
FUTURES ISSUE: PROCESS SYSTEMS ENGINEERING

Model Predictive Control with Active Learning
under Model Uncertainty: Why, When, and How

Tor Aksel N. Heirung , Joel A. Paulson, Shinje Lee, and Ali Mesbah
Dept. of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720

DOI 10.1002/aic.16180
Published online in Wiley Online Library (wileyonlinelibrary.com)

Optimal control relies on a model, which is generally uncertain because of incomplete knowledge of the system and
changes in the dynamics over time. Probing the system under closed-loop control can reduce the model uncertainty
through generating input-output data that is more informative than the data generated from normal operation. This
paper addresses the problem of model predictive control (MPC) with active learning, with a particular focus on how
incorporating probing in the control action can reduce model uncertainty. We discuss some of the central theoretical
questions in this problem, and demonstrate the potential of active learning for maintaining MPC performance in the
presence of uncertainty in model parameters and structure. Simulation results show that active learning is particularly
beneficial when a system undergoes abrupt changes (such as the sudden occurrence of a fault) that can compromise
operational safety, reliability, and profitability. VC 2018 American Institute of Chemical Engineers AIChE J, 00: 000–
000, 2018
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Introduction

Model predictive control1,2 (MPC), also known as receding-

horizon control, is the most widely used approach for advanced

control of multivariable systems with state and input con-

straints.3,4 MPC relies on a model to predict the behavior of the

system. Whether data driven or based on first principles, this

model is to some extent uncertain, generally because of incom-

plete knowledge of the system. Common sources of model

uncertainty include inaccurate estimates of model parameters

and unknown aspect of the model structure itself, as in the case

of an unknown kinetic mechanism in a physics-based model, or

the appropriate order of a data-driven model. A system may

also undergo abrupt changes (such as faults and failures; see

Ref. 5) or exhibit time-varying dynamics, both of which can

further increase the uncertainty in the model structure.
Uncertainty in model-based control has sparked several

important research directions, such as robust and stochastic

control,6,7 adaptive control,8,9 and identification for con-

trol.10–12 The corrective nature of feedback provides MPC

with a certain degree of robustness to uncertainty. However,

MPC performance degrades when feedback cannot adequately

compensate for incomplete knowledge of the system. Possible

consequences include excessive constraint violations and large

offsets in setpoint tracking (see, e.g., Ref. 13). This has led to

the development of robust MPC14–17 (RMPC), in which model

uncertainty, represented by deterministic, bounded sets, is
explicitly accounted for. RMPC generally involves enforcing
the state constraints with respect to all possible uncertainty
realizations, including those realizations that may have a small
probability of occurrence in practice. Consequently, RMPC
can result in highly conservative control performance. Sto-
chastic MPC16–19 (SMPC) approaches can be used when the
model uncertainty is described by probability distributions. By
allowing the specification of a permitted probability of con-
straint violation, SMPC can reduce conservatism while retain-
ing an acceptable level of robustness to uncertainty.20

Despite systematically accounting for model uncertainty, the
performance of RMPC and SMPC strongly depends on the qual-
ity of the uncertainty descriptions. When a system undergoes
changes over time, either gradual (e.g., time-varying dynamics)
or abrupt (e.g., faults and malfunctions), the model and the
uncertainty descriptions may no longer adequately represent the
system. RMPC and SMPC are blind to the system variations in
that there is no mechanism for adapting the model to the changes
through adjusting its parameters, its structure, and the uncertainty
description. This may cause deterioration of control performance
and compromise the controller’s robustness to uncertainty.

Adaptive control is an alternative approach to control under
uncertainty. This approach involves adjusting the model under
closed-loop control, with the goal of improving the model for
control purposes.8,9 A critical issue in adaptive control, includ-
ing adaptive MPC,21–23 is that the data generated in closed
loop must be sufficiently informative for the model adaptation
to be beneficial. In his seminal work,24–28 Feldbaum was the
first to recognize that in optimal control of systems with reduc-
ible model uncertainty, the control inputs must have a probing
effect that generates informative closed-loop data for active
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learning, in addition to having a directing effect to control the
system state. It is well known that lack of probing in adaptive
control can lead to problems such as controller turn-off,29

bursting,30 and the loss of controllability.31

This article addresses the problem of MPC with active learn-
ing for systems with probabilistic uncertainty descriptions.
Through a discussion of the central theoretical questions and
illustrative case studies, we demonstrate the potential ability of
active learning to maintain MPC performance in the presence
of parameter and model-structure uncertainty. The main objec-
tive of the article is to highlight the possible benefits of active
learning without in-depth treatment of the algorithmic aspects
(see Ref. 32 for a recent review on this subject). We first for-
mally introduce the optimal control problem, along with a dis-
cussion of why its exact solution is computationally intractable
for practically sized systems and a brief overview of some of
the main approaches to MPC with active learning. Two case
studies, a continuous-stirred-tank reactor (CSTR) and a continu-
ous bioreactor, are then used to illustrate the effects of parame-
ter and model-structure uncertainty and how active learning can
improve control performance. The article concludes with some
suggestions for future research directions.

Optimal Control with Active Learning

Problem formulation

Consider nonlinear systems described in discrete time by
uncertain models of the form

M :
xk115f ðxk; uk; h;wkÞ;

yk5hðxk; h; vkÞ

(
(1)

where k 2 N0 is the time index (N denotes the set of natural
numbers, N050 [N); xk, uk, and yk are the system state, input,
and output, respectively; h denotes the unknown model parame-
ters with known initial probability distribution pðhÞ; wk � pðwÞ
and vk � pðvÞ denote stochastic disturbances and measurement
noise, respectively; and f and h denote the state and output equa-
tions. The initial system state x0 is uncertain with known proba-
bility distribution pðx0Þ. The distributions p(w) and p(v) are
assumed known for all k 2 N0, so that wk and vk are both sequen-
ces of independent and identically distributed random variables.
All of the random variables x0, h, wk, and vi are mutually inde-
pendent for all k; i 2 N0. The system is constrained, with the
control input uk required to lie in a compact set U; uk 2 U, and
the state xk required to lie in a closed set X; xk 2 X. As the
model (1) is subject to probabilistic uncertainty, the state con-
straints can be enforced in terms of the chance constraint

Pr kðxk 2 XÞ � 12�k (2)

where Pr kð�Þ denotes probability given the information avail-
able at time k and �k is the permitted probability of state con-
straint violation. In a more general problem setting, a set of
models M5fM1;M2; . . . ;Mnmg, all of the form (1), can be
formulated as candidates for describing the system, with each
model Mi specified by

Mi :¼ ff ½i�; h½i�; pðx½i�0 Þ; pðh½i�Þ; pðw½i�Þ; pðv½i�Þg

where the superscript ½i� distinguishes the equations, variables,
and parameters in each model Mi 2 M. Note that every model
in M can be specified with different state and output equa-
tions. Furthermore, the dimensions of the state xk, the
unknown parameters h, the disturbances wk, and the

measurement noise vk need not be the same across the differ-

ent models. We assume that a true model of the system exists

and is contained in M at any given time. The system can be

correctly represented by different modelsMi at different times,

such as when some structural change occurs in the system.
The state xk is entirely or partially observed through the

measurements yk. Let the input and output data available at time

k be denoted by Yk :¼ fyk; yk21; . . . ; y0; uk21; uk22; . . . ; u0g,
with Y0 :¼ y0. The state and the unknown parameters can be

lumped together to form the augmented state vector

z>k 5½x>k ; h>�. The conditional probability distribution of zk,
given Yk, is known as the hyperstate nk :¼ pðzk j YkÞ. As the

model (1) represents a Markov process (see, e.g., Ref. 33), the

hyperstate nk is a Bayesian posterior at time k, whereas

the prior at time k is nk215pðzk21 j Yk21Þ. To determine the

posterior, the prior can be used to predict the hyperstate nkjk21.

