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In this work we present a replicated data hybrid OpenMP/MPI implementation of a hierarchical 

progression of approximate classical polarizable models that yields speedups of up to ~10 compared to 
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software will prove useful for those who are interested in how molecular properties converge in the 

condensed phase with respect to the MBE, it provides a fruitful test bed for exploring different 

electrostatic embedding schemes, and offers an interesting possibility for future exascale computing 

paradigms. 
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1. INTRODUCTION 

One of the most tractable classical models for condensed phase simulation is the assumption of a 

pairwise additive, fixed charge force field. Such models are widely available and often highly 

successful for many chemical systems, due to the many years devoted to optimization of their 

parameters, and benefits of long sampling trajectories arising from their highly scalable software 

implementations. Even so, pairwise additive treatments do often break down for heterogeneous 

environments[1-3] and lack transferability[4-6], although it can’t always be anticipated why or for 

which chemical systems. In principle, mutually polarizable models offer a significant improvement in 

the physics of classical force fields[6-32]. However, the corresponding complexity of an advanced 

polarizable model increases significantly enough so that they are more difficult to parameterize, 

statistical convergence of condensed phase observables is harder to achieve, and optimal software 

implementations become more elusive. Therefore well-defined  approximations to full classical 

polarization are of interest. 

We have used the many-body expansion (MBE) to the total potential energy of an N-body system 

      𝑈 = 𝑈" + 𝑈$ + 𝑈% + ⋯																																																																				(1) 

to define a set of hierarchical approximations to the full mutual polarization of a classical inducible 

point dipole model, AMOEBA.[33] We showed that when Eq. (1) is truncated at the level of trimers of 

water molecules,  
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it captures direct polarization exactly, i.e., where the induced dipoles respond only to the permanent 

electrostatic field.[6,33,34] At this level of approximation it requires extensive reparameterization to 

recapture the missing mutual polarization response, as we have shown for the so-called inexpensive 

iAMOEBA model.[34] In turn, by including mutual polarization up through trimers of water 

molecules, and where the induced dipole interactions of the small subsystems are generated in isolation 

of its surrounding, the 3m-AMOEBA recaptures some of this missing mutual polarization energy[6], 

but now with large errors in the polarization forces.[33] We demonstrated how to improve the MBE 

convergence of gradients by embedding the polarization response of dimers and trimers within a more 

complete representation of the fixed electrostatics of the entire system.[33] We then introduced a 

practical scheme for representing electrostatic embedding by fragmenting the system into M large 
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clusters, i.e. to define a body as being comprised of 100’s of water molecules, and show that the 

resulting 3M-AMOEBA model improves accuracy of not just energy but forces as well.[33]  

The very nature of the MBE approximation increases computational cost but at the same time 

admits a trivial parallel implementation, as the polarization energy, gradient, and virial of the 

subsystems are independent of one another. We have reported on the CPU parallelization of the direct 

polarization iAMOEBA in other work.[35] In this paper, we provide a detailed account of the parallel 

implementation of the approximate 3m-AMOEBA and 3M-AMOEBA mutual polarization models in 

the reference TINKER7 code. The paper is outlined as follows. In Section 2 we introduce the 

AMOEBA model[11,36] and its approximations whereby a body is defined as either one water 

molecule, which defines the 3m-AMOEBA model, or the system is fragmented into M large clusters to 

define the 3M-AMOEBA model. In Section 3 we describe their hybrid MPI/OpenMP replicated data 

strategy with an optimized load-balancing scheme implemented on a modern CPU hardware 

architecture. In Section 4 we present timings and weak and strong scaling profiles for the parallel 

implementations of the 3m-AMOEBA and 3M-AMOEBA approximate models. In Section 5 we 

discuss future directions and potential uses of the approximate AMOEBA models and provide a brief 

summary of results. 

