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ABSTRACT

In this work, we report on a novel application of Locality Sensitive
Hashing (LSH) to seismic data at scale. Based on the high wave-
form similarity between reoccurring earthquakes, our application
identifies potential earthquakes by searching for similar time series
segments via LSH. However, a straightforward implementation of
this LSH-enabled application has difficulty scaling beyond 3 months
of continuous time series data measured at a single seismic station.
As a case study of a data-driven science workflow, we illustrate how
domain knowledge can be incorporated into the workload to improve
both the efficiency and result quality. We describe several end-to-
end optimizations of the analysis pipeline from pre-processing to
post-processing, which allow the application to scale to time se-
ries data measured at multiple seismic stations. Our optimizations
enable an over 100x speedup in the end-to-end analysis pipeline.
This improved scalability enabled seismologists to perform seismic
analysis on more than ten years of continuous time series data from
over ten seismic stations, and has directly enabled the discovery of
597 new earthquakes near the Diablo Canyon nuclear power plant
in California and 6123 new earthquakes in New Zealand.
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1. INTRODUCTION

Locality Sensitive Hashing (LSH) [29] is a well studied com-
putational primitive for efficient nearest neighbor search in high-
dimensional spaces. LSH hashes items into low-dimensional spaces
such that similar items have a higher collision probability in the hash
table. Successful applications of LSH include entity resolution [65],
genome sequence comparison [18], text and image search [41,52],
near duplicate detection [20,46], and video identification [37].
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Figure 1: Example of near identical waveforms between occur-
rences of the same earthquake two months apart, observed at three
seismic stations in New Zealand. The stations experience increased
ground motions upon the arrivals of seismic waves (e.g., P and S
waves). This paper scales LSH to over 30 billion data points and
discovers 597 and 6123 new earthquakes near the Diablo Canyon
nuclear power plant in California and in New Zealand, respectively.

In this paper, we present an innovative use of LSH—and associ-
ated challenges at scale—in large-scale earthquake detection across
seismic networks. Earthquake detection is particularly interesting in
both its abundance of raw data and scarcity of labeled examples:

First, seismic data is large. Earthquakes are monitored by seis-
mic networks, which can contain thousands of seismometers that
continuously measure ground motion and vibration. For example,
Southern California alone has over 500 seismic stations, each col-
lecting continuous ground motion measurements at 100Hz. As a
result, this network alone has collected over ten trillion (10!%) data
points in the form of time series in the past decade [5].

Second, despite large measurement volumes, only a small fraction
of earthquake events are cataloged, or confirmed and hand-labeled.
As earthquake magnitude (i.e., size) decreases, the frequency of
earthquake events increases exponentially. Worldwide, major earth-
quakes (magnitude 7+) occur approximately once a month, while
magnitude 2.0 and smaller earthquakes occur several thousand times
a day. At low magnitudes, it is difficult to detect earthquake signals
because earthquake energy approaches the noise floor, and con-
ventional seismological analyses can fail to disambiguate between
signal and noise. Nevertheless, detecting these small earthquakes
is important in uncovering sources of earthquakes [24,32], improv-
ing the understanding of earthquake mechanics [49, 58], and better
predicting the occurrences of future events [38].

To take advantage of the large volume of unlabeled raw mea-
surement data, seismologists have developed an unsupervised, data-
driven earthquake detection method, Fingerprint And Similarity
Thresholding (FAST), based on waveform similarity [25]. Seismic
sources repeatedly generate earthquakes over the course of days,
months or even years, and these earthquakes show near identical
waveforms when recorded at the same seismic station, regardless
of the earthquake’s magnitude [27,56]. Figure 1 illustrates this
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phenomenon by depicting a pair of reoccurring earthquakes that
are two months apart, observed at three seismic stations in New
Zealand. By applying LSH to identify similar waveforms from seis-
mic data, seismologists were able to discover new, low-magnitude
earthquakes without knowledge of prior earthquake events.

Despite early successes, seismologists had difficulty scaling their
LSH-based analysis beyond 3-month of time series data (7.95 x 108
data points) at a single seismic station [24]. The FAST implemen-
tation faces severe scalability challenges. Contrary to what LSH
theory suggests, the actual LSH runtime in FAST grows near quadrat-
ically with the input size due to correlations in the seismic signals:
in an initial performance benchmark, the similarity search took 5
CPU-days to process 3 months of data, and, with a 5x increase
in dataset size, LSH query time increased by 30x. In addition,
station-specific repeated background noise leads to an overwhelm-
ing number of similar but non-earthquake time series matches, both
crippling throughput and seismologists’ ability to sift through the
output, which can number in the hundreds of millions of events.
Ultimately, these scalability bottlenecks prevented seismologists
from making use of the decades of data at their disposal.

In this paper, we show how systems, algorithms, and domain
expertise can go hand-in-hand to deliver substantial scalability im-
provements for this seismological analysis. Via algorithmic design,
optimization using domain knowledge, and data engineering, we
scale the FAST workload to years of continuous data at multiple sta-
tions. In turn, this scalability has enabled new scientific discoveries,
including previously unknown earthquakes near a nuclear reactor in
San Luis Obispo, California, and in New Zealand.

Specifically, we build a scalable end-to-end earthquake detection
pipeline comprised of three main steps. First, the fingerprint extrac-
tion step encodes time-frequency features of the original time series
into compact binary fingerprints that are more robust to small varia-
tions. To address the bottleneck caused by repeating non-seismic
signals, we apply domain-specific filters based on the frequency
bands and the frequency of occurrences of earthquakes. Second, the
search step applies LSH on the binary fingerprints to identify all
pairs of similar time series segments. We pinpoint high hash colli-
sion rates caused by physical correlations in the input data as a core
culprit of LSH performance degradation and alleviate the impact
of large buckets by increasing hash selectivity while keeping the
detection threshold constant. Third, the alignment step significantly
reduces the size of detection results and confirms seismic behavior
by performing spatiotemporal correlation with nearby seismic sta-
tions in the network [14]. To scale this analysis, we leverage domain
knowledge of the invariance of the time difference between a pair
of earthquake events across all stations at which they are recorded.

In summary, as an innovative systems and applications paper, this
work makes several contributions:

e We report on a new application of LSH in seismology as
well as a complete end-to-end data science pipeline, including
non-trivial pre-processing and post-processing, that scales to
a decade of continuous time series for earthquake detection.

e We present a case study for using domain knowledge to im-
prove the accuracy and efficiency of the pipeline. We illustrate
how applying seismological domain knowledge in each com-
ponent of the pipeline is critical to scalability.

e We demonstrate that our optimizations enable a cumulative
two order-of-magnitude speedup in the end-to-end detection
pipeline. These quantitative improvements enable qualitative
discoveries: we discovered 597 new earthquakes near the
Diablo Canyon nuclear power plant in California and 6123
new earthquakes in New Zealand, allowing seismologists to
determine the size and shape of nearby fault structures.

Beyond these contributions to a database audience, our solution
is an open source tool, available for use by the broader scientific
community. We have already run workshops for seismologists at
Stanford [2] and believe that the pipeline can not only facilitate
targeted seismic analysis but also contribute to the label generation
for supervised methods in seismic data [50].

The rest of the paper proceeds as follows. We review background
information about earthquake detection in Section 2 and discuss
additional related work in Section 3. We give a brief overview of the
end-to-end detection pipeline and key technical challenges in Sec-
tion 4. Sections 5, 6 and 7 present details as well as optimizations in
the fingerprint extraction, similarity search and the spatiotemporal
alignment steps of the pipeline. We perform a detailed evaluation
on both the quantitative performance improvements of our optimiza-
tions as well as qualitative results of new seismic findings in Section
8. In Section 9, we reflect on lessons learned and conclude.

