like events, such as tracks. This method accurately distinguished 

tracks from spots, but struggled to separate tracks and worms, 

presumably due to their similar morphology. Many worms only 

curve slightly and have a high eccentricity. These events are un- 

likely to be high-energy muons due to their curvature, but the 

classification based on straight cuts could not distinguish them 

from tracks. Fortunately, advances in the quickly developing field 

of machine learning offer techniques to overcome these classifica- 

tion challenges. 

3. Deep learning 

3.1. Background 

Deep learning is a subset of machine learning focused on build- 

ing models that are capable of learning how to describe data at 

multiple levels of abstraction. This is achieved with a nested hier- 

archy of simple algorithms that when combined can form highly 

complex and diverse representations. At each layer of the nested 

hierarchy, a non-linear transformation of the previous layer’s out- 

1 Users have run DECO on 604 distinct phone models to date. 

Fig. 4. Examples of non-particle (noise) events in the DECO dataset. Left: noise due to thermal fluctuations. Center: hot pixels, i.e., pixels that have regular, geometric shapes 

and typically repeat in the same location. Right: row of bright pixels, likely an artifact of the image sensor readout. The color scale represents the pixel intensity, scaled to 

the brightest pixel in each image, after a conversion to grayscale. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 

of this article.) 
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put is typically performed, which results in the deeper layers of the 

model seeing a progressively more abstract representation of the 

original input. By learning features at multiple levels of abstraction, 

the model has the ability to learn complex mappings between the 

input and output directly from data [17] . This is particularly advan- 

tageous when dealing with higher-level abstractions that humans 

may not know how to explicitly describe in terms of the available 

input. 

Deep learning models are typically constructed with four basic 

components in mind: (1) a specific dataset, (2) an objective func- 

tion 2 , i.e. the function that will be maximized or minimized, (3) 

the optimization procedure to be used on the objective function 

throughout the learning process, and (4) an appropriate structure 

for the model given the analysis goals and dataset characteristics. 

For our purposes, a particularly relevant and widely used example 

of such a model is the feedforward neural network, also known as 

the multilayer perceptron [18,19] , which can be used to perform a 

number of tasks, including classification. 

For classification, we begin by assuming that there exists some 

function, f ∗, that describes the true mapping between input vector, 

x , and category, y , such that y = f ∗( x ) . In this case, the goal of the 

feedforward neural network is to construct a mapping, y = f ( x ; θ) , 

then learn which value of the parameter vector, θ, provides the 

best approximation between f ∗ and f [20] . The categorical label, y , 

is a unit vector containing all zeros, except for the index that cor- 

responds to the y th category in the model, which has a value of 

1. The function f is typically a series of nested functions, f ( x ) = 

f n ( f n −1 ( . . . f 2 ( f 1 ( x )) . . . )) , with depth n , where f 1 corresponds to 

the input layer, f 2 through f n −1 are hidden layers 
3 , and f n is the 

layer that provides the desired output (e.g. probabilities for input 

x belonging to each individual category in y ). 

Each layer consists of a specified number of units, called neu- 

rons, that each compute a weighted linear combination of the in- 

puts followed by a non-linear function which outputs a single, 

real-valued input for the next layer. Traditionally, layers have a 

dense, fully connected structure where the output of each neuron 

in a given layer is connected as input to all the neurons in the next 

layer. In this case, the output of the n th layer, x n , has the following 

vector representation: 

x n = g( W n x n −1 + b n ) , (1) 

where x n −1 is the output of the previous layer’s neurons, W n is a 

matrix of weights, b n is a vector of biases, and g is the non-linear 

function, also known as the activation function. The weights and 

biases constitute the model’s parameters, which are optimized dur- 

ing the learning process. Note that for the first layer in the model, 

x n −1 = x 0 , which is simply the initial model input, x . With the ex- 

ception of the output layer, the typical choice for the activation 

function is the rectified linear unit, or ReLU [21] , defined by g(z) = 

max(0, z ), which outputs the maximum between the input and 

zero. A common variant is the leaky ReLU [22] , where negative in- 

puts are not set to zero, but are instead multiplied by a small con- 

stant α. In the output layer, the softmax function (multi-class gen- 

eralization of the logistic sigmoid, see for example [20] ) is used to 

produce a multinoulli distribution representing the probability that 

input x belongs to each of the K different categories represented in 

the model. The category with the greatest probability is generally 

taken to be the classification, however specific threshold cuts for 

each category can also be used. 

During the learning process, the model is presented with a 

large number of training examples where each input, x , has a sin- 

2 In the case of minimization, the objective function is commonly referred to as 

the cost, loss, or error function. 
3 Intermediate layer outputs are always connected as inputs for other layers and 

are therefore never visible as network outputs, hence the term “hidden”. 

gle human assigned categorical label, y , which is taken by the 

model to be the ground truth. The ground truth label, y , is then 

typically represented in a conditional probability distribution, q , 

such that the conditional probability for the k th category in the 

model is given by q (k | x ) = δky , which is the Kronecker delta. A 

loss function is used to compute the error between the model pre- 

dictions and the ground truth. Modern neural networks are typ- 

ically trained using the principle of maximum likelihood. In this 

approach, the loss function is the negative log-likelihood, which 

can be equivalently described as the cross-entropy between the 

training examples and the modeled distributions [20] . In the case 

of multinomial logistic regression (i.e., classification with multiple 

categories), the cross-entropy loss function for a single training ex- 

ample is: 

