
Astroparticle Physics 104 (2019) 42–53

Contents lists available at ScienceDirect

Astroparticle Physics

journal homepage: www.elsevier.com/locate/astropartphys

Particle identification in camera image sensors using computer vision

Miles Winter a , b , James Bourbeau
a , b , Silvia Bravo

a , b , Felipe Campos b , c , Matthew Meehan
a , b , ∗,

Jeffrey Peacock
e , Tyler Ruggles a , Cassidy Schneider a , b , Ariel Levi Simons d ,

Justin Vandenbroucke
a , b

a Department of Physics, University of Wisconsin-Madison, Madison, WI 53706, USA
b Wisconsin IceCube Particle Astrophysics Center, Madison, WI 53703, USA
c University of California, Berkeley, CA 94720, USA
d University of Southern California, Los Angeles, CA 90 0 07, USA
e Sensorcast, Boulder, CO 80305, USA

a r t i c l e i n f o

Article history:

Received 11 March 2018

Revised 21 June 2018

Accepted 19 August 2018

Available online 20 August 2018

Keywords:

Cosmic rays

Deep learning

Convolutional neural network

Classification

Citizen science

a b s t r a c t

We present a deep learning, computer vision algorithm constructed for the purposes of identifying and

classifying charged particles in camera image sensors. We apply our algorithm to data collected by the

Distributed Electronic Cosmic-ray Observatory (DECO), a global network of smartphones that monitors

camera image sensors for the signatures of cosmic rays and other energetic particles, such as those pro-

duced by radioactive decays. The algorithm, whose core component is a convolutional neural network,

achieves classification performance comparable to human quality across four distinct DECO event topolo-

gies. We apply our model to the entire DECO data set and determine a selection that achieves ≥90%

purity for all event types. In particular, we estimate a purity of 95% when applied to cosmic-ray muons.

The automated classification is run on the public DECO data set in real time in order to provide classified

particle interaction images to users of the app and other interested members of the public.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The ubiquity of smartphone devices worldwide has sparked

an explosion in the field of distributed sensors; their widespread

adoption has effectively instrumented global population centers

with a variety of detectors. The CMOS image sensors in modern

smartphones are based on similar semiconductor technology to

that found in professional telescopes and particle physics detectors,

enabling them to detect cosmic rays and other ionizing charged

particles. These particles have long been a background nuisance

for CCDs used in astronomical cameras [1] , however several recent

projects including the Distributed Electronic Cosmic-ray Observa-

tory [2] seek to use this background as signal for both scientific

and educational purposes. It may be possible for such networks

of smartphones to detect extensive air showers created by ultra-

high energy cosmic rays (UHECR) above 10 20 eV, if challenging user

density targets are met [3] . This is a powerful and cost-effective

way to extend UHECR measurements to higher energies, but there

∗ Corresponding author at: University of Wisconsin-Madison, Wisconsin IceCube

Particle Astrophysics Center, 222 West Washington Ave., Suite 500, Madison, WI

53703, United States.

E-mail addresses: winter6@wisc.edu (M. Winter), jbourbeau@wisc.edu (J.

Bourbeau), mrmeehan@wisc.edu (M. Meehan).

are substantial hurdles to achieving this goal [4] . Since it is also

possible to detect local radioactivity with camera sensors [5] , net-

works of smartphones could be used as radiation monitors. More

exotic analyses have also been proposed, such as searching for cor-

related extensive air showers created when an ultra-high-energy

photon interacts with the heliosphere [6] . One major hurdle limit-

ing these scientific pursuits is accurate and efficient particle iden-

tification, which is necessary to reject the radioactive background

for cosmic-ray measurements or vice-versa for radiation measure-

ments. In this paper we describe a computer vision algorithm de-

veloped to identify the charged particles detected by camera im-

age sensors. We then apply it to the data set produced by the Dis-

tributed Electronic Cosmic-ray Observatory (DECO) [2,7] , the first

publicly available cosmic-ray smartphone application.

DECO detects cosmic rays by way of an Android application

that began beta testing in October 2012 and was released pub-

licly in September 2014. DECO is designed to detect ionizing ra-

diation that traverses silicon image sensors in smartphones. The

resulting dataset consists of images recorded by users worldwide

(Fig. 1) that contain evidence of charged particle interactions.

Due to the diverse ecosystem of Android phones on the market,

the systematic variation in data taking conditions, and the vari-

ety of particle event morphologies, classification of DECO events

https://doi.org/10.1016/j.astropartphys.2018.08.009

0927-6505/© 2018 Elsevier B.V. All rights reserved.

M. Winter et al. / Astroparticle Physics 104 (2019) 42–53 43

Fig. 1. World map showing the global network of DECO users. Dots indicate data

taking locations and span 80 different countries. Every continent including Antarc-

tica is represented. Lines of data points, such as those in Antarctica and west of

the Americas, indicate users running DECO on plane flights. Map plotted with a

Kavrayskiy VII projection and up to date as of December 2017.

presents a unique challenge. Our initial work using straight cuts

to classify events in the highly heterogeneous dataset was mod-

erately successful in classifying some event types, but identifying

a cosmic-ray muon sample with high purity proved challenging.

We present a computer vision algorithm based on a convolutional

neural network for classifying DECO events. Additional cosmic-ray

cell phones apps mentioned above could also benefit from the ap-

proach described here. We presented initial results from our CNN

classification in [8] . More recently, during preparation of this pa-

per, Borisyak et al. [9] appeared and describes a CNN algorithm

intended for use as an online cosmic-ray muon trigger.

2. DECO App

The DECO detection technique uses similar ionization-detecting

semiconductor technology to that found in the silicon trackers of

professional particle physics experiments [10,11] . Ionizing charged

particles that travel through the sensitive region (i.e. depleted re-

gion) of a phone’s image sensor are detected via the electron-hole

pairs they create. The DECO app, which can be run on any Android

device with Android version ≥ 2.1, is designed to be run with

the camera face down or covered in order to minimize contami-

nation from background light. While running, the app repeatedly

takes long-duration (∼50 ms) exposures and runs them through

a two-stage filter to search for potentially interesting events. This

filter first searches a low-resolution image for N pixels above an

intensity threshold, and if passed, analyzes a high-resolution im-

age in the same manner. The intensity is the sum of the red, blue,

and green color values (RGB) for each pixel. Images that pass both

filters are tagged as “events” and are automatically uploaded to

a central database for offline analysis. Additionally, the app has a

“minimum bias” data stream that saves one image every five min-

utes per device for offline calibration and noise studies. In partic-

ular, they are used to determine the appropriate value of N for

the online filter to select potentially interesting events. The app’s

online filter is simple and efficient in order to maximize livetime,

while more detailed analyses of images are performed offline. The

DECO data can be browsed using a public website [12] , where

users can perform queries using various metadata including time

stamp (UTC), latitude and longitude (rounded to nearest 0.01 ° for

privacy), event vs. minimum bias categorization, Android phone

model, and device ID.

Offline analysis of images that pass the app’s online filter begins

with a contour-finding algorithm to locate clusters of bright pix-

els. We use the marching squares algorithm, a special case of the

marching cubes algorithm [13,14] , to search for groups of at least

Fig. 2. Example of a full camera image that passed online filtering. During offline

analysis, a contour-finding algorithm is used to identify hit clusters of pixels. In this

event, two clusters (shown with green contours) were identified for further anal-

ysis and classification. The color scale represents the pixel intensity, scaled to the

brightest pixel, after a conversion to grayscale. (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this arti-

cle.)

10 pixels with a minimum RGB sum of 20. These clusters of pix-

els are then grouped together at a higher level: any clusters within

40 pixels of one another are considered a single group. This group-

ing is to account for electrons which can scatter in and out of the

camera sensor, creating multiple nearby clusters of pixels with dis-

tinct contours. Fig. 2 shows an example of the contours found in a

DECO image with this algorithm.

2.1. Event types

There are three categories of charged particle events in the

DECO dataset: tracks, worms, and spots. These are named accord-

ing to the convention in [1] , which categorizes events based on

their morphology. Tracks are long, straight clusters of pixels in

an image created by high-energy (GeV) minimum-ionizing cos-

mic rays. These are predominantly cosmic-ray muons at sea level

and primary cosmic rays (mostly protons) above ∼20,0 0 0 ft al-

titude [15] . Worms are named for the curved clusters of pixels

caused by the meandering paths of electrons that have undergone

multiple Coulomb scattering interactions. These electrons are likely

the result of local radioactivity. Worms can also be seen as two or

more nearby, disconnected clusters of pixels, which are the result

of an electron scattering in and out of the sensitive region of the

camera sensor. Spots are smaller, approximately circular clusters of

pixels that can be created by various interactions. They are likely

predominantly caused by gamma rays that Compton scatter to pro-

duce a low energy electron that is quickly absorbed. Spots can also

be produced by alpha particles, which also have a very short range

in silicon, or by cosmic rays incident normal to the sensor plane.