 

2. AMOEBA POLARIZATION MODEL 

The classical polarization model AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular 

Applications) belongs to the class of molecular mechanics force fields that aims for higher accuracy 

than fixed partial charge potentials due to explicit accounting of many-body polarization.[11,36] 

AMOEBA has the following physical functional form for the interactions among atoms 

𝑈 = 𝑈𝑏𝑜𝑛𝑑 + 𝑈𝑎𝑛𝑔𝑙𝑒 + 𝑈𝑏𝜃 +	𝑈𝑜𝑜𝑝 +	𝑈𝑡𝑜𝑟𝑠𝑖𝑜𝑛 +	𝑈𝑉𝐷𝑊 +	𝑈𝑒𝑙𝑒𝑐
𝑝𝑒𝑟𝑚 + 𝑈𝑒𝑙𝑒𝑐

𝑖𝑛𝑑 																			(3) 

where the first five terms describe the valence interactions and the last three terms are the nonbonded 

terms, including van der Waals (vdW), electrostatic contributions from permanent atomic multipoles 

up through quadrupoles, as well as polarizable dipoles. The bottleneck in the evaluation of Eq. (1) 

resides in the last two terms comprising the fixed electrostatics as well as the N-body polarization 

term, which involves an extensive amount of algebra in the calculation of an iterative solution of the 

inducible dipole moments to self-consistency.[6]  

The current reference implementation of the AMOEBA model in the TINKER7 package is 

~100 times the cost of a fixed monopole model when optimally implemented in standard community 

codes such as Amber[37], NAMD[38], and OpenMM[39]. The primary computational cost of the 

AMOEBA model is the N-body interaction of an inducible dipole interacting with the electric field 
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arising from the fixed multipoles and other inducible dipoles. We can express the total polarization 

energy, Upol, as the induible dipole 𝜇⃗567 dotted into the electric field, 𝐸9⃗ 		 
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1
2
(𝜇567)> ∙ 	𝐸9⃗ 																																																																			(4a)	
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where ai is the isotropic polarizability of atom i, Tij is the interaction tensor between atoms i and j 

containing derivatives of 1/rij according to the permanent multipole expansion, and Mj are the 

permanent multipole moments; the T and M tensors in the first term of (3c) encompass the 13 

permanent multipole moments for the AMOEBA potential (q, µx, µy, µz, Qxx, Qxy, Qxz, Qyx, Qyy, Qyz, 

Qzx, Qzy, Qzz). Thus, the first term in Eq. (4c) corresponds to the direct polarization response, and when 

the last term is ignored, it defines the functional form of the iAMOEBA model[34]. The last term in 

Eq. (4c) represents the electric field at atom i due to the induced dipoles at all other atomic sites, µj, 

where Tij¢ is the interaction tensor between atoms i and j containing derivatives of 1/rij according to the 

inducible dipole-dipole interactions. This must be solved self-consistently and contributes to the 

expense of the AMOEBA model. Under the 3m-AMOEBA and 3M-AMOEBA models, N is replaced 

by the fragment size n, and the computational cost of the polarization calculation is reduced by the 

trivial parallelization of the independent subsystems. 

 

3. PARALLEL IMPLEMENTATION METHOD 

The computational efficiency of the 3m-AMOEBA and 3M-AMOEBA models rests not only on the 

reduced expense of the polarization calculations of the individual subsystems, but also on the rapid 

decay of 2- and 3-body energies with inter-body distance and the consequent amenability of distance 

cutoffs, and thus, neighbor lists. It is clear that while an individual calculation under the 3-body 

approximation is cheaper, if one did not exploit distance cutoffs, one would be faced with an O(n3) 

calculation (n=total number of bodies) that would not be faster than the original fully mutually 

polarizable implementation even with the best parallelization strategy. When one makes use of 

distance cutoffs and neighbor lists, the O(n3) computational complexity is reduced to a linear O(k*n) 
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calculation, where the prefactor k depends on the distance cutoff for the triplets since their factorial 

increase dominates the cost. Due to our use of distance cutoffs, we must therefore apply a smoothening 

function to the polarization energy, gradient, and virial in a short window just inside the cutoff distance 

(rsmoothen < r < rcut) to ensure conservation of energy and a stable temperature, using well known 

techniques developed by Brooks and co-workers[40].  