The predicted and posterior hyperstates are collectively propa-

gated through the Bayesian recursion34

nkjk215

ð
pðzk j zk21; uk21Þ � nk21 dzk21 (3a)

nk5
pðyk j zkÞ � nkjk21Ð
pðyk j zkÞ � nkjk21 dzk

(3b)

starting from n0j21 :¼ pðz0Þ, which is defined by pðx0Þ and

pðhÞ. Note that the Bayesian filter (3) simplifies greatly when

the model (1) is linear, all model parameters are known, and

wk and vk are Gaussian sequences. In this case, pðzk j zk21; uk21Þ
and pðyk j zkÞ are Gaussian for all k, and (3) reduces to the well-

known Kalman filter.35 In the general case, however, the right-

hand sides of (3a) and (3b) have no closed-form solution and

must be approximated.34

It is clear from (3a) that the control input uk21 directly

affects nkjk21 and thus the hyperstate nk, which quantifies the

uncertainty associated with the state and parameters. Our

knowledge of the system can therefore depend on the control

input. When this is the case, the control input can be used to

reduce the model uncertainty through actively learning about

the system. Informally, active learning is possible when the

control input affects the covariance, or other higher-order cen-

tral moments, of the augmented state zk.
36 In this case, the con-

trol input affects both the system state and the uncertainty,

which is referred to as dual effect.36 In contrast, the system is

neutral when the control input almost surely affects only the

mean of zk (the first-order central moment) and not its uncer-

tainty. The presence of the dual effect is necessary for active

learning as it enables probing the system for information that

can reduce uncertainty. Note that both passive and active

learning use the information Yk to reduce model uncertainty,

typically through some form of Bayesian recursion (3). How-

ever, probing is what differentiates a controller with active

learning from one that passively uses the input-output data,

with no ability to increase the information content.
Here, we consider optimal control of systems described by (1)

with reducible model uncertainty. Define a cost function in terms

of a terminal cost ‘NðxNÞ and a stage cost ‘kðxk; ukÞ over a time

horizon 0 � k � N21. With the sequence of control inputs

pk :¼ fuk; uk11; . . . ; uN21g, the cost from time k to time N is

Jkðnk; pkÞ5Ek

XN21

j5k

‘jðxj; ujÞ1‘NðxNÞ
" #

(4)

where Ek½ � � denotes the conditional expectation with respect

to nk5pðzk j YkÞ, p(w), and p(v) for all j � k11. Consider
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bursting,30 and the loss of controllability.31
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ing for systems with probabilistic uncertainty descriptions.
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model (1) is subject to probabilistic uncertainty, the state con-
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tions. Furthermore, the dimensions of the state xk, the
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measurement noise vk need not be the same across the differ-

ent models. We assume that a true model of the system exists

and is contained in M at any given time. The system can be

correctly represented by different modelsMi at different times,

such as when some structural change occurs in the system.
The state xk is entirely or partially observed through the

measurements yk. Let the input and output data available at time
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It is clear from (3a) that the control input uk21 directly

affects nkjk21 and thus the hyperstate nk, which quantifies the
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knowledge of the system can therefore depend on the control

input. When this is the case, the control input can be used to
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control input affects the covariance, or other higher-order cen-
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36 In this case, the con-
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which is referred to as dual effect.36 In contrast, the system is

neutral when the control input almost surely affects only the

mean of zk (the first-order central moment) and not its uncer-

tainty. The presence of the dual effect is necessary for active

learning as it enables probing the system for information that

can reduce uncertainty. Note that both passive and active

learning use the information Yk to reduce model uncertainty,

typically through some form of Bayesian recursion (3). How-

ever, probing is what differentiates a controller with active

learning from one that passively uses the input-output data,

with no ability to increase the information content.
Here, we consider optimal control of systems described by (1)

with reducible model uncertainty. Define a cost function in terms

of a terminal cost ‘NðxNÞ and a stage cost ‘kðxk; ukÞ over a time

horizon 0 � k � N21. With the sequence of control inputs
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where Ek½ � � denotes the conditional expectation with respect

to nk5pðzk j YkÞ, p(w), and p(v) for all j � k11. Consider
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some control policy lkðnkÞ such that uk5lkðnkÞ. Let p�k denote
the policy sequence that results in the optimal cost J�k ðnkÞ. The
sequence of optimal costs can then be written recursively as

J�k ðnkÞ5min
uk

Ek½‘kðxk; ukÞ1J�k11ðnk11Þ�; k50; 1; . . . ;N21

(5)

with J�NðnNÞ5EN½‘NðxNÞ�. The optimal cost J�k ðnkÞ is also

known as the cost-to-go from time k to time N, starting from

nk. The recursive equation (5) is the Bellman equation, which
results from Bellman’s principle of optimality.37 From the

Bellman equation, it is clear that as the cost function and opti-

mality are defined in terms of the hyperstate, the uncertainty

and how it is affected by the control input are implicitly

included in the optimal control problem. That is, unless the

system is neutral so that the control input cannot affect the

uncertainty, the optimal sequence of control policies inher-

ently probe the system when advantageous. This problem of

stochastic optimal control under model uncertainty is formu-

lated formally as follows.
PROBLEM 1. (Stochastic optimal control with active learn-

ing). For the horizon 0 � k � N, determine the optimal
sequence of control policies p�0

p�0 :¼ argmin
p0

J0ðn0; p0Þ (6)

subject to a model M of the form (1) or a model set M, the
probability distributions p(w) and p(v), the state chance con-
straint (2), and the input constraint uk 2 U.

Problem 1 was first posed by Feldbaum24–28 for uncon-

strained systems with parametric model uncertainty only. The

problem is often referred to as the dual control problem as the

dual effect and thus active learning is naturally accounted for.
There is no analytic solution to the Bellman equation except

for specific simple cases, such as the linear-quadratic regula-

tor, or LQR.38 In general, the Bellman equation can in princi-

ple be solved numerically, backward in time, using dynamic

programing. However, dynamic programing suffers from

exponential complexity growth in the dimensions of the state,

input, and uncertainty and is therefore intractable as a solution

strategy for larger problems, an issue known as the curse of
dimensionality. This has led to the development of approxi-

mate methods for solving the Bellman equation, broadly

referred to as approximate dynamic programming.39,40

In the following, we demonstrate the benefit from active

learning on a scalar system, for which the dual control prob-

lem can be solved almost exactly using dynamic programing.

