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Optimal control relies on a model, which is generally uncertain because of incomplete knowledge of the system and
changes in the dynamics over time. Probing the system under closed-loop control can reduce the model uncertainty
through generating input-output data that is more informative than the data generated from normal operation. This
paper addresses the problem of model predictive control (MPC) with active learning, with a particular focus on how
incorporating probing in the control action can reduce model uncertainty. We discuss some of the central theoretical
questions in this problem, and demonstrate the potential of active learning for maintaining MPC performance in the
presence of uncertainty in model parameters and structure. Simulation results show that active learning is particularly
beneficial when a system undergoes abrupt changes (such as the sudden occurrence of a fault) that can compromise
operational safety, reliability, and profitability. © 2018 American Institute of Chemical Engineers AIChE J, 64:3071-
3081, 2018
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Introduction

Model predictive control'? (MPC), also known as receding-
horizon control, is the most widely used approach for advanced
control of multivariable systems with state and input con-
straints.** MPC relies on a model to predict the behavior of the
system. Whether data driven or based on first principles, this
model is to some extent uncertain, generally because of incom-
plete knowledge of the system. Common sources of model
uncertainty include inaccurate estimates of model parameters
and unknown aspect of the model structure itself, as in the case
of an unknown kinetic mechanism in a physics-based model, or
the appropriate order of a data-driven model. A system may
also undergo abrupt changes (such as faults and failures; see
Ref. 5) or exhibit time-varying dynamics, both of which can
further increase the uncertainty in the model structure.

Uncertainty in model-based control has sparked several
important research directions, such as robust and stochastic
control,ﬁ’7 adaptive control,g’9 and identification for con-
trol.'®'? The corrective nature of feedback provides MPC
with a certain degree of robustness to uncertainty. However,
MPC performance degrades when feedback cannot adequately
compensate for incomplete knowledge of the system. Possible
consequences include excessive constraint violations and large
offsets in setpoint tracking (see, e.g., Ref. 13). This has led to
the development of robust MPC'*"'7 (RMPC), in which model
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uncertainty, represented by deterministic, bounded sets, is
explicitly accounted for. RMPC generally involves enforcing
the state constraints with respect to all possible uncertainty
realizations, including those realizations that may have a small
probability of occurrence in practice. Consequently, RMPC
can result in highly conservative control performance. Sto-
chastic MPC'®"'? (SMPC) approaches can be used when the
model uncertainty is described by probability distributions. By
allowing the specification of a permitted probability of con-
straint violation, SMPC can reduce conservatism while retain-
ing an acceptable level of robustness to uncertainty.20

Despite systematically accounting for model uncertainty, the
performance of RMPC and SMPC strongly depends on the qual-
ity of the uncertainty descriptions. When a system undergoes
changes over time, either gradual (e.g., time-varying dynamics)
or abrupt (e.g., faults and malfunctions), the model and the
uncertainty descriptions may no longer adequately represent the
system. RMPC and SMPC are blind to the system variations in
that there is no mechanism for adapting the model to the changes
through adjusting its parameters, its structure, and the uncertainty
description. This may cause deterioration of control performance
and compromise the controller’s robustness to uncertainty.

Adaptive control is an alternative approach to control under
uncertainty. This approach involves adjusting the model under
closed-loop control, with the goal of improving the model for
control purposes.®® A critical issue in adaptive control, includ-
ing adaptive MPC,*'" is that the data generated in closed
loop must be sufficiently informative for the model adaptation
to be beneficial. In his seminal work,*® Feldbaum was the
first to recognize that in optimal control of systems with reduc-
ible model uncertainty, the control inputs must have a probing
effect that generates informative closed-loop data for active
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learning, in addition to having a directing effect to control the
system state. It is well known that lack of probing in adaptive
control can lead to problems such as controller turn-off, >
bursting,*® and the loss of controllability.*

This article addresses the problem of MPC with active learn-
ing for systems with probabilistic uncertainty descriptions.
Through a discussion of the central theoretical questions and
illustrative case studies, we demonstrate the potential ability of
active learning to maintain MPC performance in the presence
of parameter and model-structure uncertainty. The main objec-
tive of the article is to highlight the possible benefits of active
learning without in-depth treatment of the algorithmic aspects
(see Ref. 32 for a recent review on this subject). We first for-
mally introduce the optimal control problem, along with a dis-
cussion of why its exact solution is computationally intractable
for practically sized systems and a brief overview of some of
the main approaches to MPC with active learning. Two case
studies, a continuous-stirred-tank reactor (CSTR) and a continu-
ous bioreactor, are then used to illustrate the effects of parame-
ter and model-structure uncertainty and how active learning can
improve control performance. The article concludes with some
suggestions for future research directions.