3m-AMOEBA Model. We use a parallel, hybrid MPI/OpenMP, replicated data (atom-

decomposition) scheme wherein the atomic coordinates are known to all tasks and the final energy, 

force, and internal virial are accumulated on a single task. We implemented the atom-decomposition 

scheme instead of the other well-known parallel strategy of spatial decomposition, since the relevant 3-

body interactions are not easily partitioned into spatial domains since they are more diffuse than pairs, 

thereby precluding a straightforward spatial decomposition approach. Instead, the 1-, 2-, and 3-body 

polarization energies, gradients, and internal virials are accumulated in a single loop structure using 

nested pairwise neighbor lists. Furthermore, we can evaluate the polarization energy and forces for 

pairs and triplets of water molecules exactly by simple matrix inversion, with no need to use a SCF 

solver; indeed in our development of 3m-AMOEBA we found that matrix inversion was faster than 

either Cholesky factorization or SCF for the small subsystem sizes.  

We can also avoid a reciprocal-space calculation of polarization and perform a real-space only 

calculation without any significant loss of accuracy, rendering each call to calculate the polarization 

energy, gradient, and internal virial of the subsystems much more lightweight. An added benefit of the 

single-molecule body is that the 1-body energy becomes zero in the absence of reciprocal space in the 

AMOEBA force field. Early on in our development of the 3m-AMOEBA model we ensured that 

neglect of reciprocal space introduced errors in the polarization energy that were an order or magnitude 

or less than the errors associated with the 3-body approximation itself, which we reported in previous 

work6.  Errors associated with neglect of Ewald for the 3m-AMOEBA approximation are presented in 

Table S1.  Moreover, in our appraisal of the robustness of the MBE for condensed-phase properties of 

water, we found that neglect of Ewald for polarization under the standard, full N-body AMOEBA 

model gave a correct O-O radial distribution function and accurate densities; this will be reported on in 

more detail in future work featuring the performance of the MBE in the prediction of condensed-phase 

properties of water.   

A FORTRAN-like pseudocode version of OpenMP parallelization on a single MPI task for 3m-

AMOEBA is illustrated in Figure 1. However, a complete and efficient parallel implementation 

requires a scheme whereby work associated with the calculation to be parallelized is apportioned 

among the MPI tasks as equally as possible using load balancing to ensure better strong scaling. The 

rationale underlying the load-balancing scheme that we implemented becomes clear when one inspects 
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the pseudocode for the polarization calculation in Figure 1. For example, when we consider a given 

molecule represented by one iteration of the outer do loop in Figure 1, we see that the work or “load” 

associated with that molecule is determined by the number of neighbors of that molecule, represented 

by the second do loop, as well as the number of neighbors of those neighbors, which is represented by 

the innermost loop. Our load-balancing strategy therefore recognizes the need to partition the work 

according to the number of neighbors of each molecule or body and the neighbors of those neighbors. 

Our load balancing among multiple MPI tasks is shown in FORTRAN-like pseudocode in Figure 2.  

As dictated by Amdahl’s law, we parallelized the next most expensive components of the 

calculation, namely the real-space contribution to the permanent multipole electrostatic energy, 

gradient, and virial as well as the van der Waals energy, gradient, and virial. For these other types of 

non-covalent interactions, the load balancing is straightforwardly determined based on the total 

number of neighbors of each atomic site. Unlike an OpenMP-only code, we can have the covalent 

interactions execute on one MPI task (e.g., task_id=0), the reciprocal-space portion of permanent 

multipole electrostatics on another task (task_id=1), the real-space permanent electrostatics on a 

separate set of MPI tasks not equal to 0 or 1, and the vdW on yet another separate set of tasks. The 

neighbor list update is the next most expensive operation after the energy/force/gradient calculation, 

and in our implementation all relevant neighbor lists (polarization, real-space electrostatics, and vdW) 

are built de novo on the appropriate tasks at the start of the simulation, and the relevant portions are 

updated for the vdW and real-space electrostatics on each task according to the atoms for which a 

given task is responsible. The entire polarization neighbor list must be updated for all tasks, as is 

evident from the implementation of polarization outlined in Figure 1.   

The full pseudocode for a single MD time step using the hybrid OpenMP/MPI replicated data 

strategy for 3m-AMOEBA is shown in Figure 3. The equations of motion are integrated on a single 

MPI task, the so-called “master” task. Due to the fact that we have a replicated data parallel 

implementation, there are a few global communications that must be performed at each time step, such 

as the updated coordinates that must be broadcast to all tasks, or in a constant pressure (NPT) 

simulation, where the periodic box dimensions must be broadcast as well at each time step.  The total 

polarization energy, gradient, and virial, as well as the corresponding quantities for the real-space 

permanent electrostatics and vdW, must be summed on the master task.  