Illustrative example

Consider two scalar, linear models M1 and M2 of the form

xk115axk1buk1wk

with the stochastic sequence wk being zero-mean, white

Gaussian noise and the state xk observed directly without

noise. The models have different parameters h>5½a; b�;
Model M1 is stable but expensive to control (low input gain),

while model M2 is unstable but cheap to control (large input

gain). Under the assumption that either M1 or M2 is a true rep-

resentation of the system, the model uncertainty arises from

not knowing which one is true. This leads to a simple dual

control problem that can be solved numerically using dynamic

programing. Despite its simplicity, the problem demonstrates

the benefit of probing the system to actively reducing

uncertainty. The optimal control problem is minimizing a cost
function of the form JkðnkÞ5Ek½

PN21
j5k ðqx2j1ru2j Þ1qx2N � with

q; r > 0; see the Supporting Information for details. In the fol-

lowing, Pk and 12Pk denote the probabilities that models M1

and M2 are true, respectively.
The benefit from solving the optimal control problem with

active learning (Problem 1), so that the dual effect is

accounted for, can be quantified in various ways. Arguably,
the most insight can be gained from comparing the optimal
costs for the solutions with active and passive learning. Using

dynamic programing to determine an optimal control policy
with active learning requires including the equations that
describe the dual effect for the system. In this problem, the

dual effect is accounted for by including the Bayesian recur-
sion (3) in the dynamic model, which relates the probabilities
Pk and 12Pk to the observations of the state, which in turn

depend on the control input. Solving the Bellman equation (5)
backward in time, from k5N to k5 0, accounting for how the
control input affects both the state and the model probabilities,

enables the control policy to anticipate the learning outcome
from its actions. That is, the optimal control policy with active
learning accounts for how future state observations affect the
model uncertainty. In contrast, if the dual effect is not included

in the model when solving the Bellman equation, meaning the
effect of future state observations on uncertainty is unac-
counted for, the resulting control policy cannot anticipate

learning. In other words, the solution is determined under the
implicit assumption that the model probabilities remain con-
stant over time; that is, Pk115Pk for all 0 � k � N21. The

optimal control policy can therefore only result in passive
learning.

Here, the expected benefit from active learning is quantified
in terms of the difference between the optimal costs J�0ðn0Þ
obtained by solving (5) with and without accounting for the
dual effect. Denote the optimal costs with active and passive
learning by J�0;Aðn0Þ and J�0;Pðn0Þ, respectively. The difference

Uðn0Þ :¼ ðJ�0;Pðn0Þ2J�0;Aðn0ÞÞ=N quantifies the per-stage
improvement in the expected cost of optimal control with
active learning relative to that of optimal control with passive

learning. Figure 1 shows Uðn0Þ as a function of the initial
hyperstate n0, which consists of the initial state x0 and the ini-
tial probability P0 that Model M1 is true. The horizon N is cho-
sen sufficiently long so that the solution to the Bellman

equation does not change if N is increased further; that is, the
solutions are the infinite-horizon control policies. Figure 1
shows that active learning has no value over passive learning

along P050 and P051. This is because these regions of the
hyperstate correspond to absolute certainty in which model is
true, implying no learning is possible. In the vicinity of x050,

there are two reasons the benefit from active learning is small.
First, ðxk; ukÞ5ð0; 0Þ is an equilibrium for both models, so the
cost function remains fairly small in a neighborhood of this

point. Second, even with passive learning, the correct model
will eventually be identified at a low cost as the state is near
the origin. Hence, even though the correct model can be deter-

mined faster in the vicinity of x050 with active learning, the
benefit of reduced model uncertainty does not outweigh the
cost of probing in this region of the hyperstate space. Further

away from x050, however, the control effort required to bring
the state to the origin is significant. Moreover, the conse-
quence of not knowing which model is correct is much greater
when the uncertainty is higher (i.e., P0 is not close to 0 or 1).

Accordingly, the optimal control policy with active learning
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significantly outperforms the one with passive learning when

x0 is far from the origin and P0 is close to 0.5. Note that the

benefit from active learning is always nonnegative as the con-

troller only probes the system when beneficial in expectation.
While the degree to which active learning is beneficial, if at

all, depends on a variety of factors, including operating region,

how much reduced uncertainty can improve the performance,

and the potential risks associated with probing. However, this

example demonstrates that even for a very simple system with

model uncertainty, optimal control with active learning can

have significant advantages for the control performance. Solv-

ing the Bellman equation numerically with dynamic program-

ing is tractable in this case as the hyperstate has dimension

two, the control input is scalar, and there are only two models.

Practically sized problems, however, require significantly

more computational resources, and the exponential growth in

problem complexity renders it intractable to determine the

exact solution to the Bellman equation.

Tractable solutions to the optimal control problem with

active learning

Exact solutions to certain simple instances of Problem 1 are

available in the literature,41,42 yet determining the sequence of

optimal control policies that account for the dual effect

through dynamic programing is generally not tractable.* The

computational challenges associated with Problem 1 have

motivated the development of methods capable of solving

practically sized problems of optimal control with active

learning. These methods, commonly known as approximate

dual control, can be classified as implicit and explicit
approaches to dual control.32,45 Broadly, implicit dual control
involves obtaining an approximate solution to the Bellman
equation (5), which has the learning component implicitly
included through the hyperstate as discussed above.46,47

Explicit dual control, conversely, generally refers to replacing
Problem 1 with a surrogate optimization problem that accounts
for a measure of reducible model uncertainty.48–53 Thus,
explicit methods incorporate some form of probing into the
optimal control problem explicitly through approximation of
Problem 1.

MPC with active learning is a growing area of research.32

The various approaches in the literature primarily differ in
how probing is introduced in the optimal control problem.
One class of methods relies on a constraint added to the opti-
mal control problem so that the closed-loop data generated by
the MPC be sufficiently informative for maintaining the
model.54,55 A potential disadvantage of this approach is that
the resulting probing of the system, necessary to generate the
informative data, may be excessive and lead to a reduction in
control performance. Another class of methods modifies the
cost function of the optimal control problem to include a term
that quantifies the model uncertainty.50,51 The MPC then bal-
ances the control cost, based on the uncertain model, with
probing for active learning. Some of the key challenges in
these approaches include tuning the controller to achieve an
appropriate balance between the control and probing features
of the inputs, and ensuring that the controller probes the sys-
tem only when beneficial.32 Note that implicit dual control
methods generally do not suffer from these challenges, often
at the expense of computational complexity.

While outside the scope of this article, MPC with active
learning is not only relevant for model uncertainty. In output-
feedback MPC,56–59 the controller does not have direct access
to the system state for feedback, but rather a measured subset
affected by noise. An output-feedback MPC generally relies
on a state estimator, commonly based on a Bayesian frame-
work like (3), to estimate the state. For nonlinear systems, the
quality of the state estimate depends on the control action.
Furthermore, the state in a nonlinear system may be only
locally observable, in which case the controller must take spe-
cial care to prevent the loss of observability. In these situa-
tions, probing can be used to improve the state estimate and in
turn improve the control performance.52,60,61

The remainder of this article demonstrates the importance
of active learning in the context of MPC under model uncer-
tainty. We present two case studies, one with parameter and
one with model-structure uncertainty, in which tractable surro-
gates for Problem 1, inspired by explicit dual control, are
solved in a receding-horizon fashion. Without advocating par-
ticular approaches to MPC with active learning, we illustrate
the importance of active learning as a general strategy for
improving MPC performance when the model uncertainty is
significant.

