
AdaDIF: Adaptive Diffusions for Efficient Semi-supervised Learning over Graphs

Dimitris Berberidis1, Athanasios N. Nikolakopoulos2 and Georgios B. Giannakis1,2

1Department of Electrical & Computer Engineering
2Digital Technology Center, University of Minnesota, Minneapolis, MN, USA

Emails: {bermp,anikolak,georgios}@umn.edu

Abstract—Diffusion-based classifiers such as those relying
on the Personalized PageRank and the Heat kernel, enjoy
remarkable classification accuracy at modest computational
requirements. Their performance however is affected by the
extent to which the chosen diffusion captures a typically
unknown label propagation mechanism, that can be specific
to the underlying graph, and potentially different for each
class. The present work introduces a disciplined, data-efficient
approach to learning class-specific diffusion functions adapted to
the underlying network topology. The novel learning approach
leverages the notion of “landing probabilities” of class-specific
random walks, which can be computed efficiently, thereby en-
suring scalability to large graphs. This is supported by rigorous
analysis of the properties of the model as well as the proposed
algorithms. Classification tests on real networks demonstrate
that adapting the diffusion function to the given graph and
observed labels, significantly improves the performance over
fixed diffusions; reaching—and many times surpassing—the
classification accuracy of computationally heavier state-of-the-
art competing methods, that rely on node embeddings and deep
neural networks.

Keywords-Random Walks; Networks; Markov Chains; Label
Propagation; Dictionary

I. INTRODUCTION

The task of classifying nodes of a graph arises frequently

in several applications on real-world networks, such as

the ones derived from social interactions and biological

dependencies. Graph-based semi-supervised learning (SSL)

methods tackle this task building on the premise that the

true labels are distributed “smoothly” with respect to the

underlying network, which then motivates leveraging the

network structure to increase the classification accuracy [11].

Graph-based SSL has been pursued by various intertwined

methods, including iterative label propagation [6], [38], [22],

kernels on graphs [27], manifold regularization [5], graph

partitioning [35], [17], transductive learning [34], competitive

infection models [32], and bootstrapped label propagation

[10]. Recently, approaches based on node-embeddings [30],

[16], [37], as well as deep-learning architectures [18], [2]

have gained popularity, and were reported to have state-of-

the-art performance.

Many of the aforementioned methods are challenged by

computational complexity and scalability issues that limit

1This work was supported by NSF 1711471, 1500713, and 1442686.

their applicability to large-scale networks. Random-walk-

based diffusions present an efficient and effective alternative.

Methods of this family diffuse probabilistically the known

labels through the graph, thereby ranking nodes according to

weighted sums of variable-length landing probabilities. Cele-

brated representatives include those based on the Personalized

PageRank and the Heat Kernel that were found to perform

remarkably well in certain application domains [19], and have

been nicely linked to particular network models [20], [3], [21].

However, the effectiveness of diffusion-based classifiers can

vary considerably depending on whether the chosen diffusion

conforms with the latent label propagation mechanism that

might be, (i) particular to the target application or underlying

network topology; and, (ii) different for each class.

The present contribution alleviates these shortcomings

and markedly improves the performance of random-walk-

based classifiers by adapting the diffusion functions to both

the network and the observed labels. The resulting novel

classifier relies on the notion of landing probabilities of short-

length random walks rooted at the observed nodes of each

class. The small number of these landing probabilities can

be extracted efficiently with a small number of sparse matrix-

vector products, thus ensuring applicability to large-scale

networks1. Theoretical analysis establishes that short random

walks are in most cases sufficient for reliable classification.

We test our methods in terms of multiclass and multilabel

classification accuracy, and confirm that it can achieve results

competitive to state-of-the-art methods, while also being

considerably faster.

II. PROBLEM STATEMENT AND MODELING

Consider a graph G := {V, E}, where V is the set of N
nodes, and E the set of edges. Connectivity is captured by

the weight matrix W having entries Wij > 0 if (i, j) ∈ E .

Associated with each node i ∈ V there is a discrete label

yi ∈ Y . In SSL classification over graphs, a subset L ⊂ V
of nodes has available labels yL, and the goal is to infer

the labels of the unlabeled set U := V \ L. Given a measure

of influence, a node most influenced by labeled nodes of a

certain class is deemed to also belong to the same class. Thus,

label-propagation on graphs boils down to quantifying the

influence of L on U , see, e.g. [11], [22], [36]. An intuitive

1Scalable implementation available at: github.com/DimBer/SSL lib

2018 IEEE International Conference on Big Data (Big Data)

978-1-5386-5035-6/18/$31.00 ©2018 IEEE 92

yet simple measure of node-to-node influence relies on the

notion of random walks on graphs.

A simple random walk on a graph is a discrete-time

Markov chain with state space the set of nodes, and transition

probabilities

[H]ij := Pr{Xk = i|Xk−1 = j} = Wij/dj = [WD−1]ij

where Xk ∈ V denotes the position of the random walker

(state) at the kth step; dj :=
∑

k∈Nj
Wkj is the degree

of node j; and, Nj its neighborhood. Since we consider

undirected graphs the steady-state distribution of {Xk}
always exists if it is connected, and non-bipartite. It is

given by the dominant right eigenvector of the column-

stochastic transition probability matrix H := WD−1,

where D := diag (d1, d2, . . . , dN) [24]. The steady-state

distribution π can be shown to have entries

πi := lim
k→∞

∑

j∈V
Pr{Xk = i|X0 = j}Pr{X0 = j} =

di
2|E|

that are clearly not dependent on the initial “seeding”

distribution Pr{X0}; and π is thus unsuitable for measuring

influence among nodes. Instead, for graph-based SSL, we

will utilize the k−step landing probability per node i given

by

p
(k)
i :=

∑

j∈V
Pr{Xk = i|X0 = j}Pr{X0 = j} (1)

that in vector form p(k) := [p
(k)
1 . . . p

(k)
N]T satisfies p(k) =

Hkp(0), where p
(0)
i := Pr{X0 = i}. In words, p

(k)
i is the

probability that a random walker with initial distribution p(0)

is located at node i after k steps. Therefore, p
(k)
i is a valid

measure of the influence that p(0) has on any node in V .