Optimal Control with Active Learning
Problem formulation

Consider nonlinear systems described in discrete time by
uncertain models of the form

{Xk+l:f(xk7uk70a We),
M :

(1
yi=h(x, 0,vy)

where k£ € Ny is the time index (N denotes the set of natural
numbers, No=0 U N); x;, u;, and y, are the system state, input,
and output, respectively; 0 denotes the unknown model parame-
ters with known initial probability distribution p(0); wy ~ p(w)
and v; ~ p(v) denote stochastic disturbances and measurement
noise, respectively; and f and / denote the state and output equa-
tions. The initial system state x, is uncertain with known proba-
bility distribution p(xp). The distributions p(w) and p(v) are
assumed known for all £ € Ny, so that wy, and v, are both sequen-
ces of independent and identically distributed random variables.
All of the random variables xq, 0, wy, and v; are mutually inde-
pendent for all k,i € Ny. The system is constrained, with the
control input u, required to lie in a compact set U, u; € U, and
the state x; required to lie in a closed set X, x; € X. As the
model (1) is subject to probabilistic uncertainty, the state con-
straints can be enforced in terms of the chance constraint

Prk(xk S X) >1—¢ 2)

where Pr(-) denotes probability given the information avail-
able at time k and ¢, is the permitted probability of state con-
straint violation. In a more general problem setting, a set of
models M={M,M,,...,M,_}, all of the form (1), can be
formulated as candidates for describing the system, with each
model M; specified by

My = {1 nl p (o, p (0™, p(wl), p(v)}

where the superscript [/] distinguishes the equations, variables,
and parameters in each model M; € M. Note that every model
in M can be specified with different state and output equa-
tions. Furthermore, the dimensions of the state x;, the
unknown parameters 6, the disturbances wy, and the
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measurement noise v; need not be the same across the differ-
ent models. We assume that a true model of the system exists
and is contained in M at any given time. The system can be
correctly represented by different models M, at different times,
such as when some structural change occurs in the system.
The state x; is entirely or partially observed through the
measurements y,. Let the input and output data available at time
k be denoted by Vi := {y,Yk—1,-- Y0, Uk—1,Uk—2, .., U0},
with Yy := yo. The state and the unknown parameters can be
lumped together to form the augmented state vector
zl =[x, 0"]. The conditional probability distribution of z,
given )y, is known as the hyperstate &, := p(z; | V). As the
model (1) represents a Markov process (see, e.g., Ref. 33), the
hyperstate &, is a Bayesian posterior at time k, whereas
the prior at time k is &,—1=p(zxk—1 | Vi—1)- To determine the
posterior, the prior can be used to predict the hyperstate ;.
The predicted and posterior hyperstates are collectively propa-

gated through the Bayesian recursion’*

ék|k71:Jp(Zk | zk—1, ua—1) - &y dzi—y (3a)

POl 2e) - 1
fP()’k |2¢) - ék\k*l dzy

starting from &oj—; := p(z0), which is defined by p(xy) and
p(0). Note that the Bayesian filter (3) simplifies greatly when
the model (1) is linear, all model parameters are known, and
wy and v, are Gaussian sequences. In this case, p(zy | zi—1, ur—1)
and p(yx | z¢) are Gaussian for all &, and (3) reduces to the well-
known Kalman filter.>> In the general case, however, the right-
hand sides of (3a) and (3b) have no closed-form solution and
must be approximated.34

It is clear from (3a) that the control input u;—; directly
affects -y and thus the hyperstate &, which quantifies the
uncertainty associated with the state and parameters. Our
knowledge of the system can therefore depend on the control
input. When this is the case, the control input can be used to
reduce the model uncertainty through actively learning about
the system. Informally, active learning is possible when the
control input affects the covariance, or other higher-order cen-
tral moments, of the augmented state zk.36 In this case, the con-
trol input affects both the system state and the uncertainty,
which is referred to as dual eﬁ‘ect.36 In contrast, the system is
neutral when the control input almost surely affects only the
mean of z; (the first-order central moment) and not its uncer-
tainty. The presence of the dual effect is necessary for active
learning as it enables probing the system for information that
can reduce uncertainty. Note that both passive and active
learning use the information ), to reduce model uncertainty,
typically through some form of Bayesian recursion (3). How-
ever, probing is what differentiates a controller with active
learning from one that passively uses the input-output data,
with no ability to increase the information content.

Here, we consider optimal control of systems described by (1)
with reducible model uncertainty. Define a cost function in terms
of a terminal cost y(xy) and a stage cost £ (xx, uz) over a time
horizon 0 < k < N—1. With the sequence of control inputs
T = {Ug, Ugs1, ..., uy—1}, the cost from time & to time N is

&= (3b)

Ji(&p, mi)=Eq

N—1
> (g, u) +ly (xN)} 4)

Jj=k

where E,[-] denotes the conditional expectation with respect
to &=p(zx| Vi), p(w), and p(v) for all j > k+1. Consider
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some control policy p(&;) such that u; =g, (&;). Let 7y denote
the policy sequence that results in the optimal cost J; (;). The
sequence of optimal costs can then be written recursively as

JZ(ék): H}}‘n Ek[‘gk(xlwuk)+11t+l(ék+l)]a k:07 17 e 7N_l

(&)

with J5(&y)=En[fy(xn)]. The optimal cost J; (&) is also
known as the cost-to-go from time k to time N, starting from
&r. The recursive equation (5) is the Bellman equation, which
results from Bellman’s principle of optimality.”’ From the
Bellman equation, it is clear that as the cost function and opti-
mality are defined in terms of the hyperstate, the uncertainty
and how it is affected by the control input are implicitly
included in the optimal control problem. That is, unless the
system is neutral so that the control input cannot affect the
uncertainty, the optimal sequence of control policies inher-
ently probe the system when advantageous. This problem of
stochastic optimal control under model uncertainty is formu-
lated formally as follows.

