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Abstract—Diffusion-based classifiers such as those relying
on the Personalized PageRank and the Heat kernel, enjoy
remarkable classification accuracy at modest computational
requirements. Their performance however is affected by the
extent to which the chosen diffusion captures a typically
unknown label propagation mechanism, that can be specific
to the underlying graph, and potentially different for each
class. The present work introduces a disciplined, data-efficient
approach to learning class-specific diffusion functions adapted to
the underlying network topology. The novel learning approach
leverages the notion of ‘“landing probabilities” of class-specific
random walks, which can be computed efficiently, thereby en-
suring scalability to large graphs. This is supported by rigorous
analysis of the properties of the model as well as the proposed
algorithms. Classification tests on real networks demonstrate
that adapting the diffusion function to the given graph and
observed labels, significantly improves the performance over
fixed diffusions; reaching—and many times surpassing—the
classification accuracy of computationally heavier state-of-the-
art competing methods, that rely on node embeddings and deep
neural networks.
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I. INTRODUCTION

The task of classifying nodes of a graph arises frequently
in several applications on real-world networks, such as
the ones derived from social interactions and biological
dependencies. Graph-based semi-supervised learning (SSL)
methods tackle this task building on the premise that the
true labels are distributed “smoothly” with respect to the
underlying network, which then motivates leveraging the
network structure to increase the classification accuracy [11].
Graph-based SSL has been pursued by various intertwined
methods, including iterative label propagation [6], [38], [22],
kernels on graphs [27], manifold regularization [5], graph
partitioning [35], [17], transductive learning [34], competitive
infection models [32], and bootstrapped label propagation
[10]. Recently, approaches based on node-embeddings [30],
[16], [37], as well as deep-learning architectures [18], [2]
have gained popularity, and were reported to have state-of-
the-art performance.

Many of the aforementioned methods are challenged by
computational complexity and scalability issues that limit
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their applicability to large-scale networks. Random-walk-
based diffusions present an efficient and effective alternative.
Methods of this family diffuse probabilistically the known
labels through the graph, thereby ranking nodes according to
weighted sums of variable-length landing probabilities. Cele-
brated representatives include those based on the Personalized
PageRank and the Heat Kernel that were found to perform
remarkably well in certain application domains [19], and have
been nicely linked to particular network models [20], [3], [21].
However, the effectiveness of diffusion-based classifiers can
vary considerably depending on whether the chosen diffusion
conforms with the latent label propagation mechanism that
might be, (i) particular to the target application or underlying
network topology; and, (ii) different for each class.

The present contribution alleviates these shortcomings
and markedly improves the performance of random-walk-
based classifiers by adapting the diffusion functions to both
the network and the observed labels. The resulting novel
classifier relies on the notion of landing probabilities of short-
length random walks rooted at the observed nodes of each
class. The small number of these landing probabilities can
be extracted efficiently with a small number of sparse matrix-
vector products, thus ensuring applicability to large-scale
networks'. Theoretical analysis establishes that short random
walks are in most cases sufficient for reliable classification.
We test our methods in terms of multiclass and multilabel
classification accuracy, and confirm that it can achieve results
competitive to state-of-the-art methods, while also being
considerably faster.

II. PROBLEM STATEMENT AND MODELING

Consider a graph G := {V, £}, where V is the set of N
nodes, and £ the set of edges. Connectivity is captured by
the weight matrix W having entries W;; > 0 if (i,5) € €.
Associated with each node ¢ € V there is a discrete label
y; € Y. In SSL classification over graphs, a subset £ C V
of nodes has available labels y,, and the goal is to infer
the labels of the unlabeled set ¢/ := V' \ L. Given a measure
of influence, a node most influenced by labeled nodes of a
certain class is deemed to also belong to the same class. Thus,
label-propagation on graphs boils down to quantifying the
influence of £ on U, see, e.g. [11], [22], [36]. An intuitive

IScalable implementation available at: github.com/DimBer/SSL_lib



yet simple measure of node-to-node influence relies on the
notion of random walks on graphs.