2. BACKGROUND

With the deployment of denser and increasingly sensitive sensor
arrays, seismology is experiencing a rapid growth of high-resolution
data [30]. Seismic networks with up to thousands of sensors have
been recording years of continuous seismic data streams, typically
at 100Hz frequencies. The rising data volume has fueled strong
interest in the seismology community to develop and apply scalable
data-driven algorithms that improve the monitoring and prediction
of earthquake events [21,40,42].

In this work, we focus on the problem of detecting new, low-
magnitude earthquakes from historical seismic data. Earthquakes,
which are primarily caused by the rupture of geological faults, ra-
diate energy that travels through the Earth in the form of seismic
waves. Seismic waves induce ground motion that is recorded by seis-
mometers. Modern seismometers typically include 3 components
that measure simultaneous ground motion along the north-south,
east-west, and vertical axes. Ground motions along each of these
three axes are recorded as a separate channel of time series data.

Channels capture complementary signals for different seismic
waves, such as the P-wave and the S-wave. The P-waves travel along
the direction of propagation, like sound, while the S-waves travel
perpendicular to the direction of propagation, like ocean waves. The
vertical channel, therefore, better captures the up and down motions
caused by the P-waves while the horizontal channels better capture
the side to side motions caused by the S-waves. P-waves travel the
fastest and are the first to arrive at seismic stations, followed by the
slower but usually larger amplitude S-waves. Hence, the P-wave
and S-wave of an earthquake typically register as two “big wiggles”
on the ground motion measurements (Figure 1). These impulsive
arrivals of seismic waves are example characteristics of earthquakes
that seismologists look for in the data.

While it is easy for human eyes to identify large earthquakes on
a single channel, accurately detecting small earthquakes usually
requires looking at data from multiple channels or stations. These
low-magnitude earthquakes pose challenges for conventional meth-
ods for detection, which we outline below. Traditional energy-based
earthquake detectors such as a short-term average (STA)/long-term
average (LTA) identify earthquake events by their impulsive, high
signal-to-noise P-wave and S-wave arrivals. However, these de-
tectors are prone to high false positive and false negative rates at
low magnitudes, especially with noisy backgrounds [28]. Template
matching, or the waveform cross-correlation with template wave-
forms of known earthquakes, has proven more effective for detecting
known seismic signals in noisy data [15,57]. However, the method
relies on template waveforms of prior events and is not suitable for
discovering events from unknown sources.
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As a result, almost all earthquakes greater than magnitude 5
are detected [26]. In comparison, an estimated 1.5 million earth-
quakes with magnitude between 2 and 5 are not detected by con-
ventional means, and 1.3 million of these are between magnitude
2 and 2.9. The estimate is based on the magnitude frequency dis-
tribution of earthquakes [31]. We are interested in detecting these
low-magnitude earthquakes missing from public earthquake cata-
logs to better understand earthquake mechanics and sources, which
inform seismic hazard estimates and prediction [32, 38,49, 58].

The earthquake detection pipeline we study in the paper is an
unsupervised and data-driven approach that does not rely on su-
pervised (i.e., labeled) examples of prior earthquake events, and is
designed to complement existing, supervised detection methods. As
in template matching, the method we optimize takes advantage of
the high similarity between waveforms generated by reoccurring
earthquakes. However, instead of relying on waveform templates
from only known events, the pipeline leverages the recurring nature
of seismic activities to detect similar waveforms in time and across
stations. To do so, the pipeline performs an all-pair time series
similarity search, treating each segment of the input waveform data
as a “template” for potential earthquakes. This pipeline will not
detect an earthquake that occurs only once and is not similar enough
to any other earthquakes in the input data. Therefore, to improve
detection recall, it is critical to be able to scale the analysis to input
data with a longer duration (e.g., years instead of weeks or months).

3. RELATED WORK

In this section, we address related work in earthquake detection,
LSH-based applications and time series similarity search.

Earthquake Detection. The original FAST work appeared in the
seismology community, and has proven a useful tool in scientific
discovery [24,25]. In this paper, we present FAST to a database
audience for the first time, and report on both the pipeline composi-
tion and optimization from a computational perspective. The results
presented in this paper are the result of over a year of collaboration
between our database research group and the Stanford earthquake
seismology research group. The optimizations we present in this
paper and the resulting scalability results of the optimized pipeline
have not previously been published. We believe this represents a
useful and innovative application of LSH to a real domain science
tool that will be of interest to both the database community and
researchers of LSH and time-series analytics.

The problem of earthquake detection is decades old [6], and many
classic techniques—many of which are in use today—were devel-
oped for an era in which humans manually inspected seismographs
for readings [35,66]. With the rise of machine learning and large-
scale data analytics, there has been increasing interest in further
automating these techniques. While FAST is optimized to find many
small-scale earthquakes, alternative approaches in the seismology
community utilize template matching [15,57], social media [54], and
machine learning techniques [8, 64]. Most recently, with sufficient
training data, supervised approaches have shown promising results
of being able to detect non-repeating earthquake events [50]. In
contrast, our LSH-based detection method does not rely on labeled
earthquake events and detects reoccurring earthquake events. In the
evaluation, we compare against two supervised methods [50,55] and
show that our unsupervised pipeline is able to detect qualitatively
different events from the existing earthquake catalog.

Locality Sensitive Hashing. In this work, we perform a detailed
case study of the practical challenges and the domain-specific so-
lutions of applying LSH to the field of seismology. We do not

contribute to the advance of the state-of-the-art LSH algorithms; in-
stead, we show that classic LSH techniques, combined with domain-
specific optimizations, can lead to scientific discoveries when ap-
plied at scale. Existing work shows that LSH performance is sensi-
tive to key parameters such as the number of hash functions [23,52];
we provide supporting evidence and analysis on the performance im-
plication of LSH parameters in our application domain. In addition
to the core LSH techniques, we also present nontrivial preprocess-
ing and postprocessing steps that enable an end-to-end detection
pipeline, including spatiotemporal alignment of LSH matches.

Our work targets CPU workloads, complementing existing efforts
that speed up similarity search on GPUs [34]. To preserve the in-
tegrity of the established science pipeline, we focus on optimizing
the existing MinHash based LSH rather than replacing it with po-
tentially more efficient LSH variants such as LSH forest [10] and
multi-probe LSH [45]. While we share observations with prior
work that parallelizes and distributes a different LSH family [61],
we present the unique challenges and opportunities of optimizing
MinHash LSH in our application domain. We provide performance
benchmarks against alternative similarity search algorithms in the
evaluation, such as set similarity joins [47] and an alternative LSH
library based on recent theoretical advances in LSH for cosine sim-
ilarity [7]. We believe the resulting experience report, as well as
our open source implementation, will be valuable to researchers
developing LSH techniques in the future.

Time Series Analytics. Time series analytics is a core topic in
large-scale data analytics and data mining [39,44, 68]. In our appli-
cation, we utilize time series similarity search as a core workhorse
for earthquake detection. There are a number of distance metrics for
time series [22], including Euclidean distance and its variants [69],
Dynamic Time Warping [51], and edit distance [62]. However,
our input time series from seismic sensors is high frequency (e.g.
100Hz) and often noisy. Therefore, small time-shifts, outliers and
scaling can result in large changes in time-domain metrics [19].
Instead, we encode time-frequency features of the input time series
into binary vectors and focus on the Jaccard similarity between the
binary feature vectors. This feature extraction procedure is an adap-
tation of the Waveprint algorithm [9] initially designed for audio
data; the key modification made for seismic data was to focus on
frequency features that are the most discriminative from background
noise, such that the average similarity between non-seismic signals
is reduced [13]. An alternative binary representation models time
series as points on a grid, and uses the non-empty grid cells as a set
representation of the time series [48]. However, this representation
does not take advantage of the physical properties distinguishing
background from seismic signals.