ProBLEM 1. (Stochastic optimal control with active learn-
ing). For the horizon 0 <k <N, determine the optimal
sequence of control policies m;

o = argminJo (o, mo) (6)

o

subject to a model M of the form (1) or a model set M, the
probability distributions p(w) and p(v), the state chance con-
straint (2), and the input constraint u; € U.

Problem 1 was first posed by Feldbaum>*2® for uncon-
strained systems with parametric model uncertainty only. The
problem is often referred to as the dual control problem as the
dual effect and thus active learning is naturally accounted for.

There is no analytic solution to the Bellman equation except
for specific simple cases, such as the linear-quadratic regula-
tor, or LQR.*® In general, the Bellman equation can in princi-
ple be solved numerically, backward in time, using dynamic
programing. However, dynamic programing suffers from
exponential complexity growth in the dimensions of the state,
input, and uncertainty and is therefore intractable as a solution
strategy for larger problems, an issue known as the curse of
dimensionality. This has led to the development of approxi-
mate methods for solving the Bellman equation, broadly
referred to as approximate dynamic programming.”’40

In the following, we demonstrate the benefit from active
learning on a scalar system, for which the dual control prob-
lem can be solved almost exactly using dynamic programing.

Illustrative example
Consider two scalar, linear models M; and M, of the form

Xi+1=axy +bu; +wy

with the stochastic sequence w; being zero-mean, white
Gaussian noise and the state x; observed directly without
noise. The models have different parameters 0' =[a, b];
Model M, is stable but expensive to control (low input gain),
while model M, is unstable but cheap to control (large input
gain). Under the assumption that either M, or M, is a true rep-
resentation of the system, the model uncertainty arises from
not knowing which one is true. This leads to a simple dual
control problem that can be solved numerically using dynamic
programing. Despite its simplicity, the problem demonstrates
the benefit of probing the system to actively reducing
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uncertainty. The optimal control problem is minimizing a cost
function of the form Jk(.ék)=Ek[ij=._kl (qxf-i—ruf.)+qx,2v] with
q, r > 0; see the Supporting Information for details. In the fol-
lowing, P, and 1—P; denote the probabilities that models M,
and M, are true, respectively.

The benefit from solving the optimal control problem with
active learning (Problem 1), so that the dual effect is
accounted for, can be quantified in various ways. Arguably,
the most insight can be gained from comparing the optimal
costs for the solutions with active and passive learning. Using
dynamic programing to determine an optimal control policy
with active learning requires including the equations that
describe the dual effect for the system. In this problem, the
dual effect is accounted for by including the Bayesian recur-
sion (3) in the dynamic model, which relates the probabilities
P, and 1—P; to the observations of the state, which in turn
depend on the control input. Solving the Bellman equation (5)
backward in time, from k = N to k = 0, accounting for how the
control input affects both the state and the model probabilities,
enables the control policy to anticipate the learning outcome
from its actions. That is, the optimal control policy with active
learning accounts for how future state observations affect the
model uncertainty. In contrast, if the dual effect is not included
in the model when solving the Bellman equation, meaning the
effect of future state observations on uncertainty is unac-
counted for, the resulting control policy cannot anticipate
learning. In other words, the solution is determined under the
implicit assumption that the model probabilities remain con-
stant over time; that is, Py+; =P for all 0 <k < N—1. The
optimal control policy can therefore only result in passive
learning.