MPC with Active Learning for Parametric
Uncertainty

This section presents a case study in which a change in the
process, represented by an abrupt reduction in a model param-
eter, can cause significant deterioration of the control perfor-
mance. The results demonstrate how online model adaptation
using informative closed-loop data, generated by a controller
with active learning, can mitigate control performance loss

Figure 1. The expected per-stage value of optimal con-
trol with active learning relative to optimal
control with passive learning, Uðn0Þ, as a
function of the hyperstate n0 defined in terms
of the initial state x0 and the initial probability
P0 for Model M1.

[Color figure can be viewed at wileyonlinelibrary.com]

*While an in-depth discussion of state chance constraints is beyond the scope of this
article, this form of constraints are intractable in optimization43,44 and contribute to
the complexity of Problem 1.
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significantly outperforms the one with passive learning when

x0 is far from the origin and P0 is close to 0.5. Note that the

benefit from active learning is always nonnegative as the con-

troller only probes the system when beneficial in expectation.
While the degree to which active learning is beneficial, if at

all, depends on a variety of factors, including operating region,

how much reduced uncertainty can improve the performance,

and the potential risks associated with probing. However, this

example demonstrates that even for a very simple system with

model uncertainty, optimal control with active learning can

have significant advantages for the control performance. Solv-

ing the Bellman equation numerically with dynamic program-

ing is tractable in this case as the hyperstate has dimension

two, the control input is scalar, and there are only two models.

Practically sized problems, however, require significantly

more computational resources, and the exponential growth in

problem complexity renders it intractable to determine the

exact solution to the Bellman equation.

Tractable solutions to the optimal control problem with

active learning

Exact solutions to certain simple instances of Problem 1 are

available in the literature,41,42 yet determining the sequence of

optimal control policies that account for the dual effect

through dynamic programing is generally not tractable.* The

computational challenges associated with Problem 1 have
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practically sized problems of optimal control with active

learning. These methods, commonly known as approximate
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equation (5), which has the learning component implicitly
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Explicit dual control, conversely, generally refers to replacing
Problem 1 with a surrogate optimization problem that accounts
for a measure of reducible model uncertainty.48–53 Thus,
explicit methods incorporate some form of probing into the
optimal control problem explicitly through approximation of
Problem 1.

MPC with active learning is a growing area of research.32

The various approaches in the literature primarily differ in
how probing is introduced in the optimal control problem.
One class of methods relies on a constraint added to the opti-
mal control problem so that the closed-loop data generated by
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model.54,55 A potential disadvantage of this approach is that
the resulting probing of the system, necessary to generate the
informative data, may be excessive and lead to a reduction in
control performance. Another class of methods modifies the
cost function of the optimal control problem to include a term
that quantifies the model uncertainty.50,51 The MPC then bal-
ances the control cost, based on the uncertain model, with
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tem only when beneficial.32 Note that implicit dual control
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While outside the scope of this article, MPC with active
learning is not only relevant for model uncertainty. In output-
feedback MPC,56–59 the controller does not have direct access
to the system state for feedback, but rather a measured subset
affected by noise. An output-feedback MPC generally relies
on a state estimator, commonly based on a Bayesian frame-
work like (3), to estimate the state. For nonlinear systems, the
quality of the state estimate depends on the control action.
Furthermore, the state in a nonlinear system may be only
locally observable, in which case the controller must take spe-
cial care to prevent the loss of observability. In these situa-
tions, probing can be used to improve the state estimate and in
turn improve the control performance.52,60,61

The remainder of this article demonstrates the importance
of active learning in the context of MPC under model uncer-
tainty. We present two case studies, one with parameter and
one with model-structure uncertainty, in which tractable surro-
gates for Problem 1, inspired by explicit dual control, are
solved in a receding-horizon fashion. Without advocating par-
ticular approaches to MPC with active learning, we illustrate
the importance of active learning as a general strategy for
improving MPC performance when the model uncertainty is
significant.

MPC with Active Learning for Parametric
Uncertainty

This section presents a case study in which a change in the
process, represented by an abrupt reduction in a model param-
eter, can cause significant deterioration of the control perfor-
mance. The results demonstrate how online model adaptation
using informative closed-loop data, generated by a controller
with active learning, can mitigate control performance loss

Figure 1. The expected per-stage value of optimal con-
trol with active learning relative to optimal
control with passive learning, Uðn0Þ, as a
function of the hyperstate n0 defined in terms
of the initial state x0 and the initial probability
P0 for Model M1.

[Color figure can be viewed at wileyonlinelibrary.com]

*While an in-depth discussion of state chance constraints is beyond the scope of this
article, this form of constraints are intractable in optimization43,44 and contribute to
the complexity of Problem 1.
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from the parametric model uncertainty. Consider a CSTR with
two states, two inputs, and two uncertain model parameters.62

The process dynamics are†

dCA

dt
5

q

V
ðCA;in2CAÞ2k0exp

2E

RTr

� �
CA (7a)

dTr
dt

5
q

V
ðTin2TrÞ2

DH
qcp

k0exp
2E

RTr

� �
CA1

UA

qcpV
ðTc2TrÞ

(7b)

where CA is the concentration of species A, with the inlet con-
centration CA;in; Tr is the reaction temperature, with the inlet
temperature Tin; q is the manipulated volumetric flow rate; Tc is
the manipulated coolant temperature; k0 is the kinetic constant
of the reaction; E is the activation energy; R is the gas constant;
DH is the reaction heat; U is the heat transfer coefficient; A is
the heat transfer area; q is the density; and cp is the heat capac-
ity. Both state variables CA and Tr are measured and are subject
to additive zero-mean Gaussian white noise with known vari-
ance. However, the model is uncertain as the kinetic constant k0
and the reaction heat DH are unknown, but have known initial
probability distributions pðk0Þ and pðDHÞ.

A discrete-time state-space model of the form (1), with
parametric uncertainty in h>5½k0; DH�, is used to design an
MPC for the CSTR. The control objective is to maintain a
specified productivity �q �CA, while avoiding product quality
loss by an unacceptably low concentration of A. This control
objective translates to keeping CA at a desired setpoint with
minimal control effort while ensuring CA is above a specified

lower bound at all times. We formulate this optimal control
problem as

min
fuk1jgN21

j50

J (8a)

subject to xk1j115f ðxk1j; uk1j; hkÞ (8b)

40 dm3=min � qk1j � 120 dm3=min (8c)

290 K � Tc;k1j � 320 K (8d)

0:485 mol=dm3 � CA;k1j11 (8e)

j50; 1; . . . ;N21

where

J5
XN21

j50

kxk1j2 �xk2Q1 kuk1j2�uk2R1kxk1N2 �xk2Q

with ð�x; �uÞ5ð �CA; �T r; �q; �T cÞ denoting the desired operating
point and ksk2M :¼ s>Ms. The parameters used in the model
and in the MPC are listed in the Supporting Information. Note
that the lowest acceptable value of CA, 0.485 mol/dm3, is only
3% below the target concentration �CA50:5 mol/dm3. The opti-
mal control problem (8) is solved in a receding-horizon man-
ner at every measurement sampling instant k given the state
xk, which is estimated by an extended Kalman filter.