4. PIPELINE OVERVIEW

In this section, we provide an overview of the three main steps of
our end-to-end detection pipeline. We elaborate on each step—and
our associated optimizations—in later sections, referenced inline.

The input of the detection pipeline consists of continuous ground
motion measurements in the form of time series, collected from
multiple stations in the seismic network. The output is a list of
potential earthquakes, specified in the form of timestamps when the
seismic wave arrives at each station. From there, seismologists can
compare with public earthquake catalogs to identify new events, and
visually inspect the measurements to confirm seismic findings.

Figure 2 illustrates the three major components of the end-to-end
detection pipeline: fingerprint extraction, similarity search, and spa-
tiotemporal alignment. For each input time series, or continuous
ground motion measurements from a seismic channel, the algorithm

1676



sparse similarity matrix

Output
N 1 (X Y)
o} f'”gmg?;g s Candidates of reoccurring earthquakes,
% " = fingerprinty and their occurrences at each station

Spatiotemporal
Alignment

—

Input time series segments binary fingerprints
Station A
channel 1
Station B
channel 1
channel 2 \ / \
channel 3 i
Fingerprint Slsmllar:y
: : earc|
Extraction
Station N (LSH)
channel 1 W v
Per Channel Per Channel

Per Network

Figure 2: The three steps of the end-to-end earthquake detection pipeline: fingerprinting transforms time series into binary vectors (Section 5);
similarity search identifies pairs of similar binary vectors (Section 6); alignment aggregates and reduces false positives in results (Section 7).

slices the input into short windows of overlapping time series seg-
ments and encodes time-frequency features of each window into a
binary fingerprint; the similarity of the fingerprints resembles that
of the original waveforms (Section 5). The algorithm then performs
an all pairs similarity search via LSH on the binary fingerprints and
identifies pairs of highly similar fingerprints (Section 6). Finally,
like a traditional associator that maps earthquake detections at each
station to a consistent seismic source, in the spatiotemporal align-
ment stage, the algorithm combines, filters and clusters the outputs
from all seismic channels to generate a list of candidate earthquake
detections with high confidence (Section 7).

A naive implementation of the pipeline imposes several scalability
challenges. For example, we observed LSH performance degrada-
tion in our application caused by the non-uniformity and correlation
in the binary fingerprints; the correlations induce undesired LSH
hash collisions, which significantly increase the number of lookups
per similarity search query (Section 6.3). In addition, the similarity
search does not distinguish seismic from non-seismic signals. In the
presence of repeating background signals, similar noise waveforms
could outnumber similar earthquake waveforms, leading to more
than an order of magnitude slow down in runtime and increase in
output size (Section 6.5). As the input time series and the output of
the similarity search becomes larger, the pipeline must adapt to data
sizes that are too large to fit into main memory (Section 6.4, 7.2).

In this paper, we focus on single-machine, main-memory execu-
tion on commodity servers with multicore processors. We parallelize
the pipeline within a given server but otherwise do not distribute
the computation to multiple servers. In principle, the parallelization
efforts extend to distributed execution. However, given the poor
quadratic scalability of the unoptimized pipeline, distribution alone
would not have been a viable option for scaling to desired data vol-
ume. As a result of the optimizations described in this paper, we are
able to scale to a decade of data on a single node without requiring
distribution. However, we view distributed execution as a valuable
extension for future work.

In the remaining sections of this paper, we describe the design
decisions as well as performance optimizations for each pipeline
component. Most of our optimizations focus on the all pairs similar-
ity search, where the initial implementation exhibited near quadratic
growth in runtime with the input size. We show in the evaluation
that, these optimizations enable speedups of more than two orders
of magnitude in the end-to-end pipeline.

5. FINGERPRINT EXTRACTION

In this section, we describe the fingerprint extraction step that en-
codes time-frequency features of the input time series into compact
binary vectors for similarity search. We begin with an overview of
the fingerprinting algorithm [13] and the benefits of using finger-
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Figure 3: The fingerprinting algorithm encodes time-frequency
features of the original time series into binary vectors.

prints in place of the time series (Section 5.1). We then describe a
new optimization that parallelizes and accelerates the fingerprinting
generation via sampling (Section 5.2).

5.1 Fingerprint Overview

Inspired by the success of feature extraction techniques for in-
dexing audio snippets [13], fingerprint extraction step transforms
continuous time series data into compact binary vectors (finger-
prints) for similarity search. Each fingerprint encodes representative
time-frequency features of the time series. The Jaccard similarity of
two fingerprints, defined as the size of the intersection of the non-
zero entries divided by the size of the union, preserves the waveform
similarity of the corresponding time series segments. Compared to
directly computing similarity on the time series, fingerprinting in-
troduces frequency-domain features into the detection and provides
additional robustness against translation and small variations [13].

Figure 3 illustrates the individual steps of fingerprinting:

1. Spectrogram Compute the spectrogram, a time-frequency
representation, of the time series. Slice the spectrogram
into short overlapping segments using a sliding window and
smooth by downsampling each segment into a spectral image.

2. Wavelet Transform Compute two-dimensional discrete Haar
wavelet transform on each spectral image. The wavelet coeffi-
cients serve as a lossy compression of the spectral images.

3. Normalization Normalize each wavelet coefficient by its me-
dian and the median absolute deviation (MAD) on the full,
background dominated dataset.

4. Top coefficient Extract the top K most anomalous wavelet
coefficients, or the largest coefficients after MAD normal-
ization, from each spectral image. By selecting the most
anomalous coefficients, we focus only on coefficients that are
most distinct from coefficients that characterize noise, which
empirically leads to better detection results.

5. Binarize Binarize the signs and positions of the top wavelet
coefficients. We encode the sign of each normalized coeffi-
cient using 2 bits: —1 — 01, 0 — 00, 1 — 10.
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5.2 Optimization: MAD via sampling

The fingerprint extraction is implemented via scientific modules
such as scipy, numpy and PyWavelets in Python. While its runtime
grows linearly with input size, fingerprinting ten years of time series
data can take several days on a single core.

In the unoptimized procedure, normalizing the wavelet coeffi-
cients requires two full passes over the data. The first pass calculates
the median and the MAD! for each wavelet coefficient over the
whole population, and the second pass normalizes the wavelet rep-
resentation of each fingerprint accordingly. Given the median and
MAD for each wavelet coefficient, the input time series can be parti-
tioned and normalized in parallel. Therefore, the computation of the
median and MAD remains the runtime bottleneck.

We accelerate the computation by approximating the true median
and MAD with statistics calculated from a small random sample
of the input data. The confidence interval for MAD with a sample
size of n shrinks with n!/2 [59]. We further investigate the trade-off
between speed and accuracy under different sampling rates in the
evaluation (Section 8.3). We empirically find that, on one month
of input time series data, sampling provides an order of magnitude
speedup with almost no loss in accuracy. For input time series of
longer duration, sampling 1% or less of the input can suffice.

6. LSH-BASED SIMILARITY SEARCH

In this section, we present the time series similar search step
based on LSH. We start with a description of the algorithm and
the baseline implementation (Section 6.1), upon which we build
the optimizations. Our contributions include: an optimized hash
signature generation procedure (Section 6.2), an empirical analysis
of the impact of hash collisions and LSH parameters on query
performance (Section 6.3), partition and parallelization of LSH that
reduce the runtime and memory usage (Section 6.4), and finally,
two domain-specific filters that improve both the performance and
detection quality of the search (Section 6.5).

6.1 Similarity Search Overview

Reoccurring earthquakes originated from nearby seismic sources
appear as near-identical waveforms at the same seismic station.
Given continuous ground motion measurements from a seismic
station, our pipeline identifies similar time series segments from the
input as candidates for reoccurring earthquake events.