Fig. 3 shows the characteristic camera sensor response for each of

the three interaction signatures detected by DECO. In addition to

the three particle interaction categories, there are also events due

to light in the sensor occurring when it is not sufficiently shielded,

and several categories of noise: hot spots, thermal noise fluctua-

tions, and large-scale sensor artifacts such as rows of bright pix-

els [2] . While non-particle events, shown in Fig. 4 , are not partic-

44 M. Winter et al. / Astroparticle Physics 104 (2019) 42–53

Fig. 3. Representative sample of the three distinct types of charged particle events

that require classification. Tracks and spots, left and right columns, respectively, are

generally observed to have consistent and predictable features. Worms, middle two

columns, are observed to have a much wider variety of features, many of which

present potential classification confusion when compared to track-like and spot-like

features. Each image above has been converted to grayscale and cropped to 64 ×64

pixels.

ularly of interest from an analysis standpoint, they do cause po-

tential classification confusion. It is worth noting that these event

categories are motivated both by their morphologies and the po-

tential physics analyses that would utilize different categories of

events as signal or background. For example, efficient track identi-

fication (and worm rejection) is required to detect UHECRs using

networks of smartphones or to perform cosmic-ray experiments

in a classroom setting. Worms, on the other hand, would need to

be identified in order to use DECO or a similar app as a radiation

monitoring system.

2.2. Initial classification approach

Given the numerous event types, both particle and non-particle,

and the increasing number of images being collected by DECO,

there is a growing need for a reliable computerized event classi-

fication system. However, there are several challenges associated

with characterizing the DECO dataset in a way that requires lit-

tle human intervention. Due to the inhomogeneity in hardware 1

and data acquisition conditions, otherwise identical events may be

detected differently, for example due to fluctuations in brightness,

background noise, or number of pixels hit. Additionally, DECO par-

ticle events possess rotational and translational symmetry, which

must be accounted for by classification algorithms.

An initial algorithm that classified DECO events used straight

cuts applied to geometric metrics that were combined to make

a binary classification: track or non-track. Clusters of pixels were

identified using the marching squares algorithm described in

Section 2 . The binary classification identified low-noise images

with a single cluster of pixels, not containing any sub-clusters (i.e.

evidence of an electron scattering out of the sensor plane), with a

minimum area of 10 pixels, and an eccentricity > 0.99, where ec-

centricity is calculated using image moments as described in [16] .

The last two requirements were intended to select larger, line-

like events, such as tracks. This method accurately distinguished

tracks from spots, but struggled to separate tracks and worms,

presumably due to their similar morphology. Many worms only

curve slightly and have a high eccentricity. These events are un-

likely to be high-energy muons due to their curvature, but the

classification based on straight cuts could not distinguish them

from tracks. Fortunately, advances in the quickly developing field

of machine learning offer techniques to overcome these classifica-

tion challenges.

3. Deep learning

3.1. Background

Deep learning is a subset of machine learning focused on build-

ing models that are capable of learning how to describe data at

multiple levels of abstraction. This is achieved with a nested hier-

archy of simple algorithms that when combined can form highly

complex and diverse representations. At each layer of the nested

hierarchy, a non-linear transformation of the previous layer’s out-

1 Users have run DECO on 604 distinct phone models to date.

Fig. 4. Examples of non-particle (noise) events in the DECO dataset. Left: noise due to thermal fluctuations. Center: hot pixels, i.e., pixels that have regular, geometric shapes

and typically repeat in the same location. Right: row of bright pixels, likely an artifact of the image sensor readout. The color scale represents the pixel intensity, scaled to

the brightest pixel in each image, after a conversion to grayscale. (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article.)

M. Winter et al. / Astroparticle Physics 104 (2019) 42–53 45

put is typically performed, which results in the deeper layers of the

model seeing a progressively more abstract representation of the

original input. By learning features at multiple levels of abstraction,

the model has the ability to learn complex mappings between the

input and output directly from data [17] . This is particularly advan-

tageous when dealing with higher-level abstractions that humans

may not know how to explicitly describe in terms of the available

input.

Deep learning models are typically constructed with four basic

components in mind: (1) a specific dataset, (2) an objective func-

tion 2 , i.e. the function that will be maximized or minimized, (3)

the optimization procedure to be used on the objective function

throughout the learning process, and (4) an appropriate structure

for the model given the analysis goals and dataset characteristics.

For our purposes, a particularly relevant and widely used example

of such a model is the feedforward neural network, also known as

the multilayer perceptron [18,19] , which can be used to perform a

number of tasks, including classification.

For classification, we begin by assuming that there exists some

function, f ∗, that describes the true mapping between input vector,

x , and category, y , such that y = f ∗(x) . In this case, the goal of the

feedforward neural network is to construct a mapping, y = f (x ; θ) ,

then learn which value of the parameter vector, θ, provides the

best approximation between f ∗ and f [20] . The categorical label, y ,

is a unit vector containing all zeros, except for the index that cor-

responds to the y th category in the model, which has a value of

1. The function f is typically a series of nested functions, f (x) =

f n (f n −1 (. . . f 2 (f 1 (x)) . . .)) , with depth n , where f 1 corresponds to

the input layer, f 2 through f n −1 are hidden layers
3 , and f n is the

layer that provides the desired output (e.g. probabilities for input

x belonging to each individual category in y).

Each layer consists of a specified number of units, called neu-

rons, that each compute a weighted linear combination of the in-

puts followed by a non-linear function which outputs a single,

real-valued input for the next layer. Traditionally, layers have a

dense, fully connected structure where the output of each neuron

in a given layer is connected as input to all the neurons in the next

layer. In this case, the output of the n th layer, x n , has the following

vector representation:

x n = g(W n x n −1 + b n) , (1)

where x n −1 is the output of the previous layer’s neurons, W n is a

matrix of weights, b n is a vector of biases, and g is the non-linear

function, also known as the activation function. The weights and

biases constitute the model’s parameters, which are optimized dur-

ing the learning process. Note that for the first layer in the model,

x n −1 = x 0 , which is simply the initial model input, x . With the ex-

ception of the output layer, the typical choice for the activation

function is the rectified linear unit, or ReLU [21] , defined by g(z) =

max(0, z), which outputs the maximum between the input and

zero. A common variant is the leaky ReLU [22] , where negative in-

puts are not set to zero, but are instead multiplied by a small con-

stant α. In the output layer, the softmax function (multi-class gen-

eralization of the logistic sigmoid, see for example [20]) is used to

produce a multinoulli distribution representing the probability that

input x belongs to each of the K different categories represented in

the model. The category with the greatest probability is generally

taken to be the classification, however specific threshold cuts for

each category can also be used.

During the learning process, the model is presented with a

large number of training examples where each input, x , has a sin-

2 In the case of minimization, the objective function is commonly referred to as

the cost, loss, or error function.
3 Intermediate layer outputs are always connected as inputs for other layers and

are therefore never visible as network outputs, hence the term “hidden”.

gle human assigned categorical label, y , which is taken by the

model to be the ground truth. The ground truth label, y , is then

typically represented in a conditional probability distribution, q ,

such that the conditional probability for the k th category in the

model is given by q (k | x) = δky , which is the Kronecker delta. A

loss function is used to compute the error between the model pre-

dictions and the ground truth. Modern neural networks are typ-

ically trained using the principle of maximum likelihood. In this

approach, the loss function is the negative log-likelihood, which

can be equivalently described as the cross-entropy between the

training examples and the modeled distributions [20] . In the case

of multinomial logistic regression (i.e., classification with multiple

categories), the cross-entropy loss function for a single training ex-

ample is:

H(p, q) = −

K
∑

k =1

q (k | x) log (p(k | x)) , (2)

where K is the total number of categories in the model, q (k | x) is

the ground truth, human-assigned probability for the k th category,

and p (k | x) is the probability output by the model for the k th cate-

gory. The gradient of the loss, as a function of the weights and bi-

ases, is calculated using the back-propagation algorithm [23] . The

loss is then minimized by updating the weights and biases for all

the neurons in each layer using the method of mini-batch stochas-

tic gradient descent (SGD) [24,25] . When using mini-batches, the

gradient of the loss function is estimated as the average instanta-

neous gradient over a small group of training examples (25–100,

typically), which serves to balance gradient stability with comput-

ing time. This procedure is then repeated, iterating through mini-

batches of training examples, until the error between the modeled

and ground truth distributions reaches a satisfactory level. A single

cycle through all of the mini-batches contained in the training set

is typically referred to as an epoch.