Four MPC strategies are considered for the CSTR (7) with
parametric model uncertainty. Strategy 1 uses a standard MPC
with no form of parameter estimation; that is, the uncertain
model parameters hk in the optimal control problem (8) are at
all times equal to their nominal values determined at the MPC
commissioning. In Strategy 2, once a noticeable drop in the
control performance is observed, an open-loop identification

(a) (b)
Figure 2. Closed-loop performance of (a) standard MPC in Strategy 1 and (b) MPC with open-loop model adapta-

tion in Strategy 2 under parametric model uncertainty.

From top to bottom, the plots show the control inputs q and Tc and the measured states CA and Tr. The black dashed lines and
the red solid lines represent the setpoints and constraints, respectively. [Color figure can be viewed at wileyonlinelibrary.com]

†For clarity of presentation, a deterministic process with no disturbances is considered
in this case study.
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experiment is performed to reidentify the model parameters
offline and, accordingly, update the model in the optimal con-
trol problem (8). The parameter estimate resulting from the
one-time reidentification is used at all subsequent times. Strat-
egy 3 uses the same MPC formulation as the above strategies,
except the uncertain model parameters are estimated online at
every sampling time using an extended Kalman filter and are
accordingly updated in the optimal control problem (8). Note
that the online adaptation of the model in Strategy 3 relies on
the closed-loop data generated by the feedback action of the
controller, with no effort to increase the amount of informa-
tion. This is therefore an MPC strategy with passive learning.
Strategy 4 involves modifying the optimal control problem (8)
to incorporate some form of probing in the control inputs to
increase the information content of the closed-loop data used
for the online parameter estimation with the extended Kalman
filter. The controller adds probing to the input q that consists
of steps of magnitude 1 dm3/min when the prediction error is
above a given threshold. Thus, this is an MPC strategy with
active learning.

The performance of these four MPC strategies is evaluated
when a change in the process at time 5 min causes an abrupt
drop in the reaction constant k0 from 7:231010 to 6:4831010

min21, a reduction of 10%. The closed-loop performance of
Strategies 1 and 2 are shown in Figure 2. Strategy 1 is incapa-
ble of keeping CA close to the setpoint �CA after the drop in k0,
with CA significantly below its lowest acceptable value (see

Figure 2a). In Strategy 2, the controller is switched off 1.5 min

after the drop in k0 to perform an open-loop identification

experiment from time 6.5 to 8.0 min. The identification experi-

ment involves five steps of magnitude 65.0 dm3/min in the

flow rate q (see Figure 2b).‡ The open-loop data are used for

offline least-squares estimation of the model parameters, with

the estimate of k0 within 2.4% of its true value. Despite using

the reidentified model in the MPC after time 8.0 min, Figure

2b shows that the process has already drifted away from the

setpoint (shown by a black dashed line) and the MPC is unable

to restore the control performance in terms of adequate set-

point tracking. Furthermore, the MPC is only partially capable

of meeting the product quality requirement on CA, with minor

but frequent violations of the constraint (8e) (shown by the red

solid line).
The effect of online estimation of the uncertain model

parameters on the MPC performance is presented in Figure 3.

Figure 3a shows the performance of the MPC with passive

learning in Strategy 3. After the abrupt change in k0 at time

5.0 min, online parameter estimation enables adapting the

model and reducing the uncertainty. However, the estimate of

k0 converges slowly to its true value, leading to a large offset

in setpoint tracking and more importantly constraint violation

for CA. The slow convergence of k0 can be attributed to the

(a) (b)
Figure 3. Closed-loop performance of (a) MPC with passive learning in Strategy 3 and (b) MPC with active learning

in Strategy 4 under parametric model uncertainty.

From top to bottom, the plots show the estimates (solid blue) and true values (dashed red) of k0, the control inputs q and Tc and
the measured states CA and Tr. In the plots of CA, the red solid lines represent the constraint. The black dashed lines represent the
setpoints. [Color figure can be viewed at wileyonlinelibrary.com]

‡For an overview of systematic approaches to optimal experiment design for parame-
ter estimation, see Refs. 11 and 12.
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experiment is performed to reidentify the model parameters
offline and, accordingly, update the model in the optimal con-
trol problem (8). The parameter estimate resulting from the
one-time reidentification is used at all subsequent times. Strat-
egy 3 uses the same MPC formulation as the above strategies,
except the uncertain model parameters are estimated online at
every sampling time using an extended Kalman filter and are
accordingly updated in the optimal control problem (8). Note
that the online adaptation of the model in Strategy 3 relies on
the closed-loop data generated by the feedback action of the
controller, with no effort to increase the amount of informa-
tion. This is therefore an MPC strategy with passive learning.
Strategy 4 involves modifying the optimal control problem (8)
to incorporate some form of probing in the control inputs to
increase the information content of the closed-loop data used
for the online parameter estimation with the extended Kalman
filter. The controller adds probing to the input q that consists
of steps of magnitude 1 dm3/min when the prediction error is
above a given threshold. Thus, this is an MPC strategy with
active learning.

The performance of these four MPC strategies is evaluated
when a change in the process at time 5 min causes an abrupt
drop in the reaction constant k0 from 7:231010 to 6:4831010

min21, a reduction of 10%. The closed-loop performance of
Strategies 1 and 2 are shown in Figure 2. Strategy 1 is incapa-
ble of keeping CA close to the setpoint �CA after the drop in k0,
with CA significantly below its lowest acceptable value (see

Figure 2a). In Strategy 2, the controller is switched off 1.5 min

after the drop in k0 to perform an open-loop identification

experiment from time 6.5 to 8.0 min. The identification experi-

ment involves five steps of magnitude 65.0 dm3/min in the

flow rate q (see Figure 2b).‡ The open-loop data are used for

offline least-squares estimation of the model parameters, with

the estimate of k0 within 2.4% of its true value. Despite using

the reidentified model in the MPC after time 8.0 min, Figure

2b shows that the process has already drifted away from the

setpoint (shown by a black dashed line) and the MPC is unable

to restore the control performance in terms of adequate set-

point tracking. Furthermore, the MPC is only partially capable

of meeting the product quality requirement on CA, with minor

but frequent violations of the constraint (8e) (shown by the red

solid line).
The effect of online estimation of the uncertain model

parameters on the MPC performance is presented in Figure 3.

Figure 3a shows the performance of the MPC with passive

learning in Strategy 3. After the abrupt change in k0 at time

5.0 min, online parameter estimation enables adapting the

model and reducing the uncertainty. However, the estimate of

k0 converges slowly to its true value, leading to a large offset

in setpoint tracking and more importantly constraint violation

for CA. The slow convergence of k0 can be attributed to the

(a) (b)
Figure 3. Closed-loop performance of (a) MPC with passive learning in Strategy 3 and (b) MPC with active learning

in Strategy 4 under parametric model uncertainty.

From top to bottom, the plots show the estimates (solid blue) and true values (dashed red) of k0, the control inputs q and Tc and
the measured states CA and Tr. In the plots of CA, the red solid lines represent the constraint. The black dashed lines represent the
setpoints. [Color figure can be viewed at wileyonlinelibrary.com]

‡For an overview of systematic approaches to optimal experiment design for parame-
ter estimation, see Refs. 11 and 12.
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controller taking no active steps to improve the learning. That

is, Strategy 3 incorporates only passive learning from the data

generated by the feedback action of the MPC. Figure 3b demon-

strates the performance of the MPC with active learning in

Strategy 4. After detecting an increase in the model-output pre-

diction error, the MPC with active learning increases its mea-

sure of model uncertainty by resetting the covariance in the

extended Kalman filter to a large value. To reduce the model

uncertainty, the controller then adds a probing signal to the con-

trol with the purpose of causing the process to generate more

informative input-output data for parameter estimation. As a

result, the estimate of k0 quickly converges to its true value.