A simple random walk on a graph is a discrete-time
Markov chain with state space the set of nodes, and transition
probabilities

[H];; := Pr{X}, = i| X1 = j} = Wy;/d; = [WD™'];;
where X € V denotes the position of the random walker
(state) at the k' step; d Zke N, Wy, is the degree
of node j; and, N its nelghborhood Since we consider
undirected graphs the steady-state distribution of {Xj}
always exists if it is connected, and non-bipartite. It is
given by the dominant right eigenvector of the column-
stochastic transition probability matrix H WD,
where D := diag(dy,ds,...,dy) [24]. The steady-state
distribution 7 can be shown to have entries

hm ZPr{Xk =1|Xo =7} Pr{Xo=j} =
jGV

d;
" 2]
that are clearly not dependent on the initial “seeding”
distribution Pr{Xy}; and 7r is thus unsuitable for measuring
influence among nodes. Instead, for graph-based SSL, we
will utilize the k—step landing probability per node i given
by

(k)

= Pr{X; =i|Xo =j} Pr{Xo =4} (1)

JEV

that in vector form p*) := [pgk) pg\];)]T satisfies p(¥) =
H*p©, where p!” = Pr{X, = i}. In words, p* is the
probability that a random walker with initial distribution p(©®)
is located at node ¢ after k steps. Therefore, pgk) is a valid
measure of the influence that p(®) has on any node in V.
The landing probabilities per class ¢ € ) are (cf. (1))

p") = HFv, )

where for L. := {i € L :y; = c}, we select as v, the
normalized class-indicator vector with i—th entry

[Veli = { Ll i€ Le

0, else
acts as initial distribution. Using (2), we model diffusions
per class ¢ over the graph driven by {pgk)}f:l as

K
0) = Z 0ip
k=1

where PEK) = [ng pgK)

importance assigned to the k** hop neighborhood. By
constraining 8 € S¥, where SX = {x ¢ RF : x >
0, 1Tx = 1} is the K —dimensional probability simplex,
f.(0) becomes a valid nodal probability mass function (pmf)
for class c.

(©))

-PMo )

}, and 6, denotes the

93

Given 6 and upon obtaining {f.(8)}.cy, our diffusion-
based classifiers will predict labels over U as

5:(6) = arg max [f.(9)]; (5)
where [f.(6)], is the i entry of £.(6).

Next, we outline two notable members of the family of
diffusion-based classifiers that can be viewed as special cases
of (4).

A. Personalized-PageRank and Heat-Kernel Classifiers

Inspired by its celebrated network centrality metric [9],
the Personalized PageRank (PPR) algorithm has well-
documented merits for label propagation; see, e.g. [25].
PPR is a special case of (4) corresponding to Oppr =
(1—a) [a,az,...,aK]T, where 0 < a < 1, and 1 — «
can be interpreted as the “restart” probability of random
walks with restarts.

The PPR-based classifier relies on (cf. (4))

(1-a) Za p(k)

satisfying asymptotically in the number of random walk steps

f.(0ppr) = (6)

lim fc(OPPR) =

Jim (1—-a)I—aoH)™?

which implies that f.(@ppgr) approximates the solution of
a linear system. Indeed, as shown in [3], PPR amounts to
solving a weighted regularized least-squares problem over V;
see also [20] for a PPR interpretation as an approximate
geometric discriminant function defined in the space of
landing probabilities.

The heat kernel (HK) is another popular diffusion that
has recently been employed for SSL [27] and community
detection on graphs [19]. HIT( is also a special case of (4) with

Oukg =e ! {t R il

S K!} , yielding class distributions (cf.
“)

f.(Ouk) = e ka,p““). (7)

k=0
Furthermore, it can be readily shown that

lim f.(Ouk) = e tI-H)y
K—oo

allowing HK to be interpreted as an approximation of a heat
diffusion process, where heat is flowing from L. to the rest
of the graph; and f.(0uxk) is a snapshot of the temperature
after time ¢ has elapsed. HK provably yields low conductance
communities, while also converging faster to its asymptotic
closed-form expression than PPR [13].



