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ABSTRACT

Joint analysis of data from different sources can potentially

improve one’s ability to reveal latent structure in heteroge-

neous datasets. For instance, social network activities and

user demographic information can be leveraged to improve

recommendations. However, the incompleteness and hetero-

geneity of the data challenge joint factorization of multiple

datasets. Aspiring to address these challenges, the coupled

graph tensor factorization model accounts for side information

available in the form of correlation matrices or graphs. Here, a

novel ADMM-based approach is put forth to impute missing

entries and unveil hidden structure in the data. The iterative

solver enjoys closed-form updates that result in reduced com-

putational complexity. Numerical tests with synthetic and real

data corroborate the merits of the proposed method relative to

competing alternatives.

Index Terms— Non-negative factorization, parallel factor

(PARAFAC)/ canonical polyadic decomposition (CPD) model,

imputation, recommender systems

1. INTRODUCTION

Multi-relational data emerge in diverse applications such as

social networks, recommender systems, biomedical imaging,

computer vision and communication networks, where pertinent

datasets are typically modeled as high-order tensors [1]. In

several real settings however, only a subset of the data can be

observed due to application-specific restrictions. For example,

the ratings of new users in recommender systems are missing;

in social applications individuals may be reluctant to share

personal information due to privacy concerns; brain data may

contain misses due to inadequate spatial resolution. In this

context, a task of paramount importance is the imputation of

the missing entries given the available data.

Oftentimes, side information is available that captures re-

lations among items in a mode of the tensor. For instance,

item correlation matrices may be available or estimated, and

these correlations reflect an underlying graph structure [2].

The work in this paper was supported by NSF grants 171141, 1500713,

and 1442686.

Analyzing data from multiple sources jointly endows the impu-

tation task with extra prediction capabilities. In recommender

systems one may benefit from available user-user interactions

over a social network to impute the missing ratings and fa-

cilitate profitable recommendations to new costumers. The

present paper develops a novel algorithm for joint factorization

of tensors and graphs with missing entries.

Related work. The so-termed coupled matrix tensor factoriza-

tion (CMTF) involves matrices and tensors that are assumed

to share factors [3–5]. Typically, CMTF approaches assume

a low-rank model for the tensor that captures the “regularity”

present among data in order to recover the missing entries [6].

Misses in both the side information and the tensor were han-

dled in [3,4], but the case of graph matrices was not considered

– and it requires judicious modeling. Similarity matrices have

been used as regularizers for tensor factorization problems [6].

Assuming that the underlying low-rank factors follow a sim-

plified distribution allows for incorporation of the correlation

information in a Bayesian framework [6]. Albeit interesting

this approach assumes that the similarity matrices are fully

observable, which is not the case in several applications. In

a social network for example, not all users will provide their

social network connections. On the other hand, [7] accounts

for graph data and allows for misses in both the matrices and

the tensor. Unfortunately, [7] pursues the factors utilizing a

first-order method which slows down the convergence rate

and becomes computationally expensive when as the size of

tensors and side information grows large.

In this paper, a novel algorithm based on the alternating

direction method of multipliers (ADMM) for coupled graph

and tensor factorization (CGTF) is proposed in order to im-

pute missing entries in both the matrices and the tensors. The

proposed model can handle the so called cold start challenge

where an entire slab is missing from the tensor. The merits

of our approach are as follows. First, during each ADMM

iteration, we avoid solving constrained optimization problems,

resulting in considerably lower computational complexity per

iteration compared to constrained least-squares based algo-

rithms. Second, our ADMM algorithm is suitable for acceler-

ated solvers in [4] which exploit data sparsity. Finally, our ap-

proach can easily incorporate many other types of constraints

on the latent factors, such as sparsity.
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2. MODEL AND PROBLEM FORMULATION

Consider a tensor X of order N and size I1 × I2 × · · · × IN .

An entry of X is denoted by X(i1, i2, · · · , iN ), where each

index ik refers to the kth-mode of the tensor. The focus of

this paper is tensors with positive entries that appear in diverse

applications such as recommendation systems, finance, or

biology. The mode-n matricization of X is denoted by the

matrix Xn, which arranges the mode-n one-dimensional fibers

as columns of the resulting matrix; see [1] for details. Without

loss of generality, we will focus on the case of 3-way tensors

X ∈ R
I1×I2×I3
+ . In several real settings, tensors are low rank

and hence are expressed via the well-known parallel factor

(PARAFAC) decomposition [1, 6]

X(i1, i2, i3) =

R
∑

r=1

A1(i1, r)A2(i2, r)A3(i3, r) +E(i1, i2, i3)

where R is the rank of the tensor, {An ∈ R
In×R
+ }3n=1 repre-

sent the low-rank factor matrices corresponding to the three

modes of the tensor and E ∈ R
I1×I2×I3 captures model mis-

match. The PARAFAC model is written in tensor-matrix form

as follows

X =
[

[A1,A2,A3]
]

+E (1)

where
[

[A1,A2,A3]
]

is the outer product of these matrices

resulting in a tensor. Oftentimes, only a subset of entries of

X is observable. Thus, we write X = XA +XM , where XA

contains the observed tensor entries and otherwise is zero, and

XM holds the missing values and zeros elsewhere.