This in turn enables the MPC to maintain CA close to the set-

point and avoid constraint violation. The results shown in Fig-

ures 2 and 3 clearly demonstrate the superior performance of

the MPC with active learning in effectively dealing with the

parametric model uncertainty and consequently mitigating the

control performance loss.
Figure 4 contrasts the performance of the four MPC strate-

gies in terms of maintaining the desired productivity. Note

that this productivity is closely related to the economics of the

operation. While some productivity loss from the process

change is unavoidable, the figure shows that the MPC with

active learning (Strategy 4) results in the least loss. The stan-

dard MPC (Strategy 1) and the MPC with offline model adap-

tation (Strategy 2) lead to the highest losses among the four

strategies. This is because the MPC in these strategies do not

benefit from any form of online model adaptation to reduce

model uncertainty. Note that Strategy 2 performs worse than

Strategy 1 as a result of the excitation during open-loop opera-

tion, which takes the process so far from the operating point

that the controller is unable to bring the process back. While

the MPC with passive learning (Strategy 3) results in a lower

loss in productivity, the model adaptation is still inadequate

relative to the MPC with active learning (Strategy 4), which

probes the process for active uncertainty reduction. This case

study clearly illustrates the potential advantages of integrating

MPC and probing for active learning to handle abrupt process

changes.

MPC with Active Learning for Model-Structure
Uncertainty

The focus of this section is the problem of uncertainty in the

structure of the model used to control the process. This

problem is posed using a set of candidate models M, which is

assumed to contain a model whose structural form matches

that of the process at any given time. This type of model struc-

ture uncertainty may arise when the process can transition

between different modes of operation in an unpredictable man-

ner or can undergo abrupt structural changes. A typical form

of abrupt change that can be captured by a change in model

structure is process faults and failures, making the framework

presented here particularly suitable for MPC with active fault

detection and diagnosis.5,63–65 Under this type of uncertainty,

the probing is introduced for discriminating between multiple

model candidates. The problem of MPC with active learning

for model-structure uncertainty has received considerably less

attention than the formulation that considers uncertain parame-

ters.66 In the following, we demonstrate the possible benefits

of MPC with active learning under an uncertain model struc-

ture by letting the controller inject probing signals for

improved discrimination between multiple models.
We consider a continuous bioreactor where the control

objective is to maximize the process productivity, defined as

the concentration multiplied by the dilution rate. The process

dynamics are67,68

dX5ð2DX1lXÞdt1rXdwXðtÞ (9a)

dS5ðDðSf2SÞ2 1

YX=S
lXÞdt1rSdwSðtÞ (9b)

dP5ð2DP1ðal1bÞXÞdt1rPdwPðtÞ (9c)

Here, X, S, and P are the concentrations of biomass, sub-

strate, and product. The dilution rate D is the control input

(uðtÞ5DðtÞ), and the volume is kept constant by ensuring

the volumetric inlet and outlet flows are identical. The

substrate concentration in the inlet feed is denoted by Sf,
YX=S is the yield of biomass per substrate consumed, a and

b are the yield parameters, l is growth rate of biomass, and

wXðtÞ; wSðtÞ, and wPðtÞ are independent, zero-mean unit-var-

iance Weiner processes scaled by standard deviations rX, rS,
and rP.

Here, we consider three process models: the nominal model

with saturation/Monod kinetics, a product inhibition model, in

which the growth rate decreases with the product concentra-

tion,67 and a model with saturation kinetics combined with a

drop in the substrate inlet feed concentration. That is,

l5
lmaxS

KM1S
inModelsM1 andM2 (10a)

and

l5
lmaxð12P=PmÞS

KM1S
inModelM3 (10b)

where lmax denotes the maximum growth rate, KM is an

affinity constant, and Pm is the maximum production rate.

Models M1 and M2 can be interpreted as representing struc-

tural model uncertainty, with two different growth-model

hypotheses that may be valid for different growth condi-

tions. The third model represents a disturbance or fault that

may occur during operation but is difficult to identify under

regular feedback control:

S
½2�
f 50:3S

½1�
f (11)

The model parameters, initial conditions, and operating condi-

tions are listed in Table S3 in the Supporting Information.

Figure 4. Productivity under standard MPC (Strategy 1),
MPC with offline model adaptation (Strategy 2),
MPC with passive learning (Strategy 3),
and MPC with active learning (Strategy 4).

The oscillations visible in Strategies 2 and 4 result from the
probing. [Color figure can be viewed at wileyonlinelibrary.
com]
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The parameter lmax is assumed unknown and estimated together

with the states, using an extended Kalman filter with the sub-

strate and product concentrations both measured;

yk5½Sk; Pk�>1vk. Note that there is no active learning of this

parameter in the algorithm used in the results presented below.
The objective in the MPC is to minimize the stage cost

ðP½i�k �
k1j2 �PÞ21ðuk1j2 �DÞ2; where i�k is the index of the model

with the highest probability. The terminal cost is ðP½i�k �
k1N2 �PÞ2.

The optimal operating point ð �P; �DÞ for maximizing productiv-

ity is determined offline.68 The goal of active learning here is

to faster and with higher confidence identify the structure that

represents the current process behavior, while simultaneously

maintaining production until intervention, if necessary,

restores the process. We consider a scenario in which the pro-

cess initially evolves according to Model M1. At time t53 h, a

change occurs and the process starts evolving according to

Model M2. If and when the change is detected, the process is

restored through intervention so that it again evolves accord-

ing to Model M1 after 0:5 h. A Bayesian recursion of the form

(3) is used to compute the model probabilities PM online.
The algorithm adopted here for MPC with active learning

under model-structure uncertainty is presented in detail in Ref.

69, and involves actively probing the process for discriminat-

ing between a set of model hypotheses. The MPC algorithm

uses the Bayesian decision rule for hypothesis selection to

minimize the risk of selecting the wrong model, given the

input and output data recorded from the process up until the

current time.70 This risk does not have a closed-form expres-

sion for general nonlinear models, and must therefore be

approximated. Thus, active learning under model-structure

uncertainty is incorporated in the MPC by explicitly augment-

ing the control cost with a weighted term that approximates an

upper bound on the selection-error risk. The approximate

bound71 is computed online by linearizing the model around a

state trajectory and predict the first two statistical moments of

the state. The associated weight, referred to as a model-

discrimination weight, is a tuning parameter in the control

design. An appropriate value for this weight is chosen through
Monte-Carlo simulation of the process with different values of

the weight, as discussed in the following.
When explicitly augmenting a cost function for control with

a term that provides some measure of model uncertainty, there
is a form of trade-off between the control cost and the cost

associated with reducing model uncertainty. Minimizing the
augmented cost function is to balance minimization of the
control cost, based on the current potentially wrong model,

with minimization of the uncertainty, which improves that
model. Here, the trade-off between reducing the selection-
error risk to improve the model and minimizing the control

cost based on the current model, which is potentially wrong
structurally, is captured with the model-discrimination weight
in the cost function of the MPC. We determine this weight for

best overall performance through Pareto analysis. Figure 5
shows a Pareto front that demonstrates the trade-off between

detecting a structural change and the tracking error in product
concentration during the detection phase. The ordinate shows
the average model-selection time, defined as the time elapsed

between the occurrence of the structural change and correct
model selection. The abscissa is the average closed-loop
squared tracking error in product concentration, normalized

through dividing by the number of sampling intervals elapsed
between the structural change and selection of the correspond-
ing model. Hence, this provides a measure of how much the

product concentration tends to deviate at any given sampling
time as a consequence of increasing the weight of probing for
active learning. The top-left point in Figure 5 corresponds to a

weight of zero, which means the controller makes no attempt
to reduce the probability of error in the model selection. The
bottom-right point corresponds to the other extreme: the stage

and terminal cost for control are removed from the cost func-
tion and the controller only minimizes the selection-error risk.