Here, the expected benefit from active learning is quantified
in terms of the difference between the optimal costs J (&)
obtained by solving (5) with and without accounting for the
dual effect. Denote the optimal costs with active and passive
learning by J; 4 (&) and Jg p(&o), respectively. The difference
O(&o) == (Jop(Co)=J5a(0))/N  quantifies the per-stage
improvement in the expected cost of optimal control with
active learning relative to that of optimal control with passive
learning. Figure 1 shows ®(&) as a function of the initial
hyperstate &,, which consists of the initial state xq and the ini-
tial probability P, that Model M, is true. The horizon N is cho-
sen sufficiently long so that the solution to the Bellman
equation does not change if N is increased further; that is, the
solutions are the infinite-horizon control policies. Figure 1
shows that active learning has no value over passive learning
along Pp=0 and Py=1. This is because these regions of the
hyperstate correspond to absolute certainty in which model is
true, implying no learning is possible. In the vicinity of xo=0,
there are two reasons the benefit from active learning is small.
First, (x¢, ux)=(0,0) is an equilibrium for both models, so the
cost function remains fairly small in a neighborhood of this
point. Second, even with passive learning, the correct model
will eventually be identified at a low cost as the state is near
the origin. Hence, even though the correct model can be deter-
mined faster in the vicinity of xo=0 with active learning, the
benefit of reduced model uncertainty does not outweigh the
cost of probing in this region of the hyperstate space. Further
away from xp=0, however, the control effort required to bring
the state to the origin is significant. Moreover, the conse-
quence of not knowing which model is correct is much greater
when the uncertainty is higher (i.e., Py is not close to O or 1).
Accordingly, the optimal control policy with active learning
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Figure 1. The expected per-stage value of optimal con-
trol with active learning relative to optimal
control with passive learning, ®(&,), as a
function of the hyperstate &, defined in terms
of the initial state xo and the initial probability
P, for Model M,.

[Color figure can be viewed at wileyonlinelibrary.com]

significantly outperforms the one with passive learning when
Xp is far from the origin and Py is close to 0.5. Note that the
benefit from active learning is always nonnegative as the con-
troller only probes the system when beneficial in expectation.

While the degree to which active learning is beneficial, if at
all, depends on a variety of factors, including operating region,
how much reduced uncertainty can improve the performance,
and the potential risks associated with probing. However, this
example demonstrates that even for a very simple system with
model uncertainty, optimal control with active learning can
have significant advantages for the control performance. Solv-
ing the Bellman equation numerically with dynamic program-
ing is tractable in this case as the hyperstate has dimension
two, the control input is scalar, and there are only two models.
Practically sized problems, however, require significantly
more computational resources, and the exponential growth in
problem complexity renders it intractable to determine the
exact solution to the Bellman equation.

Tractable solutions to the optimal control problem with
active learning

Exact solutions to certain simple instances of Problem 1 are
available in the literature,*'*** yet determining the sequence of
optimal control policies that account for the dual effect
through dynamic programing is generally not tractable.* The
computational challenges associated with Problem 1 have
motivated the development of methods capable of solving
practically sized problems of optimal control with active
learning. These methods, commonly known as approximate

*While an in-depth discussion of state chance constraints is be}/ond the scope of this
article, this form of constraints are intractable in optimization 344 and contribute to
the complexity of Problem 1.
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dual control, can be classified as implicit and explicit
approaches to dual control. 43 Broadly, implicit dual control
involves obtaining an approximate solution to the Bellman
equation (5), which has the learning component implicitly
included through the hyperstate as discussed above.*®*’
Explicit dual control, conversely, generally refers to replacing
Problem 1 with a surrogate optimization problem that accounts
for a measure of reducible model uncertainty.“gf5 3 Thus,
explicit methods incorporate some form of probing into the
optimal control problem explicitly through approximation of
Problem 1.

MPC with active learning is a growing area of research.
The various approaches in the literature primarily differ in
how probing is introduced in the optimal control problem.
One class of methods relies on a constraint added to the opti-
mal control problem so that the closed-loop data generated by
the MPC be sufficiently informative for maintaining the
model.>*>> A potential disadvantage of this approach is that
the resulting probing of the system, necessary to generate the
informative data, may be excessive and lead to a reduction in
control performance. Another class of methods modifies the
cost function of the optimal control problem to include a term
that quantifies the model uncertainty.so’5 ' The MPC then bal-
ances the control cost, based on the uncertain model, with
probing for active learning. Some of the key challenges in
these approaches include tuning the controller to achieve an
appropriate balance between the control and probing features
of the inputs, and ensuring that the controller probes the sys-
tem only when beneficial.>* Note that implicit dual control
methods generally do not suffer from these challenges, often
at the expense of computational complexity.

While outside the scope of this article, MPC with active
learning is not only relevant for model uncertainty. In output-
feedback MPC,SG_59 the controller does not have direct access
to the system state for feedback, but rather a measured subset
affected by noise. An output-feedback MPC generally relies
on a state estimator, commonly based on a Bayesian frame-
work like (3), to estimate the state. For nonlinear systems, the
quality of the state estimate depends on the control action.
Furthermore, the state in a nonlinear system may be only
locally observable, in which case the controller must take spe-
cial care to prevent the loss of observability. In these situa-
tions, probing can be used to improve the state estimate and in
turn improve the control performance.ﬂ’é("’61

The remainder of this article demonstrates the importance
of active learning in the context of MPC under model uncer-
tainty. We present two case studies, one with parameter and
one with model-structure uncertainty, in which tractable surro-
gates for Problem 1, inspired by explicit dual control, are
solved in a receding-horizon fashion. Without advocating par-
ticular approaches to MPC with active learning, we illustrate
the importance of active learning as a general strategy for
improving MPC performance when the model uncertainty is
significant.