Additionally, consider a set of graph (similarity) matrices

{Gn ∈ R
In×In
+ }3n=1 . The (i, j)-th entry of Gn reflects the

similarity between the i-th and j-th data items of the n-th ten-

sor mode, and thus Gn can be viewed as an adjacency matrix

capturing the connectivity of an undirected graph. This prior in-

formation for the tensor items is well-motivated since network

data are available in numerous disciplines including sociology,

biology, neuroscience and engineering. In these applications,

subsets of items form communities in the sense that they ex-

hibit dense intra-connections and sparse inter-connections,

which is captured by Gn. For example, this property is com-

mon in social networks, where friends tend to form dense

clusters [8]. Thus, we adopt a symmetric nonnegative matrix

factorization (SNMF) model [9], that enables finding identifi-

able factors and recovering clusters of nodes. Specifically, we

advocate the following diagonally-scaled SNMF model

Gn = An diag (dn)A
>
n +Vn, n = 1, 2, 3 (2)

where {Vn ∈ R
In×In}n capture modeling error and {dn ∈

R
R×1
+ }n weight the factor matrices. Notice that the factors

{An}n are shared between the tensor and the graph of the

corresponding item justifying the name of the proposed model

as coupled graph tensor factorization. Whereas classical

CMTF approaches model the side information as AnB
>
n ,

the novel CGTF captures the graph structure by employing

An diag (dn)A
>
n . Adding the diagonal loading matrices

endows the model with the ability to adjust the relative weight-

ing differences between the tensor and the side information

matrices. Unfortunately, the network topologies may contain

missing entries (links), which can be attributed to privacy

concerns in social networks, or sampling constraints in mas-

sive networks. Hence, the graph matrices are modeled as

Gn = GA
n +GM

n , where GA
n contains the observed links and

GM
n holds the missing values.

Problem statement. The broad goal of this paper is the joint

recovery of XM and {GM
n }3n=1 from the available values XA

and {GA
n }

3
n=1 by employing the proposed CGTF model.

3. COUPLED GRAPH TENSOR FACTORIZATION

Given (1) and (2), this section develops a novel approach to

infer XM and {GM
n }3n=1. In order to find the latent factors

that jointly approximate the tensor and the graph matrices, the

following optimization problem is put forth

minimize
XM ,{An,dn,GM

n }3

n=1

‖X−
[

[A1,A2,A3]
]

‖2F

+µ

3
∑

n=1

‖Gn −An diag (dn)A
>
n ‖

2
F

s. t. An ≥ 0, dn ≥ 0, (3)

X = XA +XM , Gn = GA
n +GM

n ,

PΩ(X
M ) = 0, PΩn

(GM
n ) = 0, n = 1, 2, 3

where µ > 0 tunes the relative importance of the fit between

the tensor and the graph matrices. The first term accounts

for the LS fitting error of the PARAFAC model (1), and the

second sum of LS costs accounts for the SNMF model (2).

The positivity constraints stem from prior knowledge related

to the factor and diagonal matrices. The equality conditions

constrain X and {Gn}
3
n=1 to be equal to XA and {GA

n }
3
n=1

at the observed entries and to the optimization variables XM

and {GM
n }3n=1 otherwise. The operators PΩ and PΩn

force

the optimization variables to be zero at the observed entries.

The optimization problem in (3) is non-convex due to the

trilinear terms
[

[A1,A2,A3]
]

and An diag (dn)A
>
n . The

next section develops an efficient solver for (3) based on the

ADMM [1].

3.1. ADMM for CGTF

First notice that the optimization problem (3) is even non-

convex for each An separately due to the product of factor

matrices in the SMNF model. This poses an additional chal-

lenge to an ADMM algorithm that iteratively pursues per block

minimizers of the augmented Lagrangian. Hence, we intro-

duce {Ān}n auxiliary variables and rewrite the SMNF cost
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as ‖Gn − An diag (dn)Ā
>
n ‖

2
F . Furthermore, to handle the

positivity constraints we introduce

g(M) =

{

0, if M ≥ 0

∞, otherwise
(4)

and the auxiliary variables {Ãn, d̃n}n. Next, we rewrite (3)

as the following equivalent optimization problem

minimize
XM,{An,Ān,Ãn,

dn,d̃n,GM
n }3

n=1

‖X−
[

[A1,A2,A3]
]

‖2F +

3
∑

f=1

g(Ãn)

+ µ

3
∑

n=1

‖Gn −An diag (dn)Ā
>
n ‖

2
F +

3
∑

f=1

g(d̃n)

s. t. An = Ān, An = Ãn, dn = d̃n, (5)

X = XA +XM , Gn = GA
n +GM

n ,

PΩ(X
M ) = 0, PΩn

(GM
n ) = 0, n = 1, 2, 3.