3M-AMOEBA Model. As we have shown elsewhere[33], the level of accuracy for 3m-

AMOEBA gradients is quite poor, requiring higher order terms in the MBE in Eq. (1). However, if we 

embed the polarization response of the water dimer and trimer systems within a larger electric field 

environment, we can greatly reduce the errors in forces.[33] We can recover a pragmatic 

approximation to the electrostatic embedding result by changing the definition of a body to one defined 
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by a larger cluster of tens to hundreds of water molecules, M, which renders a more accurate model 

for forces in 3M-AMOEBA. A trivial parallel implementation is also possible for 3M-AMOEBA, but 

in this case we have to contend less with a curse of numbers, as in 3m-AMOEBA, but now rather with 

much larger subsystem sizes. Figure S1 shows the simultaneous accumulation of 1-body, dimer, and 

trimer contributions to the polarization and permanent electrostatics, which differs from that in Figure 

1 for 3m-AMOEBA. The subsystem-specific 1-body results must be saved for the 2-body and 3-body 

terms, and the relevant dimer results must be saved to calculate the 3-body term. The final polarization 

energy, gradient, and virial is assembled after the 2-body and 3-body terms have been calculated 

according to Eq. (2).  

The need to enforce simultaneous execution of the larger subsystem calculations informs the 

load balancing strategy for 3M-AMOEBA (Figure S2). Now, we see that the load balancing is 

determined by the cluster size, and that there is an inevitable need to apportion the neighbors of a given 

cluster among tasks. A complete MD time step is displayed in pseudocode in Figure S3 for 3M-

AMOEBA, in which there are a few apparent distinctions at this level from the implementation of 3m-

AMOEBA, namely, that we must allocate and zero out matrices storing subsystem specific 1-body and 

dimer terms for the to be used for the evaluation of 2- and 3-body terms per Eq. (2).  Secondly, the 

larger subsystem sizes under 3M-AMOEBA necessitate the use of subsystem-specific neighbor lists 

for each of the monomer, dimer, and trimer subsystems.  

In principle we can formulate ideal serial timings for the 3M-AMOEBA model, t3M-AMOEBA, i.e. 

without parallelization as 

𝑡%L0MLNOPM~𝑀 ∗ 𝑡6,MLNOPM + 𝑀$ ∗ 𝑡$6,MLNOPM + 𝑀% ∗ 𝑡%6,MLNOPM																			(5) 

where tn,AMOEBA and where t2n,AMOEBA corresponds to the regular 12-core OpenMP timings of 

permanent electrostatics and polarization for AMOEBA using TINKER7 for a system size of n=N/M; 

the timing t3n,AMOEBA corresponds to just the polarization calculation. It is interesting to note that we 

can use a coarse-grained representation of the PME grid (but with a larger real-space cutoff) without a 

great deal of error for the larger sub-systems, which reduces the cost of these calculations, however it 

is also true that this approximation will worsen as cluster size n decreases back to a single water 

molecule. For parallel timings we assume that we have 12*(M+M2+M3) available cores, such that each 

monomer, dimer, and trimer cluster calculation is performed on a single MPI task.  

Table 1 shows the resulting hypothetical parallel timings when the system is fractionated into 

10, 20, and 30 clusters, yielding speed ups of up to ~2.75-8.0 for this modest size case (7000 water 

molecules) compared with the AMOEBA model evaluated with OpenMP in TINKER7. Note that the 

number of required cores grows as ~12*M3, and while it would present an interesting hypothetical case 

for an exascale calculation, it is not tenable on current HPC architectures. However, the use of cluster 
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distance cutoffs would restrict the growth of M3 calculations to M, and thus reduce the core count to 

12*(M+M2+~M). Under these assumptions we can estimate parallel timings with cluster cutoffs 

according to  

𝑡%L0MLNOPM~𝑀 ∗ 𝑡6,MLNOPM + 𝑀$ ∗ 𝑡$6,MLNOPM + 𝑀 ∗ 𝑡%6,MLNOPM																			(6) 

Again, given perfect load balancing and assuming Eq. (6), we achieve a hypothetical speed up of 3.75-

10.7 compared with the AMOEBA model evaluated with OpenMP in TINKER7 on the 7000 water 

molecule case (Table 1). These hypothetical timings are useful for compariosns to the actual timings of 

the parallel implementation described in Figures S1-S3 given in the next section. 