3.2. Convolutional neural networks

Convolutional neural networks (CNNs) [26] are a subclass of

neural networks in which standard matrix multiplication is re-

placed with the convolution operation in at least one of the

model’s layers. CNNs have shown extraordinarily good perfor-

mance learning features from datasets that are characterized by a

known grid-like topology, such as pixels in an image or samples

in a waveform. The core concept behind CNNs is to build many

layers of “feature detectors” that take into account the topologi-

cal and morphological structure of the input data [27] . Throughout

the training process, the model learns how to extract meaningful

features from the input, which can then be used to model the con-

tents of the input data. The first stages of a CNN typically contain

two types of alternating layers that are used to perform “feature

extraction”: convolutional layers and pooling layers.

Convolutional layers take a stack of inputs (e.g. color channels

in an image) and convolve each with a set of learnable filters to

produce a stack of output feature maps, where each feature map

is simply a filtered version of the input data (input image, in our

case). A given input image, I , convolved with a n ×m filter, F , will

produce an output according to:

X p,q = (F ∗ I) p,q =

n
∑

i =1

m
∑

j=1

c
∑

k =1

F i, j,k · I p+ i,q + j,c , (3)

where X p , q is the (p , q) pixel of the feature map (prior to applying

the non-linear function), n and m correspond to the filter’s height

and width in units of pixels, and c is the number of color channels

46 M. Winter et al. / Astroparticle Physics 104 (2019) 42–53

in the input image. 4 With this transformation in mind, a slightly

modified version of Eq. (1) can be constructed such that the l th of

L total feature maps output by the n th layer, X (l) n , can be expressed

with the following matrix representation:

X
(l)
n = g

(
K

∑

k =1

W
(k,l)
n ∗ X

(k)
n −1 + b (l) n

)

, (4)

where X (k)
n −1 is the k th of K total feature maps output by the pre-

vious layer, 5 W
(k,l)
n is a set of matrices containing the weights for

the learnable filters, b (l) n is the bias for the l th feature map, ∗ is the

two-dimensional convolution operation shown in Eq. (3) , and g is

the activation function that performs a non-linear transformation

of each pixel to produce the resulting feature map.

Feature maps are essentially abstract representations of the in-

put image, where each individual feature map is tasked with learn-

ing how to extract a specific feature from the input, such as edges,

corners, contours, parts of objects, etc. It should be noted that

the specific features learned by each feature map are not prede-

termined, but, rather, are selected solely by the model during the

learning process. The feature maps nearest the input tend to re-

semble the original image. At layers further from the input, the

feature maps gradually become more abstract and specialized.

Replacing the matrix product with a sum of convolutions re-

sults in a series of additional benefits [20] : (1) a restricted con-

nectivity pattern where each neuron is only connected to a lo-

cal subset of the input, which reduces the number of computa-

tions, (2) the model learns a single set of parameters for each filter

that can then be shared via convolution by all pixels in the input,

which reduces the number of model parameters and improves the

model’s generalization performance, 6 and (3) the form of parame-

ter sharing used in convolution also results in translation equivari-

ance, meaning a translation in the input results in the same trans-

lation in the output. The restricted connectivity pattern results in

the model learning predominantly from only local interactions in

the input, meaning that features at distant locations of the input

are less likely to interact. To combat this, convolutional layers are

often used alongside pooling (subsampling) layers.

Pooling layers [28] reduce the dimensionality of a feature map

by using an aggregation function to compute a summary statistic

across a small, local region of the input. The dimensional reduc-

tion gives the deeper layers of the model the ability to learn cor-

relations between increasingly larger, yet lower resolution, regions

of the input. For example, max pooling [29] computes the maxi-

mum output located within a rectangular region of the input, then

reduces that rectangular region to a single value equal to the max-

imum. A common choice is to divide each feature map into non-

overlapping 2 ×2 grids of pixels that are then each reduced to a

single pixel, converting a feature map from, say, 32 ×32 pixels to

16 ×16 pixels. As a result, only the most pronounced features in

each rectangular region are forwarded to the deeper layers of the

model. The pooling operation also gives rise to translation invari-

ance 7 across small regions of the input. This is a desirable benefit

when one is primarily interested in whether certain features are

present in the input, rather than knowing precisely where they are

located.

4 In our application, we sum the three color channels R, G, and B to produce a

single grayscale color channel.
5 The input layer, X (k)

n −1 = X 0 , isn’t a feature map but is simply the input image

for the model.
6 Generalization performance is a model’s ability to perform well on previously

unseen examples that were not included in the training set.
7 To be clear, f is translation equivariant if f (T (x)) = T (f (x)) , and translation in-

variant if f (T (x)) = f (x) , where T (x) is a translation operation.

Finally, the features extracted from convolutional and pooling

layers are typically used as input for a standard, fully connected,

feedforward neural network (as explained in Section 3.1) where

the desired output is then produced, which, in this case, is the CNN

classification of the input image.

4. Constructing a DECO CNN

In the sections that follow, we describe the construction and

optimization of a DECO-specific convolutional neural network. We

begin by introducing the dataset and the challenges associated

with both human classification error and the small number of

training images. We explain how data augmentation was used to

make the model approximately invariant to rotations as well as ar-

tificially boost the number of training images. We then discuss the

problem of overfitting and the techniques used to address it. Next,

we summarize the model structure and training process used. Fi-

nally, we present the classification results, evaluate the perfor-

mance of the model, and discuss the model’s role in current and

future DECO analyses.

4.1. Image database and human labels

As discussed in Section 3.1 , the model must not only be pre-

sented with a large number of training examples, but also with a

set of corresponding human-determined categorical labels. How-

ever, assigning human labels to large datasets is time consum-

ing and, depending on the dataset, difficult to do accurately. Pre-

vious deep learning models within the astronomy and particle

physics communities have constructed labeled datasets by using

a crowd-sourcing approach, for example by Galaxy Zoo [30,31] ,

or large-scale Monte Carlo event simulations, for example by the

NOvA neutrino experiment [32,33] . Both approaches require con-

siderable human labor. At present, the DECO image database con-

tains ∼45,0 0 0 events (images that passed the online filter), each

of which potentially contains one or more clusters. Assigning hu-

man labels to each event cluster would be a very time consuming

task. With this in mind, rather than labeling the entire dataset, we

instead opted for an iterative approach in which the number of la-

beled training examples was successively increased in parallel with

the optimization of the CNN model structure.

To accomplish this, individual event clusters were inspected by

eye, by multiple people, and assigned labels of track, spot, worm,

noise 8 , or ambiguous. Additionally, if a clear identification could

not be made or if humans disagreed on the classification, which

occurred ∼10% of the time, the image was labeled as ambiguous

and excluded from the training set. During the optimization pro-

cess, the model was trained and used to classify events that were

not in the original training sample. These classified images were

then searched by eye for likely false positives, i.e., instances where

the model reports a high probability that an event belongs to a

certain category but appears to be wrong. These incorrectly classi-

fied events were then assigned a correct human label, added to the

existing set of training images, and used to train the next iteration

of the model. This process was repeated on increasingly larger sets

of images. As shown in Fig. 5 , with each new iteration, the exam-

ples that the model found most difficult to categorize were added

to the labeled dataset, thus addressing the remaining weaknesses

in the classifier.

8 The noise category was added during the iterative training process when it was

found to drastically improve the model’s overall classification accuracy.

M. Winter et al. / Astroparticle Physics 104 (2019) 42–53 47

Fig. 5. Left: random sample of images with track probability > 0.95 according to a

preliminary version of the CNN model (presented in [8]). This version of the model

struggled to correctly identify tracks that had similar features to other event types,

particularly worms. Incorrectly classified images, denoted with a white ‘ × ’, were

assigned a human label (worm, in each example shown) and added to the training

set for the next iteration of the model. Right: random sample of images with track

probability > 0.95 according to the final version of the CNN model. The CNN classi-

fication agrees with the human classification for every single event in this sample.