Concretely, we perform an approximate similarity search via Min-
Hash LSH on the binary fingerprints to identify all pairs of finger-
prints whose Jaccard similarity exceeds a predefined threshold [17].
MinHash LSH performs a random projection of high-dimensional
data into lower dimensional space, hashing similar items to the same
hash table “bucket” with high probability (Figure 4). Instead of
performing a naive pairwise comparisons between all fingerprints,
LSH limits the comparisons to fingerprints sharing the same hash
bucket, significantly reducing the computation. The ratio of the av-
erage number of comparisons per query to the size of the dataset, or
selectivity, is a machine-independent proxy for query efficiency [23].

Hash signature generation. The MinHash of a fingerprint is
the first non-zero element of the fingerprint under a given random
permutation of its elements. The permutation is defined by a hash
function mapping fingerprint elements to random indices. Let p
denote the collision probability of a hash signature generated with a
single hash function. By increasing the number of hash functions k,
the collision probability of the hash signature decreases to p* [43].

deviations from the median: MAD = median(|x; — median(X)|)

'For X = {x1,%2,....,%x }, the MAD is defined as the median of the absolute
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Figure 4: Locality-sensitive hashing hashes similar items to the
same hash “bucket” with high probability.

Hash table construction. Each hash table stores an independent
mapping of fingerprints to hash buckets. The tables are initialized
by mapping hash signatures to a list of fingerprints that share the
same signature. Empirically, we find that using ¢+ = 100 hash ta-
bles suffices for our application, and there is little gain in further
increasing the number of hash tables.

Search. The search queries the hash tables for each fingerprint’s
near neighbor candidates, or other fingerprints that share the query
fingerprint’s hash buckets. We keep track of the number of times the
query fingerprint and candidates have matching hash signature in the
hash tables, and output candidates with matches above a predefined
threshold. The number of matches is also used as a proxy for the
confidence of the similarity in the final step of the pipeline.

6.2 Optimization: Hash signature generation

In this subsection, we present both memory access pattern and
algorithmic improvements to speed up the generation of hash signa-
tures. We show that, together, the optimizations lead to an over 3 x
improvement in hash generation time (Section 8.1).

Similar to observations made for SimHash (a different hash family
for angular distances) [61], a naive implementation of the MinHash
generation can suffer from poor memory locality due to the sparsity
of input data. SimHash functions are evaluated as a dot product
between the input and hash mapping vectors, while MinHash func-
tions are evaluated as a minimum of hash mappings corresponding
to non-zero elements of the input. For sparse input, both functions
access scattered, non-contiguous elements in the hash mapping vec-
tor, causing an increase in cache misses. We improve the memory
access pattern by blocking the access to the hash mappings. We
use dimensions of the fingerprint, rather than hash functions, as the
main loop for each fingerprint. As a result, the lookups for each
non-zero element in the fingerprint are blocked into rows in the hash
mapping array. For our application, this loop order has the addi-
tional advantage of exploiting the high overlap (e.g. over 60% in
one example) between neighboring fingerprints. The overlap means
that previously accessed elements in hash mappings are likely to get
reused while in cache, further improving the memory locality.

In addition, we speed up the hash signature generation by re-
placing MinHash with Min-Max hash. MinHash only keeps the
minimum value for each hash mapping, while Min-Max hashkeeps
both the min and the max. Therefore, to generate hash signatures
with similar collision probability, Min-Max hash reduces the num-
ber of required hash functions to half. Previous work showed the
Min-Max hash is an unbiased estimator of pairwise Jaccard similar-
ity, and achieves similar and sometimes smaller mean squared error
(MSE) in estimating pairwise Jaccard similarity in practice [33]. We
include pseudocode for the optimized hash signature calculation in
Appendix D of extended Technical Report [53].

6.3 Optimization: Alleviating hash collisions

Perhaps surprisingly, our initial LSH implementation demon-
strated poor scaling with the input size: with a 5x increase in input,
the runtime increases by 30x. In this subsection, we analyze the
cause of LSH performance degradation and the performance impli-
cations of core LSH parameters in our application.
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Figure 5: Probability that each element in the fingerprint is equal
to 1, averaged over 15.7M fingerprints, each of dimension 8192,
generated from a year of time series data. The heatmap shows
that some elements of the fingerprint are much more likely to be
non-zero compared to others.

Cause of hash collisions. Poor distribution of hash signatures can
lead to large LSH hash buckets or high query selectivity, significantly
degrading the performance of the similarity search [10, 36]. For
example, in the extreme case when all fingerprints are hashed into a
single bucket, the selectivity equals 1 and the LSH performance is
equivalent to that of the exhaustive O(n?) search.

Our input fingerprints encode physical properties of the waveform
data. As a result, the probability that each element in the fingerprint
is non-zero is highly non-uniform (Figure 5). Moreover, finger-
print elements are not necessarily independent, meaning that certain
fingerprint elements are likely to co-occur: given an element g; is
non-zero, the element a; has a much higher probability of being
non-zero (Pla; = 1,a; = 1] > Pla; = 1] X Pla; = 1)).

This correlation has a direct impact on the collision probability
of MinHash signatures. For example, if a hash signature contains
k independent MinHash of a fingerprint and two of the non-zero
elements responsible for the MinHash are dependent, then the sig-
nature has effectively similar collision probability as the signature
with only k — 1 MinHash . In other words, more fingerprints are
likely to be hashed to the same bucket under this signature. For
fingerprints shown in Figure 5, the largest 0.1% of the hash buckets
contain an average of 32.9% of the total fingerprints for hash tables
constructed with 6 hash functions.

Performance impact of LSH parameters. The precision and re-
call of the LSH can be tuned via two key parameters: the number of
hash functions k and the number of hash table matches m. Intuitively,
using k hash functions is equivalent to requiring two fingerprints
agree at k randomly selected non-zero positions. Therefore, the
larger the number of hash functions, the lower the probability of
collision. To improve recall, we increase the number of independent
permutations to make sure that similar fingerprints can land in the
same hash bucket with high probability.

Formally, given two fingerprints with Jaccard similarity s, the
probability that with k hash functions, the fingerprints are hashed to
the same bucket at least m times out of t = 100 hash tables is:

m—1 t . .
Pl =1 % (7)1 s
i=0

The probability of detection success as a function of Jaccard simi-
larity has the form of an S-curve (Figure 6). The S-curve shifts to
the right with the increase in the number of hash functions k or the
number of matches m, increasing the Jaccard similarity threshold
for LSH. Figure 6 illustrates a near-identical probability of success
curve under different parameter settings.

Due to the presence of correlations in the input data, LSH pa-
rameters with the same theoretically success probability can have
vastly different runtime in practice. Specifically, as the number of
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Figure 6: Theoretical probability of a successful search versus
Jaccard similarity between fingerprints (k: number of hash functions,
m: number of matches). Different LSH parameter settings can have
near identical detection probability with vastly different runtime.

hash functions increases, the expected average size of hash buckets
decreases, which can lead to an order of magnitude speed up in the
similarity search for seismic data in practice. However, to keep the
success probability curve constant with increased hash functions,
the number of matches needs to be lowered, which increases the
probability of spurious matches. These spurious matches can be
suppressed by scaling up the number of total hash tables, at the cost
of larger memory usage. We further investigate the performance
impact of LSH parameters in the evaluation.

6.4 Optimization: Partitioning

In this subsection, we describe the partition and parallelization of
the LSH that further reduce its runtime and memory footprint.

Partition. Using a 1-second lag for adjacent fingerprints results
in around 300M total fingerprints for 10 years of time series data.
Given a hash signature of 64 bits and 100 total hash tables, the total
size of hash signatures is approximately 250 GB. To avoid expensive
disk I/O, we also want to keep all hash tables in memory for lookups.
Taken together, this requires several hundred gigabytes of memory,
which can exceed available main memory.