MPC with Active Learning for Parametric
Uncertainty

This section presents a case study in which a change in the
process, represented by an abrupt reduction in a model param-
eter, can cause significant deterioration of the control perfor-
mance. The results demonstrate how online model adaptation
using informative closed-loop data, generated by a controller
with active learning, can mitigate control performance loss
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Figure 2. Closed-loop performance of (a) standard MPC in Strategy 1 and (b) MPC with open-loop model adapta-
tion in Strategy 2 under parametric model uncertainty.

From top to bottom, the plots show the control inputs ¢ and 7. and the measured states C4, and T,. The black dashed lines and
the red solid lines represent the setpoints and constraints, respectively. [Color figure can be viewed at wileyonlinelibrary.com]

from the parametric model uncertainty. Consider a CSTR with
two states, two inputs, and two uncertain model parameters.62
The process dynamics are’

aCy g, . .. ~E
W = % (CA,m CA) koexp (RTr> CA (73.)
dT, q AH —E UA
=TT, — — ) Cpt ——(T.~T,
rAAE p, FOSXP (RTT) Ca pCPV( =T

(7b)

where C, is the concentration of species A, with the inlet con-
centration Cyjn; T is the reaction temperature, with the inlet
temperature Tj,; ¢ is the manipulated volumetric flow rate; T, is
the manipulated coolant temperature; & is the kinetic constant
of the reaction; E is the activation energy; R is the gas constant;
AH is the reaction heat; U is the heat transfer coefficient; A is
the heat transfer area; p is the density; and ¢}, is the heat capac-
ity. Both state variables C, and T, are measured and are subject
to additive zero-mean Gaussian white noise with known vari-
ance. However, the model is uncertain as the kinetic constant &
and the reaction heat AH are unknown, but have known initial
probability distributions p(kg) and p(AH).

A discrete-time state-space model of the form (1), with
parametric uncertainty in 0 =[ky, AH], is used to design an
MPC for the CSTR. The control objective is to maintain a
specified productivity gC,, while avoiding product quality
loss by an unacceptably low concentration of A. This control
objective translates to keeping C, at a desired setpoint with
minimal control effort while ensuring C, is above a specified

“For clarity of presentation, a deterministic process with no disturbances is considered
in this case study.
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lower bound at all times. We formulate this optimal control
problem as

min J (8a)
e s
subject to Xg+j+1=f (Xetj, Ur+j, Ok) (8b)

40 dm3/min < gr+j <120 dm3/min (8¢)

290 K < Tey4j <320 K (8d)
0.485 mol/dm’® < Cy )41 (8e)
j=0,1,...,N—1
where
N—1
I= " Iwsi= g+ e llg + een = Xl
j=0

with (%,i)=(Ca, T;, g, T.) denoting the desired operating
point and HSHJZW := s Ms. The parameters used in the model
and in the MPC are listed in the Supporting Information. Note
that the lowest acceptable value of Cy4, 0.485 mol/dm?, is only
3% below the target concentration C4=0.5 mol/dm?. The opti-
mal control problem (8) is solved in a receding-horizon man-
ner at every measurement sampling instant k given the state
Xy, which is estimated by an extended Kalman filter.

Four MPC strategies are considered for the CSTR (7) with
parametric model uncertainty. Strategy 1 uses a standard MPC
with no form of parameter estimation; that is, the uncertain
model parameters 0 in the optimal control problem (8) are at
all times equal to their nominal values determined at the MPC
commissioning. In Strategy 2, once a noticeable drop in the
control performance is observed, an open-loop identification
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the measured states C4 and 7. In the plots of C,, the red solid lines represent the constraint. The black dashed lines represent the
setpoints. [Color figure can be viewed at wileyonlinelibrary.com]

experiment is performed to reidentify the model parameters
offline and, accordingly, update the model in the optimal con-
trol problem (8). The parameter estimate resulting from the
one-time reidentification is used at all subsequent times. Strat-
egy 3 uses the same MPC formulation as the above strategies,
except the uncertain model parameters are estimated online at
every sampling time using an extended Kalman filter and are
accordingly updated in the optimal control problem (8). Note
that the online adaptation of the model in Strategy 3 relies on
the closed-loop data generated by the feedback action of the
controller, with no effort to increase the amount of informa-
tion. This is therefore an MPC strategy with passive learning.
Strategy 4 involves modifying the optimal control problem (8)
to incorporate some form of probing in the control inputs to
increase the information content of the closed-loop data used
for the online parameter estimation with the extended Kalman
filter. The controller adds probing to the input ¢ that consists
of steps of magnitude 1 dm*/min when the prediction error is
above a given threshold. Thus, this is an MPC strategy with
active learning.