 

4. TIMING RESULTS 

The 3m-AMOEBA and 3M-AMOEBA models were implemented in the TINKER7 software package 

using the hybrid MPI/OpenMP replicated data strategy presented in Section 3. Parallel timings in 

nanoseconds per day were generated from short molecular dynamics simulations of 100-2000 time 

steps using the velocity Verlet integrator, a 1 fs time step, 10-5 D convergence for the induced dipoles 

for the 3M-AMOEBA and AMOEBA calculations, on system sizes ranging from 1600 to 288,000 

water molecules. In the comparisons of the mutual polarization models below, we run using the 

optimal set up of each software implementation. The 3m-AMOEBA timings were obtained from runs 

on anywhere between 700 up to 6,144 cores, while the 3M-AMOEBA model runs were obtained on 

3600 cores. The reference AMOEBA timings were obtained using the number of threads that gave the 

best speedup in TINKER7 (12 OpenMP threads on a node where 12 cores share local cache memory). 

We also compare our performance to the Amber MPI implementation of AMOEBA (pmemd.amoeba) 

that uses MPI and spatial decomposition.   For the timings of AMOEBA in Ambers pmemd.amoeba, 

we systematically varied the number of cores in a range of 12 to 384, with 1 MPI task/core in this 

MPI-only implementation.  We found that speedups could be obtained for up to 48-96 cores for most 

systems, and up to 192 cores for the largest system of 288,000 water molecules.   

Table 2 provides the timing and relative speed up results for 3m-AMOEBA compared to the 

full AMOEBA model as implemented in the other CPU-based implementations in TINKER7 and 

Amber. In this work, we restrict our comparisons to CPU-based implementations.  A fair comparison 

with the leading GPU-based implementation of AMOEBA in OpenMM would necessitate an 

implementation of our approximate models in a comparable GPU-based implementation.  Hence, to 

ensure a like-to-like comparison, we compare timings with CPU-based implementations only. It should 

be noted that the 3m-AMOEBA model is quite different than AMOEBA, but the point is to show that 

an approximate but potentially accurate model like 3m-AMOEBA (after reparameterization as we did 

for iAMOEBA.[34]) could serve as a replacement of the AMOEBA force field due to improvements in 



	 9	
computational speedups. We observe speedups for 3m-AMOEBA for systems of at least 4800 atoms 

and larger; for 3m-AMOEBA the speedups range from ~1.4 for 1600 waters and up to ~6.9 for the 

largest box of 288,000 water molecules.  

Table 3 provides the timing and relative speed up results for 3M-AMOEBA model under 

different fragmentation schemes defined by M, using cluster distance cutoffs, compared to the full 

AMOEBA model as implemented in TINKER7 and Amber. 2-body cutoffs in 3M-AMOEBA were 

defined according to the distance between the centroids of the two clusters.  Similarly, 3-body cutoffs 

were based again on inter-centroid distances, but here the cutoff was based on the sum of the 2 shortest 

inter-centroid distances of the 3 possible distances. Again although 3M-AMOEBA is an approximation 

to the AMOEBA potential, polarization energies are reproduced within a fraction of 1% and gradients 

errors are on average as low as ~20-30% compared to the parent gradients. While we observe speedups 

of 1.8-3.4 for 3M-AMOEBA when systems are fragmented into 10 clusters, we find significant 

increase in the speed up factor as M increases, yielding 4.9-7.7 increases in ns/day when M=20, and 

factors of 3.8-10.8 when M=30 clusters.  

In addition to simply the speedup, other metrics must be obtained in order to assess the 

efficiency of our implementations. We first assessed the weak scaling, which is a measure of the 

computational cost as a function of simultaneously increasing the system size and the number of cores.  

