


phenomenon by depicting a pair of reoccurring earthquakes that

are two months apart, observed at three seismic stations in New

Zealand. By applying LSH to identify similar waveforms from seis-

mic data, seismologists were able to discover new, low-magnitude

earthquakes without knowledge of prior earthquake events.

Despite early successes, seismologists had difficulty scaling their

LSH-based analysis beyond 3-month of time series data (7.95×108

data points) at a single seismic station [24]. The FAST implemen-

tation faces severe scalability challenges. Contrary to what LSH

theory suggests, the actual LSH runtime in FAST grows near quadrat-

ically with the input size due to correlations in the seismic signals:

in an initial performance benchmark, the similarity search took 5

CPU-days to process 3 months of data, and, with a 5× increase

in dataset size, LSH query time increased by 30×. In addition,

station-specific repeated background noise leads to an overwhelm-

ing number of similar but non-earthquake time series matches, both

crippling throughput and seismologists’ ability to sift through the

output, which can number in the hundreds of millions of events.

Ultimately, these scalability bottlenecks prevented seismologists

from making use of the decades of data at their disposal.

In this paper, we show how systems, algorithms, and domain

expertise can go hand-in-hand to deliver substantial scalability im-

provements for this seismological analysis. Via algorithmic design,

optimization using domain knowledge, and data engineering, we

scale the FAST workload to years of continuous data at multiple sta-

tions. In turn, this scalability has enabled new scientific discoveries,

including previously unknown earthquakes near a nuclear reactor in

San Luis Obispo, California, and in New Zealand.

Specifically, we build a scalable end-to-end earthquake detection

pipeline comprised of three main steps. First, the fingerprint extrac-

tion step encodes time-frequency features of the original time series

into compact binary fingerprints that are more robust to small varia-

tions. To address the bottleneck caused by repeating non-seismic

signals, we apply domain-specific filters based on the frequency

bands and the frequency of occurrences of earthquakes. Second, the

search step applies LSH on the binary fingerprints to identify all

pairs of similar time series segments. We pinpoint high hash colli-

sion rates caused by physical correlations in the input data as a core

culprit of LSH performance degradation and alleviate the impact

of large buckets by increasing hash selectivity while keeping the

detection threshold constant. Third, the alignment step significantly

reduces the size of detection results and confirms seismic behavior

by performing spatiotemporal correlation with nearby seismic sta-

tions in the network [14]. To scale this analysis, we leverage domain

knowledge of the invariance of the time difference between a pair

of earthquake events across all stations at which they are recorded.

In summary, as an innovative systems and applications paper, this

work makes several contributions:

• We report on a new application of LSH in seismology as

well as a complete end-to-end data science pipeline, including

non-trivial pre-processing and post-processing, that scales to

a decade of continuous time series for earthquake detection.

• We present a case study for using domain knowledge to im-

prove the accuracy and efficiency of the pipeline. We illustrate

how applying seismological domain knowledge in each com-

ponent of the pipeline is critical to scalability.

• We demonstrate that our optimizations enable a cumulative

two order-of-magnitude speedup in the end-to-end detection

pipeline. These quantitative improvements enable qualitative

discoveries: we discovered 597 new earthquakes near the

Diablo Canyon nuclear power plant in California and 6123

new earthquakes in New Zealand, allowing seismologists to

determine the size and shape of nearby fault structures.

Beyond these contributions to a database audience, our solution

is an open source tool, available for use by the broader scientific

community. We have already run workshops for seismologists at

Stanford [2] and believe that the pipeline can not only facilitate

targeted seismic analysis but also contribute to the label generation

for supervised methods in seismic data [50].

The rest of the paper proceeds as follows. We review background

information about earthquake detection in Section 2 and discuss

additional related work in Section 3. We give a brief overview of the

end-to-end detection pipeline and key technical challenges in Sec-

tion 4. Sections 5, 6 and 7 present details as well as optimizations in

the fingerprint extraction, similarity search and the spatiotemporal

alignment steps of the pipeline. We perform a detailed evaluation

on both the quantitative performance improvements of our optimiza-

tions as well as qualitative results of new seismic findings in Section

8. In Section 9, we reflect on lessons learned and conclude.

2. BACKGROUND
With the deployment of denser and increasingly sensitive sensor

arrays, seismology is experiencing a rapid growth of high-resolution

data [30]. Seismic networks with up to thousands of sensors have

been recording years of continuous seismic data streams, typically

at 100Hz frequencies. The rising data volume has fueled strong

interest in the seismology community to develop and apply scalable

data-driven algorithms that improve the monitoring and prediction

of earthquake events [21, 40, 42].