H(p, q ) = −

K 
∑ 

k =1 

q (k | x ) log (p(k | x )) , (2) 

where K is the total number of categories in the model, q ( k | x ) is 

the ground truth, human-assigned probability for the k th category, 

and p ( k | x ) is the probability output by the model for the k th cate- 

gory. The gradient of the loss, as a function of the weights and bi- 

ases, is calculated using the back-propagation algorithm [23] . The 

loss is then minimized by updating the weights and biases for all 

the neurons in each layer using the method of mini-batch stochas- 

tic gradient descent (SGD) [24,25] . When using mini-batches, the 

gradient of the loss function is estimated as the average instanta- 

neous gradient over a small group of training examples (25–100, 

typically), which serves to balance gradient stability with comput- 

ing time. This procedure is then repeated, iterating through mini- 

batches of training examples, until the error between the modeled 

and ground truth distributions reaches a satisfactory level. A single 

cycle through all of the mini-batches contained in the training set 

is typically referred to as an epoch. 

3.2. Convolutional neural networks 

Convolutional neural networks (CNNs) [26] are a subclass of 

neural networks in which standard matrix multiplication is re- 

placed with the convolution operation in at least one of the 

model’s layers. CNNs have shown extraordinarily good perfor- 

mance learning features from datasets that are characterized by a 

known grid-like topology, such as pixels in an image or samples 

in a waveform. The core concept behind CNNs is to build many 

layers of “feature detectors” that take into account the topologi- 

cal and morphological structure of the input data [27] . Throughout 

the training process, the model learns how to extract meaningful 

features from the input, which can then be used to model the con- 

tents of the input data. The first stages of a CNN typically contain 

two types of alternating layers that are used to perform “feature 

extraction”: convolutional layers and pooling layers. 

Convolutional layers take a stack of inputs (e.g. color channels 

in an image) and convolve each with a set of learnable filters to 

produce a stack of output feature maps, where each feature map 

is simply a filtered version of the input data (input image, in our 

case). A given input image, I , convolved with a n ×m filter, F , will 

produce an output according to: 

X p,q = (F ∗ I) p,q = 

n 
∑ 

i =1 

m 
∑ 

j=1 

c 
∑ 

k =1 

F i, j,k · I p+ i,q + j,c , (3) 

where X p , q is the ( p , q ) pixel of the feature map (prior to applying 

the non-linear function), n and m correspond to the filter’s height 

and width in units of pixels, and c is the number of color channels 
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in the input image. 4 With this transformation in mind, a slightly 

modified version of Eq. (1) can be constructed such that the l th of 

L total feature maps output by the n th layer, X (l) n , can be expressed 

with the following matrix representation: 

X 
(l) 
n = g 

( 
K 

∑ 

k =1 

W 
(k,l) 
n ∗ X 

(k ) 
n −1 + b (l) n 

) 

, (4) 

where X (k ) 
n −1 is the k th of K total feature maps output by the pre- 

vious layer, 5 W 
(k,l) 
n is a set of matrices containing the weights for 

the learnable filters, b (l) n is the bias for the l th feature map, ∗ is the 

two-dimensional convolution operation shown in Eq. (3) , and g is 

the activation function that performs a non-linear transformation 

of each pixel to produce the resulting feature map. 

Feature maps are essentially abstract representations of the in- 

put image, where each individual feature map is tasked with learn- 

ing how to extract a specific feature from the input, such as edges, 

corners, contours, parts of objects, etc. It should be noted that 

the specific features learned by each feature map are not prede- 

termined, but, rather, are selected solely by the model during the 

learning process. The feature maps nearest the input tend to re- 

semble the original image. At layers further from the input, the 

feature maps gradually become more abstract and specialized. 

Replacing the matrix product with a sum of convolutions re- 

sults in a series of additional benefits [20] : (1) a restricted con- 

nectivity pattern where each neuron is only connected to a lo- 

cal subset of the input, which reduces the number of computa- 

tions, (2) the model learns a single set of parameters for each filter 

that can then be shared via convolution by all pixels in the input, 

which reduces the number of model parameters and improves the 

model’s generalization performance, 6 and (3) the form of parame- 

ter sharing used in convolution also results in translation equivari- 

ance, meaning a translation in the input results in the same trans- 

lation in the output. The restricted connectivity pattern results in 

the model learning predominantly from only local interactions in 

the input, meaning that features at distant locations of the input 

are less likely to interact. To combat this, convolutional layers are 

often used alongside pooling (subsampling) layers. 

Pooling layers [28] reduce the dimensionality of a feature map 

by using an aggregation function to compute a summary statistic 

across a small, local region of the input. The dimensional reduc- 

tion gives the deeper layers of the model the ability to learn cor- 

relations between increasingly larger, yet lower resolution, regions 

of the input. For example, max pooling [29] computes the maxi- 

mum output located within a rectangular region of the input, then 

reduces that rectangular region to a single value equal to the max- 

imum. A common choice is to divide each feature map into non- 

overlapping 2 ×2 grids of pixels that are then each reduced to a 

single pixel, converting a feature map from, say, 32 ×32 pixels to 

16 ×16 pixels. As a result, only the most pronounced features in 

each rectangular region are forwarded to the deeper layers of the 

model. The pooling operation also gives rise to translation invari- 

ance 7 across small regions of the input. This is a desirable benefit 

when one is primarily interested in whether certain features are 

present in the input, rather than knowing precisely where they are 

located. 

4 In our application, we sum the three color channels R, G, and B to produce a 

single grayscale color channel. 
5 The input layer, X (k ) 

n −1 = X 0 , isn’t a feature map but is simply the input image 

for the model. 
6 Generalization performance is a model’s ability to perform well on previously 

unseen examples that were not included in the training set. 
7 To be clear, f is translation equivariant if f (T (x )) = T ( f (x )) , and translation in- 

variant if f (T (x )) = f (x ) , where T ( x ) is a translation operation. 