More specifically, this is an assessment of how the cost of a calculation grows as the number of cores 

and the system size are simultaneously increased. In the case of 3m- and 3M-AMOEBA, the 

complexity is theoretically ~O(N) due to our use of distance cutoffs with neighbor lists. In light of this, 

for the evaluation of weak scaling, we increased the number of cores in a manner directly proportional 

to the system size, maintaining a constant ratio of system size to number of cores.  In the case of ideal 

weak scaling, the computational cost should remain bounded. We see that for both 3m-AMOEBA 

(Figure 4a) and 3M-AMOEBA (Figure 4b), the cost remains bounded until ~2000-2500 cores, after 

which the cost grows, likely due to the increase in the communication cost.  Strong scaling, in contrast, 

is a measure of the decrease in computational cost (speedup) as a function of increasing number of 

cores for a fixed system size.  The speedups for the 3m-AMOEBA implementation scale linearly or 

very close to linearly for over 1000 cores, and then diverging from linear scaling significantly at ~1500 

cores (Figure 5a); we even observe supra-linear strong scaling for 3M-AMOEBA (Figure 5b). We 

point out that the scaling is similar for the 21,000 and 32,000 atom systems, which are commensurate 

with systems that are considered routinely tractable in modern MD simulations using fixed charge 

force fields.   
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CONCLUSION 

In this work we presented a hybrid MPI/OpenMP implementation of two approximate polarization 

models, 3m-AMOEBA and 3M-AMOEBA, using the method of atom decomposition. We show that 

our parallel implementation yields speed ups by factors of ~2-11 compared to the parent AMOEBA 

potential depending upon whether we are using small or large fragments; both models are shown to 

exhibit excellent weak and strong scaling.  

This hierarchy of more and more accurate classical polarizable models up through the parent 

AMOEBA potential offers a way to address several interesting questions. Although the MBE has been 

known since the 1970’s [41,42], it remains a current topic of interest for those developing QM-based 

fragment approaches and embedding schemes.[43-50] However the QM community almost 

exclusively looks at energy convergence, virtually ignoring the poor convergence of the MBE we have 

observed for a classical potential for gradients. Thus the parallelization strategy that has improved 

timings by up to an order of magnitude for a simple classical model may aid in the analysis of how 

different embedding schemes and different definition of the size of bodies converge better in the MBE 

formalism. In addition, we plan to explore how different water properties in the condensed phase 

converge under the 3m-AMOEBA and 3M-AMOEBA in future work. 
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TABLES 

Table 1.  Hypothetical timings for 3M-AMOEBA for N=7000 water molecule system. The standard 
timing for 1000 steps of MD for this system is 478.2 s using the canonical OpenMP TINKER7 code 
using 12 threads. The hypothetical timings are based on Eq. (5) and optimal OpenMP timings taken 
from TINKER7 for each n: t175,AMOEBA=18 s, t350,AMOEBA=36 s, t700,AMOEBA=60 s,  t1400,AMOEBA=120 s,   
t2100,AMOEBA=180 s. Number of cores assumes that each MPI task completes one individual fragment 
calculation (monomer, dimer, trimer), of which there are M+M2+M3 (no M cluster cutoffs) or 
M+M2+~M (with M cluster cutoffs) such tasks. All timings are based on a Cray XC30 using 12-core 
Intel "Ivy Bridge" processor at 2.4 GHz, 24 cores per node. 

Fragmentation 
of N=7000 
molecule 
system 

Hypothetical timings (s) and core count 
No M cluster cutoffs 

Hypothetical timings (s) and core count 
With M cluster cutoffs 

Number of cores  Timings (speed 
ups)  

Number of 
cores  

Timings (speed ups)  

M=10, n=700 13320  174.4 (2.8) 1440 128.3 (3.7) 

M=20, n=350 101040 126.5 (3.8) 5280 62.1 (7.7) 

M=30, n=175 335160 59.6 (8.0) 11520 44.8 (10.7) 

  

Table 2.  Timings on water boxes ranging from 4,800-864,000 atoms for the mutual polarization 
models 3m-AMOEBA and AMOEBA. Timings (speed ups) are reported in nanoseconds/day based on 
running the same fixed number of molecular dynamics steps, and using up to 6144 cores. The number 
of cores to achieve Break even, 2X and 4-5X faster are reported as well. All timings are based on a 
Cray XC30 using 12-core Intel "Ivy Bridge" processor at 2.4 GHz, 24 cores per node. Timings for 
AMOEBA run in Tinker 7 were obtained from runs on 12 threads (1 thread/core) using the standard 
OpenMP parallelized implementation.  Timings for AMOEBA run in Amber were obtained with the 
MPI-parallelized, distributed-memory code pmemd.amoeba.  We systematically varied the number of 
cores in the pmemd.amoeba runs in a range of 12 to 384, and we report in parentheses next to the 
speedups below the number of cores that gave the best timing and the associated speedup. 