The landing probabilities per class c ∈ Y are (cf. (1))

p(k)
c = Hkvc (2)

where for Lc := {i ∈ L : yi = c}, we select as vc the

normalized class-indicator vector with i−th entry

[vc]i =

{

1/|Lc|, i ∈ Lc

0, else
(3)

acts as initial distribution. Using (2), we model diffusions

per class c over the graph driven by {p
(k)
c }Kk=1 as

fc(θ) =

K
∑

k=1

θkp
(k)
c = P(K)

c θ (4)

where P
(K)
c :=

[

p
(1)
c · · · p

(K)
c

]

, and θk denotes the

importance assigned to the kth hop neighborhood. By

constraining θ ∈ SK , where SK := {x ∈ R
K : x ≥

0, 1Tx = 1} is the K−dimensional probability simplex,

fc(θ) becomes a valid nodal probability mass function (pmf)

for class c.

Given θ and upon obtaining {fc(θ)}c∈Y , our diffusion-

based classifiers will predict labels over U as

ŷi(θ) := argmax
c∈Y

[fc(θ)]i (5)

where [fc(θ)]i is the ith entry of fc(θ).

Next, we outline two notable members of the family of

diffusion-based classifiers that can be viewed as special cases

of (4).

A. Personalized-PageRank and Heat-Kernel Classifiers

Inspired by its celebrated network centrality metric [9],

the Personalized PageRank (PPR) algorithm has well-

documented merits for label propagation; see, e.g. [25].

PPR is a special case of (4) corresponding to θPPR =

(1 − α)
[

α, α2, . . . , αK
]T

, where 0 < α < 1, and 1 − α
can be interpreted as the “restart” probability of random

walks with restarts.

The PPR-based classifier relies on (cf. (4))

fc(θPPR) = (1− α)
K
∑

k=0

αkp(k)
c (6)

satisfying asymptotically in the number of random walk steps

lim
K→∞

fc(θPPR) = (1− α)(I− αH)−1vc

which implies that fc(θPPR) approximates the solution of

a linear system. Indeed, as shown in [3], PPR amounts to

solving a weighted regularized least-squares problem over V ;

see also [20] for a PPR interpretation as an approximate

geometric discriminant function defined in the space of

landing probabilities.

The heat kernel (HK) is another popular diffusion that

has recently been employed for SSL [27] and community

detection on graphs [19]. HK is also a special case of (4) with

θHK = e−t
[

t, t2

2 , . . . ,
tK

K!

]T

, yielding class distributions (cf.

(4))

fc(θHK) = e−t

K
∑

k=0

tk

k!
p(k)
c . (7)

Furthermore, it can be readily shown that

lim
K→∞

fc(θHK) = e−t(I−H)vc

allowing HK to be interpreted as an approximation of a heat

diffusion process, where heat is flowing from Lc to the rest

of the graph; and fc(θHK) is a snapshot of the temperature

after time t has elapsed. HK provably yields low conductance

communities, while also converging faster to its asymptotic

closed-form expression than PPR [13].

93

III. ADAPTIVE DIFFUSIONS

Besides the unifying view of (4), the main contribution

here is on efficiently designing fc(θc) in (4), by learning

the corresponding θc per class. Thus, unlike PPR and HK,

the methods introduced here can afford class-specific label

propagation that is adaptive to the graph structure, and also

adaptive to the labeled nodes; see Fig. 1 for a high-level

illustration of the proposed adaptive diffusion framework.

Consider for generality a goodness-of-fit loss `(·), and a

regularizer R(·) promoting e.g., smoothness over the graph.

Using these, the sought class distribution will be

f̂c = arg min
f∈RN

`(yLc
, f) + λR(f) (8)

where λ tunes the degree of regularization, and

[yLc
]i =

{

1, i ∈ Lc

0, else

is the indicator vector of the nodes belonging to class c. Using

our diffusion model in (4), the N−dimensional optimization

problem (8) reduces to solving for the K−dimensional vector

(K � N)

θ̂c = arg min
θ∈SK

`(yLc
, fc(θ)) + λR(fc(θ)). (9)

Although many choices of `(·) may be of interest, we will

focus for simplicity on the quadratic loss, namely

`(yLc
, f) :=

∑

i∈L

1

di
([ȳLc

]i − fi)
2

= (ȳLc
− f)TD†

L(ȳLc
− f) (10)

where ȳLc
:= (1/|L|)yLc

is the class indicator vector after

normalization to avoid overfitting and numerical instabilities,

and D
†
L = diag(d

(−1)
L) with entries

[d
(−1)
L]i =

{

1/di, i ∈ L
0, else

.

For a smoothness-promoting regularization, we will employ

the following (normalized) Laplacian-based metric

R(f) =
1

2

∑

i∈V

∑

j∈Ni

(

fi
di

−
fj
dj

)2

= fTD−1LD−1f . (11)

Intuitively speaking, (10) favors vectors f having non-zero

(|1/|L|) values on nodes that are known to belong to class c,

and zero values on nodes that are known to belong to other

classes (L\Lc), while (11) promotes similarity of the entries

of f that correspond to neighboring nodes. In (10) and (11),

each entry fi is normalized by d
− 1

2

i and d−1
i respectively.