III. ADAPTIVE DIFFUSIONS

Besides the unifying view of (4), the main contribution
here is on efficiently designing f.(6.) in (4), by learning

the corresponding 6. per class. Thus, unlike PPR and HK,

the methods introduced here can afford class-specific label
propagation that is adaptive to the graph structure, and also
adaptive to the labeled nodes; see Fig. 1 for a high-level
illustration of the proposed adaptive diffusion framework.
Consider for generality a goodness-of-fit loss £(-), and a

regularizer R(-) promoting e.g., smoothness over the graph.

Using these, the sought class distribution will be

f. = arg min Uyec.,f) + AR(f) ®)

where A tunes the degree of regularization, and

vedi={

is the indicator vector of the nodes belonging to class c. Using
our diffusion model in (4), the N—dimensional optimization
problem (8) reduces to solving for the K —dimensional vector
(K < N)

0. = arg emjgn Uye.,£:(0)) + AR(f.(0)).
[ K

1, i€ L,
0, else

€))

Although many choices of £(-) may be of interest, we will
focus for simplicity on the quadratic loss, namely

1

fye. )= 7 (Feli-
el

= (¥c. — £)'Di(yc. — ) (10)

(1/|L]) ¥, is the class indicator vector after

fi)?

where y._ =

normalization to avoid overfitting and numerical instabilities,

and DI, = diag(dgl)) with entries

a7 = {

For a smoothness-promoting regularization, we will employ
the following (normalized) Laplacian-based metric

ey (EL

(1 - > =fTD'LD!f. (1D
zev JEN;

1/d;,
0,

ie Ll
else

Intuitively speaking, (10) favors vectors f having non-zero

(|1/]£]) values on nodes that are known to belong to class c,

and zero values on nodes that are known to belong to other
classes (£ \ L.), while (11) promotes similarity of the entries
of f that correspond to neighboring nodes In (10) and (11),

each entry f; is normalized by d, 5 and d; ! respectively.

This normalization counterbalances the tendency of random
walks to concentrate on high-degree nodes, thus placing equal
importance to all nodes.

94

Adapting
Diffusions

Figure 1. High-level illustration of adaptive diffusions. The nodes belong
to two classes (red and green). The per-class diffusions are learned by
exploiting the landing probability spaces produced by random walks rooted
at the sample nodes (second layer: up for red; down for green).

Substituting (10) and (11) into (9), and recalling from (4)

that £.(0) = pXg, yields the convex quadratic program
0. = arg min 0TA0+0"b, (12)
6cSK
with b, and A, given by
b, = ‘E‘(P(K))TDEyE (13)
A= PINTDLPI + AP D 'LD P
(14)
= (PY)T (DL +AD™!) P — AD~'HP()|
= (PU)T (DLPI) + DR (1s)
where
HP() — [Hp(" Hp Hp!™|
= [p§2) pt” pEK“)}

is a “shifted” version of Pg

by one step, and

(k)

, Where each p¢ ’ is advanced

PO = [p B - Bl
with f)gi) = pgi) — pgiﬂ) containing the “differential”

landing probabilities. The complexity of “naively” finding
the K x K matrix A. (and thus also b.) is O(K2N) for
computing the first summand, and O(|€|K) for the second
summand in (14), after leveraging the sparsn of L, which
means |€| < N2. But since columns of P are obtained
as differences of consecutive columns of P&K), this load
of O(JE]K) is saved. In a nutshell, the adaptive-diffusion
(AdaDIF) solver in (12)-(15) incurs complexity O(K2N).

A. Limiting behavior and computational complexity

In this section, we offer further insights on the model (4),
along with complexity analysis of the parametric solution in
(12). To start, the next proposition establishes the limiting
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Figure 2. Illustration of K = 20 landing probability coefficients for PPR

with o« = 0.9, HK with ¢ = 10, and AdaDIF.

behavior of AdaDIF as the regularization parameter grows;
for the proof see [7].