4.2. Preprocessing and data augmentation

Image-to-image variations in position, scale, and rotation pose

a challenge to DECO event classification. When a DECO user col-

lects data, both the position and orientation (at least in azimuth

– zenith typically corresponds to phones operating flat on a ta-

ble) of the phone is arbitrary. Both orientation and location data

are collected in the app’s metadata. However, the (x , y) position

of a given event cluster within the camera sensor, as far as the

model is concerned, should be considered a meaningless feature.

Similarly, the orientation of a hit cluster within the (x , y) plane, as

well as reasonable variations in scale (e.g. the length of a track)

should also be considered meaningless by the model. Fortunately,

CNNs naturally handle translations in the input quite well [34,35] .

However, invariance to features such as scale and rotation need to

be learned.

For a given input image, the apparent size of the event with

respect to the camera sensor can be affected by a number of fac-

tors such as the underlying hardware in the specific phone model

(including the image sensor resolution), the energy of the parti-

cle, and the angle of incidence. The pooling operation provides re-

siliency to minor changes in shape and scale [36] , however, varia-

tions larger than a few pixels must be addressed by other means.

Sophisticated solutions to this problem have been proposed [37] ,

however, the simplest method is to introduce scale-jittering via

data augmentation, which is in widespread practice today [38,39] .

Data augmentation consists of randomly transforming training im-

ages while preserving their human-assigned category labels. Simi-

lar to scale invariance, data augmentation can also be used to learn

rotation invariance. While rotation-invariant CNN architectures ex-

ist [31] and have been shown to outperform data augmentation

in certain cases [40] , the small number of training images in this

study prohibited the use of such methods. Finally, due to the lim-

ited number of training images available, data augmentation was

also used to artificially inflate the number of “unique” images seen

by the model during training.

In general, data augmentation has been shown to be the sim-

plest way to achieve approximate invariance to a given set of trans-

formations [27] . Assuming the model has the capacity to do so

(i.e., enough feature maps), the model should be able to learn a

wide variety of invariances directly from the data [41] . An addi-

tional benefit of data augmentation is that a single set of trans-

formations can be used to address multiple different issues. With

that in mind, the following operations were applied to each train-

ing image:

• Grayscale conversion and normalization : a dimensional re-

duction over the channel axis of each image was performed

by calculating an unweighted sum of each pixel’s R + G + B value.

The resulting grayscale images were then normalized to 1, tak-

ing the maximum possible R+G+B value to be 765 (i.e., 255 ×3).

Grayscale reduces the variation seen from phone to phone and

is also computationally more efficient. Furthermore, while color

provides essential information for other image classification

tasks, it does not for particle tracks.

• Translation : random left/right and up/down shifts, each by an

integer number of pixels uniformly sampled between −8 and

+8 with respect to the image center.

• Rescale : random zoom in/out uniformly sampled between 90%

and 110% of the original image size, used for learning scaling

invariance.

• Reflection : random horizontal and vertical reflections, each

with a probability of 50%.

• Rotation : random rotation uniformly sampled between 0 ° and

360 °; used for learning rotation invariance. After the rotation,

any remaining pixels outside the boundaries of the original in-

put were assigned a value of 0.

• Crop : crop from 100 ×100 pixels to 64 ×64 pixels; used to re-

duce the amount of empty space created on the boundaries of

the image as a result of rotation, translation, and rescaling.

With the exception of normalization and the conversion to

grayscale, which could be performed ahead of time, all data aug-

mentation was done in real time during the training process. Prior

to the start of each training epoch (full cycle through all training

images, as defined in Section 3.1), a new random set of pertur-

bations are applied to each image. Applying data augmentation in

this way ensures that the model is never presented with the ex-

act same version of a training example more than once. Real-time

data augmentation is performed in Python using the Keras neural

network application programming interface [42] , which makes use

of tools contained within the SciPy library [43] .

4.3. Avoiding overfitting through regularization

Deep neural networks typically have anywhere from tens of

thousands to tens of millions of trainable parameters. The advan-

tage of such a large number of parameters is that the model has

the ability to fit extremely complex and diverse datasets. How-

ever, the downside of a model with such tremendous freedom is

that there is considerable risk of over-fitting, which occurs when

the model simply memorizes the training images. As a result, the

model is overly sensitive to the specific features that were memo-

rized during training and therefore generalizes poorly to new data.

Over-fitting is of particular concern when dealing with a small

number of training images, as is the case in this study. To com-

bat this phenomenon, we used several regularization techniques

[20,44] , which are modifications to the learning process that are

intended to reduce generalization error while leaving training er-

ror 9 unaffected. These techniques are as follows:

9 The error between the true and predicted classification for images in the train-

ing set.

48 M. Winter et al. / Astroparticle Physics 104 (2019) 42–53

Fig. 6. Number of training images for each event type contained in the final dataset

that was used to train the best performing model. Out of the 5119 total images,

there are 2520 (49%) noise, 1094 (21%) spot, 1063 (21%) worm, and 442 (9%) track

images.

• Data augmentation : artificially increasing the number of train-

ing examples by modifying the images in such a way that

they look different for each particular training instance while

still maintaining the correctness of the underlying human as-

signed label. The particular perturbations used are outline in

Section 4.2 .

• Label smoothing : accounting for the uncertainty in human as-

signed labels by replacing the hard 0, 1 (false, true) label dis-

tribution, q (k | x) = δky , with q (k | x) = (1 − ε) δky +
ε
K , where k is

the k th of K total categories in the model, ε is a small constant

representing the probability of an incorrect label, and y is the

human label. This modification results in an additional penalty

term being introduced into the loss function, Eq. (2) . Assum-

ing that ε is reasonably small, this technique reduces the effect

of incorrect labels while still encouraging correct classification

[45] .

• Dropout : at every step of the training process, each individ-

ual neuron in a given layer has a probability, P , of being tem-

porarily set to zero, or “dropped out” [46,47] . The purpose of

dropout is to prevent the co-adaptation of neuron outputs such

that each individual neuron depends less on other neurons be-

ing present in the network. To preserve the total scale of inputs,

the neurons that weren’t dropped out are rescaled by a factor

of 1 / (1 − P) . Dropout is only applied during training and turned

off afterwards.

• Max-norm constraint : to prevent weights from blowing up, a

max-norm constraint is applied to each neuron’s weight vector,

W , such that ‖ W ‖ ≤ r , where ‖ ·‖ is the L 2 vector norm and r

is a user specified constant dictating the maximum value. Af-

ter each training step the constraint is checked and, when nec-

essary, the weights are updated according to W → W
r

‖ W ‖
. The

max–norm constraint, both with and without dropout, has been

shown to help reduce over-fitting [47,48] . This constraint was

applied to fully connected layers only.

• Early stopping : during the training process, testing loss (error)

typically decreases, reaches a minimum value, and then begins

to increase again once over-fitting has set in. To avoid using an

overfit model, we capture running snapshots of the best version

of the model during training, which correspond to the epochs

where testing loss reaches a new minimum value [49,50] .

• Categorical weights : As seen in Fig. 6 , certain event types,

tracks in particular, have fewer training images than others. As

a result, the model sees more training examples from the abun-

dant categories than the under-represented ones, which intro-

duces bias into the classifier. To account for this imbalance,

each category is assigned a weight, according to its abundance,

Table 1

Layer-by-layer summary of the best performing network. Each layer

name is given followed by the number of feature maps (convolutional

layers) or neurons (dense layers), the size of the convolutional filter or

pooling region, the activation function used, and, lastly, the amount of

dropout applied. For the leaky ReLU activation function, the value of α

was set to 0.3 in all cases. A max-norm constraint of 3 was used for

both 2048 dense (fully connected) layers. Dropout with a probability

P = . 2 was also applied to the input layer (not listed in the table).

Layer Features Size Activation Dropout

1 Convolution 64 3 ×3 Leaky ReLU –

2 Convolution 64 3 ×3 Leaky ReLU –

3 Max pooling – 2 ×2 – 0.2

4 Convolution 128 3 ×3 Leaky ReLU –

5 Convolution 128 3 ×3 Leaky ReLU –

6 Max pooling – 2 ×2 – 0.2

7 Convolution 256 3 ×3 Leaky ReLU –

8 Convolution 256 3 ×3 Leaky ReLU –

9 Max pooling – 2 ×2 – 0.2

10 Convolution 512 3 ×3 Leaky ReLU –

11 Convolution 512 3 ×3 Leaky ReLU –

12 Max pooling – 2 ×2 – 0.2

9 Dense 2048 – Leaky ReLU 0.4

10 Dense 2048 – Leaky ReLU 0.4

11 Dense 4 – softmax –

which is applied to the loss function (Eq. (2)) to ensure that all

categories are represented equally during optimization.