In this case, the algorithm makes no attempt at keeping Pk and
Dk close to their desired values. For the values in between, the
weight increases from left to right. Slightly increasing the

weight from zero leads to a large improvement in the model-
selection time with minimal increase in tracking error. This
shows that a relatively small adjustment to the operating strat-

egy can result in large gains in uncertainty reduction with neg-
ligible change in the standard control cost. Note that the
potential gains from early detection of the structural change

are not included in Figure 5. Thus, this figure does not imply
any overall trade-off between reducing model-selection error
and improving productivity.

A value of the model-discrimination weight that balances

the stage cost and the probability of model selection error is
used in the MPC algorithm with active learning to induce

probing after a sudden drop in productivity signals a possible
change. That is, the weight goes from zero to its preselected
value, enabling the controller to probe the process for discrim-

ination between the models and select the model that best
describes the recorded measurements. This phase, with prob-
ing for determining the model with the correct structure, lasts

until the probability of a model that was previously considered
to not represent the process has the largest probability for a
predefined amount of time. In other words, when one model

retains the highest probability for a sufficiently long time, this
model is selected by controller.

Figure 6 shows a simulation that compares the evolution of
the probabilities PM for the three model hypotheses with pas-

sive (a zero weight on model discrimination) and active

Figure 5. Pareto analysis for choosing an appropriate
value of the model-discrimination weight,
which increases from left to right in the figure
from a pure passive-learning control strategy
to a pure model discrimination type strategy
(disregarding the stage cost for control).

[Color figure can be viewed at wileyonlinelibrary.com]
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The parameter lmax is assumed unknown and estimated together

with the states, using an extended Kalman filter with the sub-

strate and product concentrations both measured;

yk5½Sk; Pk�>1vk. Note that there is no active learning of this

parameter in the algorithm used in the results presented below.
The objective in the MPC is to minimize the stage cost

ðP½i�k �
k1j2 �PÞ21ðuk1j2 �DÞ2; where i�k is the index of the model

with the highest probability. The terminal cost is ðP½i�k �
k1N2 �PÞ2.

The optimal operating point ð �P; �DÞ for maximizing productiv-

ity is determined offline.68 The goal of active learning here is

to faster and with higher confidence identify the structure that

represents the current process behavior, while simultaneously

maintaining production until intervention, if necessary,

restores the process. We consider a scenario in which the pro-

cess initially evolves according to Model M1. At time t53 h, a

change occurs and the process starts evolving according to

Model M2. If and when the change is detected, the process is

restored through intervention so that it again evolves accord-

ing to Model M1 after 0:5 h. A Bayesian recursion of the form

(3) is used to compute the model probabilities PM online.
The algorithm adopted here for MPC with active learning

under model-structure uncertainty is presented in detail in Ref.

69, and involves actively probing the process for discriminat-

ing between a set of model hypotheses. The MPC algorithm

uses the Bayesian decision rule for hypothesis selection to

minimize the risk of selecting the wrong model, given the

input and output data recorded from the process up until the

current time.70 This risk does not have a closed-form expres-

sion for general nonlinear models, and must therefore be

approximated. Thus, active learning under model-structure

uncertainty is incorporated in the MPC by explicitly augment-

ing the control cost with a weighted term that approximates an

upper bound on the selection-error risk. The approximate

bound71 is computed online by linearizing the model around a

state trajectory and predict the first two statistical moments of

the state. The associated weight, referred to as a model-

discrimination weight, is a tuning parameter in the control

design. An appropriate value for this weight is chosen through
Monte-Carlo simulation of the process with different values of

the weight, as discussed in the following.
When explicitly augmenting a cost function for control with

a term that provides some measure of model uncertainty, there
is a form of trade-off between the control cost and the cost

associated with reducing model uncertainty. Minimizing the
augmented cost function is to balance minimization of the
control cost, based on the current potentially wrong model,

with minimization of the uncertainty, which improves that
model. Here, the trade-off between reducing the selection-
error risk to improve the model and minimizing the control

cost based on the current model, which is potentially wrong
structurally, is captured with the model-discrimination weight
in the cost function of the MPC. We determine this weight for

best overall performance through Pareto analysis. Figure 5
shows a Pareto front that demonstrates the trade-off between

detecting a structural change and the tracking error in product
concentration during the detection phase. The ordinate shows
the average model-selection time, defined as the time elapsed

between the occurrence of the structural change and correct
model selection. The abscissa is the average closed-loop
squared tracking error in product concentration, normalized

through dividing by the number of sampling intervals elapsed
between the structural change and selection of the correspond-
ing model. Hence, this provides a measure of how much the

product concentration tends to deviate at any given sampling
time as a consequence of increasing the weight of probing for
active learning. The top-left point in Figure 5 corresponds to a

weight of zero, which means the controller makes no attempt
to reduce the probability of error in the model selection. The
bottom-right point corresponds to the other extreme: the stage

and terminal cost for control are removed from the cost func-
tion and the controller only minimizes the selection-error risk.

In this case, the algorithm makes no attempt at keeping Pk and
Dk close to their desired values. For the values in between, the
weight increases from left to right. Slightly increasing the

weight from zero leads to a large improvement in the model-
selection time with minimal increase in tracking error. This
shows that a relatively small adjustment to the operating strat-

egy can result in large gains in uncertainty reduction with neg-
ligible change in the standard control cost. Note that the
potential gains from early detection of the structural change

are not included in Figure 5. Thus, this figure does not imply
any overall trade-off between reducing model-selection error
and improving productivity.

A value of the model-discrimination weight that balances

the stage cost and the probability of model selection error is
used in the MPC algorithm with active learning to induce

probing after a sudden drop in productivity signals a possible
change. That is, the weight goes from zero to its preselected
value, enabling the controller to probe the process for discrim-

ination between the models and select the model that best
describes the recorded measurements. This phase, with prob-
ing for determining the model with the correct structure, lasts

until the probability of a model that was previously considered
to not represent the process has the largest probability for a
predefined amount of time. In other words, when one model

retains the highest probability for a sufficiently long time, this
model is selected by controller.

Figure 6 shows a simulation that compares the evolution of
the probabilities PM for the three model hypotheses with pas-

sive (a zero weight on model discrimination) and active

Figure 5. Pareto analysis for choosing an appropriate
value of the model-discrimination weight,
which increases from left to right in the figure
from a pure passive-learning control strategy
to a pure model discrimination type strategy
(disregarding the stage cost for control).