In this work, we focus on the problem of detecting new, low-

magnitude earthquakes from historical seismic data. Earthquakes,

which are primarily caused by the rupture of geological faults, ra-

diate energy that travels through the Earth in the form of seismic

waves. Seismic waves induce ground motion that is recorded by seis-

mometers. Modern seismometers typically include 3 components

that measure simultaneous ground motion along the north-south,

east-west, and vertical axes. Ground motions along each of these

three axes are recorded as a separate channel of time series data.

Channels capture complementary signals for different seismic

waves, such as the P-wave and the S-wave. The P-waves travel along

the direction of propagation, like sound, while the S-waves travel

perpendicular to the direction of propagation, like ocean waves. The

vertical channel, therefore, better captures the up and down motions

caused by the P-waves while the horizontal channels better capture

the side to side motions caused by the S-waves. P-waves travel the

fastest and are the first to arrive at seismic stations, followed by the

slower but usually larger amplitude S-waves. Hence, the P-wave

and S-wave of an earthquake typically register as two “big wiggles”

on the ground motion measurements (Figure 1). These impulsive

arrivals of seismic waves are example characteristics of earthquakes

that seismologists look for in the data.

While it is easy for human eyes to identify large earthquakes on

a single channel, accurately detecting small earthquakes usually

requires looking at data from multiple channels or stations. These

low-magnitude earthquakes pose challenges for conventional meth-

ods for detection, which we outline below. Traditional energy-based

earthquake detectors such as a short-term average (STA)/long-term

average (LTA) identify earthquake events by their impulsive, high

signal-to-noise P-wave and S-wave arrivals. However, these de-

tectors are prone to high false positive and false negative rates at

low magnitudes, especially with noisy backgrounds [28]. Template

matching, or the waveform cross-correlation with template wave-

forms of known earthquakes, has proven more effective for detecting

known seismic signals in noisy data [15, 57]. However, the method

relies on template waveforms of prior events and is not suitable for

discovering events from unknown sources.
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As a result, almost all earthquakes greater than magnitude 5

are detected [26]. In comparison, an estimated 1.5 million earth-

quakes with magnitude between 2 and 5 are not detected by con-

ventional means, and 1.3 million of these are between magnitude

2 and 2.9. The estimate is based on the magnitude frequency dis-

tribution of earthquakes [31]. We are interested in detecting these

low-magnitude earthquakes missing from public earthquake cata-

logs to better understand earthquake mechanics and sources, which

inform seismic hazard estimates and prediction [32, 38, 49, 58].

The earthquake detection pipeline we study in the paper is an

unsupervised and data-driven approach that does not rely on su-

pervised (i.e., labeled) examples of prior earthquake events, and is

designed to complement existing, supervised detection methods. As

in template matching, the method we optimize takes advantage of

the high similarity between waveforms generated by reoccurring

earthquakes. However, instead of relying on waveform templates

from only known events, the pipeline leverages the recurring nature

of seismic activities to detect similar waveforms in time and across

stations. To do so, the pipeline performs an all-pair time series

similarity search, treating each segment of the input waveform data

as a “template” for potential earthquakes. This pipeline will not

detect an earthquake that occurs only once and is not similar enough

to any other earthquakes in the input data. Therefore, to improve

detection recall, it is critical to be able to scale the analysis to input

data with a longer duration (e.g., years instead of weeks or months).

3. RELATED WORK
In this section, we address related work in earthquake detection,

LSH-based applications and time series similarity search.

Earthquake Detection. The original FAST work appeared in the

seismology community, and has proven a useful tool in scientific

discovery [24, 25]. In this paper, we present FAST to a database

audience for the first time, and report on both the pipeline composi-

tion and optimization from a computational perspective. The results

presented in this paper are the result of over a year of collaboration

between our database research group and the Stanford earthquake

seismology research group. The optimizations we present in this

paper and the resulting scalability results of the optimized pipeline

have not previously been published. We believe this represents a

useful and innovative application of LSH to a real domain science

tool that will be of interest to both the database community and

researchers of LSH and time-series analytics.