The performance of these four MPC strategies is evaluated
when a change in the process at time 5 min causes an abrupt
drop in the reaction constant k, from 7.2X10'° to 6.48x10'°
min~', a reduction of 10%. The closed-loop performance of
Strategies 1 and 2 are shown in Figure 2. Strategy 1 is incapa-
ble of keeping C, close to the setpoint C 4 after the drop in o,
with C, significantly below its lowest acceptable value (see
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Figure 2a). In Strategy 2, the controller is switched off 1.5 min
after the drop in ky to perform an open-loop identification
experiment from time 6.5 to 8.0 min. The identification experi-
ment involves five steps of magnitude +5.0 dm*/min in the
flow rate ¢ (see Figure 2b)." The open-loop data are used for
offline least-squares estimation of the model parameters, with
the estimate of ko within 2.4% of its true value. Despite using
the reidentified model in the MPC after time 8.0 min, Figure
2b shows that the process has already drifted away from the
setpoint (shown by a black dashed line) and the MPC is unable
to restore the control performance in terms of adequate set-
point tracking. Furthermore, the MPC is only partially capable
of meeting the product quality requirement on C,, with minor
but frequent violations of the constraint (8¢) (shown by the red
solid line).

The effect of online estimation of the uncertain model
parameters on the MPC performance is presented in Figure 3.
Figure 3a shows the performance of the MPC with passive
learning in Strategy 3. After the abrupt change in k&, at time
5.0 min, online parameter estimation enables adapting the
model and reducing the uncertainty. However, the estimate of
ko converges slowly to its true value, leading to a large offset
in setpoint tracking and more importantly constraint violation
for C4. The slow convergence of ky can be attributed to the

“For an overview of systematic approaches to optimal experiment design for parame-
ter estimation, see Refs. 11 and 12.
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controller taking no active steps to improve the learning. That
is, Strategy 3 incorporates only passive learning from the data
generated by the feedback action of the MPC. Figure 3b demon-
strates the performance of the MPC with active learning in
Strategy 4. After detecting an increase in the model-output pre-
diction error, the MPC with active learning increases its mea-
sure of model uncertainty by resetting the covariance in the
extended Kalman filter to a large value. To reduce the model
uncertainty, the controller then adds a probing signal to the con-
trol with the purpose of causing the process to generate more
informative input-output data for parameter estimation. As a
result, the estimate of ko quickly converges to its true value.
This in turn enables the MPC to maintain C4 close to the set-
point and avoid constraint violation. The results shown in Fig-
ures 2 and 3 clearly demonstrate the superior performance of
the MPC with active learning in effectively dealing with the
parametric model uncertainty and consequently mitigating the
control performance loss.

Figure 4 contrasts the performance of the four MPC strate-
gies in terms of maintaining the desired productivity. Note
that this productivity is closely related to the economics of the
operation. While some productivity loss from the process
change is unavoidable, the figure shows that the MPC with
active learning (Strategy 4) results in the least loss. The stan-
dard MPC (Strategy 1) and the MPC with offline model adap-
tation (Strategy 2) lead to the highest losses among the four
strategies. This is because the MPC in these strategies do not
benefit from any form of online model adaptation to reduce
model uncertainty. Note that Strategy 2 performs worse than
Strategy 1 as a result of the excitation during open-loop opera-
tion, which takes the process so far from the operating point
that the controller is unable to bring the process back. While
the MPC with passive learning (Strategy 3) results in a lower
loss in productivity, the model adaptation is still inadequate
relative to the MPC with active learning (Strategy 4), which
probes the process for active uncertainty reduction. This case
study clearly illustrates the potential advantages of integrating
MPC and probing for active learning to handle abrupt process
changes.

MPC with Active Learning for Model-Structure
Uncertainty

The focus of this section is the problem of uncertainty in the
structure of the model used to control the process. This

AIChE Journal August 2018 Vol. 64, No. 8
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problem is posed using a set of candidate models M, which is
assumed to contain a model whose structural form matches
that of the process at any given time. This type of model struc-
ture uncertainty may arise when the process can transition
between different modes of operation in an unpredictable man-
ner or can undergo abrupt structural changes. A typical form
of abrupt change that can be captured by a change in model
structure is process faults and failures, making the framework
presented here particularly suitable for MPC with active fault
detection and diagnosis.5’63_65 Under this type of uncertainty,
the probing is introduced for discriminating between multiple
model candidates. The problem of MPC with active learning
for model-structure uncertainty has received considerably less
attention than the formulation that considers uncertain parame-
ters.®® In the following, we demonstrate the possible benefits
of MPC with active learning under an uncertain model struc-
ture by letting the controller inject probing signals for
improved discrimination between multiple models.

We consider a continuous bioreactor where the control
objective is to maximize the process productivity, defined as
the concentration multiplied by the dilution rate. The process

dynamics are®”®
dX=(—DX+pX)dt+oxdwx(r) (9a)
AS=(D(S;—S)— —— 1X)dt+ ssdws (1) 9b)
Yy/s
dP=(—DP+(opu+B)X)dt+apdwp(t) (9¢)

Here, X, S, and P are the concentrations of biomass, sub-
strate, and product. The dilution rate D is the control input
(u(t)=D(t)), and the volume is kept constant by ensuring
the volumetric inlet and outlet flows are identical. The
substrate concentration in the inlet feed is denoted by Sp,
Yx,s is the yield of biomass per substrate consumed, o and
p are the yield parameters, u is growth rate of biomass, and
wx (1), ws(t), and wp(t) are independent, zero-mean unit-var-
iance Weiner processes scaled by standard deviations oy, gy,
and op.