[Color figure can be viewed at wileyonlinelibrary.com]
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(a positive weight) learning. Some time after the new model
for the structural change is correctly selected the process is
restored to its original structure. In this particular case, going
from passive to active learning reduces the time to correctly
identify the change in the process from 7.6 to 4.9 h, which is a
36% reduction.

The overall objective in the optimal control problem is to
maximize productivity, defined as PkDk. Figure 7 shows the
evolution of process productivity, comparing three control strat-
egies: (i) a standard MPC with a static model structure and no
updating of the model-structure probabilities (no learning), (ii)
a controller identical to (i) but with a Bayesian estimator that

updates the probabilities of the model candidates (passive learn-

ing), and (iii) a controller identical to (ii) but with a term added

to the cost function that represents the risk of selecting the

wrong model (inducing probing for active learning). The con-

troller with no learning never recovers from the structural

change as it makes no attempt to identify its occurrence. The

controller with passive learning performs better, but not as well

as the approach with active learning. The active learning is thus

instrumental in bringing back the productivity since it facilitates

selecting the new correct model faster.
The extent to which productivity is improved by MPC with

active learning relative to passive learning and no learning is

summarized in Table 1. The productivity is determined

through 20 Monte-Carlo simulations that each span 16 h. The

MPC with active learning increases average productivity by

14% over passive learning and by 27% over no learning. This

demonstrates that probing for active reduction of model-

structure uncertainty has the potential to significantly improve

control performance on average.

Future Research Directions

This article demonstrates that MPC with active learning

under parametric or structural model uncertainty can mitigate

significant loss in control performance from unanticipated sud-

den changes in the system. This control approach can advance

the area of active fault diagnosis and fault-tolerant control.66

Fast and high-confidence diagnosis of incipient faults under

closed-loop control can prevent severe failures and facilitate

safe and graceful degradation until appropriate intervention

can take place. This can be of great importance in a wide range

of applications, in particular where safety is imperative.

(a) (b)
Figure 6. Comparison of model probabilities for the three model hypotheses using MPC with (a) passive and

(b) active learning.

Active learning reduces the time required to select the correct model by 36% relative to passive learning. The jump in probability
for Model M1 occurs as the system is restored to its original structure. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 7. Comparison of productivity PkDk in the cases
of standard MPC with no learning, passive
learning, and active learning.

The dashed black line represents the optimal productivity.
[Color figure can be viewed at wileyonlinelibrary.com]

Table 1. Productivity per Sampling Instant, Averaged over
20 Monte-Carlo Simulations, for the MPC with Active

Learning, Passive Learning, and No Learning

Active learning Passive learning No learning

3.59 3.16 2.83

AIChE Journal 2018 Vol. 00, No. 00 Published on behalf of the AIChE DOI 10.1002/aic 9AIChE Journal August 2018  Vol. 64, No. 8 Published on behalf of the AIChE DOI 10.1002/aic 3079



However, theoretical and practical aspects of MPC with active

learning for fault-tolerant control remain open and further

research is required.
In the chemical process industry, optimal operation is com-

monly related to economic objectives. Here, MPC is generally

implemented in a hierarchical control structure, where the

“optimal” setpoints to the MPC layer are determined by real-
time optimization (RTO) of an economic cost function.72 The

way to best incorporate active learning into this hierarchical

control structure is an open question. MPC with active learn-

ing will generally improve the quality of the uncertain model

(when possible and necessary), but the setpoints previously

computed by the RTO may no longer be economically optimal

for the updated model. In other words, active learning will

improve tracking and constraint satisfaction at the MPC layer,

but this may not necessarily lead to the best economic out-

come of the operation. Yet, there may still be significant

advantages to using the model obtained with active learning,

in particular in terms of constraint satisfaction, until new eco-

nomically optimal setpoints are recomputed by the RTO using

the adapted model.
Combining the RTO and MPC layers in the hierarchical

control structure has been an active area of research in recent

years. One promising approach is economic MPC (EMPC),

which directly optimizes the economics of the system subject

to the dynamic model.73,74 Incorporating active learning in

EMPC is a potentially promising area for future research, as

this formulation would be able to determine the true economic

cost and benefit of improving the model. In this way, the

EMPC with active learning could select an operation mode

that optimally balances the “cost of learning” and the expected

economic gains from improving the model.
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15. Mayne DQ, Seron MM, Raković SV. Robust model predictive con-
trol of constrained linear systems with bounded disturbances. Auto-
matica. 2005;41(2):219–224.

16. Mayne DQ. Model predictive control: recent developments and
future promise. Automatica. 2014;50(12):2967–2986.

17. Kouvaritakis B, Cannon M. Model Predictive Control: Classical,
Robust and Stochastic. London: Springer, 2016.

18. Cannon M, Kouvaritakis B, Raković SV, Cheng Q. Stochastic tubes
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However, theoretical and practical aspects of MPC with active

learning for fault-tolerant control remain open and further

research is required.
In the chemical process industry, optimal operation is com-

monly related to economic objectives. Here, MPC is generally

implemented in a hierarchical control structure, where the

“optimal” setpoints to the MPC layer are determined by real-
time optimization (RTO) of an economic cost function.72 The

way to best incorporate active learning into this hierarchical

control structure is an open question. MPC with active learn-

ing will generally improve the quality of the uncertain model

(when possible and necessary), but the setpoints previously

computed by the RTO may no longer be economically optimal

for the updated model. In other words, active learning will

improve tracking and constraint satisfaction at the MPC layer,

but this may not necessarily lead to the best economic out-

come of the operation. Yet, there may still be significant

advantages to using the model obtained with active learning,

in particular in terms of constraint satisfaction, until new eco-

nomically optimal setpoints are recomputed by the RTO using

the adapted model.
Combining the RTO and MPC layers in the hierarchical

control structure has been an active area of research in recent

years. One promising approach is economic MPC (EMPC),

which directly optimizes the economics of the system subject

to the dynamic model.73,74 Incorporating active learning in

EMPC is a potentially promising area for future research, as

this formulation would be able to determine the true economic

cost and benefit of improving the model. In this way, the

EMPC with active learning could select an operation mode

that optimally balances the “cost of learning” and the expected

economic gains from improving the model.
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9. Åstr€om KJ, Wittenmark B. Adaptive Control, 2nd ed. Reading, MA:
Addison-Wesley, 1995.

10. Van den Hof PMJ, Schrama JP. Identification and control—closed-
loop issues. Automatica. 1995;31(12):1751–1770.

11. Gevers M. Identification for control: from the early achievements to
the revival of experiment design. Eur J Control. 2005;11(4–5):335–
352.

12. Hjalmarsson H. From experiment design to closed-loop control.
Automatica. 2005;41(3):393–438.

13. Grimm G, Messina MJ, Tuna SE, Teel AR. Examples when nonlin-
ear model predictive control is nonrobust. Automatica. 2004;40(10):
1729–1738.

14. Bemporad A, Morari M. Robust model predictive control: a survey.
In: Garulli A, Tesi A, editors. Robustness in Identification and Con-
trol, Vol. 245. Berlin, Germany: Springer, 1999:207–226.
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