This normalization counterbalances the tendency of random

walks to concentrate on high-degree nodes, thus placing equal

importance to all nodes.

Adapting
Diffusions

Label
Prediction

P
(K)
r

P
(K)
g

θr

θg

Figure 1. High-level illustration of adaptive diffusions. The nodes belong
to two classes (red and green). The per-class diffusions are learned by
exploiting the landing probability spaces produced by random walks rooted
at the sample nodes (second layer: up for red; down for green).

Substituting (10) and (11) into (9), and recalling from (4)

that fc(θ) = P
(K)
c θ, yields the convex quadratic program

θ̂c = arg min
θ∈SK

θ
TAcθ + θ

Tbc (12)

with bc and Ac given by

bc = −
2

|L|
(P(K)

c)TD†
LyLc

(13)

Ac = (P(K)
c)TD†

LP
(K)
c + λ(P(K)

c)TD−1LD−1P(K)
c

(14)

= (P(K)
c)T

[(

D
†
L + λD−1

)

P(K)
c − λD−1HP(K)

c

]

= (P(K)
c)T

(

D
†
LP

(K)
c + λD−1P̃(K)

c

)

(15)

where

HP(K)
c =

[

Hp
(1)
c Hp

(2)
c · · · Hp

(K)
c

]

=
[

p
(2)
c p

(3)
c · · · p

(K+1)
c

]

is a “shifted” version of P
(K)
c , where each p

(k)
c is advanced

by one step, and

P̃(K)
c :=

[

p̃
(1)
c p̃

(2)
c · · · p̃

(K)
c

]

with p̃
(i)
c := p

(i)
c − p

(i+1)
c containing the “differential”

landing probabilities. The complexity of “naively” finding

the K ×K matrix Ac (and thus also bc) is O(K2N) for

computing the first summand, and O(|E|K) for the second

summand in (14), after leveraging the sparsity of L, which

means |E| � N2. But since columns of P̃
(K)
c are obtained

as differences of consecutive columns of P
(K)
c , this load

of O(|E|K) is saved. In a nutshell, the adaptive-diffusion

(AdaDIF) solver in (12)-(15) incurs complexity O(K2N).

A. Limiting behavior and computational complexity

In this section, we offer further insights on the model (4),

along with complexity analysis of the parametric solution in

(12). To start, the next proposition establishes the limiting

94

0 5 10 15 20
0

0.2

0.4

k

θ
k

PPR

HK

AdaDIF

Figure 2. Illustration of K = 20 landing probability coefficients for PPR
with α = 0.9, HK with t = 10, and AdaDIF.

behavior of AdaDIF as the regularization parameter grows;

for the proof see [7].

Proposition 1. If the second largest eigenvalue of H has

multiplicity 1, then for K sufficiently large but finite, the

solution to (12) as λ → ∞ satisfies

θ̂c = eK , ∀ Lc ⊆ V. (16)

Our experience with solving (12) reveal that the sufficiently

large K required for (16) to hold, can be as small as 102. As

λ → ∞, the effect of the loss in (10) vanishes. According to

Proposition 1, this causes AdaDIF to boost smoothness by

concentrating the simplex weights (entries of θ̂c) on landing

probabilities of the late steps (k close to K). If on the

other extreme, smoothness-over-the-graph is not promoted (cf.

λ = 0), the sole objective of AdaDIF is to construct diffusions

that best fit the available labeled data. Since short-length

random walks from a given node typically lead to nodes of

the same class, while longer walks to other classes, AdaDIF

with λ = 0 tends to leverage only a few landing probabilities

of early steps (k close to 1). For moderate values of λ,

AdaDIF effectively adapts per-class diffusions by balancing

the emphasis on initial versus final landing probabilities. Fig.

2 depicts an example of how AdaDIF places weights {θk}
K
k=1

on landing probabilities after a maximum of K = 20 steps,

generated from few samples belonging to one of 7 classes of

the Cora citation network. Note that the learned coefficients

may follow radically different patterns than those dictated

by standard non-adaptive diffusions such as PPR or HK. It

is worth noting that the simplex constraint induces sparsity

of the solution in (12), thus ‘pushing’ {θk} entries to zero.

The computational core of the proposed method is to build

the landing probability matrix P
(K)
c , whose columns are

computed fast using power iterations leveraging the sparsity

of H (cf. (2)). This endows AdaDIF with high computational

efficiency, especially for small K. Specifically, since for

solving (12) AdaDIF incurs complexity O(K2N) per class,

if K < |E|/N , this becomes O(|E|K); and for |Y| classes,

the overall complexity of AdaDIF is O(|Y||E|K), which is

in the same order as that of non-adaptive diffusions such as

PPR and HK. For larger K however, an additional O(K2N)
is required per class, mainly to obtain Ac in (15).

Overall, if O(KN) memory requirements are met, the

runtime of AdaDIF scales linearly with |E|, provided that

K remains small. Thankfully, small values of K are usually

sufficient to achieve high learning performance. As will be

shown in the next section, this observation is in par with

the analytical properties of diffusion based classifiers, where

it turns out that K large does not improve classification

accuracy.

B. On the choice of K

Here we elaborate on how the selection of K influences

the classification task at hand. As expected, the effect of K is

intimately linked to the topology of the underlying graph, the

labeled nodes, and their properties. For simplicity, we will

focus on binary classification with the two classes denoted

by “ + ” and “− .” Central to our subsequent analysis is a

concrete measure of the effect an extra landing probability

vector p
(k)
c can have on the outcome of a diffusion-based

classifier. Intuitively, this effect is diminishing as the number

of steps K grows, as both random walks eventually converge

to the same stationary distribution. Motivated by this, we

introduce next the γ-distinguishability threshold.