Finally, the features extracted from convolutional and pooling 

layers are typically used as input for a standard, fully connected, 

feedforward neural network (as explained in Section 3.1 ) where 

the desired output is then produced, which, in this case, is the CNN 

classification of the input image. 

4. Constructing a DECO CNN 

In the sections that follow, we describe the construction and 

optimization of a DECO-specific convolutional neural network. We 

begin by introducing the dataset and the challenges associated 

with both human classification error and the small number of 

training images. We explain how data augmentation was used to 

make the model approximately invariant to rotations as well as ar- 

tificially boost the number of training images. We then discuss the 

problem of overfitting and the techniques used to address it. Next, 

we summarize the model structure and training process used. Fi- 

nally, we present the classification results, evaluate the perfor- 

mance of the model, and discuss the model’s role in current and 

future DECO analyses. 

4.1. Image database and human labels 

As discussed in Section 3.1 , the model must not only be pre- 

sented with a large number of training examples, but also with a 

set of corresponding human-determined categorical labels. How- 

ever, assigning human labels to large datasets is time consum- 

ing and, depending on the dataset, difficult to do accurately. Pre- 

vious deep learning models within the astronomy and particle 

physics communities have constructed labeled datasets by using 

a crowd-sourcing approach, for example by Galaxy Zoo [30,31] , 

or large-scale Monte Carlo event simulations, for example by the 

NOvA neutrino experiment [32,33] . Both approaches require con- 

siderable human labor. At present, the DECO image database con- 

tains ∼45,0 0 0 events (images that passed the online filter), each 

of which potentially contains one or more clusters. Assigning hu- 

man labels to each event cluster would be a very time consuming 

task. With this in mind, rather than labeling the entire dataset, we 

instead opted for an iterative approach in which the number of la- 

beled training examples was successively increased in parallel with 

the optimization of the CNN model structure. 

To accomplish this, individual event clusters were inspected by 

eye, by multiple people, and assigned labels of track, spot, worm, 

noise 8 , or ambiguous. Additionally, if a clear identification could 

not be made or if humans disagreed on the classification, which 

occurred ∼10% of the time, the image was labeled as ambiguous 

and excluded from the training set. During the optimization pro- 

cess, the model was trained and used to classify events that were 

not in the original training sample. These classified images were 

then searched by eye for likely false positives, i.e., instances where 

the model reports a high probability that an event belongs to a 

certain category but appears to be wrong. These incorrectly classi- 

fied events were then assigned a correct human label, added to the 

existing set of training images, and used to train the next iteration 

of the model. This process was repeated on increasingly larger sets 

of images. As shown in Fig. 5 , with each new iteration, the exam- 

ples that the model found most difficult to categorize were added 

to the labeled dataset, thus addressing the remaining weaknesses 

in the classifier. 

8 The noise category was added during the iterative training process when it was 

found to drastically improve the model’s overall classification accuracy. 
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Fig. 5. Left: random sample of images with track probability > 0.95 according to a 

preliminary version of the CNN model (presented in [8] ). This version of the model 

struggled to correctly identify tracks that had similar features to other event types, 

particularly worms. Incorrectly classified images, denoted with a white ‘ × ’, were 

assigned a human label (worm, in each example shown) and added to the training 

set for the next iteration of the model. Right: random sample of images with track 

probability > 0.95 according to the final version of the CNN model. The CNN classi- 

fication agrees with the human classification for every single event in this sample. 

4.2. Preprocessing and data augmentation 

Image-to-image variations in position, scale, and rotation pose 

a challenge to DECO event classification. When a DECO user col- 

lects data, both the position and orientation (at least in azimuth 

– zenith typically corresponds to phones operating flat on a ta- 

ble) of the phone is arbitrary. Both orientation and location data 

are collected in the app’s metadata. However, the ( x , y ) position 

of a given event cluster within the camera sensor, as far as the 

model is concerned, should be considered a meaningless feature. 

Similarly, the orientation of a hit cluster within the ( x , y ) plane, as 

well as reasonable variations in scale (e.g. the length of a track) 

should also be considered meaningless by the model. Fortunately, 

CNNs naturally handle translations in the input quite well [34,35] . 

However, invariance to features such as scale and rotation need to 

be learned. 

For a given input image, the apparent size of the event with 

respect to the camera sensor can be affected by a number of fac- 

tors such as the underlying hardware in the specific phone model 

(including the image sensor resolution), the energy of the parti- 

cle, and the angle of incidence. The pooling operation provides re- 

siliency to minor changes in shape and scale [36] , however, varia- 

tions larger than a few pixels must be addressed by other means. 

Sophisticated solutions to this problem have been proposed [37] , 

however, the simplest method is to introduce scale-jittering via 

data augmentation, which is in widespread practice today [38,39] . 

Data augmentation consists of randomly transforming training im- 

ages while preserving their human-assigned category labels. Simi- 

lar to scale invariance, data augmentation can also be used to learn 

rotation invariance. While rotation-invariant CNN architectures ex- 

ist [31] and have been shown to outperform data augmentation 

in certain cases [40] , the small number of training images in this 

study prohibited the use of such methods. Finally, due to the lim- 

ited number of training images available, data augmentation was 

also used to artificially inflate the number of “unique” images seen 

by the model during training. 