To scale to larger input data on a single node with the existing
LSH implementation, we perform similarity search in partitions.
We evenly partition the fingerprints and populate the hash tables
with one partition at a time, while still keeping the lookup table
of fingerprints to hash signatures in memory. During query, we
output matches between fingerprints in the current partition (or in
the hash tables) with all other fingerprints and subsequently repeat
this process for each partition. The partitioned search yields identical
results to the original search, with the benefit that only a subset of
the fingerprints are stored in the hash tables in memory. We can
partition the lookup table of hash signatures similarly to further
reduce memory. We illustrate the performance and memory trade-
offs under different numbers of partitions in Section 8.3.

The idea of populating the hash table with a subset of the input
could also be favorable for performing a small number of nearest
neighbor queries on a large dataset, e.g., a thousand queries on
a million items. There are two ways to execute the queries. We
can hash the full dataset and then perform a thousand queries to
retrieve near neighbor candidates in each query item’s hash buckets;
alternatively, we can hash only the query items and for every other
item in the dataset, check whether it is mapped to an existing bucket
in the table. While the two methods yield identical query results,
the latter could be 8.6 x faster since the cost of initializing the hash
table dominates that of the search.

It is possible to further improve LSH performance and memory
usage with the more space efficient variants such as multi-probe
LSH [45]. However, given that the alignment step uses the number
of hash buckets shared between fingerprints as a proxy for similarity,
and that switching to a multi-probe implementation would alter this
similarity measure, we preserve the original LSH implementation for
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Figure 7: The short, three-spike pattern is an example of similar
and repeating background signals not due to seismic activity. These
repeating noise patterns cause scalability challenges for LSH.

backwards compatibility with FAST. We compare against alternative
LSH implementations and demonstrate the potential benefits of
adopting multi-probe LSH in the evaluation (Section 8.4).

Parallelization. Once the hash mappings are generated, we can
easily partition the input fingerprints and generate the hash signa-
tures in parallel. Similarly, the query procedure can be parallelized
by running nearest neighbor queries for different fingerprints and
outputting results to files in parallel. We show in Section 8.3 that
the total hash signature generation time and similarity search time
reduces near linearly with the number of processes.

6.5 Optimization: Domain-specific filters

Like many other sensor measurements, seismometer readings can
be noisy. In this subsection, we address a practical challenge of
the detection pipeline, where similar non-seismic signals dominate
seismic findings in runtime and detection results. We show that
by leveraging domain knowledge, we can greatly increase both the
efficiency and the quality of the detection.

Filtering irrelevant frequencies. Some input time series contain
station-specific narrow-band noise that repeats over time. Patterns of
the repeating noise are captured in the fingerprints and are identified
as near neighbors, or earthquake candidates in the similarity search.

To address this problem, we apply a bandpass filter to exclude
frequency bands that show high average amplitudes and repeating
patterns while containing low seismic activities. The bandpass filter
is selected manually by examining short spectrogram samples, typi-
cally an hour long, of the input time series, based on seismological
knowledge. Typical bandpass filter ranges span from 2 to 20Hz.
Prior work [13, 14,24,25] proposes the idea of filtering irrelevant
frequencies, but only on input time series. We extend the filter to the
fingerprinting algorithm and cutoff spectrograms at the corner of the
bandpass filter, which empirically improves detection performance.
We perform a quantitative evaluation of the impact of bandpass
filters on both the runtime and result quality (Section 8.2).

Removing correlated noise. Repeating non-seismic signals can
also occur in frequency bands containing rich earthquake signals.
Figure 7 shows an example of strong repeating background signals
from a New Zealand seismic station. A large cluster of repeating
signals with high pairwise similarity could produce nearest neigh-
bor matches that dominate the similarity search, leading to a 10x
increase in runtime and an over 100X increase in output size com-
pared to results from similar stations. This poses both problems for
computational scalability and for seismological interpretability.

We develop an occurrence filter for the similarity search by ex-
ploiting the rarity of the earthquake signals. Specifically, if a specific
fingerprint is generating too many nearest neighbor matches in a
short duration of time, we can be fairly confident that it is not an
earthquake signal. This observation holds in general except for
special scenarios such as volcanic earthquakes [12].

During the similarity search, we dynamically generate a list of
fingerprints to exclude from future search. If the number of near

neighbor candidates a fingerprint generates is larger than a prede-
fined percentage of the total fingerprints, we exclude this fingerprint
as well as its neighbors from future similarity search. To capture
repeating noise over a short duration of time, the filter can be applied
on top of the partitioned search. In this case, the filtering threshold
is defined as the percentage of fingerprints in the current partition,
rather than in the whole dataset. On the example dataset above, this
approach filtered out around 30% of the total fingerprints with no
false positives. We evaluate the effect of the occurrence filter on
different datasets under different filtering thresholds in Section 8.2.

7. SPATIOTEMPORAL ALIGNMENT

The LSH-based similar search outputs pairs of similar fingerprints
(or waveforms) from the input, without knowing whether or not
the pairs correspond to actual earthquake events. In this section,
we show that by incorporating domain knowledge, we are able to
significantly reduce the size of the output and prioritize seismic
findings in the similarity search results. We briefly summarize the
aggregation and filtering techniques on the level of seismic channels,
seismic stations and seismic networks introduced in a recent paper in
seismology [14] (Section 7.1). We then describe the implementation
challenges and our out-of-core adaptations enabling the algorithm
to scale to large output volumes (Section 7.2).

7.1 Alignment Overview

The similarity search computes a sparse similarity matrix M,
where the non-zero entry M]i, j] represents the similarity of finger-
prints i and j. In order to identify weak events in low signal-to-noise
ratio settings, seismologists set lenient detection thresholds for the
similarity search, resulting in large outputs in practice. For example,
one year of input time series data can easily generate 100G of output,
or more than 5 billion pairs of similar fingerprints. Since it is infea-
sible for seismologists to inspect all results manually, we need to
automatically filter and align the similar fingerprint pairs into a list
of potential earthquakes with high confidence. Based on algorithms
proposed in a recent work in seismology [14], we seek to reduce
similarity search results at the level of seismic channels, stations
and also across a seismic network. Figure 8 gives an overview of
the spatiotemporal alignment procedure.

Channel Level. Seismic channels at the same station experience
ground movements at the same time. Therefore, we can directly
merge detection results from each channel of the station by sum-
ming the corresponding similarity matrix. Given that earthquake-
triggered fingerprint matches tend to register at multiple channels
whereas matches induced by local noise might only appear on one
channel, we can prune detections by imposing a slightly higher
similarity threshold on the combined similarity matrix. This is to
make sure that we include either matches with high similarity, or
weaker matches registered at more than one channel.

Station Level. Given a combined similarity matrix for each seis-
mic station, domain scientists have found that earthquake events
can be characterized by thin diagonal shaped clusters in the matrix,
which corresponds to a group of similar fingerprint pairs separated
by a constant offset [14]. The constant offset represents the time
difference, or the inter-event time, between a pair of reoccurring
earthquake events. One pair of reoccurring earthquake events can
generate multiple fingerprint matches in the similarity matrix, since
event waveforms are longer than a fingerprint time window. We
exclude “self-matches” generated from adjacent/overlapping finger-
prints that are not attributable to reoccurring earthquakes. After
grouping similar fingerprint pairs into clusters of thin diagonals, we
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Figure 9: Earthquakes from the same seismic sources has a fixed
travel time to each seismic station (e.g. 6t4, 8tp in the figure). The
inter-event time between two occurrences of the same earthquake is
invariant across seismic stations.

reduce each cluster to a few summary statistics, such as the bound-
ing box of the diagonal, the total number of similar pairs in the
bounding box, and the sum of their similarity. Compared to storing
every similar fingerprint pair, the clusters and summary statistics
significantly reduce the size of the output.