Definition 1 (γ-distinguishability threshold). Let p+ and

p− denote respectively the seed vectors for nodes of class

“+” and “−, ” initializing the landing probability vectors in

matrices Xc := P
(K)
c , and X̌c :=

[

p
(1)
c · · ·p

(K−1)
c p

(K+1)
c

]

,

where c ∈ {+,−}. With y := X+θ−X−θ and y̌ := X̌+θ−
X̌−θ, the γ-distinguishability threshold of the diffusion-based

classifier is the smallest integer Kγ satisfying ‖y− y̌‖ ≤ γ .

The following theorem establishes an upper bound on Kγ

expressed in terms of fundamental quantities of the graph,

as well as basic properties of the labeled nodes per class;

for the proof see [7].

Theorem 1. For any diffusion-based classifier with coeffi-

cients θ constrained to a probability simplex of appropri-

ate dimensions, the γ-distinguishability threshold is upper-

bounded as

Kγ ≤
1

µ′ log
[

2
√
dmax

γ

(
√

1
dmin

−

|L
−
| +

√

1
dmin+

|L+|

)]

where dmin+ := mini∈L+
di, dmin− :=

minj∈L
−

dj , dmax := maxi∈V di and µ′ :=
min{µ2, 2− µN} where {µn}

N
n=1 denote the eigenvalues of

the normalized graph Laplacian in ascending order.

The γ-distinguishability threshold can guide the choice of

the dimension K of the landing probability space. Indeed,

using class-specific landing probability steps K ≥ Kγ , does

not help distinguishing between the corresponding classes, in

the sense that the classifier output is not perturbed by more

than γ. Intuitively, the information contained in the landing

95

probabilities Kγ + 1,Kγ + 2, . . . is essentially the same for

both classes and thus, using them as features unnecessarily

increases the overall complexity of the classifier, and also

“opens the door” to curse of dimensionality related concerns.

Theorem 1 makes no assumptions on the diffusion coef-

ficients, so long they belong to a probability simplex. Of

course, specifying the diffusion function can specialize and

further tighten the corresponding γ-distinguishability thresh-

old. Conveniently, our experiments suggest that K ∈ [10, 20]
is usually sufficient to achieve high performance for most real

graphs. Nevertheless, longer random walks may be necessary

in e.g., graphs with small µ′, especially when the number of

labeled nodes is scarce. To deal with such challenges, the

ensuing modification of AdaDIF that scales linearly with K
is nicely motivated.

C. Dictionary of diffusions

The present section deals with a modified version of

AdaDIF, where the number of parameters (dimension of

θ) is restricted to D < K, meaning the “degrees of freedom”

of each class-specific distribution are fewer than the number

of landing probabilities. Specifically, consider (cf. (4))

fc(θ) =

K
∑

k=1

ak(θ)p
(k)
c = P(K)

c a(θ)

where ak(θ) :=
∑D

d=1 θdCkd, and C :=
[

c1 · · · cD
]

∈
R

K×D is a dictionary of D coefficient vectors, the ith

forming the column ci ∈ SK . Since a(θ) = Cθ, it follows

that

fc(θ) = P(K)
c Cθ =

D
∑

d=1

θdf
(d)
c

where f
(d)
c :=

∑K
k=1 Ckdp

(k)
c is the dth diffusion.

To find the optimal θ, the optimization problem in (12) is

solved with

bc = −
2

|L|
(F∆

c)
TD

†
LyLc (17)

Ac = (F∆
c)

TD
†
LF

∆
c + λ(F∆

c)
TD−1LD−1F∆

c (18)

where F∆
c := [f

(1)
c · · · f

(D)
c] effectively replaces P

(K)
c as

the basis of the space on which each fc is constructed. The

description of AdaDIF in dictionary mode is given as a

special case of Algorithm 1, together with the subroutine in

Algorithm 3 for memory-efficient generation of F∆
c .

The motivation behind this dictionary-based variant of

AdaDIF is two-fold. First, it leverages the properties of

a judiciously selected basis of known diffusions, e.g. by

constructing C =
[

θPPR,θHK, . . .
]

. In that sense, our

approach is related to multi-kernel methods, e.g. [1], although

significantly more scalable than the latter. Second, the

complexity of AdaDIF in dictionary mode is O(|E|(K+D)),
where D can be arbitrarily smaller than K, leading to

complexity that is linear with respect to both K and |E|.

Algorithm 1 ADAPTIVE DIFFUSIONS

Input: Adjacency matrix: W, Labeled nodes: {yi}i∈L
parameters: Regularization parameter: λ, # of landing

probabilities: K, Dictionary mode ∈ {True,False}, Un-

constrained ∈ {True,False}
Output: Predictions: {ŷi}i∈U
Extract Y = { Set of unique labels in: {yi}i∈L}
for c ∈ Y do

Lc = {i ∈ L : yi = c}
if Dictionary mode then

F∆
c = DICTIONARY (W,Lc,K,C)

Obtain bc and Ac as in (17) and (18)

Fc = F∆
c

else

{P
(K)
c , P̃

(K)
c } = LANDPROB(W,Lc,K)

Obtain bc and Ac as in (13) and (15)

