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ABSTRACT

Joint analysis of data from different sources can potentially
improve one’s ability to reveal latent structure in heteroge-
neous datasets. For instance, social network activities and
user demographic information can be leveraged to improve
recommendations. However, the incompleteness and hetero-
geneity of the data challenge joint factorization of multiple
datasets. Aspiring to address these challenges, the coupled
graph tensor factorization model accounts for side information
available in the form of correlation matrices or graphs. Here, a
novel ADMM-based approach is put forth to impute missing
entries and unveil hidden structure in the data. The iterative
solver enjoys closed-form updates that result in reduced com-
putational complexity. Numerical tests with synthetic and real
data corroborate the merits of the proposed method relative to
competing alternatives.

Index Terms— Non-negative factorization, parallel factor
(PARAFAC)/ canonical polyadic decomposition (CPD) model,
imputation, recommender systems

1. INTRODUCTION

Multi-relational data emerge in diverse applications such as
social networks, recommender systems, biomedical imaging,
computer vision and communication networks, where pertinent
datasets are typically modeled as high-order tensors [1]. In
several real settings however, only a subset of the data can be
observed due to application-specific restrictions. For example,
the ratings of new users in recommender systems are missing;
in social applications individuals may be reluctant to share
personal information due to privacy concerns; brain data may
contain misses due to inadequate spatial resolution. In this
context, a task of paramount importance is the imputation of
the missing entries given the available data.

Oftentimes, side information is available that captures re-
lations among items in a mode of the tensor. For instance,
item correlation matrices may be available or estimated, and
these correlations reflect an underlying graph structure [2].
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Analyzing data from multiple sources jointly endows the impu-
tation task with extra prediction capabilities. In recommender
systems one may benefit from available user-user interactions
over a social network to impute the missing ratings and fa-
cilitate profitable recommendations to new costumers. The
present paper develops a novel algorithm for joint factorization
of tensors and graphs with missing entries.

Related work. The so-termed coupled matrix tensor factoriza-
tion (CMTF) involves matrices and tensors that are assumed
to share factors [3-5]. Typically, CMTF approaches assume
a low-rank model for the tensor that captures the “regularity”
present among data in order to recover the missing entries [6].
Misses in both the side information and the tensor were han-
dled in [3,4], but the case of graph matrices was not considered
— and it requires judicious modeling. Similarity matrices have
been used as regularizers for tensor factorization problems [6].
Assuming that the underlying low-rank factors follow a sim-
plified distribution allows for incorporation of the correlation
information in a Bayesian framework [6]. Albeit interesting
this approach assumes that the similarity matrices are fully
observable, which is not the case in several applications. In
a social network for example, not all users will provide their
social network connections. On the other hand, [7] accounts
for graph data and allows for misses in both the matrices and
the tensor. Unfortunately, [7] pursues the factors utilizing a
first-order method which slows down the convergence rate
and becomes computationally expensive when as the size of
tensors and side information grows large.

In this paper, a novel algorithm based on the alternating
direction method of multipliers (ADMM) for coupled graph
and tensor factorization (CGTF) is proposed in order to im-
pute missing entries in both the matrices and the tensors. The
proposed model can handle the so called cold start challenge
where an entire slab is missing from the tensor. The merits
of our approach are as follows. First, during each ADMM
iteration, we avoid solving constrained optimization problems,
resulting in considerably lower computational complexity per
iteration compared to constrained least-squares based algo-
rithms. Second, our ADMM algorithm is suitable for acceler-
ated solvers in [4] which exploit data sparsity. Finally, our ap-
proach can easily incorporate many other types of constraints
on the latent factors, such as sparsity.
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2. MODEL AND PROBLEM FORMULATION

Consider a tensor X of order N and size I1 x Iy X --- X I.
An entry of X is denoted by X(i1, 42, - ,in), Where each
index 7;, refers to the kth-mode of the tensor. The focus of
this paper is tensors with positive entries that appear in diverse
applications such as recommendation systems, finance, or
biology. The mode-n matricization of X is denoted by the
matrix X,,, which arranges the mode-n one-dimensional fibers
as columns of the resulting matrix; see [1] for details. Without
loss of generality, we will focus on the case of 3-way tensors
X € RQ *I2xTs 1 geveral real settings, tensors are low rank
and hence are expressed via the well-known parallel factor
(PARAFAC) decomposition [1, 6]