 Timings in ns/day (speedups achieved) 
System  AMOEBA Tinker7 3m-AMOEBA Tinker7  AMOEBA Amber 
1600 0.818  1.158 (1.4) 1.899 (2.3; 48 cores) 
7000 0.180  0.770 (4.3) 0.395 (2.2; 48 cores) 
32000 0.036  0.202 (5.6) 0.082 (2.3; 96 cores) 
96000 0.010  0.063 (6.3) 0.025 (2.5; 96 cores) 
288000 0.0026 0.018 (6.9) 0.008 (3.1; 192 cores) 
 Number of cores to achieve speed-ups with 3m-AMOEBA 
System  Break Even 2X faster  4-5X faster 
7000 768  1536 6144 
32000 768  1536 6144 
96000 768  1536 3072 
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Table 3.  Actual timings for 3M-AMOEBA using an MPI wrapper around the standard OpenMP 
parallel implementation in TINKER7. All timings are based on a fixed number of MD steps using 3600 
cores. M is the number of k-means clusters. Further details are reported in Table 1.  

Water 

system (N) 

Timings in ns/day (speedups achieved) 

AMOEBA 

(OpenMP) 

3M-AMOEBA  

(MPI/OpenMP) 

  M=10 M=20 M=30 

1600 0.8147 2.7698 (3.4) 4.0199 (4.9) 3.1354 (3.8) 

7000 0.1806 0.5179 (2.9) 0.7046 (3.9) 1.2847 (7.1) 

32000 0.0362 0.1151 (3.2) 0.2196 (6.1) 0.2726 (7.5) 

96000 0.0099 0.0249 (2.5) 0.0581 (5.9) 0.0909 (9.2) 

288000 0.0026 0.0047 (1.8) 0.0203 (7.7) 0.0287 (10.8) 
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FIGURE CAPTIONS 

Figure 1. Pseudocode for the calculation of a portion of the 2- and 3-body polarization energy, 

gradient, and virial on a single MPI task for 3m-AMOEBA. Note the absence of 1-body terms owing to 

the fact that they are zero in the absence of Ewald in the AMOEBA force field. 

Figure 2. Pseudocode for the load-balancing strategy across MPI nodes for the 3m-AMOEBA 

polarization calculation.  

 

Figure 3.  Pseudocode for a single MD timestep in the 3-body approximation, 3m-AMOEBA. 

 

Figure 4. Weak scaling results for the (a) 3m-AMOEBA and (b) 3M-AMOEBA models. All timings 

based on a Cray XC30 using 12-core Intel "Ivy Bridge" processor at 2.4 GHz, 24 cores per node. 

 

Figure 5. Strong scaling results for the (a) 3m-AMOEBA and (b) 3M-AMOEBA models. All timings 

based on a Cray XC30 using 12-core Intel "Ivy Bridge" processor at 2.4 GHz, 24 cores per node. 
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Figure 1. Demerdash and co-workers 

C OpenMP directives defining shared and private variables, and variables that are accumulated. 

!$OMP PARALLEL default(private) shared(  
!$OMP&  eng_temp, d_eng_temp, vir_temp, 
!$OMP&  start,last, coordinates,cutoff_distances, 
!$OMP&  smoothening_distances, task_id,  
!$OMP&  num_neighbors, neighbors) 
!$OMP DO reduction 

C  Loop over portion of fragments (moli1) given to each task as determined by load  balancing. 

do mol1=start(task_id),last(task_id) 

C  Loop over neighbors of molecule with index “moli1”. 

do j=1,num_neighbors(moli1) 
            moli2=neighbors(j,moli1) 
                       if  (r < 2-body_cutoff) then                        
                           call polarization(moli1,moli2) 
                           if (r > 2-body smoothening dist.) 
                                 <calc. smoothening function terms and derivatives thereof> 
                           end if 
                           <Add 2-body energy, gradient virial to eng_temp, d_eng_temp, and vir_temp,  
                              with smoothening, if applicable>  
                           <Save 2-body energy, gradient, virial without smoothening, since it will be used 
                              later in the calculation of 3-body contributions to eng_temp, d_eng_temp, and 
                              vir_temp>     
                       end if 

C  Loop over neighbors of molecule with index “moli2”. 

                       do k=1,num_neigbors(moli2) 
                             moli3=neighbors(k,mol2) 
                             if  (r < 3-body cutoff) then 
                                 call polarization(moli1,moli2,moli3) 
                                 <Save trimer energy, gradient, virial for moli1, moli2, moli3 > 

C The unaccounted for 2-body terms beyond above must be calculated and then subtracted to yield 
C the 3-body energy, gradient, and virial under the many-body expansion.   

