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ABSTRACT

Several network science applications involve nodal processes

with dynamics dependent on the underlying graph topology

that can possibly jump over discrete states. The connectiv-

ity in dynamic brain networks for instance, switches among

candidate topologies, each corresponding to a different emo-

tional state. In this context, the present work relies on limited

nodal observations to perform semi-supervised tracking of

dynamic processes over switching graphs. To this end, lever-

aging what is termed interacting multi-graph model (IMGM),

a scalable online Bayesian approach is developed to track the

active graph topology and dynamic nodal process. Numerical

tests with synthetic and real datasets demonstrate the merits

of the novel approach.

Index Terms— Dynamic graphs, Bayesian tracking

1. INTRODUCTION

Given limited data at a subset of nodes, various applications

deal with inference of processes across all network nodes.

Such a semi-supervised learning (SSL) task over networks

can be addressed thanks to the underlying graph topology that

captures nodal inter-dependencies [5, 7, 14]. The scarcity of

nodal observations can be due to e.g., cost, and computational

or privacy constraints. To name a couple, individuals in so-

cial networks may be reluctant to share personal information,

while acquiring nodal samples in brain networks may require

invasive procedures such as electrocorticography.

This inference task becomes more challenging when

nodal processes are nonstationary, and the graph topology

is also time-varying. In a brain network for example, where

nodes correspond to brain regions and edges capture depen-

dencies among them, one may be interested in predicting

the dynamic processes as well as the varying interconnec-

tions. An interesting time-varying topology model switches

over a set of connectivity patterns, also known as “network

modes” [1]. The connectivity among human brain regions

varies as the humans’ emotional, mental or physical activities

change [18]. Coupled with the topology, the dynamics of

nodal processes can also switch among different modes. A

similar switching model has been employed to capture the

kinematics of maneuvering targets such as drones [2].

Methods for inference (or reconstruction) of nodal pro-

cesses typically assume that the network topology is known

and undirected, while the processes are smooth, in the sense

that neighboring vertices have similar values [15]. Inference

of slow-varying functions over graphs has been pursued us-

ing the so-termed graph bandlimited model in [4, 17]. On the

other hand, [6, 13] employ graph kernel-based estimators for

reconstructing general dynamic processes. All these contem-

porary approaches rely on a known graph topology. However,

the dynamic graph can change or switch in an unknown fash-

ion among a set of possibly known topologies, which may

reflect sudden changes in the partially observed signals.

The present paper relies on a known set of candidate

topologies to put forth an approach for semi-supervised

tracking and extrapolation of dynamic nodal processes over

switching graphs. Rather than the kinematics in [2], the

nodal processes here evolve in accordance with a switching

dynamical model that depends on the active graph topology.

Given partially observed nodal samples and the candidate

graph topologies, a scalable Bayesian algorithm is developed

to jointly track the dynamic graph processes and classify the

active graph topology (or network mode) on-the-fly.

If observations were available at all nodes, it would have

been possible to identify the active topology per slot without

explicitly modeling the nodal process dynamics [1]. Relative

to [1], this work accounts for dynamics to reconstruct unavail-

able nodal data, while at the same time identifying the active

mode and tracking the nodal processes. Not necessarily graph

related yet similar to that of [1] is the goal of subspace clus-

tering [16], but different from the work here mode dynamics

are not leveraged to reconstruct unavailable nodal processes.

2. PROBLEM FORMULATION

Consider a graph with N nodes and the vertex set V :=
{v1, . . . , vN}, whose connectivity switches among S dis-

crete modes. Each mode corresponds to a unique connec-

tivity pattern captured by the N × N adjacency matrix A
s
t ,

whose (n, n′)th entry is the nonnegative weight of the edge

connecting vn with vn′ . The graph is considered undi-

rected with no self-loops, that is, {As
t}

S

s=1
are symmetric

and A
s
t (n, n) = 0. The Laplacian matrix of mode s is

L
s
t := diag{As

t1N} −A
s
t . Per time slot t only one network

mode σt = s is active. Switching topologies emerge in sev-

eral interconnected systems. Besides brain networks [18],

the email network switches from work-based connections on
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weekdays to friends-and-family ones over weekends.