In general, data augmentation has been shown to be the sim- 

plest way to achieve approximate invariance to a given set of trans- 

formations [27] . Assuming the model has the capacity to do so 

(i.e., enough feature maps), the model should be able to learn a 

wide variety of invariances directly from the data [41] . An addi- 

tional benefit of data augmentation is that a single set of trans- 

formations can be used to address multiple different issues. With 

that in mind, the following operations were applied to each train- 

ing image: 

• Grayscale conversion and normalization : a dimensional re- 

duction over the channel axis of each image was performed 

by calculating an unweighted sum of each pixel’s R + G + B value. 

The resulting grayscale images were then normalized to 1, tak- 

ing the maximum possible R+G+B value to be 765 (i.e., 255 ×3). 

Grayscale reduces the variation seen from phone to phone and 

is also computationally more efficient. Furthermore, while color 

provides essential information for other image classification 

tasks, it does not for particle tracks. 

• Translation : random left/right and up/down shifts, each by an 

integer number of pixels uniformly sampled between −8 and 

+8 with respect to the image center. 

• Rescale : random zoom in/out uniformly sampled between 90% 

and 110% of the original image size, used for learning scaling 

invariance. 

• Reflection : random horizontal and vertical reflections, each 

with a probability of 50%. 

• Rotation : random rotation uniformly sampled between 0 ° and 

360 °; used for learning rotation invariance. After the rotation, 

any remaining pixels outside the boundaries of the original in- 

put were assigned a value of 0. 

• Crop : crop from 100 ×100 pixels to 64 ×64 pixels; used to re- 

duce the amount of empty space created on the boundaries of 

the image as a result of rotation, translation, and rescaling. 

With the exception of normalization and the conversion to 

grayscale, which could be performed ahead of time, all data aug- 

mentation was done in real time during the training process. Prior 

to the start of each training epoch (full cycle through all training 

images, as defined in Section 3.1 ), a new random set of pertur- 

bations are applied to each image. Applying data augmentation in 

this way ensures that the model is never presented with the ex- 

act same version of a training example more than once. Real-time 

data augmentation is performed in Python using the Keras neural 

network application programming interface [42] , which makes use 

of tools contained within the SciPy library [43] . 

4.3. Avoiding overfitting through regularization 

Deep neural networks typically have anywhere from tens of 

thousands to tens of millions of trainable parameters. The advan- 

tage of such a large number of parameters is that the model has 

the ability to fit extremely complex and diverse datasets. How- 

ever, the downside of a model with such tremendous freedom is 

that there is considerable risk of over-fitting, which occurs when 

the model simply memorizes the training images. As a result, the 

model is overly sensitive to the specific features that were memo- 

rized during training and therefore generalizes poorly to new data. 

Over-fitting is of particular concern when dealing with a small 

number of training images, as is the case in this study. To com- 

bat this phenomenon, we used several regularization techniques 

[20,44] , which are modifications to the learning process that are 

intended to reduce generalization error while leaving training er- 

ror 9 unaffected. These techniques are as follows: 

9 The error between the true and predicted classification for images in the train- 

ing set. 
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Fig. 6. Number of training images for each event type contained in the final dataset 

that was used to train the best performing model. Out of the 5119 total images, 

there are 2520 (49%) noise, 1094 (21%) spot, 1063 (21%) worm, and 442 (9%) track 

images. 

• Data augmentation : artificially increasing the number of train- 

ing examples by modifying the images in such a way that 

they look different for each particular training instance while 

still maintaining the correctness of the underlying human as- 

signed label. The particular perturbations used are outline in 

Section 4.2 . 

• Label smoothing : accounting for the uncertainty in human as- 

signed labels by replacing the hard 0, 1 (false, true) label dis- 

tribution, q (k | x ) = δky , with q (k | x ) = (1 − ε) δky + 
ε
K , where k is 

the k th of K total categories in the model, ε is a small constant 

representing the probability of an incorrect label, and y is the 

human label. This modification results in an additional penalty 

term being introduced into the loss function, Eq. (2) . Assum- 

ing that ε is reasonably small, this technique reduces the effect 

of incorrect labels while still encouraging correct classification 

[45] . 

• Dropout : at every step of the training process, each individ- 

ual neuron in a given layer has a probability, P , of being tem- 

porarily set to zero, or “dropped out” [46,47] . The purpose of 

dropout is to prevent the co-adaptation of neuron outputs such 

that each individual neuron depends less on other neurons be- 

ing present in the network. To preserve the total scale of inputs, 

the neurons that weren’t dropped out are rescaled by a factor 

of 1 / (1 − P ) . Dropout is only applied during training and turned 

off afterwards. 

• Max-norm constraint : to prevent weights from blowing up, a 

max-norm constraint is applied to each neuron’s weight vector, 

W , such that ‖ W ‖ ≤ r , where ‖ ·‖ is the L 2 vector norm and r 

is a user specified constant dictating the maximum value. Af- 

ter each training step the constraint is checked and, when nec- 

essary, the weights are updated according to W → W 
r 

‖ W ‖ 
. The 

max–norm constraint, both with and without dropout, has been 

shown to help reduce over-fitting [47,48] . This constraint was 

applied to fully connected layers only. 

• Early stopping : during the training process, testing loss (error) 

typically decreases, reaches a minimum value, and then begins 

to increase again once over-fitting has set in. To avoid using an 

overfit model, we capture running snapshots of the best version 

of the model during training, which correspond to the epochs 

where testing loss reaches a new minimum value [49,50] . 