Fc = P
(K)
c

end if

if Unconstrained then

Obtain θ̂c as in (19)

else

Obtain θ̂c by solving (12)

end if

fc(θ̂c) = Fcθ̂c

end for

Obtain ŷi = argmaxc∈Y
[

fc(θ̂c)
]

i
, ∀i ∈ U

Algorithm 2 LANDPROB

Input: W,Lc,K Output: P
(K)
c , P̃

(K)
c

H = WD−1; p
(0)
c = vc

for k = 1 : K + 1 do

p
(k)
c = Hp

(k−1)
c

p̃
(k)
c = p

(k−1)
c − p

(k)
c

end for

Algorithm 3 DICTIONARY

Input: W,Lc,K,C Output: F∆
c

H = WD−1; p
(0)
c = vc; {f

(d)
c }Dd=1 = 0

for k = 1 : K do

p
(k)
c = Hp

(k−1)
c

for d = 1 : D do

f
(d)
c = f

(d)
c + Ckdp

(k)
c

end for

end for

D. Unconstrained diffusions

Thus far, the diffusion coefficients θ have been constrained

on the K−dimensional probability simplex SK , resulting

in sparse solutions θ̂c, as well as fc(θ̂c) ∈ SN . The latter

also allows each fc(θ) to be interpreted as a pmf over V .

96

Nevertheless, the simplex constraint imposes a limitation to

the model: landing probabilities may only have non-negative

contribution on the resulting class distribution. Upon relaxing

this non-negativity constraint, (12) affords a closed-form

solution as

θ̂c = A−1
c (bc − λ∗1), λ∗ =

1TA−1
c bc − 1

bTA−1
c bc

. (19)

Retaining the hyperplane constraint 1T
θ = 1 prevents the

trivial solution θ = 0, and forces at least one entry of θ to

be positive.

IV. RELATION TO PRIOR WORKS

Following the seminal contribution in [9] that introduced

PageRank as a network centrality measure, there has been

a vast body of works studying its theoretical properties,

computational aspects, as well as applications beyond Web

ranking [23], [14]. Most formal approaches to generalize

PageRank focus either on the teleportation component (see

e.g. [28], [29] as well as [8] for an application to semi-

supervised classification), or, on the so-termed damping

mechanism [12], [4]. Perhaps the most general setting can

be found in [4], where a family of functional rankings was

introduced by the choice of a parametric damping function

that assigns weights to successive steps of a walk initialized

according to the teleportation distribution. The per class

distributions produced by AdaDIF are in fact members of this

family of functional rankings. However, instead of choosing a

fixed damping function as in the aforementioned approaches,

AdaDIF learns a class-specific and graph-aware damping

mechanism. In this sense, AdaDIF undertakes statistical

learning in the space of functional rankings, tailored to

the underlying semi-supervised classification task. AdaDIF

also shares links with SSL methods based on graph signal

processing proposed in [33]. Similar to our approach, these

graph filter based techniques are parametrized via assigning

different weights to a number of consecutive powers of a

matrix related to the structure of the graph. Our contribution

however, introduces different loss and regularization functions

for adapting the diffusions. It also uses the simplex constraint

which improves the numerical stability of the involved

computations; reduces the search-space of the model (which

is beneficial under data scarcity); and makes the model

amenable to a rigorous analysis that relates the dimensionality

of the feature space to basic graph properties.

V. EXPERIMENTAL EVALUATION

Our experiments compare the classification accuracy of

the novel AdaDIF approach with state-of-the-art alternatives.

For the comparisons, we use 6 benchmark labeled graphs

whose dimensions and basic attributes are summarized in

Table III. All 6 graphs have nodes that belong to multiple

classes, while the last 3 are multilabeled (each node has one

or more labels). We evaluate performance of AdaDIF and

the following: i) PPR and HK, which are special cases of

AdaDIF as discussed in Section II; ii) Label propagation (LP)

[38] iii) Node2vec [16]; iv) Deepwalk [30]; v) Planetoid-G

[37]; and, vi) graph convolutional networks (GCNs) [18].

We performed 10-fold cross-validation to select parameters

needed by i) - v). For HK, we performed grid search

over t ∈ [1, 5, 10, 15]. For PPR, we fixed α = 0.98 since

it is well documented that α close to 1 yields reliable

performance; see e.g., [25]. HK, PPR and LP were run for

50 steps for convergence to be in effect. For Node2vec, we

fixed most parameters to the values suggested in [16], and

performed grid search for p, q ∈ [0.25, 1.0, 2.0, 4.0]. Since

Deepwalk can be seen as Node2vec with p = q = 1.0, we

used the Node2vec Python implementation for both. As in

[16], [30], we used the embedded node-features to train a

supervised logistic regression classifier with `2 regularization.

For AdaDIF, we fixed λ = 15.0, while K = 20 was

sufficient to attain desirable accuracy; only the values of

Boolean variables Unconstrained and Dictionary Mode (see

Algorithm 1) were tuned by validation. For the multilabel

graphs, we found λ = 5.0 and even shorter walks of K = 10
to perform well. For the dictionary mode of AdaDIF, we

preselected D = 10, with the first five columns of C being

HK coefficients with parameters t ∈ [5.0, 20.0], and the other

five polynomial coefficients ci = kβ with β ∈ [2.0, 10].
For multiclass experiments, we evaluated the performance

of all algorithms on the three benchmark citation networks,

namely Cora, Citeseer, and PubMed. We obtained the

labels of an increasing number of nodes by uniformly

sampling |Lc| nodes from each class, and predicted the labels

of the remaining nodes. For each experiment, classification

accuracy was measured on the unlabeled nodes in terms of

Micro-F1 and Macro-F1 scores; see e.g., [26]. The results

were averaged over 20 experiments, with mean and standard

deviation reported in Table I. Evidently, AdaDIF achieves

state of the art performance for all graphs. For Cora and

PubMed, AdaDIF was switched to dictionary mode, while for

Citeseer, where the gain in accuracy is more significant,

unconstrained diffusions were employed. In the multiclass

setting, diffusion-based classifiers (AdaDIF, PPR, and HK)

outperformed the embedding-based methods by a small

margin, and GCNs by a larger margin. It should be noted

however that GCNs were mainly designed to combine the

graph with node features. In our “featureless” setting, we used

the identity matrix columns as input features, as suggested

in [18, Appendix]. The scalabilty of AdaDIF is reflected on

the runtime comparisons listed in Fig. 3. All experiments

were run on a machine with i5 @3.50 Mhz CPU, and

16GB of RAM. For the compared algorithms we used the

implementations provided by the authors.