A dynamic graph process is a mapping x : V × T 7→ R,

where T := {1, 2, ...} is the set of slot indices. Specifi-

cally, xt(vn) denotes the node vn sample at time slot t. For

example, xt(vn) may denote the price of a stock at year t.
The values of all nodes at time t will be collected in xt :=
[xt(v1) . . . xt(vN )]

>
, where > stands for transposition.

In many applications, only a subset of the nodal samples

are observed, yielding the observation model

zt = Htxt + et (1)

where Ht ∈ {0, 1}M×N is the M × N (M < N ) sampling

matrix, whose rows sum to 1, and et is zero-mean, temporally

independent, Gaussian noise with covariance matrix R.

To capture the spatio-temporal dynamics of the nodal

processes that are connected through the mode-conditioned

topology, we model the evolution from xt−1 to xt as the

first-order Markovian process

xt = F
σt

t xt−1 + η
σt

t (2)

where the state transition matrix F
σt

t := f (Aσt

t ) is a func-

tion f of the active adjacency matrix A
σt

t at network mode

σt ∈ {1, ..., S}; and the mode-conditioned noise ησt

t is Gaus-

sian with zero mean and covariance Kσt

t , which is taken from

the so-termed family of Laplacian kernels described by [8]

K
σt

t = r†(Lσt

t ), where r(·) is a scalar decreasing function

that promotes properties such as diffusion, smoothness, or

graph bandlimitedness; and † denotes pseudo-inverse.

The dynamic model in (2) describes what is also known

as a switching linear dynamical system (SLDS) [12], and it

is widely employed in the tracking community to capture the

kinematic state evolution of maneuvering targets [2].

Problem statement. Given T observations ZT := [z1 . . . zT ]

as in (1), and candidate models {{Fs
t ,K

s
t}

S

s=1
}Tt=1 as in (2),

the goal is to jointly track the dynamic graph processes

XT := [x1 . . .xT ], and the discrete modes {σt}
T

t=1
.

3. GRAPH-ADAPTIVE BAYESIAN TRACKER

Here we develop a Bayesian approach, starting from the joint

probability density function (pdf) of the nodal processes in

XT that can be expressed as p(XT ) = p(xT |xT−1)p(XT−1) =

· · · =
∏T

t=1
p(xt|xt−1), due to the Markovian model in (2).

Because et is temporally white, the conditional data pdf also

factorizes as p(Zt|XT ) =
∏T

t=1
p(zt|xt). Hence, Bayes’

rule yields the posterior pdf proportional to

p(XT |ZT ) ∝ p(ZT |XT )p(XT ) =

T
∏

t=1

p(zt|xt)p(xt|xt−1)

=

T
∏

t=1

p(zt|xt)

(

S
∑

s=1

ws
t p(xt|xt−1;σt = s)

)

(3)

where
∑S

s=1
ws

t = 1, and ws
t ∈ {0, 1}, with ws

t = 1 indicat-

ing that topology s is active at time slot t. To stress the active

topology present, we abused notation by explicitly incorporat-

ing σt = s in p(xt|xt−1). The conditional likelihood p(zt|xt)
and the transition pdf p(xt|xt−1;σt = s) are Gaussian; that

is, p(zt|xt) = N (zt;Htxt,R) and p(xt|xt−1;σt = s) =
N (xt;F

s
txt−1,K

s
t ). Thus, the maximum a posteriori esti-

mate of the state is given in batch form by (cf. (3))

arg min
{xt}

T

t=1

{{ws

t
}S

s=1
}T

t=1

1

2

T
∑

t=1

[‖zt −Htxt‖
2

R
+

S
∑

s=1

ws
t ‖xt − F

s
txt−1‖

2

Ks
t
]

s.to ws
t ∈ {0, 1},

S
∑

s=1

ws
t = 1. (4)

Unfortunately, (4) is a mixed integer program and thus com-

putationally prohibitive to solve, especially in an online setup,

where estimates of xt and σt are sought on-the-fly.