Network Level. Earthquake signals also show strong temporal
correlation across the seismic network, which we exploit to further
suppress non-earthquake matches. Since an earthquake’s travel time
is only a function of its distance from the source but not of the
magnitude, reoccurring earthquakes generated from the same source
take a fixed travel time from the source to the seismic stations on
each occurrence. Assume that an earthquake originated from source
X takes 614 and O1p to travel to seismic stations A and B and that the
source generates two earthquakes at time #1 and 7, (Figure 9). Station
A experiences the arrivals of the two earthquakes at time ¢ + 07y
and r, + 814, while station B experiences the arrivals at 7] + 675 and
f, + Otg. The inter-event time At of these two earthquake events is
independent of the location of the stations:

At = (1 + 6ta) — (11 + 6ta) = (12 + Otp) — (11 + Otp) =12 —11.

This means that in practice, diagonals with the same offset At and
close starting times at multiple stations can be attributed to the same
earthquake event. We require a pair of earthquake events to be
observed at more than a user-specified number of stations in order
to be considered as a detection.

On a run with 7 to 10 years of time series data from 11 seismic
stations (27 channels), the postprocessing procedure effectively
reduced the output from more than 2 Terabytes of similar fingerprint
pairs to around 30K timestamps of potential earthquakes.
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7.2 Implementation and Optimization

The volume of similarity search output poses serious challenges
for the alignment procedure, as we often need to process results
larger than the main memory of a single node. In this subsection, we
describe our implementation and the new out-of-core adaptations of
the algorithm that enable the scaling to large output volumes.

Similarity search output format. The similarity search produces
outputs that are in the form of triplets. A triplet (dt,idx1,sim) is
a non-zero entry in the similarity matrix, which represents that
fingerprint idx1 and (idx1+ dt) are hashed into the same bucket sim
times (out of ¢ independent trials). We use sim as an approximation
of the similarity between the two fingerprints.

Channel. First, given outputs of similar fingerprint pairs (or the
non-zero entries of the similarity matrix) from different channels
at the same station, we want to compute the combined similarity
matrix with only entries above a predefined threshold.

Naively, we could update a shared hashmap of the non-zero en-
tries of the similarity matrix for each channel in the station. However,
since the hashmap might not fit in the main memory on a single ma-
chine, we utilize the following sort-merge-reduce procedure instead:

1. In the sorting phase, we perform an external merge sort on
the outputs from each channel, with dt as the primary sort
key and idx1 as the secondary sort key. That is, we sort the
similar fingerprint pairs first by the diagonal that they belong
to in the similarity matrix, and within the diagonals, by the
start time of the pairs.

. In the merging phase, we perform a similar external merge
sort on the already sorted outputs from each channel. This
is to make sure that all matches generated by the same pair
of fingerprint idx1 and idx1 + dt at different channels can be
concentrated in consecutive rows of the merged file.

. In the reduce phase, we traverse through the merged file and
combine the similarity score of consecutive rows of the file
that share the same dt and idx1. We discard results that have
combined similarity smaller than the threshold.

Station. Given a combined similarity matrix for each seismic
station, represented in the form of its non-zero entries sorted by
their corresponding diagonals and starting time, we want to cluster
fingerprint matches generated by potential earthquake events, or
cluster non-zero entries along the narrow diagonals in the matrix.

We look for sequences of detections (non-zero entries) along each
diagonal dt, where the largest gap between consecutive detections is
smaller than a predefined gap parameter. Empirically, permitting a
gap help ensure an earthquake’s P and S wave arrivals are assigned
to the same cluster. Identification of the initial clusters along each
diagonal dt requires a linear pass through the similarity matrix. We
then interactively merge clusters in adjacent diagonals df — 1 and
dt + 1, with the restriction that the final cluster has a relatively
narrow width. We store a few summary statistics for each cluster
(e.g. the cluster’s bounding box, the total number of entries) as
well as prune small clusters and isolated fingerprint matches, which
significantly reduces the output size.

The station level clustering dominates the runtime in the spa-
tiotemporal alignment. In order to speed up the clustering, we
partition the similarity matrix according to the diagonals, or ranges
of dts of the matched fingerprints, and perform clustering in parallel
on each partition. A naive equal-sized partition of the similarity
matrix could lead to missed detections if a cluster split into two
partitions gets pruned in both due to the decrease in size. Instead,
we look for proper points of partition in the similarity matrix where
there is a small gap between neighboring occupied diagonals. Again,



we take advantage of the ordered nature of similarity matrix entries.
We uniformly sample entries in the similarity matrix, and for every
pair of neighboring sampled entries, we only check the entries in be-
tween for partition points if the two sampled entries lie on diagonals
far apart enough to be in two partitions. Empirically, a sampling
rate of around 1% works well for our datasets in that most sampled
entries are skipped because they are too close to be partitioned.

Network. Given groups of potential events at each station, we
perform a similar summarization across the network in order to iden-
tify subsets of the events that can be attributed to the same seismic
source. In principle, we could also partition and parallelize the net-
work detection. In practice, however, we found that the summarized
event information at each station is already small enough that it
suffices to compute in serial.

8. EVALUATION

In this section, we perform both quantitative evaluation on perfor-
mances of the detection pipeline, as well as qualitative analysis of
the detection results. Our goal is to demonstrate that:

1. Each of our optimizations contributes meaningfully to the
performance improvement; together, our optimizations enable
an over 100 speed up in the end-to-end detection pipeline.

. Incorporating domain knowledge in the pipeline improves
both the performance and the quality of the detection.

. The improved scalability of the pipeline enables new scientific
discoveries on two public datasets: we discovered 597 new
earthquakes from a decade of seismic data near the Diablo
Canyon nuclear power plant in California, as well as 6123 new
earthquakes from a year of seismic data from New Zealand.

Dataset. We evaluate on two public datasets used in seismological
analyses with our domain collaborators. The first dataset includes
1 year of 100Hz time series data (3.15 billion points per station)
from 5 seismic stations (LTZ, MQZ, KHZ, THZ, OXZ) in New
Zealand. We use the vertical channel (usually the least noisy) from
each station [3]. The second dataset of interest includes 7 to 10
years of 100Hz time series data from 11 seismic stations and 27
total channels near the Diablo Canyon power plant in California [4].

Experimental Setup.  We report results from evaluating the
pipeline on a server with 512GB of RAM and two 28-thread In-
tel Xeon E5-2690 v4 2.6GHz CPUs. Our test server has L1, L2,
L3 cache sizes of 32K, 256K and 35840K. We report the runtime
averages from multiple trials.

8.1 End-to-end Evaluation

In this subsection, we report the runtime breakdown of the base-
line implementation of the pipeline, as well as the effects of applying
different optimizations.

To evaluate how our optimizations scale with data size, we eval-
uate the end-to-end pipeline on 1 month and 1 year of time series
data from station LTZ in the New Zealand dataset. We applied a
bandpass filter of 3-20Hz on the original time series to exclude noisy
low-frequency bands. For fingerprinting, we used a sliding window
with length of 30 seconds and slide of 2 seconds, which results in
1.28M binary fingerprints for 1 month of time series data (15.7M
for one year), each of dimension 8192; for similarity search, we use
6 hash functions, and require a detection threshold of 5 matches out
of 100 hash tables. We further investigate the effect of varying these
parameters in the microbenchmarks in Section 8.3.