Proposition 1. If the second largest eigenvalue of H has
multiplicity 1, then for K sufficiently large but finite, the
solution to (12) asA)\ — 00 satisfies

0.=ex, YL .CV. (16)

Our experience with solving (12) reveal that the sufficiently
large K required for (16) to hold, can be as small as 10%. As
A — o0, the effect of the loss in (10) vanishes. According to
Proposition 1, this causes AdaDIF to boost smoothness by
concentrating the simplex weights (entries of éc) on landing
probabilities of the late steps (k close to K). If on the
other extreme, smoothness-over-the-graph is not promoted (cf.
A = 0), the sole objective of AdaDIF is to construct diffusions
that best fit the available labeled data. Since short-length
random walks from a given node typically lead to nodes of
the same class, while longer walks to other classes, AdaDIF
with A = 0 tends to leverage only a few landing probabilities
of early steps (k close to 1). For moderate values of A,
AdaDIF effectively adapts per-class diffusions by balancing
the emphasis on initial versus final landing probabilities. Fig.
2 depicts an example of how AdaDIF places weights {0},
on landing probabilities after a maximum of K = 20 steps,
generated from few samples belonging to one of 7 classes of
the Cora citation network. Note that the learned coefficients
may follow radically different patterns than those dictated
by standard non-adaptive diffusions such as PPR or HK. It
is worth noting that the simplex constraint induces sparsity
of the solution in (12), thus ‘pushing’ {0} entries to zero.

The computational core of the proposed method is to build
the landing probability matrix PgK), whose columns are
computed fast using power iterations leveraging the sparsity
of H (cf. (2)). This endows AdaDIF with high computational
efficiency, especially for small K. Specifically, since for
solving (12) AdaDIF incurs complexity O(K2N) per class,
if K < |€|/N, this becomes O(|€|K); and for || classes,
the overall complexity of AdaDIF is O(|Y||€|K), which is
in the same order as that of non-adaptive diffusions such as
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PPR and HK. For larger K however, an additional O(K?2N)
is required per class, mainly to obtain A, in (15).

Overall, if O(KN) memory requirements are met, the
runtime of AdaDIF scales linearly with ||, provided that
K remains small. Thankfully, small values of K are usually
sufficient to achieve high learning performance. As will be
shown in the next section, this observation is in par with
the analytical properties of diffusion based classifiers, where
it turns out that K large does not improve classification
accuracy.

B. On the choice of K

Here we elaborate on how the selection of K influences
the classification task at hand. As expected, the effect of K is
intimately linked to the topology of the underlying graph, the
labeled nodes, and their properties. For simplicity, we will
focus on binary classification with the two classes denoted
by “+” and “—.” Central to our subsequent analysis is a
concrete measure of the effect an extra landing probability
vector pgk) can have on the outcome of a diffusion-based
classifier. Intuitively, this effect is diminishing as the number
of steps K grows, as both random walks eventually converge
to the same stationary distribution. Motivated by this, we
introduce next the ~y-distinguishability threshold.

Definition 1 (y-distinguishability threshold). Let p; and
P- denote respectively the seed vectors for nodes of class
“+7" and “—,” initializing the landing probability vectors in

matrices X, := PSK), and XC = [pﬁl) cee pgKfl)pgKH)},

where ¢ € {+,—}. Withy := X, 0-X_6 and y := X, 60—
X _0, the ~v-distinguishability threshold of the diffusion-based
classifier is the smallest integer K., satisfying ||y —y|| < v .

The following theorem establishes an upper bound on K,
expressed in terms of fundamental quantities of the graph,
as well as basic properties of the labeled nodes per class;
for the proof see [7].

Theorem 1. For any diffusion-based classifier with coeffi-
cients 0 constrained to a probability simplex of appropri-
ate dimensions, the ~y-distinguishability threshold is upper-
bounded as

1 /e 1 1
K, < ﬁlog { 5 (\/dminJﬁ,\ + \/dmin+|£+‘):|

where  dpin + minges, di,  dmin —
minjes dj, dmax max;cy d; and
min{pa, 2 — pun } where {1, }_, denote the eigenvalues of
the normalized graph Laplacian in ascending order.