                                 call polarization(moli1,moli3)  
                                 call polarization(moli2,moli3) 
                                 <Subtract 2-body terms corresponding to moli1+moli2, moli1+moli3, 
                                    moli2+moli3 from trimer energy,gradient, virial to yield 3-body term> 
                                 if  (r > 3-body smoothening dist.) 
                                     <calc. smoothening function terms and derivatives thereof> 
                                 end if                           
                                 <Apply smoothening if necessary.> 
                                 <Add 3-body energy, gradient, virial to eng_temp, d_eng_temp, and vir_temp,  
                                    with smoothening, if necessary>                 
                             end if 
                        end do 

      end do           
            end do 
!$OMP END DO 
!$OMP END PARALLEL 
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Figure 2. Demerdash and co-workers 
 
 
 
 
 

C   Determine the total load and then what the ideal maximal load per task should be. 
            total_load = 0 
 do i=1,total_number_of_molecules 
                 do j=1,num_neigbors(i) 
                      k=neighbor(j,i) 
                      total_load = total_load + num_neighbors(k) 
                 end do 
            end do 
 
            max_load=total_load / number_of_MPI_tasks 
 
 if (mod(tot_load, number_of_MPI_tasks).gt. 0 ) then 
                  max_load = max_load +1 
            end if 
 
C   Determine the limits of the outermost loop of the polarization calculation for each MPI task 
C   based on the max_load calculated in the step above. 
 molecule_counter = 1 
 MPI_task_counter  = 0 
 
 do while (molecule_counter .lt. total_number_of_molecules) 
                 load=0 
                 do while (load .lt. max_load) 
 
                      if  (load .eq. 0) then 
                           start(MPI_task_counter) = molecule_counter 
                      end if 
 
                       do j=1,num_neighbors(molecule_counter) 
                             k=neighbor(j,molecule_counter) 
                             load=load+num_neighbors(k) 
                       end do  
                       molecule_counter=molecule_counter+1 
                       
                      if  (molecule_counter .eq. total_number_of_molecules+1) then 
                            goto 1 
                      end if 
                 end do 
1               continue 
                 last(MPI_task_counter)=molecule_counter-1 
                 MPI_task_counter = MPI_task_counter + 1  
 end do 
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Figure 3. Demerdash and co-workers 
 
 

if  (tasked.eq.master): 
   call 1/2-step velocity Verlet 
end if 
 
<zero out eng/grad/virial and allocate gradient vectors if not already done> 
<mpi_bcast(x,y,z)> 
<rotate poles from local to new global xyz frame> 
<update relavent portion of neighbor lists (based on prior call to 'neighbor list load balance')> 
<call pairwiseadditive_grad> 
          
   subroutine pairwiseadditive _grad 
 
       if  (tasked.eq.master) then 
              call covalent 
       else if (tasked.eq.1) then 
               call permanent electrostatic Particle Mesh Ewald 
      else if (tasked.gt.1.and.taskid.lt.numtasks_emreal+2) then 
              call load-balanced real-space permanent multipole electrostatics 
      else if (tasked.gt.numtasks_emreal+2.and.taskid.lt.numtasks_emreal+2+numtasks_vdw) then 
                 call load-balanced vdW 
           end if   
           mpi_ireduce(vdw, Perm Elec) 
 
   return 
   end 
     
<call 3-body mutual_polarization> 
 
           mpi_ireduce(Polarisation) 
 
<call mip_isend/irecv(PME perm. and polz)> 
<call mpi_wait> 
 
if  (taskid.eq.master) then 
     update energy, viral, and gradient 
     perform full-step velocity Verlet 
end if 
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Figure 4. Demerdash and co-workers 
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Figure 5. Demerdash and co-workers 