Finally, Table II presents the results on multilabel graphs,

where we compare with Deepwalk and Node2vec, since the

rest of the methods are designed for multiclass problems.

Since nodes here may have multiple labels, it is challenging

97

Table I
MICRO F1 AND MACRO F1 SCORES ON MULTICLASS NETWORKS (CLASS-BALANCED SAMPLING)

Network Cora Citeseer PubMed

|Lc| 5 10 20 5 10 20 5 10 20

M
ic

ro
-F

1

AdaDIF 67.5± 2.2 71.0± 2.0 73.2± 1.2 42.3± 4.4 49.5± 3.0 53.5± 1.2 62.0± 6.0 68.5± 4.5 74.1± 1.7
PPR 67.1± 2.3 70.2± 2.1 72.8± 1.5 41.1± 5.2 48.7± 2.5 52.5± 0.9 63.1± 1.1 69.5± 3.8 74.1± 1.8
HK 67.0± 2.5 70.5± 2.5 72.9± 1.2 40.0± 5.6 48.0± 2.4 51.8± 1.1 62.0± 0.6 68.3± 4.7 74.0± 1.8
LP 61.8± 3.5 66.3± 4.2 71.0± 2.7 40.7± 2.5 48.0± 3.7 51.9± 1.3 56.2± 11.0 68.0± 6.1 69.3± 2.4
Node2vec 68.9± 1.9 70.2± 1.6 72.4± 1.2 39.2± 3.7 46.5± 2.4 51.0± 1.4 61.7± 13.0 66.4± 4.6 71.1± 2.4
Deepwalk 68.4± 2.0 70.0± 1.6 72.0± 1.4 38.4± 3.9 45.5± 2.0 50.4± 1.5 61.5± 1.3 65.8± 5.0 70.5± 2.2
Planetoid-G 63.5± 4.7 65.6± 2.7 69.0± 1.5 37.8± 4.0 44.9± 3.3 49.8± 1.4 60.7± 2.0 63.4± 2.3 68.0± 1.5
GCN 60.1± 3.7 65.5± 2.5 68.6± 1.9 38.3± 3.2 44.2± 2.2 48.0± 1.8 60.0± 1.9 63.6± 2.5 70.5± 1.5

M
ac

ro
-F

1

AdaDIF 65.5± 2.5 70.6± 2.2 72.0± 1.1 36.1± 3.9 44.0± 2.8 48.1± 1.2 60.4± 0.6 67.0± 4.4 72.6± 1.8
PPR 65.0± 2.3 70.0± 2.3 71.9± 1.5 34.7± 5.0 43.5± 2.3 47.6± 0.6 61.7± 0.6 68.1± 3.6 72.6± 1.8
HK 65.0± 2.5 70.0± 2.6 72.0± 1.1 33.9± 5.4 42.8± 2.2 47.0± 0.6 60.5± 0.6 66.8± 4.7 72.7± 1.8
LP 60.1± 3.2 66.5± 4.1 70.6± 2.3 34.8± 4.6 41.8± 3.9 51.5± 1.2 51.5± 12.3 66.2± 6.6 67.8± 2.0
Node2vec 62.4± 2.0 64.7± 1.7 69.2± 1.2 34.6± 2.7 41.6± 1.9 45.3± 1.5 59.5± 1.2 64.0± 3.8 72.3± 1.4
Deepwalk 61.8± 2.2 64.5± 2.0 68.5± 1.4 34.0± 2.5 41.0± 2.0 44.7± 1.8 59.3± 1.2 63.8± 4.0 72.1± 1.3
Planetoid-G 59.9± 4.5 63.0± 3.0 68.7± 1.9 33.3± 2.5 40.2± 2.2 43.6± 2.0 57.7± 1.5 61.9± 3.5 66.1± 1.8
GCN 53.8± 6.6 61.9± 2.6 63.8± 1.5 32.8± 2.0 39.1± 1.8 43.0± 1.7 54.4± 4.1 57.2± 5.2 60.5± 2.4

Table II
MICRO F1 AND MACRO F1 SCORES OF VARIOUS ALGORITHMS ON MULTILABEL NETWORKS

Network PPI BlogCatalog Wikipedia

|L|/|V| 10% 20% 30% 10% 20% 30% 10% 20% 30%

M
ic

ro
-F

1

AdaDIF 15.4± 0.5 17.9± 0.7 19.2± 0.6 31.5± 0.6 34.4± 0.5 36.3± 0.4 28.2± 0.9 30.0± 0.5 31.2± 0.7
PPR 13.8± 0.5 15.8± 0.6 17.0± 0.4 21.1± 0.8 23.6± 0.6 25.2± 0.6 10.5± 1.5 8.1± 0.7 7.2± 0.5
HK 14.5± 0.5 16.7± 0.6 18.1± 0.5 22.2± 1.0 24.7± 0.7 26.6± 0.7 9.3± 1.4 7.3± 0.7 6.0± 0.7
Node2vec 16.5± 0.6 18.2± 0.3 19.1± 0.3 35.0± 0.3 36.3± 0.3 37.2± 0.2 42.3± 0.9 44.0± 0.6 45.1± 0.4
Deepwalk 16.0± 0.6 17.9± 0.5 18.8± 0.4 34.2± 0.4 35.7± 0.3 36.4± 0.4 41.0± 0.8 43.5± 0.5 44.1± 0.5