The problem of earthquake detection is decades old [6], and many

classic techniques—many of which are in use today—were devel-

oped for an era in which humans manually inspected seismographs

for readings [35, 66]. With the rise of machine learning and large-

scale data analytics, there has been increasing interest in further

automating these techniques. While FAST is optimized to find many

small-scale earthquakes, alternative approaches in the seismology

community utilize template matching [15,57], social media [54], and

machine learning techniques [8, 64]. Most recently, with sufficient

training data, supervised approaches have shown promising results

of being able to detect non-repeating earthquake events [50]. In

contrast, our LSH-based detection method does not rely on labeled

earthquake events and detects reoccurring earthquake events. In the

evaluation, we compare against two supervised methods [50,55] and

show that our unsupervised pipeline is able to detect qualitatively

different events from the existing earthquake catalog.

Locality Sensitive Hashing. In this work, we perform a detailed

case study of the practical challenges and the domain-specific so-

lutions of applying LSH to the field of seismology. We do not

contribute to the advance of the state-of-the-art LSH algorithms; in-

stead, we show that classic LSH techniques, combined with domain-

specific optimizations, can lead to scientific discoveries when ap-

plied at scale. Existing work shows that LSH performance is sensi-

tive to key parameters such as the number of hash functions [23,52];

we provide supporting evidence and analysis on the performance im-

plication of LSH parameters in our application domain. In addition

to the core LSH techniques, we also present nontrivial preprocess-

ing and postprocessing steps that enable an end-to-end detection

pipeline, including spatiotemporal alignment of LSH matches.

Our work targets CPU workloads, complementing existing efforts

that speed up similarity search on GPUs [34]. To preserve the in-

tegrity of the established science pipeline, we focus on optimizing

the existing MinHash based LSH rather than replacing it with po-

tentially more efficient LSH variants such as LSH forest [10] and

multi-probe LSH [45]. While we share observations with prior

work that parallelizes and distributes a different LSH family [61],

we present the unique challenges and opportunities of optimizing

MinHash LSH in our application domain. We provide performance

benchmarks against alternative similarity search algorithms in the

evaluation, such as set similarity joins [47] and an alternative LSH

library based on recent theoretical advances in LSH for cosine sim-

ilarity [7]. We believe the resulting experience report, as well as

our open source implementation, will be valuable to researchers

developing LSH techniques in the future.

Time Series Analytics. Time series analytics is a core topic in

large-scale data analytics and data mining [39, 44, 68]. In our appli-

cation, we utilize time series similarity search as a core workhorse

for earthquake detection. There are a number of distance metrics for

time series [22], including Euclidean distance and its variants [69],

Dynamic Time Warping [51], and edit distance [62]. However,

our input time series from seismic sensors is high frequency (e.g.

100Hz) and often noisy. Therefore, small time-shifts, outliers and

scaling can result in large changes in time-domain metrics [19].

Instead, we encode time-frequency features of the input time series

into binary vectors and focus on the Jaccard similarity between the

binary feature vectors. This feature extraction procedure is an adap-

tation of the Waveprint algorithm [9] initially designed for audio

data; the key modification made for seismic data was to focus on

frequency features that are the most discriminative from background

noise, such that the average similarity between non-seismic signals

is reduced [13]. An alternative binary representation models time

series as points on a grid, and uses the non-empty grid cells as a set

representation of the time series [48]. However, this representation

does not take advantage of the physical properties distinguishing

background from seismic signals.

4. PIPELINE OVERVIEW
In this section, we provide an overview of the three main steps of

our end-to-end detection pipeline. We elaborate on each step—and

our associated optimizations—in later sections, referenced inline.

The input of the detection pipeline consists of continuous ground

motion measurements in the form of time series, collected from

multiple stations in the seismic network. The output is a list of

potential earthquakes, specified in the form of timestamps when the

seismic wave arrives at each station. From there, seismologists can

compare with public earthquake catalogs to identify new events, and

visually inspect the measurements to confirm seismic findings.

Figure 2 illustrates the three major components of the end-to-end

detection pipeline: fingerprint extraction, similarity search, and spa-

tiotemporal alignment. For each input time series, or continuous

ground motion measurements from a seismic channel, the algorithm
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Figure 2: The three steps of the end-to-end earthquake detection pipeline: fingerprinting transforms time series into binary vectors (Section 5);

similarity search identifies pairs of similar binary vectors (Section 6); alignment aggregates and reduces false positives in results (Section 7).

slices the input into short windows of overlapping time series seg-

ments and encodes time-frequency features of each window into a

binary fingerprint; the similarity of the fingerprints resembles that

of the original waveforms (Section 5). The algorithm then performs

an all pairs similarity search via LSH on the binary fingerprints and

identifies pairs of highly similar fingerprints (Section 6). Finally,

like a traditional associator that maps earthquake detections at each

station to a consistent seismic source, in the spatiotemporal align-

ment stage, the algorithm combines, filters and clusters the outputs

from all seismic channels to generate a list of candidate earthquake

detections with high confidence (Section 7).