Even though (5) is still non-convex in all the variables, it is

convex with respect to each block variable separately. Towards

deriving an ADMM solver, we introduce the dual variables

{YĀn
∈ R

In×R,Y
Ãn

∈ R
In×R,y

d̃n
∈ R

R×1}n and the

penalty terms {ρĀn
> 0, ρ

Ãn
> 0, ρ

d̃n
> 0}n.

The augmented Lagrangian is given by (6), at the bottom

of the page, where f(·) is the objective function in (5). For

ease of notation, no ADMM superscripts will be used in the fol-

lowing equations. Without loss of generality, only the ADMM

updates for n = 1 will be presented. The update for A1 can

be obtained by taking the derivative of Lρ with respect to A1

and equating it to zero to obtain

Â1(M
>
1 M1 + µD1Ā

>
1 Ā1D1 + (ρ

Ã1
+ ρĀ1

)I) (7a)

:= X>
1 M1 + µG1Ā1D1 + ρĀ1

Ā1 +ρ
Ã1

Ã1 −Y
Ã1

−YĀ1

where M1 := A3 �A2, and D1 := diag (d1). The update

for d1 can be obtained in a similar manner as

((Ā1 �A1)
>(µĀ1 �A1) + ρ

d̃1
I)d̂1 (7b)

:= µ(Ā1 �A1)
>g1 + ρ

d̃1
d̃1 − y

d̃1
.

Accordingly, the update for Ā1 is given by

ˆ̄A1(µD1A
>
1 A1D1 + ρĀ1

I) (7c)

:= µG>
1 A1D1 + ρĀ1

A1 +YĀ1
.

The auxiliary variables Ã1, d̃1 are updated by projecting to

the nonnegative orthant; that is,

ˆ̃
A1 :=

(

A1 +
1

ρ
Ã1

Y
Ã1

)

+

ˆ̃
d1 :=

(

d1 +
1

ρ
d̃1

y
d̃1

)

+

. (7d)

Using the estimated factors {Ân}n the updates for the missing

tensor elements are found as

X̂M := PΩ(
[

[Â1, Â2, Â3]
]

). (7e)

Similarly, the missing links in G1 can be obtained as

ĜM
1 := PΩ1

(Â1 diag (d̂1)
ˆ̄A>
1 ). (7f)

Finally, the updates for the Lagrange multipliers are given by

YĀ1
=YĀ1

+ ρĀ1
(A1 − Ā1)

Y
Ã1

=Y
Ã1

+ ρ
Ã1

(A1 − Ã1)

y
d̃1

=y
d̃1

+ ρ
d̃1
(d1 − d̃1). (7g)

The steps of our CGTF algorithm are listed in Algorithm 1.

Since (5) is a non-convex problem, a judicious initialization

of {An}n is required. Towards that end, we adopt an efficient

algorithm for SNMF, see e.g. [10], to initialize the factor

matrices using only the available elements in the correspond-

ing graphs {GA
n }, while {dn} are initialized by setting all

entries equal to one. Since SNMF is unique under certain

conditions, the initialization is likely to be a good one [10].

The ADMM algorithm stops when the primal residuals and

the dual feasibility residuals are sufficiently small.

The advantage of introducing the auxiliary variables is

twofold. First, by employing Ān, we bypass solving the

non-convex SNMF that would require a costly iterative al-

gorithm per factor update. Second, by introducing {Ãn, d̃n},

we avoid solving a constrained optimization problem, result-

ing in a more computationally affordable update compared to

constrained least-squares based algorithms. In a nutshell, our

novel reformulation allows for closed-form updates per step of

the ADMM solver. Even though {Ãn, d̃n}n are by construc-

tion non-negative, {An, Ān,dn}n are not necessarily non-

negative, but they become so upon convergence. Extensive

simulation on synthetic and real data validate that Algorithm 1

converges, while theoretical guarantees for convergence will

be provided in a subsequent journal version.