Here, we consider three process models: the nominal model
with saturation/Monod kinetics, a product inhibition model, in
which the growth rate decreases with the product concentra-
tion,%” and a model with saturation kinetics combined with a
drop in the substrate inlet feed concentration. That is,

S
- % in Models M, and M, (10a)
and
(1-P/P
_ Fanax(1=P/Pm)S in Model M5 (10b)

Ky+S

where pu,.. denotes the maximum growth rate, Kj, is an
affinity constant, and P, is the maximum production rate.
Models M, and M, can be interpreted as representing struc-
tural model uncertainty, with two different growth-model
hypotheses that may be valid for different growth condi-
tions. The third model represents a disturbance or fault that
may occur during operation but is difficult to identify under
regular feedback control:

sP=0.3sM" (11)
The model parameters, initial conditions, and operating condi-

tions are listed in Table S3 in the Supporting Information.
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The parameter p,,, is assumed unknown and estimated together
with the states, using an extended Kalman filter with the sub-
strate and  product  concentrations  both  measured,;
Vi=[Sk, Pk]T+vk. Note that there is no active learning of this
parameter in the algorithm used in the results presented below.

The objective in the MPC is to minimize the stage cost
(P,[;fgi—ﬁ)2+(uk+j—5)2, where i} is the index of the model
with the highest probability. The terminal cost is (PH v—P).
The optimal operating point (P, D) for maximizing productiv-
ity is determined offline.®® The goal of active learning here is
to faster and with higher confidence identify the structure that
represents the current process behavior, while simultaneously
maintaining production until intervention, if necessary,
restores the process. We consider a scenario in which the pro-
cess initially evolves according to Model M. At time t=3 h, a
change occurs and the process starts evolving according to
Model M,. If and when the change is detected, the process is
restored through intervention so that it again evolves accord-
ing to Model M, after 0.5 h. A Bayesian recursion of the form
(3) is used to compute the model probabilities P, online.

The algorithm adopted here for MPC with active learning
under model-structure uncertainty is presented in detail in Ref.
69, and involves actively probing the process for discriminat-
ing between a set of model hypotheses. The MPC algorithm
uses the Bayesian decision rule for hypothesis selection to
minimize the risk of selecting the wrong model, given the
input and output data recorded from the process up until the
current time.”® This risk does not have a closed-form expres-
sion for general nonlinear models, and must therefore be
approximated. Thus, active learning under model-structure
uncertainty is incorporated in the MPC by explicitly augment-
ing the control cost with a weighted term that approximates an
upper bound on the selection-error risk. The approximate
bound’! is computed online by linearizing the model around a
state trajectory and predict the first two statistical moments of
the state. The associated weight, referred to as a model-
discrimination weight, is a tuning parameter in the control
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design. An appropriate value for this weight is chosen through
Monte-Carlo simulation of the process with different values of
the weight, as discussed in the following.

When explicitly augmenting a cost function for control with
a term that provides some measure of model uncertainty, there
is a form of trade-off between the control cost and the cost
associated with reducing model uncertainty. Minimizing the
augmented cost function is to balance minimization of the
control cost, based on the current potentially wrong model,
with minimization of the uncertainty, which improves that
model. Here, the trade-off between reducing the selection-
error risk to improve the model and minimizing the control
cost based on the current model, which is potentially wrong
structurally, is captured with the model-discrimination weight
in the cost function of the MPC. We determine this weight for
best overall performance through Pareto analysis. Figure 5
shows a Pareto front that demonstrates the trade-off between
detecting a structural change and the tracking error in product
concentration during the detection phase. The ordinate shows
the average model-selection time, defined as the time elapsed
between the occurrence of the structural change and correct
model selection. The abscissa is the average closed-loop
squared tracking error in product concentration, normalized
through dividing by the number of sampling intervals elapsed
between the structural change and selection of the correspond-
ing model. Hence, this provides a measure of how much the
product concentration tends to deviate at any given sampling
time as a consequence of increasing the weight of probing for
active learning. The top-left point in Figure 5 corresponds to a
weight of zero, which means the controller makes no attempt
to reduce the probability of error in the model selection. The
bottom-right point corresponds to the other extreme: the stage
and terminal cost for control are removed from the cost func-
tion and the controller only minimizes the selection-error risk.
In this case, the algorithm makes no attempt at keeping P, and
Dy, close to their desired values. For the values in between, the
weight increases from left to right. Slightly increasing the
weight from zero leads to a large improvement in the model-
selection time with minimal increase in tracking error. This
shows that a relatively small adjustment to the operating strat-
egy can result in large gains in uncertainty reduction with neg-
ligible change in the standard control cost. Note that the
potential gains from early detection of the structural change
are not included in Figure 5. Thus, this figure does not imply
any overall trade-off between reducing model-selection error
and improving productivity.