A naı̈ve implementation of the pipeline imposes several scalability

challenges. For example, we observed LSH performance degrada-

tion in our application caused by the non-uniformity and correlation

in the binary fingerprints; the correlations induce undesired LSH

hash collisions, which significantly increase the number of lookups

per similarity search query (Section 6.3). In addition, the similarity

search does not distinguish seismic from non-seismic signals. In the

presence of repeating background signals, similar noise waveforms

could outnumber similar earthquake waveforms, leading to more

than an order of magnitude slow down in runtime and increase in

output size (Section 6.5). As the input time series and the output of

the similarity search becomes larger, the pipeline must adapt to data

sizes that are too large to fit into main memory (Section 6.4, 7.2).

In this paper, we focus on single-machine, main-memory execu-

tion on commodity servers with multicore processors. We parallelize

the pipeline within a given server but otherwise do not distribute

the computation to multiple servers. In principle, the parallelization

efforts extend to distributed execution. However, given the poor

quadratic scalability of the unoptimized pipeline, distribution alone

would not have been a viable option for scaling to desired data vol-

ume. As a result of the optimizations described in this paper, we are

able to scale to a decade of data on a single node without requiring

distribution. However, we view distributed execution as a valuable

extension for future work.

In the remaining sections of this paper, we describe the design

decisions as well as performance optimizations for each pipeline

component. Most of our optimizations focus on the all pairs similar-

ity search, where the initial implementation exhibited near quadratic

growth in runtime with the input size. We show in the evaluation

that, these optimizations enable speedups of more than two orders

of magnitude in the end-to-end pipeline.

5. FINGERPRINT EXTRACTION
In this section, we describe the fingerprint extraction step that en-

codes time-frequency features of the input time series into compact

binary vectors for similarity search. We begin with an overview of

the fingerprinting algorithm [13] and the benefits of using finger-

Time Series Spectrogram Wavelet

MAD NormalizationTop CoefficientBinary Fingerprint

Figure 3: The fingerprinting algorithm encodes time-frequency

features of the original time series into binary vectors.

prints in place of the time series (Section 5.1). We then describe a

new optimization that parallelizes and accelerates the fingerprinting

generation via sampling (Section 5.2).

5.1 Fingerprint Overview
Inspired by the success of feature extraction techniques for in-

dexing audio snippets [13], fingerprint extraction step transforms

continuous time series data into compact binary vectors (finger-

prints) for similarity search. Each fingerprint encodes representative

time-frequency features of the time series. The Jaccard similarity of

two fingerprints, defined as the size of the intersection of the non-

zero entries divided by the size of the union, preserves the waveform

similarity of the corresponding time series segments. Compared to

directly computing similarity on the time series, fingerprinting in-

troduces frequency-domain features into the detection and provides

additional robustness against translation and small variations [13].

Figure 3 illustrates the individual steps of fingerprinting:

1. Spectrogram Compute the spectrogram, a time-frequency

representation, of the time series. Slice the spectrogram

into short overlapping segments using a sliding window and

smooth by downsampling each segment into a spectral image.
2. Wavelet Transform Compute two-dimensional discrete Haar

wavelet transform on each spectral image. The wavelet coeffi-

cients serve as a lossy compression of the spectral images.
3. Normalization Normalize each wavelet coefficient by its me-

dian and the median absolute deviation (MAD) on the full,

background dominated dataset.
4. Top coefficient Extract the top K most anomalous wavelet

coefficients, or the largest coefficients after MAD normal-

ization, from each spectral image. By selecting the most

anomalous coefficients, we focus only on coefficients that are

most distinct from coefficients that characterize noise, which

empirically leads to better detection results.
5. Binarize Binarize the signs and positions of the top wavelet

coefficients. We encode the sign of each normalized coeffi-

cient using 2 bits: −1 → 01, 0 → 00, 1 → 10.
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5.2 Optimization: MAD via sampling
The fingerprint extraction is implemented via scientific modules

such as scipy, numpy and PyWavelets in Python. While its runtime

grows linearly with input size, fingerprinting ten years of time series

data can take several days on a single core.