Figure 10 shows the cumulative runtime after applying each opti-
mization. Cumulatively, our optimizations scale well with the size
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of the dataset, and enable an over 100 x improvement in end-to-end
processing time. We analyze each of these components in turn:

First, we apply a 1% occurrence filter (+ occur filter, Section 6.5)
during similarity search to exclude frequent fingerprint matches
generated by repeating background noise. This enables a 2-5x
improvement in similarity search runtime while reducing the output
size by 10-50x, reflected in the decrease in postprocessing time.

Second, we further reduce the search time by increasing the
number of hash functions to 8 and lowering the detection threshold
to 2 (+ increase #funcs, Section 6.3). While this increases the
hash signature generation and output size, it enables around 10x
improvement in search time for both datasets.

Third, we reduce the hash signature generation time by improving
the cache locality and reducing the computation with Min-Max hash
instead of MinHash (+ locality MinMax, Section 6.2), which leads
to a 3 x speedup for both datasets.

Fourth, we speed up fingerprinting by 2x by estimating MAD
statistics with a 10% sample (+ MAD sample, Section 5.2).

Finally, we enable parallelism and run the pipeline with 12 threads
(Section 5.2, 6.4, 7.2). As a result, we see an almost linear decrease
in runtime in each part of the pipeline. Notably, due to the overall
lack of data dependencies in this scientific pipeline, simple paral-
lelization can already enable significant speedups.

The improved scalability enables us to scale analytics from 3
months to over 10 years of data. We discuss qualitative detection
results from both datasets in Section 8.5.

8.2 Effect of domain-specific optimizations

Here, we investigate the effect of applying domain-specific opti-
mizations to the pipeline. We demonstrate that incorporating domain
knowledge could improve both performance and result quality.

Occurrence filter. We evaluate the effect of applying the occur-
rence filter during similarity search on the five stations from the
New Zealand dataset. For this evaluation, we use a partition size of 1
month as the duration for the occurrence threshold; a >1% threshold
indicates that a fingerprint matches over 1% (10K) other fingerprints
in the same month. We report the total percentage of filtered fin-
gerprints under varying thresholds in Table 1. We also evaluate the
accuracy of the occurrence filter by comparing the timestamps of
filtered fingerprints with the catalog of the arrival times of known
earthquakes at each station. In Table 1, we report the false positive
rate, or the number of filtered earthquakes over the total number of
cataloged events, of the filter under varying thresholds.

The results show that as the occurrence filter becomes stronger,
the percentage of filtered fingerprints and the false positive rate both
increase. For seismic stations suffering from correlated noise, the
occurrence filter can effectively eliminate a significant amount of
fingerprints from the similarity search. For station LTZ, a >1%
threshold filters out up to 30% of the total fingerprints without any
false positives, which results in a 4 x improvement in runtime. For
other stations, the occurrence filter has little influence on the results.
This is expected since these stations do not have repeating noise
signals present at station LTZ (Figure 7). In practice, correlated
noise is rather prevalent in seismic data. In the Diablo Canyon
dataset for example, we applied the occurrence filter on three out of
the eleven seismic stations in order for the similarity search to finish
in a tractable time.

Bandpass filter. We compare similarity search on the same dataset
(Nyquist frequency 50Hz) before and after applying bandpass filters.
The first bandpass filter (bp: 1-20Hz) is selected as most seismic
signals are under 20Hz; the second (bp: 3-20Hz) is selected after
manually looking at samples spectrograms of the dataset and exclud-
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Table 1: The table shows that the percentage of fingerprints filtered (Filtered) and the false positive rate (FP) both increase as the occurrence
filter becomes stronger (from filtering matches above 5.0% to above 0.1%). The runtime (in hours) measures similarity search time.

LTZ (1548 events) MQZ (1544 events) KHZ (1542 events) THZ (1352 events) OXZ (1248 events)
Thresh FP Filtered Time FP  Filtered Time FP  Filtered Time FP  Filtered Time FP  Filtered Time
>5.0% 0 0.09 1493 0 0 2.8 0 0 2.2 0 0 24 0 0 2.6
>1.0% 0 30.1 31.0 0 0 2.7 0 0 2.3 0 0 2.3 0 0 2.6
>0.5% 0 31.2 32.1 0 0.09 2.8 0 0 2.4 0 0 24 0.08 0.08 2.7
>0.1% 0 32.1 28.6 0.07 0.3 2.7 0 0.03 2.4 0 0.02 2.3 0.08 0.17 2.6
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Figure 11: LSH runtime under different band pass filters. Matches
of noise in the non-seismic frequency bands can lead to significant
increase in runtime for unfiltered time series.

ing noisy low frequencies. Figure 11 reports the similarity search
runtime for fingerprints generated with different bandpass filters.
Overall, similarity search suffers from additional matches generated
from the noisy frequency bands outside the interests of seismology.
For example, at station OXZ, removing the bandpass filter leads to
a 16x slow down in runtime and a 209 increase in output size.
We compare detection recall on 8811 catalog earthquake events
for different bandpass filters. The recall for the unfiltered data (0-
50Hz), the 1-20Hz and 3-20Hz bandpass filters are 20.3%, 23.7%,
45.2%, respectively. The overall low recall is expected, as we only
used 4 (out of over 50) stations in the seismic network that con-
tributes to the generation of catalog events. Empirically, a narrow,
domain-informed bandpass filter focuses the comparison of finger-
print similarity only on frequencies that are characteristics of seismic
events, leading to improved similarity between earthquake events
and therefore increased recall. We provide guidelines for setting the
bandpass filter in the extended report ([53], Appendix C).

8.3 Effect of pipeline parameters

In this section, we evaluate the effect of the space/quality and
time trade-offs for core pipeline parameters.

MAD sampling rate. We evaluate the speed and quality trade-off
for calculating the median and MAD of the wavelet coefficients for
fingerprints via sampling. We measure the runtime and accuracy on
the 1 month dataset in Section 8.1 (1.3M fingerprints) under varying
sampling rates. Overall, runtime and accuracy both decrease with

Figure 12: Effect of LSH parameters on similarity search runtime
and average query lookups. Increasing the number of hash functions
significantly decreases average number of lookups per query, which
results in a 10x improvement in runtime.

sampling rate as expected. For example, a 10% and 1% sampling
rate produce fingerprints with 99.7% and 98.7% accuracy, while
enabling a near linear speedup of 10.5x and 99.8 ¥, respectively.
Below 1%, runtime improvements suffer from a diminishing return,
as the IO begins to dominate the MAD calculation in runtime—on this
dataset, a 0.1% sampling rate only speeds up the MAD calculation
by 350x. We include additional results of this trade-off in [53].

LSH parameters. We report runtime of the similarity search under
different LSH parameters in Figure 12. As indicated in Figure 6,
the three sets of parameters that we evaluate yield near identical
probability of detection given Jaccard similarity of two fingerprints.
However, by increasing the number of hash functions and thereby
increasing the selectivity of hash signatures, we decrease the average
number of lookups per query by over 10x. This results in around
10x improvement in similarity search time.

Number of partitions. We report the runtime and memory usage
of the similarity search with varying number of partitions in Fig-
ure 13. As the number of partitions increases, the runtime increases
slightly due to the overhead of initialization and deletion of hash
tables. In contrast, memory usage decreases as we only need to keep
a subset of the hash signatures in the hash table at any time. Overall,
by increasing the number of partitions from 1 to 8, we are able to
decrease the memory usage by over 60% while incurring less than
20% runtime overhead. This allows us to run LSH on larger datasets
with the same amount of memory.
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Figure 14: Hash generation scales near linearly up to 32 threads.

Parallelism. Finally, to quantify the speedups from parallelism, we
report the runtime of LSH hash signature generation and similarity
search using a varying number of threads. For hash signature gener-
ation, we report time taken to generate hash mappings as well as the
time taken to compute Min-Max hash for each fingerprint. For simi-
larity search, we fix the input hash signatures and vary the number of
threads assigned during the search. We show the runtime averaged
from four seismic stations in Figure 14. Overall, hash signature
generation scales almost perfectly (linearly) up to 32 threads, while
similarity search scales slightly worse; both experience significant
performance degradation running with all available threads.