M
ac

ro
-F

1

AdaDIF 13.4± 0.6 15.4± 0.7 16.5± 0.7 23.0± 0.6 25.3± 0.4 27.0± 0.4 7.7± 0.3 8.3± 0.3 9.0± 0.2
PPR 12.9± 0.4 14.7± 0.5 15.8± 0.4 17.3± 0.5 19.5± 0.4 20.8± 0.3 4.4± 0.3 3.8± 0.6 3.6± 0.2
HK 13.4± 0.6 15.4± 0.5 16.5± 0.4 18.4± 0.6 20.7± 0.4 22.3± 0.4 4.2± 0.4 3.7± 0.5 3.5± 0.2
Node2vec 13.1± 0.6 15.2± 0.5 16.0± 0.5 16.8± 0.5 19.0± 0.3 20.1± 0.4 7.6± 0.3 8.2± 0.3 8.5± 0.3
Deepwalk 12.7± 0.7 15.1± 0.6 16.0± 0.5 16.6± 0.5 18.7± 0.5 19.6± 0.4 7.3± 0.3 8.1± 0.2 8.2± 0.2

Table III
NETWORK CHARACTERISTICS

Network |V| |E| |Y| Multilabel

Citeseer 3,233 9,464 6 No
Cora 2,708 10,858 7 No
PubMed 19,717 88,676 3 No
PPI (H. Sapiens) 3,890 76,584 50 Yes
Wikipedia 4,733 184,182 40 Yes
BlogCatalog 10,312 333,983 39 Yes

to find a subset of nodes that has equal number of labels for

each class. In fact, such a set may not even exist for a given

size. Therefore, for multilabel graphs we simply draw nodes

uniformly at random and observe their labels. Also, since

these graphs have a large number of classes, we increased the

number of training samples. Similar to [16] and [30], during

evaluation the number of labels per sampled node is known,

and check how many of them are in the top predictions. First,

we observe that AdaDIF markedly outperforms PPR and HK

across graphs and metrics. Furthermore, for the PPI and

BlogCatalog graphs the Micro-F1 score of AdaDIF comes

close to that of the much heavier state-of-the-art Node2vec.

Finally, AdaDIF outperforms the competing alternatives in

terms of Macro-F1 score.

Cora Citeseer PubMed

10
0

10
2

10
4

10
6

R
el

at
iv

e
R

u
n

ti
m

e

AdaDIF GCN

Node2vec/Deepwalk Planetoid-G

Figure 3. Relative runtime for multiclass networks.

VI. CONCLUSIONS

We introduced a principled, data-efficient approach to

learning class-specific diffusion functions tailored to the

underlying network topology. Experiments on real networks

confirm that adapting the diffusion function to the given graph

and observed labels, significantly improves the performance

over fixed diffusions; reaching—and many times surpassing—

the classification accuracy of state-of-the-art competing

methods while being orders of magnitude faster.

98

REFERENCES

[1] A. Argyriou, M. Herbster, and M. Pontil, “Combining graph
laplacians for semi–supervised learning,” in Proc. Advances
in Neural Information Processing Systems, Vancouver, Can.,
2006, pp. 67–74.

[2] J. Atwood and D. Towsley, “Diffusion-convolutional neural
networks,” in Proc. Advances in Neural Information Process-
ing Systems, Barcelona, Spain, 2016, pp. 1993–2001.

[3] K. Avrachenkov, A. Mishenin, P. Gonçalves, and M. Sokol,
“Generalized optimization framework for graph-based semi-
supervised learning,” Proc. SIAM Intl. Conf. on Data Mining,
Anaheim, CA, 2012, pp. 966–974.

[4] R. Baeza-Yates, P. Boldi, and C. Castillo, “Generic damping
functions for propagating importance in link-based ranking,”
Internet Math., vol. 3, no. 4, pp. 445–478, 2006.

[5] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regular-
ization: A geometric framework for learning from labeled and
unlabeled examples,” J. Mach. Learn. Res., no. 7, Nov, 2006,
pp. 2399–2434.

[6] Y. Bengio, O. Delalleau, and N. Le Roux, “Label propaga-
tion and quadratic criterion,” in Semi-Supervised Learning.
Cambridge, MA, USA: MIT Press, 2006.

[7] D. Berberidis, A. N. Nikolakopoulos, and G. B. Giannakis,
“Adaptive Diffusions for Scalable Learning over Graphs,” arXiv
preprint arXiv:1804.02081.

[8] D. Berberidis, A. N. Nikolakopoulos, and G. B. Giannakis,
“Random walks with restarts for graph-based classification:
Teleportation tuning and sampling design,” in Proc. of IEEE
Int. Conf. on Acoustics, Speech and Signal Processing, Calgary,
Can., April 2018.

[9] S. Brin and L. Page, “Reprint of: The anatomy of a large-
scale hypertextual web search engine,” Comput. Netw., vol. 56,
no. 18, pp. 3825–3833, 2012.

[10] E. Buchnik and E. Cohen, “Bootstrapped graph diffu-
sions: Exposing the power of nonlinearity,” arXiv preprint
arXiv:1703.02618, 2017.

[11] O. Chapelle, B. Schölkopf, and A. Zien, Semi-Supervised
Learning. Cambridge, MA, USA: MIT Press, 2006.