Aiming at a computationally efficient online scheme,

we will innovate the interacting multi-model (IMM) algo-

rithm [3] that has been applied to target tracking [11] and

air traffic control [10], but without graph-related information.

Our graph-aware algorithm is naturally termed interacting

multi-graph model (IMGM), and takes into account dynam-

ically switching topologies. Given partially observed nodal

samples zt, IMGM offers a scalable Bayesian scheme for

tracking not only all nodal processes in xt, but also the dis-

crete network mode σt per slot t online.

Our IMGM replaces the hard constraint ws
t ∈ {0, 1} with

the soft one ws
t ∈ [0, 1]. This allows one to think of ws

t as

the posterior probability of mode s being active at slot t given

Zt, namely ws
t = Pr(σt = s|Zt). We further model the

evolving mode σt as a first-order Markov chain parameterized

by the S × S mode transition matrix Π, whose (i, j)th entry

πij = Pr(σt = i|σt−1 = j) denotes the transition probability

from mode j at slot t− 1 to mode i at slot t.

IMGM leverages the current observation zt to propagate

the posterior p(xt−1|Zt−1) to p(xt|Zt). Based on Bayes’ rule

and the total probability theorem (TPT), the posterior pdf is

p(xt|Zt) =

S
∑

s=1

Pr(σt=s|Zt) p(xt|σt=s,Zt)

≈
S
∑

s=1

ws
t N (xt; x̂

s
t|t,P

s
t|t) (5)

where we approximated the mode-conditional posterior of xt

with a Gaussian pdf having mean x̂
s
t|t and covariance matrix

P
s
t|t. We will henceforth suppose that p(xt|Zt) adheres to

an exact Gaussian mixture (GM) pdf parameterized by the set

Pt := {ws
t , x̂

s
t|t,P

s
t|t, s = 1, . . . , S}. This GM model facili-

tates the propagation from p(xt−1|Zt−1) to p(xt|Zt) through

closed-form updates of the elements in Pt−1 to those in Pt.

These updates are implemented using the prediction and cor-

rection steps described next.

Prediction. Given Pt−1, the mode-conditioned predicted
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state pdf at slot t can be expressed using the TPT as

p(xt|σt = s′,Zt−1) = (6)

S
∑

s=1

Pr(σt−1=s|σt = s′,Zt−1)p(xt|σt = s′, σt−1 = s,Zt−1)

where the first factor Pr(σt−1 = s|σt = s′,Zt−1) := w
s|s′

t−1|t

can be viewed as a backward mode transition probability,

while the second factor is the predicted state pdf conditioned

on mode s′ at slot t and mode s at slot t− 1. Upon appealing

to Bayes’ rule and the TPT, the first factor boils down to

w
s|s′

t−1|t =
Pr(σt−1 = s|Zt−1) Pr(σt = s′|σt−1 = s,Zt−1)
S
∑

s=1

Pr(σt−1 = s|Zt−1) Pr(σt = s′|σt−1 = s,Zt−1)

=
ws

t−1πs′s

S
∑

s=1

ws
t−1

πs′s

. (7)

As for the second factor in (6), state equation (2) implies that

p(xt|σt = s′, σt−1 = s,Zt−1) = N (xt; x̂
s′|s
t|t−1

,P
s′|s
t|t−1

)

where the mean and the covariance for the predicted state are

respectively obtained as

x̂
s′|s
t|t−1

= F
s′

t x̂
s
t−1|t−1

(8a)

P
s′|s
t|t−1

= F
s′

t P
s
t−1|t−1

(

F
s′

t

)>

+K
s′

t . (8b)