The v-distinguishability threshold can guide the choice of
the dimension K of the landing probability space. Indeed,
using class-specific landing probability steps K > K., does
not help distinguishing between the corresponding classes, in
the sense that the classifier output is not perturbed by more
than ~. Intuitively, the information contained in the landing



probabilities K, + 1, K, + 2,... is essentially the same for
both classes and thus, using them as features unnecessarily
increases the overall complexity of the classifier, and also
“opens the door” to curse of dimensionality related concerns.

Theorem 1 makes no assumptions on the diffusion coef-
ficients, so long they belong to a probability simplex. Of
course, specifying the diffusion function can specialize and
further tighten the corresponding ~y-distinguishability thresh-
old. Conveniently, our experiments suggest that K € [10, 20]
is usually sufficient to achieve high performance for most real
graphs. Nevertheless, longer random walks may be necessary
in e.g., graphs with small y’, especially when the number of
labeled nodes is scarce. To deal with such challenges, the
ensuing modification of AdaDIF that scales linearly with K
is nicely motivated.

C. Dictionary of diffusions

The present section deals with a modified version of
AdaDIF, where the number of parameters (dimension of
0) is restricted to D < K, meaning the “degrees of freedom”
of each class-specific distribution are fewer than the number
of landing probabilities. Specifically, consider (cf. (4))

K
£(0) =3 ar(0)p = PHF)a(6)
k=1

where ay(0) = Zle%C’kd, and C := [c1-- ¢p| €
REXP is a dictionary of D coefficient vectors, the it
forming the column ¢; € SX. Since a(@) = C#, it follows
that

D
£.(0) =PICO =" 0,
d=1
where fc(d) = Zkl,il dep((;k) is the d* diffusion.

To find the optimal 8, the optimization problem in (12) is
solved with
2

£]
A.= (F2)TDLF2 £ A\F2)TDILDIF2 (18)

b. = (F2) Dlyce (17)

where FCA = [fc(l) ces fc(D)] effectively replaces Pt(:K) as
the basis of the space on which each f, is constructed. The
description of AdaDIF in dictionary mode is given as a
special case of Algorithm 1, together with the subroutine in
Algorithm 3 for memory-efficient generation of F2.

The motivation behind this dictionary-based variant of
AdaDIF is two-fold. First, it leverages the properties of
a judiciously selected basis of known diffusions, e.g. by
constructing C = [OPPR,GHK,...]. In that sense, our
approach is related to multi-kernel methods, e.g. [1], although
significantly more scalable than the latter. Second, the
complexity of AdaDIF in dictionary mode is O(|E|(K + D)),
where D can be arbitrarily smaller than K, leading to
complexity that is linear with respect to both K and |£].
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Algorithm 1 ADAPTIVE DIFFUSIONS
Input: Adjacency matrix: W, Labeled nodes: {y; }icr
parameters: Regularization parameter: A\, # of landing
probabilities: K, Dictionary mode € {True, False}, Un-
constrained € {True, False}
Output: Predictions: {§; }icu
Extract ) = { Set of unique labels in: {y;}icc}
for cec Y do
Lo={i eL:y;=c}
if Dictionary mode then
F2 = DICTIONARY (W, L., K, C)
Obtain b, and A, as in (17) and (18)
F.=F2
else
(P P} = LANDPROB(W, L., K)
Obtain b, and A, as in (13) and (15)
F. =P
end if
if Unconstrained then
Obtain 6. as in (19)

else
Obtain 90 by solving (12)
end if
fc(éc) == Fcéc
end for

Obtain §; = arg maxecy [fc(éc)} L Vieu

Algorithm 2 LANDPROB
Input: W, L., K Output: PéK), f’ﬁK)
H=WD" p{ =v,
for k=1:K+1 do

(k) (k—1)
Pec = Hpc
pe) =plt — p
end for

Algorithm 3 DICTIONARY

Input: W, L., K,C  Output: F2
H=WD"; p” =vg; {£"1P, =0
for k=1:K do

ol = Hp{"

for d=1:D do

£ = ££9 + Crapt”

end for

end for

D. Unconstrained diffusions

Thus far, the diffusion coefficients @ have been constrained
on the K —dimensional probability simplex S, resulting
in sparse solutions 6., as well as f.(0.) € SV. The latter
also allows each f.(0) to be interpreted as a pmf over V.