Lρ

(

XM , {An, Ān, Ãn,dn, d̃n,G
M
n ,YĀn

,Y
Ãn

,y
d̃n

}3n=1

)

:= f
(

XM , {An, Ān, Ãn,dn, d̃n,G
M
n }3n=1

)

(6)

+

3
∑

f=1

(

Tr(YĀn
A>

n ) +
ρĀn

2
‖An − Ān‖

2
F +Tr(Y

Ãn
A>

n ) +
ρ
Ãn

2
‖An − Ãn‖

2
F +Tr(y

d̃n
d>
n ) +

ρ
d̃n

2
‖dn − d̃n‖

2
F

)

.
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Algorithm 1 ADMM for CGTF

Input: XA and {GA
n }

3
n=1

1: Intialization: SNMF for {An}n using [10].

2: while iterates not converge do

3: Update Ân using (7a).

4: Update d̂n using (7b).

5: Update ˆ̄An using (7c).

6: Update { ˆ̃An,
ˆ̃
dn} using (7d).

7: Update X̂M using (7e).

8: Update ĜM
n using (7f).

9: Update Lagrangian multipliers using (7g).

10: end while

Output: X̂M , {Ân, d̂n, Ĝ
M
n }n

4. NUMERICAL TESTS

This section evaluates the performance of the proposed CGTF

on synthetic and real data. The compared approaches in-

clude the CANDECOMP/PARAFAC Weighted OPTimization

(CP WOPT) algorithm [5]; the nonnegative tensor factoriza-

tion (NTF) implemented in [11]; and the CMTF [3]. The

algorithms were initialized using the proposed SNMF scheme,

which enhances the performance of all methods.

4.1. Synthetic Data

Synthetic tensor X ∈ R
35×35×30 with R = 4 was generated

according to the PARAFAC model (1), where the true fac-

tors {An}
3
n=1 are drawn from a standard normal distribution.

Matrices {Gn}
3
n=1 were generated using the SMNF (2).

To evaluate the performance of the various factorization

algorithms, the entries of X were corrupted with random i.i.d

Gaussian noise. Fig. 1 depicts the normalized mean squared er-

ror NMSE:=
∑I3

i3=1
‖X̂(:, :, i3)−X(:, :, i3)‖

2
F /

∑I3
i3=1

‖X(:

, :, i3)‖
2
F against the signal to noise ratio (SNR). The novel

CGTF exploits the structure of the graph matrices and achieves

superior performance relative to the competing methods. The

large performance difference can be explained since the NTF

and CP WOPT approaches do not exploit the side information,

while the CMTF method does not exploit the special structure

of graph matrices.

4.2. Real Data

A real recommendation dataset was employed that comprises a

three-way tensor indicating the frequency of a user performing

an activity at a location [12]. It contains information about

164 users, 168 locations and 5 activities. A binary tensor

X is constructed to represent the links between the users,

the locations and the activities. In other words, X(i1, i2, i3)
equals 1 if user i1 visited location i2 and performed activity

i3; otherwise, it is 0. Additionally, similarity matrices between

5 10 15 20 25 30 35

10
0

10
1

Signal to Noise Ratio (dB)

N
M

S
E

CGTF CMTF PARAFAC NTF

Fig. 1: Tensor imputation performance based on NMSE.

({ρĀn
= 100, ρ

Ãn
= 100, ρ

d̃n
= 100}n, µ = 1).

the users and the activities are provided. The similarity value

between two locations is defined by inner product between the

corresponding feature vectors. The dataset is missing social

network information for 28 users, and feature vectors for 32

locations. For all approaches the tensor rank was set to R = 4.

Table 1 shows the NMSE for different percentages of miss-

ing data for the tensor. The CGTF model exploits judiciously

the structure of the available graph information and hence our

efficient ADMM solver outperforms competing alternatives,

and facilitates improved recommendations.

Missing NTF CP WOPT CMTF Algorithm 1

40% 2.0815 0.9517 0.975 0.48

50% – 0.9574 1.001 0.75

Table 1: NMSE for different ratios of missing data.

({ρĀn
= 100, ρ

Ãn
= 100, ρ

d̃n
= 100}n, µ = 10−4).1

5. CONCLUSIONS AND FUTURE WORK

This paper investigates the imputation of missing entries in

tensors and graphs based on a novel CGTF model. An effi-

cient algorithm is developed to identify the factor matrices

and recover the missing entries. The ADMM solver enjoys

closed-form updates and is amenable to parallel and acceler-

ated implementation. Also, the proposed method is the only

one among the ones considered here that can overcome the

so-called cold-start challenge, where the tensor has missing

slabs or the similarity matrices are not complete. The novel

algorithm makes accurate prediction of the missing values and

can be employed in several real world settings, especially in

recommendation systems. Our future research agenda includes

refinement of the optimization algorithm to scale for tensors

with large dimensions; extending the proposed model to han-

dle anomalies in the data; and employing the factors recovered

by the CGTF model for detecting communities in the graphs.

1The NTF model does not provide meaningful results for high percentages

of missing value.
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