R
X(il, 12, i3) = Z Al(’il, T‘)Ag(ig7 r)A3(237 ’I’) + E(il, 12, 23)
r=1
where R is the rank of the tensor, {A,, € Ri” *H13 | repre-
sent the low-rank factor matrices corresponding to the three
modes of the tensor and E € R71*%2XIs captures model mis-
match. The PARAFAC model is written in tensor-matrix form
as follows
X = [[A1, A, As]] +E (1)
where [[A1, Az, As]] is the outer product of these matrices
resulting in a tensor. Oftentimes, only a subset of entries of
X is observable. Thus, we write X = X + XM, where X*
contains the observed tensor entries and otherwise is zero, and
XM holds the missing values and zeros elsewhere.
Additionally, consider a set of graph (similarity) matrices
{G,, € RY*™}3 | The (i, j)-th entry of G,, reflects the
similarity between the i-th and j-th data items of the n-th ten-
sor mode, and thus G, can be viewed as an adjacency matrix
capturing the connectivity of an undirected graph. This prior in-
formation for the tensor items is well-motivated since network
data are available in numerous disciplines including sociology,
biology, neuroscience and engineering. In these applications,
subsets of items form communities in the sense that they ex-
hibit dense intra-connections and sparse inter-connections,
which is captured by G.,. For example, this property is com-
mon in social networks, where friends tend to form dense
clusters [8]. Thus, we adopt a symmetric nonnegative matrix
factorization (SNMF) model [9], that enables finding identifi-
able factors and recovering clusters of nodes. Specifically, we
advocate the following diagonally-scaled SNMF model
G, =A,diag(d,)A,) +V,, n=1,23 (2
where {V,, € RI»*In}  capture modeling error and {d,, €
Rf“}n weight the factor matrices. Notice that the factors
{A,}, are shared between the tensor and the graph of the
corresponding item justifying the name of the proposed model
as coupled graph tensor factorization. Whereas classical

CMTF approaches model the side information as A,B,,
the novel CGTF captures the graph structure by employing
A, diag (d,)A;. Adding the diagonal loading matrices
endows the model with the ability to adjust the relative weight-
ing differences between the tensor and the side information
matrices. Unfortunately, the network topologies may contain
missing entries (links), which can be attributed to privacy
concerns in social networks, or sampling constraints in mas-
sive networks. Hence, the graph matrices are modeled as
G, = G2 + GM, where G contains the observed links and
GM holds the missing values.

Problem statement. The broad goal of this paper is the joint
recovery of X and {GM}3 _, from the available values X

n=1

and {G4}3_, by employing the proposed CGTF model.

3. COUPLED GRAPH TENSOR FACTORIZATION

Given (1) and (2), this section develops a novel approach to
infer X* and {G}1}3_, . In order to find the latent factors
that jointly approximate the tensor and the graph matrices, the
following optimization problem is put forth

minimize IX — [[A1, Az, As]] |7
Xluf{An’dTwG%}i:I

3
i) |Gy — A, diag (dn) A, |17

n=1

An Z 01 dn Z 07
X = XA +XIV17 Gn = G;:‘ + G£¥[7
Pa(XM) =0, Po,(G)) =0, n=1,2,3

S. t. 3)

where ;1 > 0 tunes the relative importance of the fit between
the tensor and the graph matrices. The first term accounts
for the LS fitting error of the PARAFAC model (1), and the
second sum of LS costs accounts for the SNMF model (2).
The positivity constraints stem from prior knowledge related
to the factor and diagonal matrices. The equality conditions
constrain X and {G,,}?_, to be equal to X* and {GA}3_,
at the observed entries and to the optimization variables X
and {GM}3_, otherwise. The operators Py and Pq, force
the optimization variables to be zero at the observed entries.

The optimization problem in (3) is non-convex due to the
trilinear terms [[A1, Ay, As]] and A, diag (d,)A,}. The
next section develops an efficient solver for (3) based on the
ADMM [1].