• Categorical weights : As seen in Fig. 6 , certain event types, 

tracks in particular, have fewer training images than others. As 

a result, the model sees more training examples from the abun- 

dant categories than the under-represented ones, which intro- 

duces bias into the classifier. To account for this imbalance, 

each category is assigned a weight, according to its abundance, 

Table 1 

Layer-by-layer summary of the best performing network. Each layer 

name is given followed by the number of feature maps (convolutional 

layers) or neurons (dense layers), the size of the convolutional filter or 

pooling region, the activation function used, and, lastly, the amount of 

dropout applied. For the leaky ReLU activation function, the value of α

was set to 0.3 in all cases. A max-norm constraint of 3 was used for 

both 2048 dense (fully connected) layers. Dropout with a probability 

P = . 2 was also applied to the input layer (not listed in the table). 

Layer Features Size Activation Dropout 

1 Convolution 64 3 ×3 Leaky ReLU –

2 Convolution 64 3 ×3 Leaky ReLU –

3 Max pooling – 2 ×2 – 0.2 

4 Convolution 128 3 ×3 Leaky ReLU –

5 Convolution 128 3 ×3 Leaky ReLU –

6 Max pooling – 2 ×2 – 0.2 

7 Convolution 256 3 ×3 Leaky ReLU –

8 Convolution 256 3 ×3 Leaky ReLU –

9 Max pooling – 2 ×2 – 0.2 

10 Convolution 512 3 ×3 Leaky ReLU –

11 Convolution 512 3 ×3 Leaky ReLU –

12 Max pooling – 2 ×2 – 0.2 

9 Dense 2048 – Leaky ReLU 0.4 

10 Dense 2048 – Leaky ReLU 0.4 

11 Dense 4 – softmax –

which is applied to the loss function ( Eq. (2) ) to ensure that all 

categories are represented equally during optimization. 

4.4. Model structure and training 

The best performing model trained in this study begins by tak- 

ing a normalized, 100 ×100 grayscale image (zoomed in on the 

hit pixel cluster) as input. The input is then transformed via data 

augmentation ( Section 4.2 ), cropped to 64 ×64, and subjected to 

dropout with a probability P = 0 . 2 . Next, feature extraction is per- 

formed using four three-layer-deep blocks, each of which con- 

sists of the following operations: 3 ×3 convolution followed by a 

leaky ReLU activation, a second identical 3 ×3 convolution with 

leaky ReLU, and, lastly, 2 ×2 max pooling. For the leaky ReLU non- 

linearity, a constant multiplier α = 0 . 3 is applied for all negative 

inputs. Following max pooling in each block, dropout is applied 

with probability P = 0 . 2 . For each of the four blocks, the number 

of feature maps is doubled, starting with 64 in the first block and 

ending with 512 in the last. The model structure is loosely based 

on the VGG-16 network [38] , which used only 3 ×3 convolutional 

filters and 2 ×2 max-pooling throughout the network. Following 

feature extraction, the feature maps are flattened to a single, one- 

dimensional vector that is used as input for a three-layer fully 

connected network ( Section 3.1 ). The first two layers are identical 

dense (fully connected) layers with 2048 neurons, leaky ReLU ac- 

tivation with α = 0 . 3 , and a max-norm constraint with r = 3 (see 

Section 4.3 ). Each dense layer is also followed by dropout with a 

probability P = 0 . 4 . Finally, the output layer performs softmax re- 

gression, which outputs the probability for each of the 4 categories 

in the model (track, spot, worm, and noise). Fig. 7 shows a block 

diagram of the model structure and workflow. Specific details for 

each layer are summarized in Table 1 . 

To train the model, we used a variant of mini-batch SGD (see 

Section 3.2 ) known as Adadelta [51] . For our model, Adadelta was 

found to converge slightly faster than both SGD and Adam [52] , an- 

other widely used variant of SGD. At the beginning of each train- 

ing epoch, a new set of random data augmentation perturbations 

are applied to each image in the training set. The model was pro- 

grammed in Python using the Keras neural network application 

programming interface [42] operating with a Theano [53] back- 

end. The final model contains approximately 25 million trainable 
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Fig. 7. Block diagram of the best performing network trained in this study. The input and output dimensions for each operation are shown to the left and right of the 

arrows, respectively. All convolutional filters are 3 ×3 and all pooling operations are 2 ×2 max pooling. Following the fourth pooling layer, the feature maps are flattened to 

a single 1-dimensional vector of length 8196, which is then used as input for the first dense layer. 

Fig. 8. Loss as a function of epoch for two different versions of the model, one 

trained with regularization techniques and one trained without. The loss is aver- 

aged over the 10-fold cross validation of the entire dataset and shaded error bands 

indicate the 1 σ spread across the 10-folds. An epoch refers to one full cycle through 

all available training images. 

parameters and was trained on a single NVIDIA Quadro M40 0 0 

graphics processing unit (GPU) with 8 GB of RAM. 

5. Results and analysis 

5.1. Model performance 

To estimate the overall performance of the model, independent 

sets of human-classified images were evaluated using the method 

of stratified k-fold cross-validation [54] . In this procedure, the set 

of training images is split into k groups, where each group con- 

tains a roughly equal number of images from each of the cate- 

gories represented in the model. k otherwise identical versions of 

the model are then trained, each time setting aside one group for 

testing and k − 1 for training the model. Selecting a value of 10 for 

k , we trained each individual fold for a total of 800 epochs, where 

each epoch consists of a single cycle through the full set of train- 

ing images. The loss (defined below) for both training and testing 

sets, averaged over the 10 folds as a function of training epoch, is 

shown in Fig. 8 . The loss 10 for a set of examples is defined to be: 

10 Note that this is technically the logarithm of the loss and therefore is not ex- 

pressed as a percentage. 