Although (7) and (8) yield the predicted GM pdf p(xt|σt =
s′,Zt−1), evolving it to its posterior in (6) is challenging, sim-

ply because a GM pdf is a non-Gaussian pdf. To arrive at a

computationally tractable mode-conditioned Gaussian poste-

rior, we will approximate (6) by the following Gaussian pdf

p(xt|σt = s′,Zt−1) ≈ N (xt; x̂
s′

t|t−1
,Ps′

t|t−1
) (9)

where x̂s′

t|t−1
and P

s′

t|t−1
are chosen to minimize the Kullback-

Leibler divergence between the pdfs in (9) and (6) that gives

x̂
s′

t|t−1
=

S
∑

s=1

w
s|s′

t−1|tx̂
s′|s
t|t−1

(10a)

P
s′

t|t−1
=

S
∑

s=1

w
s|s′

t−1|t

(

P
s′|s
t|t−1

+ (x̂
s′|s
t|t−1

− x̂
s′

t|t−1
)(x̂

s′|s
t|t−1

− x̂
s′

t|t−1
)>
)

. (10b)

Correction. Given the new observation zt, the predicted state

pdf specified by (10) is propagated via Bayes rule as

p(xt|σt = s′,Zt) = p(xt|σt = s′, zt,Zt−1)

=
p(xt|σt = s′,Zt−1)p(zt|xt, σt = s′,Zt−1)

p(zt|σt = s′,Zt−1)
(11)

where p(zt|xt, σt = s′,Zt−1) = p(zt|xt) by indepen-

dence. Since p(xt|σt = s′,Zt−1) and p(zt|xt) are Gaussian,

p(xt|σt = s′,Zt) will also be Gaussian with the first two

moments in (12d) and (12e) given by Kalman updates [2]

ẑ
s′

t|t−1
= Htx̂

s′

t|t−1
(12a)

Φ
s′

t = HtP
s′

t|t−1
(Ht)

>
+R (12b)

G
s′

t = P
s′

t|t−1
(Ht)

>
Φ

−1

t (12c)

x̂
s′

t|t = x̂
s′

t|t−1
+G

s′

t (zt − ẑ
s′

t|t−1
) (12d)

P
s′

t|t = P
s′

t|t−1
−G

s′

t Φ
s′

t

(

G
s′

t

)>

. (12e)

The mode probabilities are then updated as

ws′

t = Pr(σt = s′|zt,Zt−1)

=
p(zt|σt = s′,Zt−1)Pr(σt = s′|Zt−1)
S
∑

s′=1

p(zt|σt = s′,Zt−1)Pr(σt = s′|Zt−1)

(13)

where p(zt|σt = s′,Zt−1) = N (zt; ẑ
s′

t|t−1
,Φs′

t ) from (12a)

and (12b), and the predicted mode probability is given by

Pr(σt = s′|Zt−1) =

S
∑

s=1

Pr(σt = s′, σt−1 = s|Zt−1)

=

S
∑

s=1

Pr(σt = s′|σt−1 = s,Zt−1)Pr(σt−1 = s|Zt−1)

=

S
∑

s=1

πs′sw
s
t−1 . (14)

Finally, the wanted posterior pdf is

p(xt|Zt) =

S
∑

s′=1

ws′

t N (xt; x̂
s′

t|t,P
s′

t|t) ≈ N (xt; x̂t|t,Pt|t)

where the single Gaussian approximant of GM has moments

x̂t|t =

S
∑

s′=1

ws′

t x̂
s′

t|t

Pt|t =

S
∑

s′=1

ws′

t

(

P
s′

t|t + (x̂s′

t|t − x̂t|t)(x̂
s′

t|t − x̂t|t)
>
)

.