In the unoptimized procedure, normalizing the wavelet coeffi-

cients requires two full passes over the data. The first pass calculates

the median and the MAD1 for each wavelet coefficient over the

whole population, and the second pass normalizes the wavelet rep-

resentation of each fingerprint accordingly. Given the median and

MAD for each wavelet coefficient, the input time series can be parti-

tioned and normalized in parallel. Therefore, the computation of the

median and MAD remains the runtime bottleneck.

We accelerate the computation by approximating the true median

and MAD with statistics calculated from a small random sample

of the input data. The confidence interval for MAD with a sample

size of n shrinks with n1/2 [59]. We further investigate the trade-off

between speed and accuracy under different sampling rates in the

evaluation (Section 8.3). We empirically find that, on one month

of input time series data, sampling provides an order of magnitude

speedup with almost no loss in accuracy. For input time series of

longer duration, sampling 1% or less of the input can suffice.

6. LSH­BASED SIMILARITY SEARCH
In this section, we present the time series similar search step

based on LSH. We start with a description of the algorithm and

the baseline implementation (Section 6.1), upon which we build

the optimizations. Our contributions include: an optimized hash

signature generation procedure (Section 6.2), an empirical analysis

of the impact of hash collisions and LSH parameters on query

performance (Section 6.3), partition and parallelization of LSH that

reduce the runtime and memory usage (Section 6.4), and finally,

two domain-specific filters that improve both the performance and

detection quality of the search (Section 6.5).

6.1 Similarity Search Overview
Reoccurring earthquakes originated from nearby seismic sources

appear as near-identical waveforms at the same seismic station.

Given continuous ground motion measurements from a seismic

station, our pipeline identifies similar time series segments from the

input as candidates for reoccurring earthquake events.

Concretely, we perform an approximate similarity search via Min-

Hash LSH on the binary fingerprints to identify all pairs of finger-

prints whose Jaccard similarity exceeds a predefined threshold [17].

MinHash LSH performs a random projection of high-dimensional

data into lower dimensional space, hashing similar items to the same

hash table “bucket” with high probability (Figure 4). Instead of

performing a naı̈ve pairwise comparisons between all fingerprints,

LSH limits the comparisons to fingerprints sharing the same hash

bucket, significantly reducing the computation. The ratio of the av-

erage number of comparisons per query to the size of the dataset, or

selectivity, is a machine-independent proxy for query efficiency [23].

Hash signature generation. The MinHash of a fingerprint is

the first non-zero element of the fingerprint under a given random

permutation of its elements. The permutation is defined by a hash

function mapping fingerprint elements to random indices. Let p

denote the collision probability of a hash signature generated with a

single hash function. By increasing the number of hash functions k,

the collision probability of the hash signature decreases to pk [43].

1For X = {x1,x2, ...,xn}, the MAD is defined as the median of the absolute
deviations from the median: MAD = median(|xi −median(X)|)

General Purpose Hashing Locality-Sensitive Hashing

Figure 4: Locality-sensitive hashing hashes similar items to the

same hash “bucket” with high probability.

Hash table construction. Each hash table stores an independent

mapping of fingerprints to hash buckets. The tables are initialized

by mapping hash signatures to a list of fingerprints that share the

same signature. Empirically, we find that using t = 100 hash ta-

bles suffices for our application, and there is little gain in further

increasing the number of hash tables.

Search. The search queries the hash tables for each fingerprint’s

near neighbor candidates, or other fingerprints that share the query

fingerprint’s hash buckets. We keep track of the number of times the

query fingerprint and candidates have matching hash signature in the

hash tables, and output candidates with matches above a predefined

threshold. The number of matches is also used as a proxy for the

confidence of the similarity in the final step of the pipeline.

6.2 Optimization: Hash signature generation
In this subsection, we present both memory access pattern and

algorithmic improvements to speed up the generation of hash signa-

tures. We show that, together, the optimizations lead to an over 3×
improvement in hash generation time (Section 8.1).