3.1. ADMM for CGTF

First notice that the optimization problem (3) is even non-
convex for each A, separately due to the product of factor
matrices in the SMNF model. This poses an additional chal-
lenge to an ADMM algorithm that iteratively pursues per block
minimizers of the augmented Lagrangian. Hence, we intro-
duce {A,,}, auxiliary variables and rewrite the SMNF cost
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as |G, — A,, diag (d,,)A, ||%. Furthermore, to handle the
positivity constraints we introduce

0, ifM>0
g(M) = { : O]
00, otherwise

and the auxiliary variables {An, &n}n. Next, we rewrite (3)
as the following equivalent optimization problem

3
X — [[Ar Az, A] 17+ g(AL)
f=1

minimize
XM {Ap,An,An,
dp,dn,GMYS_
3

3
+p Y [1Gn — Ay diag (da) A |7+ D g(dn)

n=1 f=1

s.t. A,=A, A,=A, d,=d,, 5)
X=X*"+X" G,=G2+GM,
Po(XM) =0, Po, (GM)=0,n=1,23.

Even though (5) is still non-convex in all the variables, it is
convex with respect to each block variable separately. Towards
deriving an ADMM solver, we introduce the dual variables
{YAn € R» XR, YAW, S RI"XR, Ya, € RRXl}n and the
penalty terms {pa,, > 0,p5 > 0,p5 > 0},.

The augmented Lagrangian is given by (6), at the bottom
of the page, where f(-) is the objective function in (5). For
ease of notation, no ADMM superscripts will be used in the fol-
lowing equations. Without loss of generality, only the ADMM
updates for n = 1 will be presented. The update for A; can
be obtained by taking the derivative of L, with respect to A
and equating it to zero to obtain

Ay (MM, + D1 AT ADy + (pg, + pa,)T) (7a)
= XIMl + [LGlAlDl + PAlAl +pA1A1 7YA1 7YA

1

where M; := A3 ® Ay, and D, := diag (d;). The update
for d; can be obtained in a similar manner as

The auxiliary variables Ay, d; are updated by projecting to
the nonnegative orthant; that is,

2 1
A, ;(A1 + YA1>
pAl +

2 1
d; :=<d1 + yal> .
pal +

(7d)

Using the estimated factors {An}n the updates for the missing
tensor elements are found as

XM = PQ(HAl,AQ,Ag]]) (76)
Similarly, the missing links in G can be obtained as
GY .= Po, (A, diag (d1)A]). (76)

Finally, the updates for the Lagrange multipliers are given by

Ya, =Ya, +ra, (A1 —A))
YAl :YAl —‘y—pAl(Al — Al)

Ya, =va, +pa, (di —dy). (7g)

The steps of our CGTF algorithm are listed in Algorithm 1.
Since (5) is a non-convex problem, a judicious initialization
of {A, }, is required. Towards that end, we adopt an efficient
algorithm for SNMF, see e.g. [10], to initialize the factor
matrices using only the available elements in the correspond-
ing graphs {G#}, while {d,,} are initialized by setting all
entries equal to one. Since SNMF is unique under certain
conditions, the initialization is likely to be a good one [10].
The ADMM algorithm stops when the primal residuals and
the dual feasibility residuals are sufficiently small.

The advantage of introducing the auxiliary variables is
twofold. First, by employing A,,, we bypass solving the
non-convex SNMF that would require a costly iterative al-
gorithm per factor update. Second, by introducing {An, &n},
we avoid solving a constrained optimization problem, result-
ing in a more computationally affordable update compared to

(AL O AT (nA; © Ay) + pall)&l (7b)  constrained least-squares based algorithms. In a nutshell, our
X ~ 1 reformulation allows for closed-form updates per step of

= (A 0 AT - dy —y5 . nove c-1om upaates per step
H(AL© A1) g1+ pq,di — Yy, the ADMM solver. Even though {A.,,d, },, are by construc-
Accordingly, the update for Ay is given by tion qon-negatlve, {A,,A,,d,}, are not necessarily npn-
negative, but they become so upon convergence. Extensive
1&1( D, AlT AD; +pa,T) (7¢) simulation on s.ynthetic apd real data validate that Algorithm 1
T converges, while theoretical guarantees for convergence will

= pGy AiD1 +pa A+ Y5, be provided in a subsequent journal version.
Lp(XMv{ATMATL?AnadTManangvYAn7YAnayan ?L:l) = f(XMa{AnaA’naAn)dnv&'IHGQ/[}?L:l) (6)
3
pAn A pAn A pa” J
+ (TI(YAWAI) + THAn - JAnH%7 + Tl“(YAnA;Lr) + T”An - An”%‘ + TT(Y&,LdrTL) + THdn - dn||2F)
f=1
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Algorithm 1 ADMM for CGTF

Input: X" and {GA}3_,

1: Intialization: SNMF for {A,, },, using [10].