[12] P. G. Constantine and D. F. Gleich, “Random alpha pagerank,”
Internet Math., vol. 6, no. 2, pp. 189–236, 2009.

[13] F. Chung, “The heat kernel as the pagerank of a graph,” Proc.
Natl. Acad. Sci., vol. 104, no. 50, pp. 19 735–19 740, 2007.

[14] D. F. Gleich, “Pagerank beyond the web,” SIAM Rev., vol. 57,
no. 3, pp. 321–363, 2015.

[15] J. Gorski, F. Pfeuffer, and K. Klamroth, “Biconvex sets and
optimization with biconvex functions: a survey and extensions,”
Math. Methods of Oper. Res., vol. 66, no. 3, pp. 373–407,
Dec. 2007.

[16] A. Grover and J. Leskovec, “node2vec: Scalable feature
learning for networks,” in Proc. of ACM SIGKDD Int. Conf.
on Knowledge Discovery and Data Mining, San Francisco,
CA, 2016, pp. 855–864.

[17] T. Joachims, “Transductive learning via spectral graph parti-
tioning,” Proc. of Intl. Conf. on Machine Learn., Washington
DC, 2003, pp. 290–297.

[18] T. N. Kipf and M. Welling, “Semi-supervised classifica-
tion with graph convolutional networks,” arXiv preprint
arXiv:1609.02907, 2016.

[19] K. Kloster and D. F. Gleich, “Heat kernel based community
detection,” in Proc. of ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining, New York, NY, 2014, pp. 1386–
1395.

[20] I. M. Kloumann, J. Ugander, and J. Kleinberg, “Block models
and personalized pagerank,” Proc. Natl. Acad. Sci., vol. 114,
no. 1, pp. 33–38, 2017.

[21] R. I. Kondor and J. Lafferty, “Diffusion kernels on graphs and
other discrete input spaces,” in Proc. of Int. Conf. on Machine
Learning, Syndey, Australia, 2002, pp. 315–322.

[22] B. Kveton, M. Valko, A. Rahimi, and L. Huang, “Semi-
supervised learning with max-margin graph cuts,” in Proc.
of. Int. Conf. on Artificial Intelligence and Statistics, Sardinia,
Italy, 2010, pp. 421–428.

[23] A. N. Langville and C. D. Meyer, “Deeper inside pagerank,”
Internet Math., vol. 1, no. 3, pp. 335–380, 2004.

[24] D. A. Levin and Y. Peres, Markov Chains and Mixing Times.
New York, NY, USA: Amer. Math. Soc., 2017.

[25] F. Lin and W. W. Cohen, “Semi-supervised classification of
network data using very few labels,” in Proc. of Int. Conf. on
Advances in Social Network Analysis and Mining, Odense,
Denmark, 2010, pp. 192–199.

[26] C. D. Manning, P. Raghavan, and H. Schutze, Introduction to
Information Retrieval. Cambridge, MA: Cambridge University
Press, 2008.

[27] E. Merkurjev, A. L. Bertozzi, and F. Chung, “A semi-
supervised heat kernel pagerank MBO algorithm for data
classification,” Univ. of California Los Angeles, Los Angeles,
US, Tech. Rep., 2016.

[28] A. N. Nikolakopoulos and J. D. Garofalakis, “Ncdawarerank: A
novel ranking method that exploits the decomposable structure
of the web,” Proc. ACM Intl. Conf. on Web Search and Data
Mining, Rome, Italy, 2013, pp. 143–152.

[29] A. N. Nikolakopoulos, A. Korba, and J. D. Garofalakis,
“Random surfing on multipartite graphs,” in Proc. of IEEE Int.
Conf. on Big Data, Washington DC, Dec. 2016, pp. 736–745.

[30] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online
learning of social representations,” Proc. ACM SIGKDD Intl.
Conf. on Knowl. Disc. and Data Mining, New York, NY, 2014,
pp. 701–710.

[31] A. T. Puig, A. Wiesel, G. Fleury, and A. O. Hero, “Multidi-
mensional shrinkage-thresholding operator and group lasso
penalties,” IEEE Signal Process. Lett., vol. 18, no. 6, pp.
363–366, 2011.

[32] N. Rosenfeld and A. Globerson, “Semi-supervised learn-
ing with competitive infection models,” arXiv preprint
arXiv:1703.06426, 2017.

[33] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing
on graphs,” IEEE Trans. Signal Process., vol. 61, no. 7, pp.
1644–1656, April 2013.

[34] P. P. Talukdar and K. Crammer, “New regularized algorithms
for transductive learning,” in Proc. of Joint Eur. Conf. on
Machine Learning and Knowledge Discovery in Databases,
2009, pp. 442–457.

[35] J. Ugander and L. Backstrom, “Balanced label propagation for
partitioning massive graphs,” in Proc. of ACM Int. Conf. on
Web Search and Data Mining, Rome, Italy, 2013, pp. 507–516.

[36] X.-M. Wu, Z. Li, A. M. So, J. Wright, and S.-F. Chang,
“Learning with partially absorbing random walks,” Proc. Adv.
in Neural Inform. Proc. Systems, Lake Tahoe, CA, Dec. 2012,
pp. 3077–3085.

[37] Z. Yang, W. W. Cohen, and R. Salakhutdinov, “Revisiting semi-
supervised learning with graph embeddings,” arXiv preprint
arXiv:1603.08861, 2016.

[38] X. Zhu, Z. Ghahramani, and J. Lafferty, “Semi-supervised
learning using Gaussian fields and harmonic functions,” in
Proc. of Int. Conf. on Machine Learning, Washington DC,
Aug. 2003.

99