Similar to observations made for SimHash (a different hash family

for angular distances) [61], a naı̈ve implementation of the MinHash

generation can suffer from poor memory locality due to the sparsity

of input data. SimHash functions are evaluated as a dot product

between the input and hash mapping vectors, while MinHash func-

tions are evaluated as a minimum of hash mappings corresponding

to non-zero elements of the input. For sparse input, both functions

access scattered, non-contiguous elements in the hash mapping vec-

tor, causing an increase in cache misses. We improve the memory

access pattern by blocking the access to the hash mappings. We

use dimensions of the fingerprint, rather than hash functions, as the

main loop for each fingerprint. As a result, the lookups for each

non-zero element in the fingerprint are blocked into rows in the hash

mapping array. For our application, this loop order has the addi-

tional advantage of exploiting the high overlap (e.g. over 60% in

one example) between neighboring fingerprints. The overlap means

that previously accessed elements in hash mappings are likely to get

reused while in cache, further improving the memory locality.

In addition, we speed up the hash signature generation by re-

placing MinHash with Min-Max hash. MinHash only keeps the

minimum value for each hash mapping, while Min-Max hashkeeps

both the min and the max. Therefore, to generate hash signatures

with similar collision probability, Min-Max hash reduces the num-

ber of required hash functions to half. Previous work showed the

Min-Max hash is an unbiased estimator of pairwise Jaccard similar-

ity, and achieves similar and sometimes smaller mean squared error

(MSE) in estimating pairwise Jaccard similarity in practice [33]. We

include pseudocode for the optimized hash signature calculation in

Appendix D of extended Technical Report [53].

6.3 Optimization: Alleviating hash collisions
Perhaps surprisingly, our initial LSH implementation demon-

strated poor scaling with the input size: with a 5× increase in input,

the runtime increases by 30×. In this subsection, we analyze the

cause of LSH performance degradation and the performance impli-

cations of core LSH parameters in our application.
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Figure 8: The alignment procedure combines similarity search out-

puts from all channels in the same station (Channel Level), groups

similar fingerprint matches generated from the same pair of reoccur-

ring earthquakes (Station Level), and checks across seismic stations

to reduce false positives in the final detection list (Network Level).

Figure 9: Earthquakes from the same seismic sources has a fixed

travel time to each seismic station (e.g. δ tA, δ tB in the figure). The

inter-event time between two occurrences of the same earthquake is

invariant across seismic stations.

reduce each cluster to a few summary statistics, such as the bound-

ing box of the diagonal, the total number of similar pairs in the

bounding box, and the sum of their similarity. Compared to storing

every similar fingerprint pair, the clusters and summary statistics

significantly reduce the size of the output.

Network Level. Earthquake signals also show strong temporal

correlation across the seismic network, which we exploit to further

suppress non-earthquake matches. Since an earthquake’s travel time

is only a function of its distance from the source but not of the

magnitude, reoccurring earthquakes generated from the same source

take a fixed travel time from the source to the seismic stations on

each occurrence. Assume that an earthquake originated from source

X takes δ tA and δ tB to travel to seismic stations A and B and that the

source generates two earthquakes at time t1 and t2 (Figure 9). Station

A experiences the arrivals of the two earthquakes at time t1 + δ tA
and t2 +δ tA, while station B experiences the arrivals at t1 +δ tB and

t2 +δ tB. The inter-event time ∆t of these two earthquake events is

independent of the location of the stations:

∆t = (t2 +δ tA)− (t1 +δ tA) = (t2 +δ tB)− (t1 +δ tB) = t2 − t1.

This means that in practice, diagonals with the same offset ∆t and

close starting times at multiple stations can be attributed to the same

earthquake event. We require a pair of earthquake events to be

observed at more than a user-specified number of stations in order

to be considered as a detection.

On a run with 7 to 10 years of time series data from 11 seismic

stations (27 channels), the postprocessing procedure effectively

reduced the output from more than 2 Terabytes of similar fingerprint

pairs to around 30K timestamps of potential earthquakes.

7.2 Implementation and Optimization
The volume of similarity search output poses serious challenges

for the alignment procedure, as we often need to process results

larger than the main memory of a single node. In this subsection, we

describe our implementation and the new out-of-core adaptations of

the algorithm that enable the scaling to large output volumes.

Similarity search output format. The similarity search produces

outputs that are in the form of triplets. A triplet (dt, idx1,sim) is

a non-zero entry in the similarity matrix, which represents that

fingerprint idx1 and (idx1+dt) are hashed into the same bucket sim

times (out of t independent trials). We use sim as an approximation

of the similarity between the two fingerprints.

Channel. First, given outputs of similar fingerprint pairs (or the

non-zero entries of the similarity matrix) from different channels

at the same station, we want to compute the combined similarity

matrix with only entries above a predefined threshold.