L = −
1 

N 

N 
∑ 

n =1 

K 
∑ 

k =1 

q n (k | x ) log (p n (k | x )) w k , (5) 

where N is the number of training or testing images, K = 4 is the 

number of categories in the model, p and q are the respective CNN 

and human assigned categorical distributions for each image (de- 

fined in Section 3.1 ), and w is a categorical weight term to account 

for the categorical imbalance in the training set (see Section 4.2 ). 

Conceptually, the loss can be thought of as the average error be- 

tween the human and CNN classifications. 

Early stopping ( Section 4.3 ) was used to obtain the best per- 

forming (lowest testing loss) versions of the model throughout 

each 800-epoch training session, which, on average, occurred near 

epoch 650. The training and testing loss as a function of training 

epoch can be seen in Fig. 8 . The gap between the training and test- 

ing loss is caused by the regularization techniques used to pre- 

vent overfitting, which are only applied to the training set (see 

Section 4.3 ). Lower testing loss than training loss can also be in- 

dicative of an underfit model. To test this, an alternate version of 

the model was trained with dropout removed from all layers, the 

max-norm constraint removed from the fully-connected layers, and 

no label smoothing. The results of this test revealed that the gap 

between testing and training loss disappeared until overfitting set 

in at epoch ∼200. This explains the gap between training and test- 

ing loss and also confirms that the regularization techniques are 

effectively preventing the model from overfitting the data. To in- 

vestigate the potential benefits of a longer training duration, an ad- 

ditional model was trained for 10,0 0 0 epochs. While training loss 

was observed to decrease slightly, no benefit was seen in the test- 

ing set, thus confirming that 800 epochs was sufficient. A value of 

ε = 0 . 004 was used for label smoothing. Setting ε to 0 as well as 

using larger values of 0.1 and 0.01 all resulted in marginally higher 

testing loss. We also tested an alternate, simpler version of the 

model which is described in Section 5.3 . 

5.2. Model accuracy 

Fig. 9 shows a category-by-category summary, known as a con- 

fusion matrix, quantifying the error between human and CNN clas- 

sifications for each category in the model. Each square of this con- 

fusion matrix is calculated by averaging the testing set results over 

the 10 folds in the cross validation. It should be noted that the re- 

sulting distribution is not normalized and is biased according to 

the relative occurrence of each category in the training set. For ex- 

ample, noise events make up almost half of the training set ( Fig. 6 ). 
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Fig. 9. Confusion matrix summarizing the CNN categorization accuracy. The verti- 

cal axis shows the ground truth (human-determined) classification and the horizon- 

tal axis shows the classification from the CNN. The values shown in the confusion 

matrix are the average and standard deviation of the testing set results from the 

10-fold cross validation. 

Fig. 10. Row-normalized confusion matrix that accounts for the relative imbalance 

in the number of testing examples for each category in the training set. Normaliza- 

tion is performed independently for each row and is calculated by dividing each 

row of the unnormalized confusion matrix (see Fig. 10) by the total number of 

events in that row. 

This bias can be removed by normalizing each row of the con- 

fusion matrix to the total counts contained in each row, i.e. the 

total number of human-labeled events for each category. The re- 

sulting row-normalized confusion matrix describes the conditional 

CNN probability distributions for each of the four human-assigned 

labels in the model. The probability of the CNN correctly identify- 

ing each event type, along with the probability of mis-identifying 

each category, can be read directly off of the row-normalized con- 

fusion matrix in Fig. 10 . For example, the model correctly identifies 

human-labeled tracks as tracks 92% of the time, while incorrectly 

identifying them as worms 9% of the time. This confusion in the 

classifier is both expected and comparable to human performance, 

given that, out of the four categories in the model, track and worm 

event morphologies are among the most similar. The model accu- 

rately labels noise events 97% of the time, which is the highest 

accuracy of any event type. This is also expected due to the vast 

differences between char ged particle events and noise. Moreover, 

Fig. 11. (Top) Receiver operating characteristic (ROC) curve displaying the true pos- 

itive rate vs. false positive rate for a variety of threshold values. A threshold of 0.9 

is indicated with a dot for each category. (Bottom) Purity, efficiency, and their prod- 

uct as a function of CNN track probability threshold, averaged over the 10-fold cross 

validation. For each curve, the average and standard deviation are indicated by the 

thin solid line and corresponding band, respectively. For each threshold value, the 

purity and efficiency are calculated for events with a CNN track output, p track , above 

the track threshold. 

this also confirms that the model successfully learned the concept 

of noise, justifying the inclusion of this category in the model. 

These results assume that a single classification is assigned to 

each image by choosing the category with the highest CNN out- 

put probability. We explore the performance of alternative choices 

below. 

We further evaluate the model’s classification performance by 

calculating the true and false positive rates for each category, as- 

suming a binary classification scheme (e.g. track and non-track). 

The true and false positive rates for each category are parameter- 

ized according to a threshold applied to its CNN output probabil- 

ity and plotted as a receiver operating characteristic (ROC) curve, 

as seen in the top panel of Fig. 11 . For example, requiring a track 

probability of at least 0.9 results in a true positive rate of 60% and 

a false positive rate of 0.3%. While the trade-off between efficiency 

and purity 11 can be inferred from the ROC curve, these quantities 

were also explicitly calculated for tracks, which is the primary cat- 

egory of interest for most DECO users. The resulting efficiency, pu- 

rity, and efficiency × purity curves, averaged over the 10 folds and 

plotted as a function of track probability threshold, are shown in 

the bottom panel of Fig. 11 . For a given fold and threshold, the ef- 

ficiency is calculated from the testing set and defined to be the 

ratio of the number of tracks that pass the threshold to the to- 

11 The definitions of purity and efficiency used here are generally referred to as 

precision and recall, respectively, within the machine learning community. 
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tal number of tracks. Likewise, for a given fold and correspond- 

ing test set, the purity is defined as the ratio of the number of 

human-labeled tracks that pass the threshold to the total number 

of events, regardless of event type, that pass the threshold. The 

product of the resulting curves is one metric that can be used to 

determine a threshold value that balances the efficiency vs. purity 

trade-off. 