4.4. Model structure and training

The best performing model trained in this study begins by tak-

ing a normalized, 100 ×100 grayscale image (zoomed in on the

hit pixel cluster) as input. The input is then transformed via data

augmentation (Section 4.2), cropped to 64 ×64, and subjected to

dropout with a probability P = 0 . 2 . Next, feature extraction is per-

formed using four three-layer-deep blocks, each of which con-

sists of the following operations: 3 ×3 convolution followed by a

leaky ReLU activation, a second identical 3 ×3 convolution with

leaky ReLU, and, lastly, 2 ×2 max pooling. For the leaky ReLU non-

linearity, a constant multiplier α = 0 . 3 is applied for all negative

inputs. Following max pooling in each block, dropout is applied

with probability P = 0 . 2 . For each of the four blocks, the number

of feature maps is doubled, starting with 64 in the first block and

ending with 512 in the last. The model structure is loosely based

on the VGG-16 network [38] , which used only 3 ×3 convolutional

filters and 2 ×2 max-pooling throughout the network. Following

feature extraction, the feature maps are flattened to a single, one-

dimensional vector that is used as input for a three-layer fully

connected network (Section 3.1). The first two layers are identical

dense (fully connected) layers with 2048 neurons, leaky ReLU ac-

tivation with α = 0 . 3 , and a max-norm constraint with r = 3 (see

Section 4.3). Each dense layer is also followed by dropout with a

probability P = 0 . 4 . Finally, the output layer performs softmax re-

gression, which outputs the probability for each of the 4 categories

in the model (track, spot, worm, and noise). Fig. 7 shows a block

diagram of the model structure and workflow. Specific details for

each layer are summarized in Table 1 .

To train the model, we used a variant of mini-batch SGD (see

Section 3.2) known as Adadelta [51] . For our model, Adadelta was

found to converge slightly faster than both SGD and Adam [52] , an-

other widely used variant of SGD. At the beginning of each train-

ing epoch, a new set of random data augmentation perturbations

are applied to each image in the training set. The model was pro-

grammed in Python using the Keras neural network application

programming interface [42] operating with a Theano [53] back-

end. The final model contains approximately 25 million trainable

M. Winter et al. / Astroparticle Physics 104 (2019) 42–53 49

Fig. 7. Block diagram of the best performing network trained in this study. The input and output dimensions for each operation are shown to the left and right of the

arrows, respectively. All convolutional filters are 3 ×3 and all pooling operations are 2 ×2 max pooling. Following the fourth pooling layer, the feature maps are flattened to

a single 1-dimensional vector of length 8196, which is then used as input for the first dense layer.

Fig. 8. Loss as a function of epoch for two different versions of the model, one

trained with regularization techniques and one trained without. The loss is aver-

aged over the 10-fold cross validation of the entire dataset and shaded error bands

indicate the 1 σ spread across the 10-folds. An epoch refers to one full cycle through

all available training images.

parameters and was trained on a single NVIDIA Quadro M40 0 0

graphics processing unit (GPU) with 8 GB of RAM.

5. Results and analysis

5.1. Model performance

To estimate the overall performance of the model, independent

sets of human-classified images were evaluated using the method

of stratified k-fold cross-validation [54] . In this procedure, the set

of training images is split into k groups, where each group con-

tains a roughly equal number of images from each of the cate-

gories represented in the model. k otherwise identical versions of

the model are then trained, each time setting aside one group for

testing and k − 1 for training the model. Selecting a value of 10 for

k , we trained each individual fold for a total of 800 epochs, where

each epoch consists of a single cycle through the full set of train-

ing images. The loss (defined below) for both training and testing

sets, averaged over the 10 folds as a function of training epoch, is

shown in Fig. 8 . The loss 10 for a set of examples is defined to be:

10 Note that this is technically the logarithm of the loss and therefore is not ex-

pressed as a percentage.

L = −
1

N

N
∑

n =1

K
∑

k =1

q n (k | x) log (p n (k | x)) w k , (5)

where N is the number of training or testing images, K = 4 is the

number of categories in the model, p and q are the respective CNN

and human assigned categorical distributions for each image (de-

fined in Section 3.1), and w is a categorical weight term to account

for the categorical imbalance in the training set (see Section 4.2).

Conceptually, the loss can be thought of as the average error be-

tween the human and CNN classifications.

Early stopping (Section 4.3) was used to obtain the best per-

forming (lowest testing loss) versions of the model throughout

each 800-epoch training session, which, on average, occurred near

epoch 650. The training and testing loss as a function of training

epoch can be seen in Fig. 8 . The gap between the training and test-

ing loss is caused by the regularization techniques used to pre-

vent overfitting, which are only applied to the training set (see

Section 4.3). Lower testing loss than training loss can also be in-

dicative of an underfit model. To test this, an alternate version of

the model was trained with dropout removed from all layers, the

max-norm constraint removed from the fully-connected layers, and

no label smoothing. The results of this test revealed that the gap

between testing and training loss disappeared until overfitting set

in at epoch ∼200. This explains the gap between training and test-

ing loss and also confirms that the regularization techniques are

effectively preventing the model from overfitting the data. To in-

vestigate the potential benefits of a longer training duration, an ad-

ditional model was trained for 10,0 0 0 epochs. While training loss

was observed to decrease slightly, no benefit was seen in the test-

ing set, thus confirming that 800 epochs was sufficient. A value of

ε = 0 . 004 was used for label smoothing. Setting ε to 0 as well as

using larger values of 0.1 and 0.01 all resulted in marginally higher

testing loss. We also tested an alternate, simpler version of the

model which is described in Section 5.3 .

5.2. Model accuracy

Fig. 9 shows a category-by-category summary, known as a con-

fusion matrix, quantifying the error between human and CNN clas-

sifications for each category in the model. Each square of this con-

fusion matrix is calculated by averaging the testing set results over

the 10 folds in the cross validation. It should be noted that the re-

sulting distribution is not normalized and is biased according to

the relative occurrence of each category in the training set. For ex-

ample, noise events make up almost half of the training set (Fig. 6).

50 M. Winter et al. / Astroparticle Physics 104 (2019) 42–53

Fig. 9. Confusion matrix summarizing the CNN categorization accuracy. The verti-

cal axis shows the ground truth (human-determined) classification and the horizon-

tal axis shows the classification from the CNN. The values shown in the confusion

matrix are the average and standard deviation of the testing set results from the

10-fold cross validation.

Fig. 10. Row-normalized confusion matrix that accounts for the relative imbalance

in the number of testing examples for each category in the training set. Normaliza-

tion is performed independently for each row and is calculated by dividing each

row of the unnormalized confusion matrix (see Fig. 10) by the total number of

events in that row.

This bias can be removed by normalizing each row of the con-

fusion matrix to the total counts contained in each row, i.e. the

total number of human-labeled events for each category. The re-

sulting row-normalized confusion matrix describes the conditional

CNN probability distributions for each of the four human-assigned

labels in the model. The probability of the CNN correctly identify-

ing each event type, along with the probability of mis-identifying

each category, can be read directly off of the row-normalized con-

fusion matrix in Fig. 10 . For example, the model correctly identifies

human-labeled tracks as tracks 92% of the time, while incorrectly

identifying them as worms 9% of the time. This confusion in the

classifier is both expected and comparable to human performance,

given that, out of the four categories in the model, track and worm

event morphologies are among the most similar. The model accu-

rately labels noise events 97% of the time, which is the highest

accuracy of any event type. This is also expected due to the vast

differences between char ged particle events and noise. Moreover,

Fig. 11. (Top) Receiver operating characteristic (ROC) curve displaying the true pos-

itive rate vs. false positive rate for a variety of threshold values. A threshold of 0.9

is indicated with a dot for each category. (Bottom) Purity, efficiency, and their prod-

uct as a function of CNN track probability threshold, averaged over the 10-fold cross

validation. For each curve, the average and standard deviation are indicated by the

thin solid line and corresponding band, respectively. For each threshold value, the

purity and efficiency are calculated for events with a CNN track output, p track , above

the track threshold.

this also confirms that the model successfully learned the concept

of noise, justifying the inclusion of this category in the model.

These results assume that a single classification is assigned to

each image by choosing the category with the highest CNN out-

put probability. We explore the performance of alternative choices

below.

We further evaluate the model’s classification performance by

calculating the true and false positive rates for each category, as-

suming a binary classification scheme (e.g. track and non-track).