Naı̈vely, we could update a shared hashmap of the non-zero en-

tries of the similarity matrix for each channel in the station. However,

since the hashmap might not fit in the main memory on a single ma-

chine, we utilize the following sort-merge-reduce procedure instead:

1. In the sorting phase, we perform an external merge sort on

the outputs from each channel, with dt as the primary sort

key and idx1 as the secondary sort key. That is, we sort the

similar fingerprint pairs first by the diagonal that they belong

to in the similarity matrix, and within the diagonals, by the

start time of the pairs.

2. In the merging phase, we perform a similar external merge

sort on the already sorted outputs from each channel. This

is to make sure that all matches generated by the same pair

of fingerprint idx1 and idx1+dt at different channels can be

concentrated in consecutive rows of the merged file.

3. In the reduce phase, we traverse through the merged file and

combine the similarity score of consecutive rows of the file

that share the same dt and idx1. We discard results that have

combined similarity smaller than the threshold.

Station. Given a combined similarity matrix for each seismic

station, represented in the form of its non-zero entries sorted by

their corresponding diagonals and starting time, we want to cluster

fingerprint matches generated by potential earthquake events, or

cluster non-zero entries along the narrow diagonals in the matrix.

We look for sequences of detections (non-zero entries) along each

diagonal dt, where the largest gap between consecutive detections is

smaller than a predefined gap parameter. Empirically, permitting a

gap help ensure an earthquake’s P and S wave arrivals are assigned

to the same cluster. Identification of the initial clusters along each

diagonal dt requires a linear pass through the similarity matrix. We

then interactively merge clusters in adjacent diagonals dt −1 and

dt + 1, with the restriction that the final cluster has a relatively

narrow width. We store a few summary statistics for each cluster

(e.g. the cluster’s bounding box, the total number of entries) as

well as prune small clusters and isolated fingerprint matches, which

significantly reduces the output size.

The station level clustering dominates the runtime in the spa-

tiotemporal alignment. In order to speed up the clustering, we

partition the similarity matrix according to the diagonals, or ranges

of dts of the matched fingerprints, and perform clustering in parallel

on each partition. A naı̈ve equal-sized partition of the similarity

matrix could lead to missed detections if a cluster split into two

partitions gets pruned in both due to the decrease in size. Instead,

we look for proper points of partition in the similarity matrix where

there is a small gap between neighboring occupied diagonals. Again,
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we take advantage of the ordered nature of similarity matrix entries.

We uniformly sample entries in the similarity matrix, and for every

pair of neighboring sampled entries, we only check the entries in be-

tween for partition points if the two sampled entries lie on diagonals

far apart enough to be in two partitions. Empirically, a sampling

rate of around 1% works well for our datasets in that most sampled

entries are skipped because they are too close to be partitioned.

Network. Given groups of potential events at each station, we

perform a similar summarization across the network in order to iden-

tify subsets of the events that can be attributed to the same seismic

source. In principle, we could also partition and parallelize the net-

work detection. In practice, however, we found that the summarized

event information at each station is already small enough that it

suffices to compute in serial.

8. EVALUATION
In this section, we perform both quantitative evaluation on perfor-

mances of the detection pipeline, as well as qualitative analysis of

the detection results. Our goal is to demonstrate that:

1. Each of our optimizations contributes meaningfully to the

performance improvement; together, our optimizations enable

an over 100× speed up in the end-to-end detection pipeline.

2. Incorporating domain knowledge in the pipeline improves

both the performance and the quality of the detection.

3. The improved scalability of the pipeline enables new scientific

discoveries on two public datasets: we discovered 597 new

earthquakes from a decade of seismic data near the Diablo

Canyon nuclear power plant in California, as well as 6123 new

earthquakes from a year of seismic data from New Zealand.

Dataset. We evaluate on two public datasets used in seismological

analyses with our domain collaborators. The first dataset includes

1 year of 100Hz time series data (3.15 billion points per station)

from 5 seismic stations (LTZ, MQZ, KHZ, THZ, OXZ) in New

Zealand. We use the vertical channel (usually the least noisy) from

each station [3]. The second dataset of interest includes 7 to 10

years of 100Hz time series data from 11 seismic stations and 27

total channels near the Diablo Canyon power plant in California [4].

Experimental Setup. We report results from evaluating the

pipeline on a server with 512GB of RAM and two 28-thread In-

tel Xeon E5-2690 v4 2.6GHz CPUs. Our test server has L1, L2,

L3 cache sizes of 32K, 256K and 35840K. We report the runtime

averages from multiple trials.