2: while iterates not converge do

3 Update A, using (7a).

4: Update El using (7b).

5: Update A using (7c).

6 Update {An, dn} using (7d).

7 Update xM using (7e).

8: Update GM using (71).

9: Update Lagrangian multipliers using (7g).
10: end while

Output: XM (A, d,,GM},

4. NUMERICAL TESTS

This section evaluates the performance of the proposed CGTF
on synthetic and real data. The compared approaches in-
clude the CANDECOMP/PARAFAC Weighted OPTimization
(CP_WOPT) algorithm [5]; the nonnegative tensor factoriza-
tion (NTF) implemented in [11]; and the CMTF [3]. The
algorithms were initialized using the proposed SNMF scheme,
which enhances the performance of all methods.

4.1. Synthetic Data

Synthetic tensor X € R3°%35%30 with R = 4 was generated
according to the PARAFAC model (1), where the true fac-
tors {A,,}2_, are drawn from a standard normal distribution.
Matrices { G, }>_, were generated using the SMNF (2).

To evaluate the performance of the various factorization
algorithms, the entries of X were corrupted with random i.i.d
Gaussian noise. Fig. 1 depicts the normalized mean sg{uared er-
ror NMSE:= 372 [|X(:,:,43) — X(:, 5, d) |3/ 0, I1X(:
,%,43)||% against the signal to noise ratio (SNR). The novel
CGTF exploits the structure of the graph matrices and achieves
superior performance relative to the competing methods. The
large performance difference can be explained since the NTF
and CP_WOPT approaches do not exploit the side information,
while the CMTF method does not exploit the special structure
of graph matrices.

4.2. Real Data

A real recommendation dataset was employed that comprises a
three-way tensor indicating the frequency of a user performing
an activity at a location [12]. It contains information about
164 users, 168 locations and 5 activities. A binary tensor
X is constructed to represent the links between the users,
the locations and the activities. In other words, X(i1, 42, i3)
equals 1 if user ¢; visited location 72 and performed activity
13; otherwise, it is 0. Additionally, similarity matrices between

=== CGTF === CMTF PARAFAC = == NTF
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Fig. 1: Tensor imputation performance based on NMSE.
({pAn = 100>pAn = 1007P,§1n = 100}77,7” =1).

the users and the activities are provided. The similarity value
between two locations is defined by inner product between the
corresponding feature vectors. The dataset is missing social
network information for 28 users, and feature vectors for 32
locations. For all approaches the tensor rank was set to R = 4.

Table 1 shows the NMSE for different percentages of miss-
ing data for the tensor. The CGTF model exploits judiciously
the structure of the available graph information and hence our
efficient ADMM solver outperforms competing alternatives,
and facilitates improved recommendations.

H Missing \ NTF
40% 2.0815
50% -

CP.WOPT CMTF _ Algorithm 1 ||

0.9517 0.975 0.48
0.9574 1.001 0.75

Table 1: NMSE for different ratios of missing data.
({pa, =100,p5 =100,p5 =100},,n =10"").!

5. CONCLUSIONS AND FUTURE WORK

This paper investigates the imputation of missing entries in
tensors and graphs based on a novel CGTF model. An effi-
cient algorithm is developed to identify the factor matrices
and recover the missing entries. The ADMM solver enjoys
closed-form updates and is amenable to parallel and acceler-
ated implementation. Also, the proposed method is the only
one among the ones considered here that can overcome the
so-called cold-start challenge, where the tensor has missing
slabs or the similarity matrices are not complete. The novel
algorithm makes accurate prediction of the missing values and
can be employed in several real world settings, especially in
recommendation systems. Our future research agenda includes
refinement of the optimization algorithm to scale for tensors
with large dimensions; extending the proposed model to han-
dle anomalies in the data; and employing the factors recovered
by the CGTF model for detecting communities in the graphs.

IThe NTF model does not provide meaningful results for high percentages
of missing value.
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