The true and false positive rates for each category are parameter-

ized according to a threshold applied to its CNN output probabil-

ity and plotted as a receiver operating characteristic (ROC) curve,

as seen in the top panel of Fig. 11 . For example, requiring a track

probability of at least 0.9 results in a true positive rate of 60% and

a false positive rate of 0.3%. While the trade-off between efficiency

and purity 11 can be inferred from the ROC curve, these quantities

were also explicitly calculated for tracks, which is the primary cat-

egory of interest for most DECO users. The resulting efficiency, pu-

rity, and efficiency × purity curves, averaged over the 10 folds and

plotted as a function of track probability threshold, are shown in

the bottom panel of Fig. 11 . For a given fold and threshold, the ef-

ficiency is calculated from the testing set and defined to be the

ratio of the number of tracks that pass the threshold to the to-

11 The definitions of purity and efficiency used here are generally referred to as

precision and recall, respectively, within the machine learning community.

M. Winter et al. / Astroparticle Physics 104 (2019) 42–53 51

tal number of tracks. Likewise, for a given fold and correspond-

ing test set, the purity is defined as the ratio of the number of

human-labeled tracks that pass the threshold to the total number

of events, regardless of event type, that pass the threshold. The

product of the resulting curves is one metric that can be used to

determine a threshold value that balances the efficiency vs. purity

trade-off.

5.3. Comparison with simpler model

In the previous sections, we have shown that the model ex-

hibits excellent performance across all four categories when classi-

fying unseen data. However, one might wonder if the complexity of

our model, which contains 25 million trainable parameters, is nec-

essary to achieve this level of performance. In order to test this, we

trained a simpler version of the model, containing 140 thousand

parameters, with the same effort s described in Sections 4.2 and

4.3 . The simpler model contained only two blocks of convolutional

and pooling layers, followed by significantly smaller dense layers

than those described in Section 4.4 . The performance of this model

was evaluated using the same 10-fold cross-validation described

in Section 5.1 . Compared to our more complex model, the simple

model was equally accurate when classifying spots and noise, but

17% less accurate at classifying worms and 7% less accurate at clas-

sifying tracks. Furthermore, when evaluating the track performance

in a binary fashion (see Section 5.2), a 0.8 track threshold cut with

the simple model resulted in a track sample with < 80% purity and

only 40% efficiency. This suggests that a more complex model is

necessary in order to distinguish tracks and worms, which are the

most interesting events scientifically.

5.4. Comparison with straight cuts

Early classification attempts, described in Section 2.2 , sought to

separate tracks from non-tracks in a binary fashion using straight

cuts on simple metrics. This method, which used each image’s

area, number of clusters, and eccentricity, can be directly com-

pared to the CNN model. To accomplish this, we treat the CNN out-

put as a binary classification scheme (track or non-track) and eval-

uate both classification methods on the same set of testing images

and corresponding human-assigned labels. The initial, straight-cuts

model yielded a track selection with an efficiency of 69% and a

purity of 37%. The low purity is likely due to small differences in

the event topologies of many tracks and worms, which can be diffi-

cult to capture with simple geometric metrics. Moreover, optimiza-

tion of the straight-cuts approach required aggressive cuts on these

metrics, which also contributes to its poor efficiency in identifying

tracks. The CNN classification, on the other hand, identifies tracks

with 80% efficiency and 91% purity (cutting at a track probability

threshold of 0.8, to be explained in Section 5.5), and can also accu-

rately identify worms, spots, and noise with similar performance.

Furthermore, the output probabilities of the CNN model enable us

to design an event selection with a desired efficiency and/or purity

in mind.

5.5. Application to full dataset

While the CNN model has a number of uses, providing real-

time classifications for the events listed in the public DECO data

browser [12] is perhaps the most important. For this purpose, we

seek to maintain a high-purity set of events identified as tracks.

After evaluating constant cut-off values of 0.7, 0.8, and 0.9 on

the testing set, we opted for a probability threshold of 0.8, which

yields an event selection with a track efficiency of 80% and, most

importantly, a track purity of 91%. As a result of applying a thresh-

old cut rather than the maximum-probability criterion, there are

Fig. 12. Distribution of event types in the full data set (45,316 images) for differ-

ent threshold choices applied to the CNN output probabilities. Each threshold is ap-

plied uniformly to all four categories and any event that does not have a probability

greater than the threshold for any category is labeled “ambiguous”. The fourth se-

lection classifies events according to their maximum probability, which is why there

are no ambiguous events in that scheme. “Edge” events are images with event clus-

ters located less than 32 pixels from the camera sensor edge, which is incompatible

with the CNN input requirement of 64 × 64 pixel images. The relatively high rate

of edge-type images may be due to light leakage around the edges of the image

sensor when DECO is run under sub-optimal data-taking conditions, such as in a

well-lit room.

some events with probability below threshold for every single cat-

egory, which are therefore assigned a label of “ambiguous”. More

aggressive threshold cuts result in more events being labeled “am-

biguous”.

To investigate the effect of a given threshold choice on the full

dataset we ran every event in the DECO database (∼45,0 0 0 im-

ages) through the CNN model and used the resulting output prob-

abilities to classify each event according to several different thresh-

old choices. The resulting distributions for all event types, shown

in Fig. 12 , confirm that a threshold of 0.8 is indeed reasonable and

results in ambiguous images ∼10% of the time, which is consis-

tent with human categorization ambiguity (Section 4.1). With this

in mind, the classification scheme based on a threshold of 0.8 was

implemented in the public database, which can now be queried by

event type as determined by the CNN [12] .

Given the classification assigned to any event using this scheme,

it is desirable to know the probability that the CNN classification

is in fact correct for each event type. As an example, for tracks

this corresponds to the conditional probability P (H = track | CNN =

track) , where H is the human label and CNN is the CNN label. This

probability depends on the relative rate of each event type in the

data set, i.e., the prior probability that a given event belongs to

a given category. The conditional probability could be calculated

directly from the testing data sets used in the 10-fold cross vali-

dation, however, the distribution of event types in this set of im-

ages is biased in comparison to the full dataset. This is because

the training set was intentionally enriched with tracks and worms;

tracks are the most interesting events from an astrophysical per-

spective and worms are the primary source of confusion for tracks.

Compared to the training set, the full data set has relatively fewer

worms and tracks and more spots and noise events. Fortunately,

this bias can be corrected by rescaling the testing set results. To

accomplish this, we begin with the approximation that the CNN

classifications for the full dataset are entirely correct, an approxi-

mation that is justified by the excellent performance of the CNN.

We then use the abundance of each event type in the full dataset

according to the CNN classification to determine the prior prob-

ability that an event belongs to a given category. Next, we ap-

ply a threshold cut of 0.8 to the testing set and construct a new

52 M. Winter et al. / Astroparticle Physics 104 (2019) 42–53

Fig. 13. Column-normalized confusion matrix re-weighted to account for the rela-

tive rate of each event type in the full data set. In order for an event to be classified

as a particular category, the corresponding CNN probability must be > 0.8. Events

that do not meet this threshold for any probability are classified as “ambiguous”.

confusion matrix (similar to Fig. 9). We rescale each row of this

confusion matrix by the ratio of the number of events for each

event type in the full data set (Fig. 12 with a 0.8 threshold) to

the number of each event type in the training set (Fig. 6). Finally,

we rescale the confusion matrix column-wise in order to calculate

the conditional probability, P (H = i | CNN = j) , for each category. By

necessity, a 5th column for “ambiguous” events was added to the

confusion matrix, which shows the distribution of events that don’t

meet any of the CNN threshold requirements. The resulting confu-

sion matrix, shown in Fig. 13 , suggests that all four event types in

the full dataset are likely to be classified correctly ≥ 90% of the

time. Most notably, we estimate that an event classified as a track

by the CNN has a ∼95% probability of being a track according to

human classification. Note that this quantity is the expected ob-

servable purity in the dataset, which differs from the 91% purity

estimated on the training set that was described at the beginning

of this section.

6. Conclusions and future work

We have described the development and validation of a con-

volutional neural network for the classification of images obtained

by users running the DECO application. This new approach to im-

age classification resulted in significant improvements over previ-

ous classification of DECO images using straight cuts. Event classi-

fication using the straight-cuts approach produced a track sample

with 20% purity after applying the rescaling procedure described in

Section 5.5 . The CNN model, on the other hand, yields a data set

with an estimated purity of 95% after rescaling to the full DECO

data set. This classification algorithm has been integrated into the

standard DECO processing pipeline and the resulting classification

of each event is available along with the event’s image and meta-

data on the public web site within several hours of detection. The

CNN classification can be used in queries, allowing users to select

a sample of images of any particle identity, or multiple identities,

for analysis and outreach purposes.