5.3. Comparison with simpler model 

In the previous sections, we have shown that the model ex- 

hibits excellent performance across all four categories when classi- 

fying unseen data. However, one might wonder if the complexity of 

our model, which contains 25 million trainable parameters, is nec- 

essary to achieve this level of performance. In order to test this, we 

trained a simpler version of the model, containing 140 thousand 

parameters, with the same effort s described in Sections 4.2 and 

4.3 . The simpler model contained only two blocks of convolutional 

and pooling layers, followed by significantly smaller dense layers 

than those described in Section 4.4 . The performance of this model 

was evaluated using the same 10-fold cross-validation described 

in Section 5.1 . Compared to our more complex model, the simple 

model was equally accurate when classifying spots and noise, but 

17% less accurate at classifying worms and 7% less accurate at clas- 

sifying tracks. Furthermore, when evaluating the track performance 

in a binary fashion (see Section 5.2 ), a 0.8 track threshold cut with 

the simple model resulted in a track sample with < 80% purity and 

only 40% efficiency. This suggests that a more complex model is 

necessary in order to distinguish tracks and worms, which are the 

most interesting events scientifically. 

5.4. Comparison with straight cuts 

Early classification attempts, described in Section 2.2 , sought to 

separate tracks from non-tracks in a binary fashion using straight 

cuts on simple metrics. This method, which used each image’s 

area, number of clusters, and eccentricity, can be directly com- 

pared to the CNN model. To accomplish this, we treat the CNN out- 

put as a binary classification scheme (track or non-track) and eval- 

uate both classification methods on the same set of testing images 

and corresponding human-assigned labels. The initial, straight-cuts 

model yielded a track selection with an efficiency of 69% and a 

purity of 37%. The low purity is likely due to small differences in 

the event topologies of many tracks and worms, which can be diffi- 

cult to capture with simple geometric metrics. Moreover, optimiza- 

tion of the straight-cuts approach required aggressive cuts on these 

metrics, which also contributes to its poor efficiency in identifying 

tracks. The CNN classification, on the other hand, identifies tracks 

with 80% efficiency and 91% purity (cutting at a track probability 

threshold of 0.8, to be explained in Section 5.5 ), and can also accu- 

rately identify worms, spots, and noise with similar performance. 

Furthermore, the output probabilities of the CNN model enable us 

to design an event selection with a desired efficiency and/or purity 

in mind. 

5.5. Application to full dataset 

While the CNN model has a number of uses, providing real- 

time classifications for the events listed in the public DECO data 

browser [12] is perhaps the most important. For this purpose, we 

seek to maintain a high-purity set of events identified as tracks. 

After evaluating constant cut-off values of 0.7, 0.8, and 0.9 on 

the testing set, we opted for a probability threshold of 0.8, which 

yields an event selection with a track efficiency of 80% and, most 

importantly, a track purity of 91%. As a result of applying a thresh- 

old cut rather than the maximum-probability criterion, there are 

Fig. 12. Distribution of event types in the full data set (45,316 images) for differ- 

ent threshold choices applied to the CNN output probabilities. Each threshold is ap- 

plied uniformly to all four categories and any event that does not have a probability 

greater than the threshold for any category is labeled “ambiguous”. The fourth se- 

lection classifies events according to their maximum probability, which is why there 

are no ambiguous events in that scheme. “Edge” events are images with event clus- 

ters located less than 32 pixels from the camera sensor edge, which is incompatible 

with the CNN input requirement of 64 × 64 pixel images. The relatively high rate 

of edge-type images may be due to light leakage around the edges of the image 

sensor when DECO is run under sub-optimal data-taking conditions, such as in a 

well-lit room. 

some events with probability below threshold for every single cat- 

egory, which are therefore assigned a label of “ambiguous”. More 

aggressive threshold cuts result in more events being labeled “am- 

biguous”. 

To investigate the effect of a given threshold choice on the full 

dataset we ran every event in the DECO database ( ∼45,0 0 0 im- 

ages) through the CNN model and used the resulting output prob- 

abilities to classify each event according to several different thresh- 

old choices. The resulting distributions for all event types, shown 

in Fig. 12 , confirm that a threshold of 0.8 is indeed reasonable and 

results in ambiguous images ∼10% of the time, which is consis- 

tent with human categorization ambiguity ( Section 4.1 ). With this 

in mind, the classification scheme based on a threshold of 0.8 was 

implemented in the public database, which can now be queried by 

event type as determined by the CNN [12] . 

Given the classification assigned to any event using this scheme, 

it is desirable to know the probability that the CNN classification 

is in fact correct for each event type. As an example, for tracks 

this corresponds to the conditional probability P (H = track | CNN = 

track ) , where H is the human label and CNN is the CNN label. This 

probability depends on the relative rate of each event type in the 

data set, i.e., the prior probability that a given event belongs to 

a given category. The conditional probability could be calculated 

directly from the testing data sets used in the 10-fold cross vali- 

dation, however, the distribution of event types in this set of im- 

ages is biased in comparison to the full dataset. This is because 

the training set was intentionally enriched with tracks and worms; 

tracks are the most interesting events from an astrophysical per- 

spective and worms are the primary source of confusion for tracks. 