Nevertheless, the simplex constraint imposes a limitation to
the model: landing probabilities may only have non-negative
contribution on the resulting class distribution. Upon relaxing
this non-negativity constraint, (12) affords a closed-form
solution as

_1TA'b.—1

0. =A-'(b. — \*1), N =

(19
Retaining the hyperplane constraint 170 = 1 prevents the
trivial solution @ = 0, and forces at least one entry of 8 to
be positive.

IV. RELATION TO PRIOR WORKS

Following the seminal contribution in [9] that introduced
PageRank as a network centrality measure, there has been
a vast body of works studying its theoretical properties,
computational aspects, as well as applications beyond Web
ranking [23], [14]. Most formal approaches to generalize
PageRank focus either on the teleportation component (see
e.g. [28], [29] as well as [8] for an application to semi-
supervised classification), or, on the so-termed damping
mechanism [12], [4]. Perhaps the most general setting can
be found in [4], where a family of functional rankings was
introduced by the choice of a parametric damping function
that assigns weights to successive steps of a walk initialized
according to the teleportation distribution. The per class
distributions produced by AdaDIF are in fact members of this
family of functional rankings. However, instead of choosing a
fixed damping function as in the aforementioned approaches,
AdaDIF learns a class-specific and graph-aware damping
mechanism. In this sense, AdaDIF undertakes statistical
learning in the space of functional rankings, tailored to
the underlying semi-supervised classification task. AdaDIF
also shares links with SSL methods based on graph signal
processing proposed in [33]. Similar to our approach, these
graph filter based techniques are parametrized via assigning
different weights to a number of consecutive powers of a
matrix related to the structure of the graph. Our contribution
however, introduces different loss and regularization functions
for adapting the diffusions. It also uses the simplex constraint
which improves the numerical stability of the involved
computations; reduces the search-space of the model (which
is beneficial under data scarcity); and makes the model
amenable to a rigorous analysis that relates the dimensionality
of the feature space to basic graph properties.

V. EXPERIMENTAL EVALUATION

Our experiments compare the classification accuracy of
the novel AdaDIF approach with state-of-the-art alternatives.
For the comparisons, we use 6 benchmark labeled graphs
whose dimensions and basic attributes are summarized in
Table III. All 6 graphs have nodes that belong to multiple
classes, while the last 3 are multilabeled (each node has one
or more labels). We evaluate performance of AdaDIF and
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the following: i) PPR and HK, which are special cases of
AdaDIF as discussed in Section II; ii) Label propagation (LP)
[38] iii) Node2vec [16]; iv) Deepwalk [30]; v) Planetoid-G
[37]; and, vi) graph convolutional networks (GCNs) [18].

We performed 10-fold cross-validation to select parameters
needed by i) - v). For HK, we performed grid search
over t € [1,5,10,15]. For PPR, we fixed o = 0.98 since
it is well documented that o close to 1 yields reliable
performance; see e.g., [25]. HK, PPR and LP were run for
50 steps for convergence to be in effect. For Node2vec, we
fixed most parameters to the values suggested in [16], and
performed grid search for p,q € [0.25,1.0,2.0,4.0]. Since
Deepwalk can be seen as Node2vec with p = ¢ = 1.0, we
used the Node2vec Python implementation for both. As in
[16], [30], we used the embedded node-features to train a
supervised logistic regression classifier with ¢ regularization.
For AdaDIF, we fixed )\ 15.0, while K 20 was
sufficient to attain desirable accuracy; only the values of
Boolean variables Unconstrained and Dictionary Mode (see
Algorithm 1) were tuned by validation. For the multilabel
graphs, we found A = 5.0 and even shorter walks of K = 10
to perform well. For the dictionary mode of AdaDIF, we
preselected D = 10, with the first five columns of C being
HK coefficients with parameters ¢ € [5.0,20.0], and the other
five polynomial coefficients ¢; = k* with 3 € [2.0,10].