8.1 End­to­end Evaluation
In this subsection, we report the runtime breakdown of the base-

line implementation of the pipeline, as well as the effects of applying

different optimizations.

To evaluate how our optimizations scale with data size, we eval-

uate the end-to-end pipeline on 1 month and 1 year of time series

data from station LTZ in the New Zealand dataset. We applied a

bandpass filter of 3-20Hz on the original time series to exclude noisy

low-frequency bands. For fingerprinting, we used a sliding window

with length of 30 seconds and slide of 2 seconds, which results in

1.28M binary fingerprints for 1 month of time series data (15.7M

for one year), each of dimension 8192; for similarity search, we use

6 hash functions, and require a detection threshold of 5 matches out

of 100 hash tables. We further investigate the effect of varying these

parameters in the microbenchmarks in Section 8.3.

Figure 10 shows the cumulative runtime after applying each opti-

mization. Cumulatively, our optimizations scale well with the size

of the dataset, and enable an over 100× improvement in end-to-end

processing time. We analyze each of these components in turn:

First, we apply a 1% occurrence filter (+ occur filter, Section 6.5)

during similarity search to exclude frequent fingerprint matches

generated by repeating background noise. This enables a 2-5×
improvement in similarity search runtime while reducing the output

size by 10-50×, reflected in the decrease in postprocessing time.

Second, we further reduce the search time by increasing the

number of hash functions to 8 and lowering the detection threshold

to 2 (+ increase #funcs, Section 6.3). While this increases the

hash signature generation and output size, it enables around 10×
improvement in search time for both datasets.

Third, we reduce the hash signature generation time by improving

the cache locality and reducing the computation with Min-Max hash

instead of MinHash (+ locality MinMax, Section 6.2), which leads

to a 3× speedup for both datasets.

Fourth, we speed up fingerprinting by 2× by estimating MAD

statistics with a 10% sample (+ MAD sample, Section 5.2).

Finally, we enable parallelism and run the pipeline with 12 threads

(Section 5.2, 6.4, 7.2). As a result, we see an almost linear decrease

in runtime in each part of the pipeline. Notably, due to the overall

lack of data dependencies in this scientific pipeline, simple paral-

lelization can already enable significant speedups.

The improved scalability enables us to scale analytics from 3

months to over 10 years of data. We discuss qualitative detection

results from both datasets in Section 8.5.

8.2 Effect of domain­specific optimizations
Here, we investigate the effect of applying domain-specific opti-

mizations to the pipeline. We demonstrate that incorporating domain

knowledge could improve both performance and result quality.

Occurrence filter. We evaluate the effect of applying the occur-

rence filter during similarity search on the five stations from the

New Zealand dataset. For this evaluation, we use a partition size of 1

month as the duration for the occurrence threshold; a >1% threshold

indicates that a fingerprint matches over 1% (10K) other fingerprints

in the same month. We report the total percentage of filtered fin-

gerprints under varying thresholds in Table 1. We also evaluate the

accuracy of the occurrence filter by comparing the timestamps of

filtered fingerprints with the catalog of the arrival times of known

earthquakes at each station. In Table 1, we report the false positive

rate, or the number of filtered earthquakes over the total number of

cataloged events, of the filter under varying thresholds.

The results show that as the occurrence filter becomes stronger,

the percentage of filtered fingerprints and the false positive rate both

increase. For seismic stations suffering from correlated noise, the

occurrence filter can effectively eliminate a significant amount of

fingerprints from the similarity search. For station LTZ, a >1%

threshold filters out up to 30% of the total fingerprints without any

false positives, which results in a 4× improvement in runtime. For

other stations, the occurrence filter has little influence on the results.

This is expected since these stations do not have repeating noise

signals present at station LTZ (Figure 7). In practice, correlated

noise is rather prevalent in seismic data. In the Diablo Canyon

dataset for example, we applied the occurrence filter on three out of

the eleven seismic stations in order for the similarity search to finish

in a tractable time.

Bandpass filter. We compare similarity search on the same dataset

(Nyquist frequency 50Hz) before and after applying bandpass filters.

The first bandpass filter (bp: 1-20Hz) is selected as most seismic

signals are under 20Hz; the second (bp: 3-20Hz) is selected after

manually looking at samples spectrograms of the dataset and exclud-
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