In addition to improving the overall experience of DECO users,

the new model opens the door for new and improved analyses.

For example, the model provides efficient rejection of the radioac-

tive background (i.e., worms), which is necessary to detect exten-

sive air showers using DECO or a similar application. Additionally,

the measurement of the depletion depth (i.e., sensitive region) of

a phone’s camera sensor requires a large, pure sample of cosmic-

ray muon tracks. Without a robust method of identifying tracks,

the analysis published in [7] was limited to a single phone. The

new classification enables us to extend this analysis to multiple

phones with a lower non-cosmic-ray background in the data set.

Once the thickness of the depletion region is known for a partic-

ular phone model, it can be used to constrain the incident zenith

angle of individual cosmic rays. Together with the azimuthal direc-

tion of the track within the sensor plane, this will enable recon-

structing the direction of DECO tracks. Constraining the direction

of detected muons would improve the sensitivity of a multi-phone

coincidence analysis, since the direction of muons from the same

extensive air shower should be correlated. Measuring the direction

of events could also enable measurement of the East-West effect.

One shortcoming of the analysis presented in this paper is the

human labeling method of assembling a sample of training im-

ages. There is an inherent bias in the model due to potentially

mis-labeled images in the training sample. Although the effort s de-

scribed in Section 4.4 should mitigate some of this bias, further

work could quantify it. Beam line data from a particle physics ac-

celerator and data collected from running DECO with radioactive

sources would yield unbiased samples of tracks and worms, re-

spectively, to further evaluate the performance of the model. Addi-

tionally, coincidence experiments with DECO and scintillators could

provide a similar data set of tagged cosmic-ray tracks, though with

far lower statistics.

While the model was developed exclusively using images in

the Android DECO data set, we expect it to generalize to similar

data sets with minimal changes. DECO for iOS, which is currently

in development, will have a data set consisting of images created

by the same charged-particle interactions discussed here. Although

the overall camera response will differ from Android phones, the

resulting event types are expected to be the same. It is worth em-

phasizing that the Android data set consists of images from hun-

dreds of different phone models, with wide variation in camera

sensor response to DECO events. The data augmentation applied

during training (Section 4.2) mitigates the effects of model-to-

model variation by building invariances into the classification that

should enable it to generalize to the iOS data set. It is also possible

that including the phone model as a feature in the neural network

could help further reduce the effects of model-to-model variation.

The excellent performance of our CNN in identifying particle types

in the DECO data set indicates that the same approach would be

powerful for identifying particles detected by other projects that

use distributed camera sensors. Finally, our approach (and perhaps

our particular model architecture) could be well suited for other

experiments (such as the DAMIC [55] dark matter project) that use

CCD and CMOS sensors for particle detection.

Acknowledgements

DECO is supported by the American Physical Society, the

Knight Foundation, the Simon Strauss Foundation, QuarkNet, and

by National Science Foundation Grant # 1707945 . We are grateful

for beta testing, software development, and valuable conversations

with Colin Adams, Raaha Azfar, Keith Bechtol, Segev BenZvi, Andy

Biewer, Paul Brink, Patricia Burchat, Duncan Carlsmith, Alex Drlica-

Wagner, Mike Duvernois, Brett Fisher, Lucy Fortson, Stefan Funk,

Mandeep Gill, Laura Gladstone, Giorgio Gratta, Jim Haugen, Kenny

Jensen, Kyle Jero, Peter Karn, David Kirkby, Matthew Plewa, David

Saltzberg, Marcos Santander, Delia Tosi, and Ian Wisher. We would

also like to thank Ilhan Bok, Adrian Cisneros, Alex Diebold, Tyler

Dolan, Blake Gallay, Emmanuelle Hannibal, Heather Levi, and Owen

Roszkowski for their contributions to the DECO project through our

QuarkNet DECO high school internship program.

References

[1] D. Groom, Cosmic rays and other nonsense in astronomical CCD imagers, Exp.
Astron. 14 (1) (2002) 45–55, doi: 10.1023/A:1026196806990 .

M. Winter et al. / Astroparticle Physics 104 (2019) 42–53 53

[2] J. Vandenbroucke , S. Bravo , P. Karn , M. Meehan , M. Plewa , T. Ruggles ,
D. Schultz , J. Peacock , A.L. Simons , Detecting particles with cell phones: the
distributed electronic cosmic-ray observatory, PoS ICRC2015 (2016) 691 .

[3] D. Whiteson, M. Mulhearn, C. Shimmin, K. Cranmer, K. Brodie, D. Burns,
Searching for ultra-high energy cosmic rays with smartphones, Astropart. Phys.
79 (2016) 1–9, doi: 10.1016/j.astropartphys.2016.02.002 .

[4] M. Unger, G. Farrar, Feasability of studying ultra-high-energy cosmic rays with
smartphones, 2015. arXiv: 1505.04777v1 .

[5] J.J. Cogliati, K.W. Derr, J. Wharton, Using CMOS sensors in a cellphone for
gamma detection and classification, 2014. arXiv: 1401.0766v1 .

[6] P. Homola, et al., Search for extensive photon cascades with the cosmic-ray ex-
tremely distributed observatory, in: Photon 2017: International Conference on
the Structure and the Interactions of the Photon and 22th International Work-
shop on Photon-Photon Collisions and the International Workshop on High
Energy Photon Colliders CERN, Geneva, Switzerland, May 22–26, 2017, 2018 .
arXiv: 1804.05614 .

[7] J. Vandenbroucke , S. BenZvi , S. Bravo , K. Jensen , P. Karn , M. Meehan , J. Peacock ,
M. Plewa , T. Ruggles , M. Santander , D. Schultz , A. Simons , D. Tosi , Measure-
ment of cosmic-ray muons with the distributed electronic cosmic-ray obser-
vatory, a network of smartphones, J. Instrum. 11 (04) (2016) P04019 .

[8] M. Meehan, S. Bravo, F. Campos, J. Peacock, T. Ruggles, C. Schneider, A.L. Si-
mons, J. Vandenbroucke, M. Winter, The particle detector in your pocket: the
distributed electronic cosmic-ray observatory, in: Proceedings, 35th Interna-
tional Cosmic Ray Conference (ICRC 2017): Bexco, Busan, Korea, July 12–20,
2017, 2017 . arXiv: 1708.01281 .

[9] M. Borisyak, M. Usvyatsov, M. Mulhearn, C. Shimmin, A. Ustyuzhanin, Muon
trigger for mobile phones, J. Phys. Conf. Ser. 898 (3) (2017) 032048, doi: 10.
1088/1742-6596/898/3/032048 .

[10] M. Ackermann , et al. , The fermi large area telescope on orbit: event classifi-
cation, instrument response functions, and calibration, Astrophys. J. Suppl. Ser.
203 (1) (2012) 4 .

[11] The CMS Collaboration , The CMS experiment at the CERN LHC, J. Instrum. 3
(08) (2008) S08004 .

[12] https://wipac.wisc.edu/deco .
[13] W.E. Lorensen , H.E. Cline , Marching cubes: a high resolution 3d surface con-

struction algorithm, Comput. Graph 21 (4) (1987) 163–169 .
[14] S. van der Walt, J.L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J.D. Warner,

N. Yager, E. Gouillart, T. Yu, The Scikit-Image Contributors, scikit-image: image
processing in Python, PeerJ 2 (2014) e453, doi: 10.7717/peerj.453 .

[15] C. Patrignani, et al., Review of particle physics, Chin. Phys. C40 (10) (2016)
10 0 0 01, doi: 10.1088/1674-1137/40/10/10 0 0 01 .

[16] Y.D. Khan , S.A. Khanand , F. Ahmad , S. Islam , Iris recognition using image mo-
ments and k-means algorithm, Sci. World J. 2014 (2014) 9 .

[17] Y. Bengio, Learning deep architectures for AI, Found. Trends Mach. Learn. 2 (1)
(2009) 1–127, doi: 10.1561/2200000006 .

[18] F. Rosenblatt , Principles of Neurodynamics: Perceptrons and the Theory of
Brain Mechanisms, Spartan Books, Washington, 1962 .

[19] R.D. Reed , R.J. Marks , Neural Smithing: Supervised Learning in Feedforward Ar-
tificial Neural Networks, MIT Press, Cambridge, MA, USA, 1998 .

[20] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016 . http:
//www.deeplearningbook.org .