For multiclass experiments, we evaluated the performance
of all algorithms on the three benchmark citation networks,
namely Cora, Citeseer, and PubMed. We obtained the
labels of an increasing number of nodes by uniformly
sampling |£.| nodes from each class, and predicted the labels
of the remaining nodes. For each experiment, classification
accuracy was measured on the unlabeled nodes in terms of
Micro-F1 and Macro-F1 scores; see e.g., [26]. The results
were averaged over 20 experiments, with mean and standard
deviation reported in Table I. Evidently, AdaDIF achieves
state of the art performance for all graphs. For Cora and
PubMed, AdaDIF was switched to dictionary mode, while for
Citeseer, where the gain in accuracy is more significant,
unconstrained diffusions were employed. In the multiclass
setting, diffusion-based classifiers (AdaDIF, PPR, and HK)
outperformed the embedding-based methods by a small
margin, and GCNs by a larger margin. It should be noted
however that GCNs were mainly designed to combine the
graph with node features. In our “featureless” setting, we used
the identity matrix columns as input features, as suggested
in [18, Appendix]. The scalabilty of AdaDIF is reflected on
the runtime comparisons listed in Fig. 3. All experiments
were run on a machine with i5 @3.50 Mhz CPU, and
16GB of RAM. For the compared algorithms we used the
implementations provided by the authors.

Finally, Table II presents the results on multilabel graphs,
where we compare with Deepwalk and Node2vec, since the
rest of the methods are designed for multiclass problems.
Since nodes here may have multiple labels, it is challenging



Table T
MICRO F1 AND MACRO F1 SCORES ON MULTICLASS NETWORKS (CLASS-BALANCED SAMPLING)