Compared to the training set, the full data set has relatively fewer 

worms and tracks and more spots and noise events. Fortunately, 

this bias can be corrected by rescaling the testing set results. To 

accomplish this, we begin with the approximation that the CNN 

classifications for the full dataset are entirely correct, an approxi- 

mation that is justified by the excellent performance of the CNN. 

We then use the abundance of each event type in the full dataset 

according to the CNN classification to determine the prior prob- 

ability that an event belongs to a given category. Next, we ap- 

ply a threshold cut of 0.8 to the testing set and construct a new 
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Fig. 13. Column-normalized confusion matrix re-weighted to account for the rela- 

tive rate of each event type in the full data set. In order for an event to be classified 

as a particular category, the corresponding CNN probability must be > 0.8. Events 

that do not meet this threshold for any probability are classified as “ambiguous”. 

confusion matrix (similar to Fig. 9 ). We rescale each row of this 

confusion matrix by the ratio of the number of events for each 

event type in the full data set ( Fig. 12 with a 0.8 threshold) to 

the number of each event type in the training set ( Fig. 6 ). Finally, 

we rescale the confusion matrix column-wise in order to calculate 

the conditional probability, P (H = i | CNN = j) , for each category. By 

necessity, a 5th column for “ambiguous” events was added to the 

confusion matrix, which shows the distribution of events that don’t 

meet any of the CNN threshold requirements. The resulting confu- 

sion matrix, shown in Fig. 13 , suggests that all four event types in 

the full dataset are likely to be classified correctly ≥ 90% of the 

time. Most notably, we estimate that an event classified as a track 

by the CNN has a ∼95% probability of being a track according to 

human classification. Note that this quantity is the expected ob- 

servable purity in the dataset, which differs from the 91% purity 

estimated on the training set that was described at the beginning 

of this section. 

6. Conclusions and future work 

We have described the development and validation of a con- 

volutional neural network for the classification of images obtained 

by users running the DECO application. This new approach to im- 

age classification resulted in significant improvements over previ- 

ous classification of DECO images using straight cuts. Event classi- 

fication using the straight-cuts approach produced a track sample 

with 20% purity after applying the rescaling procedure described in 

Section 5.5 . The CNN model, on the other hand, yields a data set 

with an estimated purity of 95% after rescaling to the full DECO 

data set. This classification algorithm has been integrated into the 

standard DECO processing pipeline and the resulting classification 

of each event is available along with the event’s image and meta- 

data on the public web site within several hours of detection. The 

CNN classification can be used in queries, allowing users to select 

a sample of images of any particle identity, or multiple identities, 

for analysis and outreach purposes. 

In addition to improving the overall experience of DECO users, 

the new model opens the door for new and improved analyses. 

For example, the model provides efficient rejection of the radioac- 

tive background (i.e., worms), which is necessary to detect exten- 

sive air showers using DECO or a similar application. Additionally, 

the measurement of the depletion depth (i.e., sensitive region) of 

a phone’s camera sensor requires a large, pure sample of cosmic- 

ray muon tracks. Without a robust method of identifying tracks, 

the analysis published in [7] was limited to a single phone. The 

new classification enables us to extend this analysis to multiple 

phones with a lower non-cosmic-ray background in the data set. 

Once the thickness of the depletion region is known for a partic- 

ular phone model, it can be used to constrain the incident zenith 

angle of individual cosmic rays. Together with the azimuthal direc- 

tion of the track within the sensor plane, this will enable recon- 

structing the direction of DECO tracks. Constraining the direction 

of detected muons would improve the sensitivity of a multi-phone 

coincidence analysis, since the direction of muons from the same 

extensive air shower should be correlated. Measuring the direction 

of events could also enable measurement of the East-West effect. 

One shortcoming of the analysis presented in this paper is the 

human labeling method of assembling a sample of training im- 

ages. There is an inherent bias in the model due to potentially 

mis-labeled images in the training sample. Although the effort s de- 

scribed in Section 4.4 should mitigate some of this bias, further 

work could quantify it. Beam line data from a particle physics ac- 

celerator and data collected from running DECO with radioactive 

sources would yield unbiased samples of tracks and worms, re- 

spectively, to further evaluate the performance of the model. Addi- 

tionally, coincidence experiments with DECO and scintillators could 

provide a similar data set of tagged cosmic-ray tracks, though with 

far lower statistics. 

While the model was developed exclusively using images in 

the Android DECO data set, we expect it to generalize to similar 

data sets with minimal changes. DECO for iOS, which is currently 

in development, will have a data set consisting of images created 

by the same charged-particle interactions discussed here. Although 

the overall camera response will differ from Android phones, the 

resulting event types are expected to be the same. It is worth em- 

phasizing that the Android data set consists of images from hun- 

dreds of different phone models, with wide variation in camera 

sensor response to DECO events. The data augmentation applied 

during training ( Section 4.2 ) mitigates the effects of model-to- 

model variation by building invariances into the classification that 

should enable it to generalize to the iOS data set. It is also possible 

that including the phone model as a feature in the neural network 

could help further reduce the effects of model-to-model variation. 

The excellent performance of our CNN in identifying particle types 

in the DECO data set indicates that the same approach would be 

powerful for identifying particles detected by other projects that 

use distributed camera sensors. Finally, our approach (and perhaps 

our particular model architecture) could be well suited for other 

experiments (such as the DAMIC [55] dark matter project) that use 

CCD and CMOS sensors for particle detection. 
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