[21] V. Nair , G.E. Hinton , Rectified linear units improve restricted Boltzmann ma-
chines, in: Proceedings of the 27th International Conference on Interna-
tional Conference on Machine Learning, in: ICML’10, Omnipress, USA, 2010,
pp. 807–814 .

[22] A .L. Maas , A .Y. Hannun , A .Y. Ng , Rectifier nonlinearities improve neural net-
work acoustic models, ICML Workshop on Deep Learning for Audio, Speech
and Language Processing, 2013 .

[23] D.E. Rumelhart , G.E. Hinton , R.J. Williams , Parallel Distributed Processing: Ex-
plorations in the Microstructure of Cognition, Vol. 1, MIT Press, Cambridge,
MA , USA , 1986, pp. 318–362 .

[24] Y. LeCun , L. Bottou , G.B. Orr , K.-R. Müller , Efficient backprop, in: Neural Net-
works: Tricks of the Trade, This Book is an Outgrowth of a 1996 NIPS Work-
shop, Springer-Verlag, London, UK, UK, 1998, pp. 9–50 .

[25] L. Bottou, F.E. Curtis, J. Nocedal, Optimization methods for large-scale machine
935 learning, 2016. arXiv: 1606.04838v3 .

[26] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to
document recognition, Proc. IEEE 86 (11) (1998) 2278–2323, doi: 10.1109/5.
726791 .

[27] P.Y. Simard , D. Steinkraus , J.C. Platt , Best practices for convolutional neural net-
works applied to visual document analysis, in: Proceedings of the Seventh In-
ternational Conference on Document Analysis and Recognition - Volume 2, in:
ICDAR ’03, IEEE Computer Society, Washington, DC, USA, 2003 . 958–.

[28] Y.L. Boureau , J. Ponce , Y. Lecun , A theoretical analysis of feature pooling in vi-
sual recognition, in: ICML 2010 - Proceedings, 27th International Conference
on Machine Learning, 2010, pp. 111–118 .

[29] Y.T. Zhou, R. Chellappa, Computation of optical flow using a neural network, in:
IEEE 1988 International Conference on Neural Networks, 1988, pp. 71–78 vol.2,
doi: 10.1109/ICNN.1988.23914 .

[30] K.W. Willett, C.J. Lintott, S.P. Bamford, K.L. Masters, B.D. Simmons, K.R.V. Cas-
teels, E.M. Edmondson, L.F. Fortson, S. Kaviraj, W.C. Keel, T. Melvin, R.C. Nichol,
M.J. Raddick, K. Schawinski, R.J. Simpson, R.A. Skibba, A.M. Smith, D. Thomas,
Galaxy Zoo 2: detailed morphological classifications for 304 122 galaxies from
the Sloan Digital Sky Survey, MNRAS 435 (2013) 2835–2860 . arXiv: 1308.3496 ,
doi: 10.1093/mnras/stt1458 .

[31] S. Dieleman, K.W. Willett, J. Dambre, Rotation-invariant convolutional neural
networks for galaxy morphology prediction, MNRAS 450 (2015) 1441–1459 .
arXiv: 1503.07077 , 10.1093/mnras/stv632 .

[32] D.S. Ayres, et al., The NOvA Technical Design Report, 2007, doi: 10.2172/935497 .
[33] A . Aurisano, A . Radovic, D. Rocco, A . Himmel, M.D. Messier, E. Niner,

G. Pawloski, F. Psihas, A. Sousa, P. Vahle, A convolutional neural network neu-
trino event classifier, J. Instrum. 11 (2016) P09001 . arXiv: 1308.3496 , 10.1088/
1748-0221/11/09/P09001 .

[34] Y. LeCun , Y. Bengio , The Handbook of Brain Theory and Neural Networks, MIT
Press, Cambridge, MA , USA , 1998, pp. 255–258 .

[35] Y. Gong, L. Wang, R. Guo, S. Lazebnik, Multi-scale Orderless Pooling of Deep
Convolutional Activation Features, 2014. arXiv: 1403.1840v3 .

[36] D. Scherer , A. Müller , S. Behnke , Evaluation of pooling operations in convo-
lutional architectures for object recognition, in: Proceedings of the 20th In-
ternational Conference on Artificial Neural Networks: Part III, in: ICANN’10,
Springer-Verlag, Berlin, Heidelberg, 2010, pp. 92–101 .

[37] Y. Xu, T. Xiao, J. Zhang, K. Yang, Z. Zhang, Scale-invariant convolutional neural
networks, 2014. arXiv: 1411.6369v1 .

[38] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale
image recognition, 2014. arXiv: 1409.1556v6 .

[39] A. Krizhevsky , I. Sutskever , G.E. Hinton , Imagenet classification with deep con-
volutional neural networks, in: Proceedings of the 25th International Confer-
ence on Neural Information Processing Systems - Volume 1, in: NIPS’12, Curran
Associates Inc., USA, 2012, pp. 1097–1105 .

[40] D. Marcos, M. Volpi, D. Tuia, Learning rotation invariant convolutional filters
for texture classification, 2016. arXiv: 1604.06720v2 .

[41] K. Lenc, A. Vedaldi, Understanding image representations by measuring their
equivariance and equivalence, 2014. arXiv: 1411.5908v2 .

[42] F. Chollet , et al. , Keras, 2015 . (https://github.com/fchollet/keras)
[43] E. Jones, E. Oliphant, P. Peterson, et al., SciPy: Open Source Scientific Tools for

Python, 2001-, http://www.scipy.org/ [Online; accessed 2018-08-20].
[44] J. Kuka ̌cka, V. Golkov, D. Cremers, Regularization for deep learning: a taxon-

omy, 2017. arXiv: 1710.10686v1 .
[45] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception

architecture for computer vision, 2015. arXiv: 1512.00567 .
[46] G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R.R. Salakhutdinov, Im-

proving neural networks by preventing co-adaptation of feature detectors,
2012. arXiv: 1207.0580 .

[47] N. Srivastava , G. Hinton , A. Krizhevsky , I. Sutskever , R. Salakhutdinov , Dropout:
a simple way to prevent neural networks from overfitting, J. Mach. Learn. Res.
15 (2014) 1929–1958 .

[48] N. Srebro, A. Shraibman, Rank, trace-norm and max-norm, in: Proceedings of
the 18th Annual Conference on Learning Theory, in: COLT’05, Springer-Verlag,
Berlin, Heidelberg, 2005, pp. 545–560, doi: 10.1007/11503415 _ 37 .

[49] C.M. Bishop , Regularization and complexity control in feed-forward networks,
in: F. Fougelman-Soulie, P. Gallinari (Eds.), Proceedings International Confer-
ence on Artificial Neural Networks ICANN’95, 1, 1995, pp. 141–148 .

[50] J. Sjöberg, L. Ljung, Overtraining, regularization, and searching for minimum

in neural networks, IFAC Proceedings Volumes 25 (14) (1992) 73–78 . 4th
IFAC Symposium on Adaptive Systems in Control and Signal Processing 1992,
Grenoble, France, 1–3 July. doi: 10.1016/S1474-6670(17)50715-6 .

[51] M.D. Zeiler, ADADELTA: an adaptive learning rate method, 2012. arXiv: 1212.
5701v1 .

[52] D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, 2014.
arXiv: 1412.6980v9 .

[53] Theano Development Team, Theano: a Python framework for fast computation
of mathematical expressions arXiv: 1605.02688v1 .

[54] R. Kohavi , A Study of Cross-Validation and Bootstrap for Accuracy Estimation
and Model Selection, Morgan Kaufmann, 1995, pp. 1137–1143 .

[55] A.E. Chavarria, et al., Damic at snolab, Phys. Procedia 61 (2015) 21–33 . 13th
International Conference on Topics in Astroparticle and Underground Physics,
TAUP 2013. doi: 10.1016/j.phpro.2014.12.006 .

	Particle identification in camera image sensors using computer vision
	1 Introduction
	2 DECO App
	2.1 Event types
	2.2 Initial classification approach

	3 Deep learning
	3.1 Background
	3.2 Convolutional neural networks

	4 Constructing a DECO CNN
	4.1 Image database and human labels
	4.2 Preprocessing and data augmentation
	4.3 Avoiding overfitting through regularization
	4.4 Model structure and training

	5 Results and analysis
	5.1 Model performance
	5.2 Model accuracy
	5.3 Comparison with simpler model
	5.4 Comparison with straight cuts
	5.5 Application to full dataset

	6 Conclusions and future work
	 Acknowledgements
	 References