Network Cora Citeseer PubMed
|Lel 5 10 20 5 10 20 5 10 20
AdaDIF 675422 71.0+20 732+1.2 423+44 495+30 535+1.2 620+£60 685+45 T41+1.7
= PR 67.1+23 702+21 728415 411452 487+25 525409 631+1.1 695+38 741+1.8
I  HK 67.04+25 70.54+25 729412 400+56 480+24 51.8+1.1 620+06 683+47 740418
8 LP 61.8£3.5 66.3 4.2 71.0£2.7 40.7+£2.5 48.0 £ 3.7 51.9+13 56.2+11.0 68.0+6.1 69.3+24
= Node2vec 689+1.9 70.2+£1.6 724+£1.2 39.2+3.7 46.5 £2.4 51.0+£14 61.7£13.0 66.4+4.6 71.1+24
Deepwalk 68.4+20 700+1.6 720414 384+39 455+20 504415 61.5+1.3 658+50 705422
Planetoid-G ~ 63.5+4.7 65.6+27 69.0+15 37.8+40 449433 498+14 607420 634+23 68.0+15
GCN 60.14+3.7 655425 686419 383432 442+22 480418 600+1.9 63.6+25 705415
AdaDIF 655+25 706+22 720+11 361+39 440+28 481+12 604406 67.0+44 726+18
_, PPR 65.0+23 700+23 719415 347450 435+23 476+06 61.7+06 681+36 7T2.6+1.8
~ HK 65.0 £ 2.5 70.0 £ 2.6 72.0+1.1 33.9+54 42.8+2.2 47.0+0.6 60.5 + 0.6 66.8+4.7 72.7+1.8
g LP 60.1 £ 3.2 66.5 4.1 70.6 £2.3 34.8+4.6 41.8£3.9 51.5+1.2 51.5+£123 66.2+6.6 67.8£2.0
S Nodedvec 624420 647+1.7 692412 346+27 41.6+19 453+15 595412 64.0+38 723414
Deepwalk 61.8+22 645+20 685+14 340+25 41.0+20 447+1.8 593+1.2 638+40 721413
Planetoid-G ~ 59.94+4.5 63.04+3.0 687419 333+25 402422 43.6+20 57.7+15 619435 66.1+1.8
GCN 53.8 £6.6 61.9+2.6 63.8+1.5 32.8£2.0 39.1+1.8 43.0+ 1.7 54.4+4.1 57.2+£5.2 60.5 £2.4
Table II
MICRO F1 AND MACRO F1 SCORES OF VARIOUS ALGORITHMS ON MULTILABEL NETWORKS
Network PPI BlogCatalog Wikipedia
12/ V| 10% 20% 30% 10% 20% 30% 10% 20% 30%
AdaDIF 154405 179407 19.24+0.6 315406 344405 363+04 282409 300405 31.2+0.7
ITI. PPR 13.8+ 0.5 15.8 + 0.6 170+ 0.4 21.1+£0.8 23.6 £0.6 25.2+0.6 105+ 1.5 81+0.7 7.24+0.5
g HK 145405 167406 181405 22241.0 247407 266+0.7 93+14 7.3+0.7 6.0+0.7
£ Nodevec 16.5+0.6 18.2+0.3 191+03 350+03 36.3+03 37.2+02 423+09 440+06 451+04
Deepwalk 16.0 £ 0.6 179+ 0.5 18.8+0.4 34.2+0.4 35.7+0.3 36.44+0.4 41.0+0.8 43.5+0.5 44.1+0.5
_ AdaDIF 134+06 154+07 165+0.7 23.0+06 253+04 270104 7.7+03 8.3+0.3 9.0+0.2
o PPR 129404 147405 158404 173405 195404 208403 44403 3.8+06 3.6+0.2
g HK 134+06 154+05 16.5+04 18.4+£0.6 20.7+0.4 22.34+04 42404 3.7£0.5 3.5+£0.2
S Node2vee 13.1£06 152£05 160£05 168+£05 190£03 201+£04  7.6+03 8.2+0.3 85+0.3
Deepwalk 12.7+£0.7 15.1+0.6 16.0£0.5 16.6 £ 0.5 18.7+£ 0.5 19.6 £0.4 7.3+£0.3 8.1+£0.2 8.2+0.2
10° T T
N Eable I B AdaDIF I GCN
FTWORK CHARACTERISTICS I Node2vec/Deepwalk ] Planetoid-G
Network 4 €] |Y|  Multilabel g 104 - — |
Citeseer 3233 9464 6 No E
Cora 2,708 10,858 7 No & ]
PubMed 19,717 88,676 3 No L
PPI (H. Sapiens) 3,890 76,584 50 Yes "3 102 | B
Wikipedia 4,733 184,182 40 Yes o)
BlogCatalog 10,312 333,983 39 Yes R~
to find a subset of nodes that has equal number of labels for 10° |- e
each class. In fact, such a set may not even exist for a given Cora Citeseer PubMed
size. Therefore, for multilabel graphs we simply draw nodes
uniformly at random and observe their labels. Also, since Figure 3. Relative runtime for multiclass networks.

these graphs have a large number of classes, we increased the
number of training samples. Similar to [16] and [30], during
evaluation the number of labels per sampled node is known,
and check how many of them are in the top predictions. First,
we observe that AdaDIF markedly outperforms PPR and HK
across graphs and metrics. Furthermore, for the PPI and
BlogCatalog graphs the Micro-F1 score of AdaDIF comes
close to that of the much heavier state-of-the-art Node2vec.
Finally, AdaDIF outperforms the competing alternatives in
terms of Macro-F1 score.
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VI. CONCLUSIONS

We introduced a principled, data-efficient approach to
learning class-specific diffusion functions tailored to the
underlying network topology. Experiments on real networks
confirm that adapting the diffusion function to the given graph
and observed labels, significantly improves the performance
over fixed diffusions; reaching—and many times surpassing—
the classification accuracy of state-of-the-art competing
methods while being orders of magnitude faster.
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