A value of the model-discrimination weight that balances
the stage cost and the probability of model selection error is
used in the MPC algorithm with active learning to induce
probing after a sudden drop in productivity signals a possible
change. That is, the weight goes from zero to its preselected
value, enabling the controller to probe the process for discrim-
ination between the models and select the model that best
describes the recorded measurements. This phase, with prob-
ing for determining the model with the correct structure, lasts
until the probability of a model that was previously considered
to not represent the process has the largest probability for a
predefined amount of time. In other words, when one model
retains the highest probability for a sufficiently long time, this
model is selected by controller.

Figure 6 shows a simulation that compares the evolution of
the probabilities P, for the three model hypotheses with pas-
sive (a zero weight on model discrimination) and active
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Active learning reduces the time required to select the correct model by 36% relative to passive learning. The jump in probability
for Model M; occurs as the system is restored to its original structure. [Color figure can be viewed at wileyonlinelibrary.com]

(a positive weight) learning. Some time after the new model
for the structural change is correctly selected the process is
restored to its original structure. In this particular case, going
from passive to active learning reduces the time to correctly
identify the change in the process from 7.6 to 4.9 h, which is a
36% reduction.

The overall objective in the optimal control problem is to
maximize productivity, defined as P;D;. Figure 7 shows the
evolution of process productivity, comparing three control strat-
egies: (i) a standard MPC with a static model structure and no
updating of the model-structure probabilities (no learning), (ii)
a controller identical to (i) but with a Bayesian estimator that

6 —
— =— Optimal productivity
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Figure 7. Comparison of productivity P,Dy in the cases
of standard MPC with no learning, passive
learning, and active learning.

The dashed black line represents the optimal productivity.
[Color figure can be viewed at wileyonlinelibrary.com]
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updates the probabilities of the model candidates (passive learn-
ing), and (iii) a controller identical to (ii) but with a term added
to the cost function that represents the risk of selecting the
wrong model (inducing probing for active learning). The con-
troller with no learning never recovers from the structural
change as it makes no attempt to identify its occurrence. The
controller with passive learning performs better, but not as well
as the approach with active learning. The active learning is thus
instrumental in bringing back the productivity since it facilitates
selecting the new correct model faster.

The extent to which productivity is improved by MPC with
active learning relative to passive learning and no learning is
summarized in Table 1. The productivity is determined
through 20 Monte-Carlo simulations that each span 16 h. The
MPC with active learning increases average productivity by
14% over passive learning and by 27% over no learning. This
demonstrates that probing for active reduction of model-
structure uncertainty has the potential to significantly improve
control performance on average.

Future Research Directions

This article demonstrates that MPC with active learning
under parametric or structural model uncertainty can mitigate
significant loss in control performance from unanticipated sud-
den changes in the system. This control approach can advance
the area of active fault diagnosis and fault-tolerant control.®®
Fast and high-confidence diagnosis of incipient faults under
closed-loop control can prevent severe failures and facilitate
safe and graceful degradation until appropriate intervention
can take place. This can be of great importance in a wide range
of applications, in particular where safety is imperative.

Table 1. Productivity per Sampling Instant, Averaged over
20 Monte-Carlo Simulations, for the MPC with Active
Learning, Passive Learning, and No Learning

Active learning

Passive learning

No learning

3.59

3.16

2.83
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However, theoretical and practical aspects of MPC with active
learning for fault-tolerant control remain open and further
research is required.

In the chemical process industry, optimal operation is com-
monly related to economic objectives. Here, MPC is generally
implemented in a hierarchical control structure, where the
“optimal” setpoints to the MPC layer are determined by real-
time optimization (RTO) of an economic cost function.””> The
way to best incorporate active learning into this hierarchical
control structure is an open question. MPC with active learn-
ing will generally improve the quality of the uncertain model
(when possible and necessary), but the setpoints previously
computed by the RTO may no longer be economically optimal
for the updated model. In other words, active learning will
improve tracking and constraint satisfaction at the MPC layer,
but this may not necessarily lead to the best economic out-
come of the operation. Yet, there may still be significant
advantages to using the model obtained with active learning,
in particular in terms of constraint satisfaction, until new eco-
nomically optimal setpoints are recomputed by the RTO using
the adapted model.

Combining the RTO and MPC layers in the hierarchical
control structure has been an active area of research in recent
years. One promising approach is economic MPC (EMPC),
which directly optimizes the economics of the system subject
to the dynamic model.”*’* Incorporating active learning in
EMPC is a potentially promising area for future research, as
this formulation would be able to determine the true economic
cost and benefit of improving the model. In this way, the
EMPC with active learning could select an operation mode
that optimally balances the “cost of learning” and the expected
economic gains from improving the model.
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