8.4 Comparison with Alternatives

In this section, we evaluate against alternative similarity search al-
gorithms and supervised methods. We include additional experiment
details in the extended technical report ([53], Appendix A).

Alternative Similarity Search Algorithms. We compare the
single-core query performance of our MinHash LSH to 1) an alterna-
tive open source LSH library FALCONN [1] 2) four state-of-the-art
set similarity join algorithms: PPJoin [67], GroupJoin [16], All-
Pairs [11] and AdaptJoin [63]. We use 74,795 fingerprints with
dimension 2048 and 10% non-zero entries, and a Jaccard similarity
threshold of 0.5 for all libraries. Compared to exact algorithms
like set similarity joins, the LSHs incur a 6% false negative rate.
However, MinHash LSH enables a 24 x to 65X speedup against
FALCONN and 63 x to 197X speedup against set similarity joins
(Table 2). Characteristics of the input fingerprints contribute to the
performance differences: the fixed number of non-zero entries in fin-
gerprints makes pruning techniques in set similarity joins based on
set length irrelevant; our results corroborate with previous findings
that MinHash outperforms SimHash on binary, sparse input [60].

Supervised Methods. We report results evaluating two supervised
models: WEASEL [55] and ConvNetQuake [50] on the Diablo
Canyon dataset. Both models were trained on labeled catalog events
(3585 events from 2010 to 2017) and randomly sampled noise win-
dows at station PG.LMD. We also augment the earthquake training
examples by 1) adding earthquake examples from another station
PG.DCD 2) perturbing existing events with white noise 3) shifting

Table 2: Single core per-datapoint query time for LSH and set
similarity joins. MinHash LSH incurs a 6.6% false negative rate
while enabling up to 197 x speedup.

Algorithm  Average Query time Speedup

MinHash LSH 36 us -

FALCONN vanilla LSH .87ms 24 %
FALCONN multi-probe LSH 2.4ms 65x
AdaptJoin [63] 2.3ms 63 x

AllPairs [11] 7.1ms 197 %

GroupJoin [16] 5.7ms 159x

PPJoin [67] 5.5ms 151

Table 3: Supervised methods trained on catalog events exhibit high
false positive rate and a 20% accuracy gap between predictions on
catalog and FAST detected events.

WEASEL [55] ConvNetQuake [50]

Test Catalog Acc. (%) 90.8 90.6
Test FAST Acc. (%) 68.0 70.5
True Negative Rate (%) 98.6 92.2
False Positive Rate (%) 90.0+5.88 90.0+5.88

the location of the earthquake event in the window. Table 3 reports
test accuracy of the two models on a sample of 306 unseen catalog
events and 449 new events detected by our pipeline (FAST events),
as well as the false positive rate estimated from manual inspection
of 100 random earthquake predictions. While supervised methods
achieve high accuracy in classifying unseen catalog and noise events,
they exhibit a high false positive rate (90+5.88%) and miss 30-32%
of new earthquake events detected by our pipeline. The experiment
suggests that unsupervised methods like our pipeline are able to
detect qualitatively different events from the existing catalog, and
that supervised methods are complements, rather than replacements,
of unsupervised methods for earthquake detection.

8.5 Qualitative Results

We first report our findings in running the pipeline over a decade
(06/2007 to 10/2017) of continuous seismic data from 11 seismic
stations (27 total channels) near the Diablo Canyon nuclear power
plant in central California. The chosen area is of special interest
as there are many active faults near the power plant. Detecting
additional small earthquakes in this region will allow seismologists
to determine the size and shape of nearby fault structures, which can
potentially inform seismic hazard estimates.

We applied station-specific bandpass filters between 3 and 12
Hz to remove repeating background noise from the time series. In
addition, we applied the occurrence filter on three out of the eleven
seismic stations that experienced corrupted sensor measurements.
The number of input binary fingerprints for each seismic channel
ranges from 180 million to 337 million; the similarity search runtime
ranges from 3 hours to 12 hours with 48 threads.

Among the 5048 detections above our detection threshold, 397
detections (about 8%) were false positives, confirmed via visual
inspection: 30 were duplicate earthquakes with a lower similarity,
18 were catalog quarry blasts, 5 were deep teleseismic earthquakes
(large earthquakes from >1000 km away). There were also 62 non-
seismic signals detected across the seismic network; we suspect that
some of these waveforms are sonic booms.

Overall, we were able to detect and locate 3957 catalog earth-
quakes, as well as 597 new local earthquakes. Figure 15 shows an
overview of the origin time of detected earthquakes, which is spread
over the entire ten-year span. The detected events include both low-
magnitude events near the seismic stations, as well as larger events
that are farther away. Figure 16 visualizes the locations of both cata-
log events and newly detected earthquakes, and Figure 17 zooms in
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Figure 15: The left axis shows origin times and magnitude of detected earthquakes, with the catalog events marked in blue and new events
marked in red. The colored bands in the right axis represent the duration of data used for detection collected from 11 seismic stations and 27
total channels. Overall, we detected 3957 catalog earthquakes (diamond) as well as 597 new local earthquakes (circle) from this dataset.
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Figure 16: Overview of the location of detected catalog events
(gray open circles) and new events (red diamonds). The pipeline
was able to detect earthquakes close to the seismic network (boxed)
as well as all over California.

on earthquakes in the vicinity of the power plant. Despite the low
rate of local earthquake activity (535 total catalog events from 2007
to 2017 within the area shown in Figure 17), we were able to detect
355 new events that are between —0.2 and 2.4 in magnitude and
located within the seismic network, where many active faults exist.
‘We missed 261 catalog events, almost all of which originated from
outside the network of our interest. Running the detection pipeline
at scale enables scientists to discover earthquakes from unknown
sources. These new detected local events will be used to determine
the details of active fault structures near the power plant.

We are also actively working with our domain collaborators on
additional analysis of the New Zealand dataset. The pipeline de-
tected 11419 events, including 4916 catalog events, 355 teleseismic
events, 6123 new local earthquakes and 25 false positives (noise
waveforms) verified by the seismologists. We are preparing these
results for publication in seismological venues, and expect to further
improve the detection results by scaling up the analysis to more
seismic stations over a longer duration of time.

9. CONCLUSION

In this work, we reported on a novel application of LSH to large-
scale seismological data, as well as the challenges and optimizations
required to scale the system to over a decade of continuous sensor
data. This experience in scaling LSH for large-scale earthquake
detection illustrates both the potential and the challenge of applying
core data analytics primitives to data-driven domain science on large
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Figure 17: Zoom in view of locations of new detected earthquakes
(red diamonds) and cataloged events (blue circles) near the seismic
network (box in Figure 16). The new local earthquakes contribute
detailed information about the structure of faults.

datasets. On the one hand, LSH and, more generally, time series
similarity search, is well-studied, with scores of algorithms for effi-
cient implementation: by applying canonical MinHash-based LSH,
our seismologist collaborators were able to meaningfully analyze
more data than would have been feasible via manual inspection.
On the other hand, the straightforward implementation of LSH in
the original FAST detection pipeline failed to scale beyond a few
months of data. The particulars of seismological data—such as
frequency imbalance in the time series and repeated background
noise—placed severe strain on an unmodified LSH implementation
and on researchers attempting to understand the output. As a result,
the seismological discoveries we have described in this paper would
not have been possible without domain-specific optimizations to
the detection pipeline. We believe that these results have important
implications for researchers studying LSH (e.g., regarding the im-
portance of skew resistance) and will continue to bear fruit as we
scale the system to even more data and larger networks.
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