4. NUMERICAL TESTS

In this section, we test the performance of IMGM using

synthetic and real dynamic graph processes. IMGM is com-

pared with existing algorithms including kernel Kalman filter

(KKF) [13], the adaptive least mean-square algorithm [4], and

distributed least-squares reconstruction (DLSR) [17], where

the last two are adaptive algorithms to track slow-varying B-

bandlimited graph signals. The competing algorithms know

the active network mode per slot t, whereas IMGM estimates

σt on-the-fly. The performance metric is the normalized

mean-square error (NMSE) over unobserved nodes, which is

given by NMSE(t) := ‖Hc
t

(

x̂t|t − xt

)

‖22/‖H
c
txt‖

2
2, where

H
c
t is the sampling matrix for the unobserved nodes.

A dynamic process is generated over a graph having N =
100 nodes, and S = 2 modes corresponding to topologies
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Fig. 1. Mode posterior probabilities for synthetic data.

0 5 10 15 20 25 30

Time step

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
M

S
E

 f
o

r 
u

n
o

b
s
e

rv
e

d
 n

o
d

e
s

KKF
IMGM
LMS
DLSR

Fig. 2. NMSE for synthetic data (µLMS = 2, BLMS = 2,

µDLSR = 2, BDLSR = 50, βDLSR = 0.2).

obtained by two symmetric Erdös-Rényi random graphs with

edge existence probabilities 0.3 and 0.7, respectively. Process

xt is generated according to (2) with F
σt

t = 0.4(Aσt + IN ),
and K

σt

t a bandlimited kernel with B = 50 and β = 100 (see

in [6, Table I]). The network switches from mode 1 to mode 2
at slot 11, and switches back to mode 1 at slot 21 over a total

T = 30 slots. The observations adhere to (1) with M = 50,

Ht = [IM ,0M,N−M ] and R = 32IM . To assess the average

performance, 100 Monte-Carlo runs are conducted. Fig. 1

depicts {ws
t }

2
s=1 found by IMGM, and demonstrates how ef-

ficiently IMGM tracks the active modes. Fig. 2 shows that

IMGM’s NMSE is comparable to that of KKF, which relies

on extra information, while it outperforms LMS and DLSR.

ECoG brain data. Here we test the IMGM performance

using ECoG data obtained from an epilepsy study [9]. The

ECoG time series were obtained from N = 76 electrodes im-

planted in a patient’s brain before and after a seizure, where

the onset of the seizure was identified by a neurophysiologist.

Therefore, there are S = 2 modes, the pre-ictal and ictal mode

that correspond to before and after the seizure. We extract 250
samples from the dataset for each of the two modes, which are

preprocessed by subtracting the sample mean and normaliz-

ing by the sample standard deviation. The preprocessed sam-

ples are then concatenated, i.e., σt = 1 for t = 1, ..., 250 and
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Fig. 3. Mode posterior probabilities for ECoG brain data.
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Fig. 4. NMSE for ECoG brain data (µLMS = 0.6, BLMS = 2,

µDLSR = 1.2, BDLSR = 6, βDLSR = 0.5).

σt = 2 for t = 251, ..., 500. A time-invariant symmetric cor-

relation graph is generated for each of the two modes. The

ECoG signals are modeled to evolve based on (2), where the

transition function F
σt

t = 0.15(Aσt + IN ), and process noise

covariance K
σt

t is a diffusion kernel with parameter σ = 2
(see Table I in [6]). The observations are generated as in (1)

with M = 53 and R = 10−2
IM . Matrix Ht is invariant over

T = 500 slots. The performance is averaged over 100 random

sample realizations. Fig. 3 shows the IMGM probabilities

{ws
t }

2
s=1. Here, IMGM acts as a “neurophysiologist” that de-

tects the onset of an epileptic seizure. In addition, the NMSE

of IMGM is comparable to that of the mode-clairvoyant KKF,

while markedly outperforming the other two alternatives.

5. CONCLUSIONS

This paper dealt with tracking dynamic graph processes that

evolve over switching graph topologies. Given observations

at a subset of nodes and candidate mode-conditioned topolo-

gies, a scalable Bayesian algorithm, termed IMGM, was in-

troduced to learn the dynamic graph processes and discrete

network modes online. Numerical tests on synthetic and real

data corroborated the performance of the IMGM algorithm.
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